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A B S T R A C T   

We develop a new finite deformation constitutive model for metallic glass within the framework 
of irreversible nonequilibrium thermodynamics. To consider the intrinsically out-of-equilibrium 
characteristics of metallic glass, its total internal energy is divided into two weakly coupled 
configurational and kinetic subsystems, and configurational temperature coupling with config
urational degrees of freedom is introduced as a thermodynamic state variable to characterize the 
evolution of the disordered structure. Furthermore, the classical shear transformation zone theory 
is extended by reasonably considering the reverse shear transformation as a form of the relaxation 
of the strain field, which is stored in the elastic matrix and produced by the constraint of the 
matrix on shear transformation. With the help of the finite element implementation for the new 
model, the effectiveness of the proposed model is validated by comparing the modeling stress–
strain responses of the macroscopic deformations under different temperatures and strain rates 
with the experimental results, and the utility of the model for predicting the shear banding 
behavior of metallic glasses is examined as well. The results therefore show that the constructed 
constitutive model can not only effectively predict the deformations of metallic glass under 
different ambient temperatures and applied strain rates, but also reasonably explain the mech
anisms of deformation mode evolution and shear band formation.   

1. Introduction 

The study of the deformation of amorphous solids is a challenging topic with a long history due to the inherent disorder (Nicolas 
et al., 2018). As an ideal model for the deformation of amorphous and solid-like materials, metallic glasses have attracted considerable 
attention (Schuh et al., 2007; Falk and Langer, 2011; Rodney et al., 2011; Gao et al., 2011; Wang, 2012; Hufnagel et al., 2016; Jia et al., 
2018; Kosiba et al., 2019; Sha et al., 2020; Jiang et al., 2020; Zhang et al., 2022). Different from crystals, it is recognized that the 
topologically disordered microstructure causes the deformation of metallic glasses to always exhibit an intrinsically out-of-equilibrium 
phenomenon; in this out-of-equilibrium phenomenon, the internal degrees of freedom in metallic glass are coupled to the applied 
loading in such a way that the system is persistently driven out of mechanical equilibrium (Bouchbinder and Langer, 2009; Kamrin and 
Bouchbinder, 2014). Thus, the deformations of metallic glasses always present disparate time and length scales and exhibit diverse 
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modes with changes in the loading conditions (Karmakar et al., 2014; Schuh et al., 2007). At elevated temperatures, they display a 
liquid-like behavior that follows Newtonian or non-Newtonian flow laws when subjected to deformation (Spapaen 1977; Wang et al., 
2014). When the ambient temperature is close to or greater than the glass transition temperature they deform homogeneously, and 
their elongation can reach 1000% under quasi-static loading (Kawamura et al., 1998). Even at a high strain rate their elongation can 
also reach as high as 20%, but if the loading rate is large enough, metallic glasses exhibit nonhomogeneous behavior where shear 
localization occurs before failure. However, at room temperature, almost all of their inelastic deformations are always localized into 
shear bands with nanoscale thicknesses (Dai and Bai, 2007; Greer et al., 2013; Jiang et al., 2021). Such significant shear localization 
would ultimately result in their very limited ductility at room temperature (Sun and Wang, 2015; Tandaiya et al., 2009). 

Interestingly, these diverse deformation modes of metallic glasses are underlain by the same fundamental flow event known as the 
shear transformation zone (STZ), which emanated from the flow defect theory of Turnbull and Cohen (1970), Spaepen (1977), Argon 
(1979), and Falk and Langer (1998), where localized clusters of molecules undergo irreversible rearrangements with the help of the 
applied shear stress and thermal fluctuations. In a very rough sense, the STZ in amorphous materials plays the role of dislocations in 
crystals by acting as agents of plastic deformation. In fact, some results have shown that the different modes of deformation are then 
expected to be comprised of either the uncorrelated activation of STZs uniformly distributed throughout the sample, as in the case of 
homogeneous deformation, or highly correlated activation of STZs in a localized band, as in the case of inhomogeneous deformation 
(Homer et al., 2010). Nevertheless, it has been realized that the classical shear transformation does not consider the effect of shear 
transformation on the surrounding elastic matrix. In fact, the constraint of the elastic matrix on shear transformation can result in a 
strain energy stored in this matrix once the shear transformation occurs, and this stored energy can be regarded as the driving force of 
the inverse shear transformation. Therefore, how to consider the constraint of the surrounding elastic matrix on the subsequent shear 
transformation is a critical issue for the shear transformation model. 

As is known, small-scale dynamics are highly heterogeneous, intermittent and seemingly nondeterministic, while the emergent 
macroscopic phenomena are quite robust. Thus, how to effectively bridge over widely separate scales is crucial for research on the 
deformations of metallic glasses. In view of the success of equilibrium statistical thermodynamics in bridging over widely separated 
scales, an effective disorder temperature theory has been proposed for nonequilibrium deformation behaviors of amorphous materials 
in the past few decades by drawing from the statistical concepts and the most general form of the laws of thermodynamics (Bouch
binder and Langer, 2009; Cugliandolo, 2011; Xue et al., 2017). To date, the effective disorder temperature is emerging as an essential 
ingredient in theories of nonequilibrium phenomena in amorphous materials. The effectiveness of its application to the nonequilibrium 
behavior of amorphous polymers (Xiao et al, 2013; Xiao and Nguyen, 2015) and soft glassy rheology (Sollich and Cates, 2012) has been 
widely confirmed. Recently, some studies have introduced the effective disorder temperature into the STZ theory of large-scale plastic 
deformation in metallic glasses (Bouchbinder, et al., 2007; Manning et al., 2009), and the nature of shear-banding instabilities has been 
reasonably explained. As with the flow-defect picture, the effective disorder temperature idea also originated from Cohen and 
Turnbull’s theory of glasses (Cohen and Turnbull, 1959). Other investigators, notably Spaepen (1977), described the intrinsically 
disordered state of amorphous materials by introducing the free volume. Those authors perceptively recognized that the relevant 
definition of free volume is not as an extensive quantity—the extensive excess volume measured from some densely packed state, but 
as an intensive one—the inverse of the derivative of a configurational entropy with respect to the volume (Shi, et al., 2007). Many 
scholars currently believe that it is more effective to conduct a thermodynamic analysis in terms of energy rather than volume, since 
the mechanical behavior of metallic glass is determined by the interactions among their elementary ingredients, and the introduction 
of effective disorder temperature theory would lead us to new discoveries in the nonequilibrium deformation of metallic glasses (Falk 
and Langer, 2011). 

Modeling the nonequilibrium deformation behaviors of metallic glasses can help us better understand their deformation nature. 
Thus, many worthy models of the deformation of metallic glass have been performed (Tandaiya et al., 2008; Rondey et al., 2011; 
Takeuchi and Edagawa, 2011; Singh et al., 2013, 2014; Kondori, et al., 2018; Liu et al., 2020; Dutta and Narasimhan, 2020; Rodney 
et al., 2009; Thamburaja and Liu, 2014; Kondori et al., 2016; Rao et al., 2019; Gan et al., 2019; Vasoya et al., 2020; Xie et al., 2019; Lin 
et al., 2020; Van Loock et al., 2021; Yuan et al., 2020). Among them, the constitutive models play a vitally important role since they can 
provide an effective prediction for the deformation of metallic glass at engineering scales. For this reason, many constitutive models, 
such as the models established by Huang and Suo (2002), Anand and Su (2005 and 2007), Henann and Anand (2008), Thamburaja and 
Ekambaram (2007), Yang et al. (2006), Rao et al. (2018), Zhu et al. (2021), have been developed in the past decades based on the free 
volume theory of Spaepen (1977). With the help of these constitutive models, many key points in the deformation of metallic glass, 
such as the evolution of the shear band (Yang et al., 2006), origin of shear banding instability (Jiang and Dai, 2009), length scale effects 
(Bargmann et al., 2014; Thamburaja et al., 2011), shear-induced dilatation (Zhu et al., 2021), failure mechanisms (Anand and Su, 
2005; Tandaiya et al., 2009. Dutta et al., 2018; Rao et al., 2018; Tang et al., 2021), rheological behavior (Cheng et al., 2021), have been 
deeply investigated, and some important conclusions have deepened the understanding of amorphous deformations. However, since 
the nonequilibrium characteristics in metallic glasses are difficult to capture by introducing the free volume as a state variable, the 
adopted continuum models are often changed to accommodate the different modes of deformation during modeling deformations of 
metallic glass under different loading conditions (Homer et al., 2016). Recently, along with the effective temperature introduced into 
STZ theories, Kamrin and Bouchbinder (2014) developed a two-temperature continuum thermodynamics theory for deforming 
amorphous solids. In their theory, the key idea is that the degree of the system is decomposed into two weakly interacting subsystems, 
i.e., a fast kinetic one that can reach an equilibrium state instantaneously and a slow configurational subsystem that is permanent in a 
quasi-equilibrium state. Such a framework provides an effective and distinct idea for developing a constitutive model for the 
nonequilibrium deformation of metallic glasses. 

In this work, referring to the two-temperature continuum thermodynamics theory and STZ theory, a three-dimensional finite 
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deformation constitutive model is developed within the new framework of irreversible nonequilibrium thermodynamics so that the 
nonequilibrium deformation of metallic glasses can be explained from an essential perspective. In this new framework, the system is 
decomposed into sub-balanced kinetic and quasi-equilibrium configurational subsystems in the reference configuration so that the 
kinetic and configurational processes are characterized by their own thermodynamic quantities, where the sum of the kinetic and 
configurational processes determines the properties of the entire system. Furthermore, the energy exchange between the two sub
systems is introduced to drive the subsystems toward equilibrium. To capture the inelastic deformation mechanisms of metallic glass, 
an energy field, which is stored in the surrounding elastic matrix, is introduced into the classical shear transformation zone theory. The 
production of such an energy field is related to the constraint of the matrix on shear transformation, and its relaxation is in the form of 
an inverse shear transformation. Finally, based on the finite element implementation of the new constitutive model, both the 
macroscopic compressive deformations under different strain rates and ambient temperatures are predicted by using the finite element 
methods, as well as the shear localization during room-temperature quasi-static deformations. The consistency of the predicted results 
with the experimental and theoretical results demonstrates the reasonability and validity of the proposed model. 

2. Constitutive model 

The nonequilibrium deformation of metallic glass, which is mediated by localized shear-driven rearrangements involving a small 
number of basic elements, is a complex elasto-viscoplastic process. In the process of deformation, the time scale of structural relaxation 
is much slower than the fast timescale characterizing random thermal vibrations around a mechanically stable microscopic config
uration, which leads to the degree of freedom of configurational subsystem undergoing structural relaxation falling out of an internal 
equilibrium with that of kinetic subsystem undergoing random thermal vibrations. To reasonably capture the intrinsically nonequi
librium characteristic of metallic glasses, a new framework of irreversible continuum nonequilibrium thermodynamics is provided by 
referring to the work of Kamrin and Bouchbinder (2014). Then, based on an extended STZ theory, a new constitutive model for metallic 
glass is constructed using such a framework. The modeling diagram is shown in Fig. 1. 

From Fig. 1, the nonequilibrium system of metallic glasses is completely decoupled into two separate subsystems. Energy exchange 
exists between these two subsystems and drives the nonequilibrium system of metallic glasses to gradually approach an equilibrium 
state. In the kinetic subsystem, the microscopic events are considered atomic short-distance motion around a mechanically stable 
microscopic configuration, and their timescale is so small that their mechanical responses can be regarded as immediate events. Thus, 
an affine deformation is deemed the event of the kinetic subsystem. Instead, the occurrence of microevents in the configurational 
subsystem is regarded as the instability of the atom cluster; thus, the timescale of the configurational subsystem is always much slower 
than that of the kinetic subsystem. Furthermore, as the rearrangement of microstructure occurs, we should account for the fluctuations 
in energy in different subsystems. During nonaffine deformation, the nonequilibrium nature of metallic glasses is characterized by the 
energy distribution of two subsystems. Generally, the distribution of energy into two subsystems cannot make the total entropy of the 
system reach the maximum value, as discussed in the work of Kamrin and Bouchbinder (2014). In this work, the energy allocated to the 
kinetic and configurational subsystems is described by Tdis : Dp and Tsto : Dp during the nonaffine deformation, where the exchange 
energy of qck between two subsystems always drives the total entropy to the maximum value. 

2.1. Kinematics 

Considering a deformable body identified with the region B and assuming that X is an arbitrary position vector of a certain material 
point in the fixed reference configuration where x = x(X, t) is the corresponding space position vector denoted at the current time, the 
deformation gradient F, velocity v and velocity gradient L can be written as 

Fig. 1. Diagram for the modeling procedure. In this diagram, the stresses (T, Tdis and Tsto) are regarded as pressures on the piston, the strain rate 
and stretching one (ε̇e and Dp) are regarded as the piston speeds. θk and θc are the temperatures characterizing degrees of freedom of kinetic and 
configurational subsystems, respectively. qck is the exchange energy between the kinetic and configurational subsystems, which drives the two 
subsystems towards equilibrium. 
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F =
∂x
∂X

, v = ẋ, L = grad(v) = ḞF− 1 (1) 

Hereafter, the variable Ȧ denotes the material time derivative of A, which is an arbitrary scalar or tensor field. 
In the classical finite deformation framework, the elastic deformation and inelastic deformation are coupled with one another. 

Thus, adopting the Kroner-Lee decomposition, the deformation gradient F can be given as 

F = FeFp (2)  

where the tensors Fe and Fp denote the elastic distortion and inelastic distortion, respectively. 
To eliminate the rigid rotation part, the elastic deformation gradient can be divided into two parts: 

Fe = ReUe, ReT
= Re − 1

, Ce = Ue2
= FeTFe (3)  

where the orthogonal tensor Re is an elastic rotation tensor that characterizes the rigid rotation and the symmetric positive definite 
tensors Ue and Ce are the right elastic stretch tensor and right elastic Cauchy-Green tensor, respectively, which characterize the elastic 
deformation. 

From Eqs. (1) and (2), it can be determined that 

L = Le + FeLpFe− 1 (4)  

where Le = ḞeFe− 1 and Lp = ḞpFp− 1 are the elastic and inelastic velocity gradient tensors, respectively. 
Using additive decomposition, the elastic and inelastic velocity gradient tensors can be divided as 

De =
1
2
(
Le +LeT)

, We =
1
2
(
Le − LeT) (5a)  

Dp =
1
2
(
Lp +LpT)

, Wp =
1
2
(
Lp − LpT) (5b)  

where the symmetric tensors De and Dp represent the elastic and inelastic stretching tensors, respectively, and the skew-symmetric 
tensors We and Wp denote the elastic and inelastic spin tensors, respectively. 

Following the work of Anand and Gurtin (2003), inelastic flow can be treated as irrational; thus, 

Wp = 0 ⇒ Dp = Lp (6) 

From the work of Rao et al. (2018), we can define an elastic logarithmic strain tensor Ee in the reference configuration as 

Ee =
1
2

ln Ce = lnUe (7)  

2.2. Thermodynamic balance 

According to the work of Thamburaja and Ekambaram (2007), the momentum conservation in the reference configuration P0 can 
be written as 

∫

∂P0

Sn0dS0 +

∫

P0

bdV0 =
d
dt

∫

P0

ρ0vdV0 (8) 

Here, dS0 and dV0 are the area and volume integrals in the reference configuration, respectively, n0 is the unit vector along the face 
normal, S = JTF− T is the first Piola–Kirchoff stress, T is the Cauchy stress, J = det(F) is the volume Jacobian, b denotes the macroscopic 
body force in the reference volume determinant, and ρ0 is the referential mass density. 

As is known, Eq. (8) is always tenable for any size and shape of the reference configuration P0. By using Gauss’s law, it yields 

DivS + b − ρ0v = 0 (9) 

Based on the work of Thamburaja and Ekambaram (2007), the first law of thermodynamics in the reference configuration P0 can be 
given as 

∫

P0

εdV0

·

=

∫

∂P0

(
ST v − q

)
n0dS0 +

∫

P0

(b ⋅ v+ q)dV0 (10)  

where ε is the internal energy per unit reference volume, where q and q denote the referential heat flux vector and the heat supply rate 
per unit reference volume, respectively. 

Combining Eqs. (9) and (10), it can be determined that 

ε̇ = S ⋅ Ḟ − Div(q) + q (11) 
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Similarly, the second law of thermodynamics in the reference configuration P0 can be given as 

∫

P0

ηdV0

·

≥

∫

∂P0

jn0dS0 +

∫

P0

jdV0 (12)  

where η is the entropy per unit reference volume, and j and j denote the referential entropy flux vector and entropy supply rate per unit 
reference volume, respectively. 

Using the divergence theorem, a local form of entropy inequality can be obtained from Eq. (12), namely, 

η̇ ≥ − Divj + j (13) 

According to the assumption of Kamrin and Bouchbinder (2013), the state of each system can be characterized by its own ther
modynamic quantities, and the state of the nonequilibrium system is equivalent to an additive combination of the kinetic/vibrational 
and configurational contributions, as shown in Fig. 1. Thus, 

ε = εk + εc, η = ηk + ηc (14a)  

q = qk + qc, j = jk + jc (14b)  

where εk and εc are the kinetic and configurational internal energies per unit reference volume, respectively, ηk and ηc are the kinetic 
and configurational entropy per unit reference volume, respectively, qk and jk are the kinetic heat and entropy fluxes that result from 
the passage of random vibrational motion into (out of) a part, and qc and jc are the configurational heat and entropy fluxes that result 
from disturbing the neighboring structural assembly in a random fashion during rearrangements of the structure. Hereafter, the 
subscripts k and c denote the quantity belonging to kinetic/vibrational and configurational systems, respectively. 

According to the physical essence of the configurational subsystem, it is not difficult to assume that the configurational internal 
energy is a non-source field. Thus, 

q = qk, j = jk (15)  

where qk and jk are the kinetic heat and entropy supply rates per unit reference volume, respectively. 
Based on the classical Clausius-Duhem inequality, the temperature field θ bridges q (q) and j (j) by j = q

θ (j =
q
θ). By analogy, some 

similar function relations can be given as 

jk =
qk

θk
, jc =

qc

θc
(16a)  

jk =
qk

θk
(16b)  

where θk and θc denote the kinetic and configurational temperatures, respectively, which describe the degrees of freedom of the atomic 
vibrations and configuration. As is known, the degree of freedom of atomic vibrations manifests as the part of the internal energy that 
arises due to the particles rattling about some mean positions within their cages of nearest neighbors. In general, it rapidly equilibrates 
with an external bath. Instead, the configurational subsystem achieves equilibrium through the coordinated rearrangement of atom 
clusters, and it has a much larger time scale than atom vibrations. Thus, the out-of-equilibrium system is always satisfied with θc ∕= θk, 
whereas θc = θk indicates internal equilibrium. 

From Eqs. (11), (13) and (14a, b), the local form of the first and second law of thermodynamics in the reference configuration can be 
rewritten as 

ε̇ = S ⋅ Ḟ − Div(qk) − Div(qc) + qk (17a)  

η̇ ≥ − Div
(

qk

θk

)

− Div
(

qc

θc

)

+
qk

θk
(17b) 

Substituting Eqs. (2)–(4) into Eq. (17a), it can be determined that 

ε̇ = T∗ : Ḣe
+ T : Dp − Div(qk) − Div(qc) + qk (18a)  

with 

T∗ = JReT TRe (18b)  

T = UeT∗Ue− 1 (18c)  

Ḣe
= sym

(
U̇e ⋅ Ue− 1) (18d) 

It should be noted that T∗ and T are the frame-invariant stress tensors. 
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Following the work of Kamrin and Bouchbinder (2014), the total internal energy of the system is equal to the sum of the internal 
energies of the two subsystems. As is known, the elastic response has the same time scale as the atomic vibration; thus, we classify it 
into the kinetic internal energy. In addition, some studies have shown that both the evolution of the structure disorder degree and a 
temperature rise may occur along with inelastic deformation, which indicates that inelastic work affects both subsystems. The inelastic 
work belonging to the kinetic subsystem would be converted into thermal energy and then dissipate; thus, we call this part of inelastic 
work the inelastic dissipation work. Instead, the inelastic work related to the configurational subsystem would change the configu
ration and be stored in the system; thus, we call this part the storage energy. Moreover, it should be noted that there is a slow energy 
exchange between the two subsystems so that the total entropy can be maximized. Thus, we can give the energy balance for these two 
subsystems as 

ε̇k = T∗ : He + Tdis : Dp − Div(qk) + qk + qck (19a)  

ε̇c = Tsto : Dp − Div(qc) − qck (19b)  

where qck is the scalar internal heat flow, which is used to describe the energy exchange between two subsystems, and Tdis and Tsto are 
the dissipation stress and storage one, respectively, which satisfy T = Tdis + Tsto. 

Substituting Eqs. (14a, b), (15), (16a, b) and (19a, b) into Eq. (17b), the entropy inequality can be rewritten as 

η̇k + η̇c +
1
θk

(

T∗ : He + Tdis : Dp − ε̇k + qck −
qk

θk
⋅ ∇θk

)

+
1
θc

(

Tsto : Dp − ε̇c − qck −
qc

θc
⋅ ∇θc

)

≥ 0
(20) 

According to the work of Kamrin and Bouchbinder (2014), the kinetic and configurational Helmholtz free energy per unit reference 
volume can be respectively defined as 

ψk = εk − ηkθk ⇒ ψ̇k = ε̇k − η̇kθk − ηkθ̇k (21a)  

ψc = εc − ηcθc ⇒ ψ̇c = ε̇c − η̇cθc − ηcθ̇c (21b)  

where ψk and ψc are the kinetic and configurational Helmholtz free energy per unit reference volume, respectively. 
Substituting Eq. (21a, b) into Eq. (20) yields 

1
θk

(

T∗ : He + Tdis : Dp − ψ̇k − ηkθ̇k + qck −
qk

θk
⋅ ∇θk

)

+
1
θc

(

Tsto : Dp − ψ̇c − ηcθ̇c − qck −
qc

θc
⋅ ∇θc

)

≥ 0
(22)  

2.3. Free energy 

Internal variables carry information on the microstructure state and determine the following inelastic responses. The thermody
namic state of the material can be fully defined by certain state variables. In amorphous solids, its deformation includes both the 
equilibrium phenomenon and the quasi-equilibrium phenomenon. The equilibrium phenomenon is a type of immediate response. We 
assume that the equilibrium phenomenon can be characterized by the kinetic temperature θk and the elastic deformation Ce, while the 
quasi-equilibrium phenomenon is hysteretic and can be captured by the configurational temperature θc and the inelastic shear strain γ. 
It should be noted that the shear inelastic strain is contributed by two parts: the one is along with the shear transformation, similar to 
the accumulated plastic strain of plasticity theory; the other one is caused by the reverse shear transformation which is the mechanism 
of a special structural relaxation. Most notably, since the time-scale of such structural relaxation is small, the deformation dominated 
by reverse shear transformation is easy to be regarded as the viscoelastic deformation at the macro-scale. Then the functional forms of 
the kinetic and configurational Helmholtz free energy per unit reference volume are assumed as 

ψk = ψ̂ k(C
e, θk) (23a)  

ψc = ψ̂ c(θc, γ) (23b) 

From the principle of material frame invariance, ψk and ψc are the frame-invariance functions, since Ce, θk, θc and γ are the frame- 
invariance variables. 

The time derivatives of ψk and ψc are then taken as 

ψ̇k =
∂ψk

∂Ce : Ċe
+

∂ψk

∂θk
θ̇k (24a)  
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ψ̇c =
∂ψc

∂θc
θc +

∂ψc

∂γ
γ̇ (24b) 

Substituting Eq. (24a, b) into Eq. (22), it yields 

−
1
θk

(
∂ψk

∂θk
+ ηk

)

θ̇k +
1
θk

(

T∗ − 2Ue∂ψc

∂CeUe
)

: Ḣe
−

1
θc

(
∂ψc

∂θc
+ ηc

)

θ̇c + Π ≥ 0 (25)  

where 

Π =
1
θk

(

Tdis : Dp + qck −
qk

θk
⋅ ∇θk

)

+
1
θc

(

Tsto : Dp − qck −
qc

θc
⋅ ∇θc −

∂ψc

∂γ
γ̇
)

(26)  

is the total dissipation per unit reference volume. 
Eq. (11) should always be satisfied with arbitrary values of the elastic strain rate tensor Ḣe, θ̇k and θ̇c, yielding 

T∗ = 2Ue∂ψc

∂CeUe (27a)  

ηk = −
∂ψk

∂θk
(27b)  

ηc = −
∂ψc

∂θc
(27c)  

2.4. Dissipation inequality 

Along with Eq. (27a, b, c), the local dissipation inequality can be rewritten in the reference configuration as 

Π =

(
Tdis

θk
+

Tsto

θc

)

: Dp −
1
θc

∂ψc

∂γ
γ̇

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Inelasticdissipation

+ qck

(
1
θk

−
1
θc

)

⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟
Disspationduetodistributionofenergyintwosubsystem

−

qk

θ2
k

⋅ ∇θk

⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟
kineticheatflowdissipation

−
qc

θ2
c

⋅ ∇θc

⏟̅̅̅̅ ⏞⏞̅̅̅̅ ⏟
configurationalheatflowdissipation

≥ 0
(28) 

From Eq. (28), the total dissipation can be divided into four parts, i.e., inelastic dissipation, dissipation resulting from the energy 
exchange between two subsystems, and kinetic and configurational heat flow dissipation. Here we assume that these four parts of 
dissipation are independent of one another. Then the following inequalities can be obtained from Eq. (28), which are stronger than the 
requirement of nonnegative intrinsic dissipation, i.e., 

(
Tdis

θk
+

Tsto

θc

)

: Dp −
1
θc

∂ψc

∂γ
γ̇ ≥ 0 (29a)  

qck

(
1
θk

−
1
θc

)

≥ 0 (29b)  

−
qk

θ2
k

⋅ ∇θk ≥ 0 (29c)  

−
qc

θ2
c

⋅ ∇θc ≥ 0 (29d)  

2.5. Free energy density and specific constitutive functions 

For simplicity, thermal expansion is not taken into consideration since the temperature rise resulting from deformation has a slight 
effect on the elastic deformation of metallic glasses. With the definition of Ee = 1

2 ln Ce = lnUe, the form of the kinetic Helmholtz free 
energy per unit reference volume can be assumed to be 

ψk = ck
{(

θk − θ0
k

)
− θklog

(
θk

/
θ0

k

)}
+ μ

⃒
⃒Ee

0

⃒
⃒2
+

1
2

k{tr(Ee)}
2 (30)  

where ck = ĉk(θk, θc) is the kinetic specific heat per unit reference volume; θ0
k is the reference kinetic temperature; and the shear and 

bulk moduli are denoted by μ = μ̂(θk) and k = k̂(θk), respectively. 
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The purely configurational thermal contribution to the configurational free energy density is the same as the purely kinetic thermal 
contribution to the kinetic free energy density. In addition, a shear transformation hardening energy is introduced to characterize the 
constraint of the neighboring matrix on the shear transformation. Thus, we can assume that the form of configurational free energy 
density is 

ψc = cc
{(

θc − θ0
c

)
− θclog

(
θc

/
θ0

c

)}
+ χγ (31)  

where cc = ĉc(θk, θc) is the configurational specific heat per unit reference volume, θ0
c is the reference configurational temperature, and 

χ = χ̂(θk, θc, γ) is a physical quantity analogous to the back stress. 
Substituting Eq. (30) into Eq. (27a) yields 

T∗ = 2μEe
0 + k ⋅ tr(Ee)1 (32) 

Combining Eqs. (18a), (18b) and Eq. (32), it can be obtained that 

T = UeT∗Ue − 1
= T∗ (33) 

Substituting Eq. (31) into Eq. (29a) yields 
(

Tdis

θk
+

Tsto

θc

)

: Dp −
1
θc

χγ̇ ≥ 0 (34) 

Following the work of Thamburaja and Ekambaram (2007), we assume that the inelastic stretching tensor can be expressed as 

Dp =

̅̅̅
1
2

√

γ̇N (35)  

where N is the inelastic flow direction, which satisfies tr(N) = 0 and ‖ N ‖= 1. Hereafter, tr(•) denotes the trace of the second-order 
tensor •. 

Substituting Eq. (35) into Eq. (34), 
[ ̅̅̅

1
2

√ (
Tdis

θk
+

Tsto

θc

)

: N −
1
θc

χ
]

γ̇ ≥ 0 (36) 

Inequality (36) is tenable if 
̅̅̅
1
2

√ (
Tdis

θk
+

Tsto

θc

)

: N −
1
θc

χ = Ĥ (37)  

with the function Ĥ satisfying sign(Ĥ) = sign(γ̇). 
Assuming a special situation in which θk = θc = θ is satisfied, Eq. (37) can be rewritten as 

̅̅̅
1
2

√

T : N = Ĥθ + χ (38) 

To satisfy Eq. (38), we let 

dev(T) =
̅̅̅
2

√
(Ĥθ+ χ)N (39)  

where dev(•) is the deviatoric portion of the second-order tensor •. At this point, it can be assumed that Eq. (39) is always tenable since 
‖ N ‖= 1. Then it can be obtained that 

N =
dev(T)

‖ dev(T) ‖
(40) 

Substituting Eq. (40) into Eq. (37), 
[(

1
θk

−
1
θc

)

Tdis +
T
θc

]

:
dev(T)

‖ dev(T) ‖
=

̅̅̅
2

√
(

Ĥ +
1
θc

χ
)

(41) 

To satisfy Eq. (41), we can assume that 
(

1
θk

−
1
θc

)

dev(Tdis) =
̅̅̅
2

√
(

Ĥ +
1
θc

χ
)

dev(T)
‖ dev(T) ‖

−
dev(T)

θc
(42) 

If Eq. (42) is always satisfied, the following relations can be given: 
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N =
dev(T)

‖ dev(T) ‖
=

dev(Tdis)

‖ dev(Tdis) ‖
=

dev(Tsto)

‖ dev(Tsto) ‖
(43) 

Substituting Eq. (43) into Eq. (37), it can be obtained that 

Ĥ =

(
τdis

θk
+

τsto

θc

)

−
1
θc

χ (44)  

where τdis =
̅̅
1
2

√

‖ dev(Tdis) ‖ and τsto =

̅̅
1
2

√

‖ dev(Tsto) ‖ are the von Mises equivalent shear stresses of the dissipation stress and 
storage stress, respectively. 

STZ has been famous as a unit plastic event of amorphous solids. However, along with shear transformation, a strain energy field 
would be produced and accumulated with an increase in the local inelastic deformation due to the constraint of the matrix on the shear 
transformation zone. Finally, such a strain energy field would result in a reverse shear transformation so that the stored energy can be 
released, as shown in Fig. 2. The classical shear transformation zone theory does not consider the relaxation of such stored energy, 
which is in the form of inverse shear transformation. Here the classical shear transformation zone theory is developed to describe the 
contributions of both shear transformation and inverse shear transformation. According to transition state theory, the evolution 
equation of inelastic shear strain in a local region can be given as 

γ̇ = γ̇0

⎡

⎢
⎢
⎢
⎣

exp
(
− ΔG
kbθk

(

1 −

(
τ
τ0

)p)q)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Probabilityofsheartransformation

− exp
(
− 1
kbθk

(

ΔG
(

1 +

(
τ
τ0

)p)q

− SΩ
))

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Probabilityofreverse sheartransformation

⎤

⎥
⎥
⎥
⎦

(45)  

where γ̇0 = ˙̂γ0(θc) ≥ 0 represents the reference plastic strain rate when the shear transformation is activated, which is related to the 
degree of configuration disorder, ΔG = ΔĜ(θk) is the activation energy barrier without the applied stress, which has a sudden change 
near the glass transition temperature, kbθk is the kinetic thermal energy of the system, τ0 is the thermally activated stress, and p and q 
are model parameters that are defined by the obstacle profile. And it is satisfied that the conditions 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2 are 
satisfied; for simplicity, we set p = 1 and q = 1. S = Ŝ(γ̇, θk, θc) is the locally stored transformation energy, which is caused by the shear 
transformation and results in the reverse shear transformation. Ω is the volume of a shear transformation zone, and τ is the driving 
force of shear transformation. Some experimental results have shown that the deformation of metallic glass is dependent on the hy
drostatic pressure (Greer, 2013); here, we define the driving force as 

τ = τ − ϕP (46)  

where τ =

̅̅
1
2

√

‖ dev(T) ‖ is the equivalent shear stress, P = − 1
3 tr(T) is the hydrostatic pressure, and ϕ is the pressure-sensitivity 

parameter, which satisfies the condition 0 ≤ ϕ ≤ 1. 
In general, the shear transformation is an ephemeral, noise-activated, and configurational fluctuation. However, in a local region of 

metallic glass, the state of the microstructure is always certain at the current time and can be characterized by the configurational 
temperature. Thus, Shi et al. (2007) think of the shear transformation as infrequent events and the correspondingly long time scales 
associated with plastic deformation can be determined by configurational temperature through a Boltzmann-like factor. Then the 
reference plastic strain rate can be expressed as 

γ̇0 = Δγ0v0exp
(

−
ΔG
kbθc

)

(47)  

Fig. 2. Evolution of shear transformation sites and its resulting in reverse shear transformation sites with the increase of applied strain: (a) in the 
early stage of deformation, only little shear localization occurs; (b) in the stage of strain softening, many STZs are activated, and few inverse shear 
transformations occurs; (c) in the steady stage, the shear transformations and reverse ones are at a quasi-equilibrium. 
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where Δγ0 is the strain increment for a time of shear rearrangement; v0 is the attempt frequency for shear transformation; and exp
(
−

ΔG
kbθc

)
is a Boltzmann-like factor. 

Following the work of Hasan and Boyce (2010), the rate of locally stored transformation energy can be given as 

Ṡ = βτγ̇ − β0ωS (48)  

where β = β̂(γ) is a variation of the parameter that informs the rate of storage of inelastic work falling off with an increase in the 
inelastic strain; following the work of Hasan and Boyce (2010), we set β = β1[1 − β2exp( − β3γ)], where β1, β2 and β3 are the material 
parameters, β0 is a material parameter that is related to the recovery of locally stored transformation energy, and ω is an effective 
frequency relating to shear transformations; here we assume that it is equal to the frequency of reverse shear transformation; then, the 
evolution equation of ω is given as 

ω = ν0exp
(

−
ΔG
kbθc

)

exp
(

−
ΔG
kbθk

(

1 +

(
τ
τ0

)p)q)

exp
(

SΩ
kbθk

)

(49) 

Now, let us briefly discuss the physical meaning of Eq. (48). The evolution of the locally stored transformation energy is the result of 
two competing effects: an increase attributed to the partial storage of the inelastic work of deformation and a decrease due to the 
recovery phenomena. While the first effect dominates during the initial stages of deformation, once the value of the locally stored 
transformation strain energy is sufficiently large, secondary relaxation events begin to occur at an appreciable rate, and the value of S 
falls somewhat: during steady-state flow conditions, the two effects virtually cancel each other out, resulting in no net change in the 
value of S. 

As mentioned above, both shear transformation and reverse shear transformation may occur in metallic glass. Now, let us imagine a 
situation in which a high stress is applied and kept for a period of time and then unloaded to zero. At this moment, since there is no 
external force to drive shear transformation and a large strain energy field has been stored up in the material, the reverse shear 
transformation rate is larger than the shear transformation rate. From Eq. (45) it is determined that γ̇ < 0. In fact, whether γ̇ is positive 
or negative is only determined by the competition between the shear transformation and reverse shear transformation. If the occur
rence frequency of shear transformation is larger than that of the reverse shear transformation per unit time, γ̇ > 0; otherwise, γ̇ ≤ 0. To 
quantitatively estimate whether γ̇ is positive or negative, a quantitative criterion should be provided. In fact, deeply analyzing Eq. (45), 
it is not difficult to determine that 

(

τ − ϕP −
SΩ

2ΔG
τ0

)

γ̇ ≥ 0 (50)  

is always tenable. 
Let us review Eq. (36), where it is constrained that sign(Ĥ) = sign(γ̇). To satisfy the second law of thermodynamics, we set 

Ĥ =

(
τdis

θk
+

τsto

θc
−

1
θc

χ
)

= λ
(

τ − ϕP −
SΩ

2ΔG
τ0

)

(51)  

where λ = λ̂(θk, θc) ≥ 0 is a material coefficient. 
Assuming that only the hydrostatic pressure is applied, Eq. (51) can be rewritten as 

1
θc

χ = λ
(

ϕP+
SΩ

2ΔG
τ0

)

(52) 

From Eq. (52), it can be defined that 

χ = θcλ
(

ϕP+
SΩ

2ΔG
τ0

)

(53) 

Substituting Eq. (53) into Eq. (51), it can be obtained that 
(

τdis

θk
+

τsto

θc

)

= λτ (54) 

Since this is satisfied with τdis + τsto = τ, 

τdis =
θk(λθc − 1)

θc − θk
τ ≥ 0 (55a)  

τsto =
θc(1 − λθk)

θc − θk
τ ≥ 0 (55b) 

Since both τdis and τsto must be greater than or equal to zero, so it can be determined from Eq. (55a, b) that 

W. Rao et al.                                                                                                                                                                                                           



International Journal of Plasticity 154 (2022) 103309

11

1
θc

≤ λ ≤
1
θk

(56) 

To always satisfy Eq. (56), it can be assumed that 

λ =
2

θc + θk
(57) 

Substituting Eq. (57) into Eq. (55a, b), 

τdis =
θk

θc + θk
τ (58a)  

τsto =
θc

θc + θk
τ (58b) 

Substituting Eq. (57) into Eq. (53) yields 

χ =
2θc

θc + θk

(

ϕP+
SΩ

2ΔG
τ0

)

(59) 

From Eq. (59), it can be determined that the back stress-like term is closely related to the driving force for inverse shear 
transformation. 

2.6. Balance of energy 

Substituting Eq. (30) into Eq. (27b) yields 

ηk = −
∂ψk

∂θk
= cklog

(
θk

/
θ0

k

)
(60) 

Similarly, substituting Eq. (31) into Eq. (27c) yields 

ηc = −
∂ψc

∂θc
= cclog

(
θc

/
θ0

c

)
(61) 

Assuming that both the kinetic and configurational subsystems obey Fourier’s law of heat conduction, inequalities (29c) and (29d) 

Table 1 
The main equations of the proposed model.  

Decomposition of the deformation 

F = FeFp, Fe = ReUe, Fe = ReUe 

L = Le + FeLpFe− 1, Le = ḞeFe− 1, De =
1
2
(Le + LeT

)

We =
1
2
(Le − LeT

), Dp = Lp = ḞpFp− 1, Dp =

̅̅̅
1
2

√

γ̇N 

Ee =
1
2

ln Ce = lnUe 

Elastic constitutive relation 
T = T∗ = 2μEe

0 + k ⋅ tr(Ee)1 
The evolution equation of inelastic flow rate 

γ̇ = Δγ0v0exp
(
−

ΔG
kbθc

)[

exp
(
− ΔG
kbθk

(

1 −
( τ

τ0

)))

− exp
(− ΔG

kbθk

(

1 +
( τ

τ0

)))

exp
(

SΩ
kbθk

)]

Where 

τ = τ − ϕP, τ =

̅̅̅
1
2

√

‖ dev(T) ‖, P = −
1
3

tr(T)

The inelastic flow direction 

N =
dev(T)

‖ dev(T)‖
The evolution equation of locally stored transformation energy 
Ṡ = βτγ̇p − β0ωS 
Where 
β = β1[1 − β2exp( − β3γp)]

ω = ν0exp
(
−

ΔG
kbθc

)

exp
(

−
ΔG
kbθk

(

1 +
( τ

τ0

)))

exp
(

S
kbθk

)

The evolution equations of the kinetic and configurational temperatures 
ckθ̇k = τdis γ̇+ κkΔθk + qk + κck[exp( − ΔG /kbθc) − exp( − ΔG /kbθk)]

cc θ̇c = τsto γ̇ − χγ̇+ κcΔθc − κck[exp( − ΔG /kbθc) − exp( − ΔG /kbθk)]

τdis =
θk

θc + θk
τ, τsto =

θc

θc + θk
τ, χ =

2θc

θc + θk

(

ϕP +
SΩ

2ΔG
τ0

)
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are always satisfied if the following is set: 

qk = − κk∇θk (62a)  

qc = − κc∇θc (62b) 

Here, κk = κ̂k(θk, θc) and κc = κ̂c(θk, θc) are the coefficients of kinetic and configurational thermal conduction, respectively. 
Referring to the work of Shi et al. (2007), it is assumed that the energy exchange between the two subsystems obeys the binary 

annihilation function relation. It can then be set as 

qck = κck[exp( − ΔG / kbθc) − exp( − ΔG / kbθk)] (63)  

where κck = κ̂ck(θk, θc) ≥ 0 are the coefficients of energy exchange. 
Substituting Eq. (63) into Eq. (29b) yields 

κck[exp( − ΔG / kbθc) − exp( − ΔG / kbθk)]
θc − θk

θkθc
≥ 0 (64) 

It is not difficult to prove that inequality (64) is always tenable. 
From Eqs. (19a), 21a), ((30), (32), (33), (35), (43), 58a), ((60), 62a) and ((63), it can be determined that 

ckθ̇k = τdisγ̇ + κkΔθk + qk + κck[exp( − ΔG / kbθc) − exp( − ΔG / kbθk)] (65) 

From Eqs. (19b), 21b), ((31), (33), (35), (43), 58b), ((61), 62b) and ((63), it can be determined that 

ccθ̇c = τstoγ̇ − χγ̇ + κcΔθc − κck[exp( − ΔG / kbθc) − exp( − ΔG / kbθk)] (66) 

Eqs. (65) and (66) give the evolution equations of the kinetic and configurational temperatures, respectively. 
So far, the constitutive model for metallic glass based on out-of-equilibrium statistical concepts has been established. The main 

equations of the proposed model are listed in Table 1. 
A time-integration procedure for our developed constitutive model has been proposed and implemented into a finite element code 

as a user material subroutine (UMAT) by using an implicit integration scheme in this work. It should be noted that the solution of 
configurational thermal diffusion term is the difficult point; here, the method from the work of Qu (2004) was adopted to solve the 
value of Δθc. 

3. Determination of the material parameters 

Lu (2002) systematically conducted a series of uniaxial monotonic compressive experiments on a Vitreloy 1 metallic glass under 
different strain rates (from quasi-static to dynamic) and ambient temperatures (from room temperature to supercooled liquid region). 
In this work, we adopt the newly developed constitutive model to predict the experiments (e.g., deformations under different strain 
rates and ambient temperatures) conducted by Lu (2002). To further validate the predictive capability of the new constitutive model, 
the shear localization of metallic glass during quasi-static monotonic tensile deformation is also modeled. In these simulations, part of 
the set of constitutive parameters or function relations in this constitutive model are obtained from the literature, and the others are 
determined through the trial-and-error method from the experimental results on the compressive deformations from Lu (2002). 

From the experimental results, it can be determined that the elastic modulus of the amorphous solid is dependent on the kinetic 
temperature; close to the glass transition temperature, such a temperature correlation becomes increasingly stronger. Following the 
work of Srivastava et al. (2010), it can be set as 

μ =
1
2
(
μg + μl) −

1
2
(
μg − μl)tanh

(
θk − θg

ϑ

)

(67a)  

k =
1
2
(
kg + kl) −

1
2
(
kg − kl)tanh

(
θk − θg

ϑ

)

(67b)  

where μg and kg are the shear and bulk moduli of the glassy state, respectively, μl and kl are the shear and bulk moduli in the 
supercooled liquid region, respectively, θg is the glass transition temperature, and ϑ is a parameter related to the temperature range 
across which the transition occurs. The glass transition temperature of Vitreloy 1 metallic glass is determined to be θg = 625Kin the 
work of Lu (2002). Through fitting to the simple compression experiments of Lu (2002), μg = 35.29GPa, kg = 114.29GPa, μl =

1.47GPa, kl = 4.76GPa and ϑ = 42K. 
As discussed in the work of Han et al. (2020), the activation energy is found to change dramatically at the glass-to-liquid transition. 

Thus, it is set as 

ΔG =
1
2
(
ΔGg +ΔGl) −

1
2
(
ΔGg − ΔGl)tanh

(
θk − θg

ϑ

)

(68)  

where ΔGg is the activation energy of the glassy state and ΔGl is the activation energy in the supercooled liquid region. In the glassy 
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state, some 2-D molecular dynamic simulations show that the activation energy is 0.5ev to 0.95ev (Greer et al., 2013; Han et al., 2020); 
here, it is set as ΔGg = 0.712ev through fitting to match the experimental data. In the supercooled liquid region, the activation energy 
is much less than 0.5ev (Han et al., 2020); here, it is taken as ΔGl = 0.212ev through fitting to match the experimental data. 

For a Vitreloy 1 metallic glass, the strain increment Δγ0 and the volume of the shear transformation zone Ω are constants. In the 
work of Jiang and Dai (2009), Δγ0 = 0.1 and Ω = 2nm3are set; here, they are also taken as the values. The attempt frequency for shear 
transformation v0 is dependent on the temperature. For simplification, we assume it to be a constant; through fitting to match the 
experimental data, it is set as v0 = 1× 103 s− 1. 

β1, β2 and β3 are the material parameters related to the rate of storage of inelastic work falling off with an increase in the inelastic 
strain; referring to the work of Hasan and Boyce (2010), they are set as β1 = 0.01, β2 = 1 and β3 = 1800, where β0 is a material 
parameter that is related to the recovery of locally stored transformation energy; in the work of Hasan and Boyce (2010), they set β0 =

1; here, it is also taken as β0 = 1. 
The model parameters p and q are the fitting parameters. Referring to the work of Orowan (1940), they are set as p = 1 and q = 1 in 

Section 2. The thermally activated stress τ0 is related to the yielding stress; by fitting the compressive stress–strain curve at room 
temperature given by Lu (2002), it is taken as τ0 = 1155MPa. For simplicity, here the effect of hydrostatic pressure is neglected based 
on the work of Huang and Suo (2002); thus, it is set as ϕ = 0. 

As discussed in the work of Kamrin and Bouchbinder (2014), the configurational specific heat capacity cc is dependent on the 
kinetic and configurational temperature; here it is taken as 

cc = cc0
ΔG

kb(θ∞ − θc)
(69) 

Here cc0 is the reference configurational specific heat capacity; by the trial-and-error method from the experimental results on the 
compressive deformation of Lu (2002), it is set as cc0 = 0.002MJ /m3K, where θ∞ is the saturation value of the configurational 
temperature. As is known, the configuration is gradually loosened when the metallic glass is molten. At this moment, the configu
rational disorder has little effect on its deformation. Thus, we consider that the maximal configurational disorder is slightly higher than 
the melting point temperature. In the work of Lu (2002), the melting point temperature of Vitreloy 1 metallic glass is 993 K; here, it can 
be taken as θ∞ = 1025K. 

As mentioned above, the coefficient of energy exchange κck is a function of the kinetic and configurational temperatures. Following 
the work of Shi et al. (2007), it is taken as 

κck = κ0ccexp( − ΔG / kbθc) (70)  

where κ0 is a constant; by fitting one of the compressive stress–strain curves, it is set as κ0 = 200K /s in this work. 
As discussed in the work of Shi et al. (2007), there is a statistical linear correlation between the configurational temperature and the 

free volume concentration. Thus, we set κc = ccD, where D is the diffusivity of the free volume concentration in the work of Huang and 
Suo (2002). Following their work, it is set as D = 3.23nm2 /s. 

Metallic glass is also called a frozen liquid. At the crystallization temperature, the configuration rearrangement is not complete; 
instead, the liquid metal solidifies directly. This indicates that the configuration does not undergo a sudden jump, which is different 
from that of crystalline materials. Fig. 3 shows a sketch map between the configurational temperature and the kinetic temperature. 
From Fig. 3, it can be set as 

Fig. 3. The evolution of configurational temperature with the decrease of kinetic temperature during the quenching process.  
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θ0
c = θ∞ −

(
θc

k − θk
)
− α

(
θc

k − θg
)
+ α

〈
θk − θg

〉
, (71)  

where θc
k is the crystallization temperature (Lu (2002) sets θc

k = 703K), and α is the dimensionless coefficient, which is set as α = 0.8. 
The kinetic specific heat capacity and the coefficients of kinetic thermal conduction are dependent on the kinetic and configura

tional temperatures. For simplicity, here we assume that the values for these two material parameters are constant. Referring to the 

Table 2 
Material parameters for metallic glass using in this work.  

Elastic parameter 

Eg = 50GPa, El = 46GPa, v = 0.36, ϑ = 42K, Tg = 625K 
Parameters related to shear transformation 
Δγ0 = 0.1, ν0 = 1× 103s− 1, ΔGg = 0.712ev, ΔGl = 0.212ev, Ω = 2nm3 

ϕ = 0, β0 = 1, β1 = 0.01, β2 = 1, β3 = 1800, Y0 = 1.155GPa 
kb = 1.38× 10− 23J /K 
Parameters related to configurational temperature 
cc0 = 0.002MJ /m3K, κ0 = 200MPa /s, κc = 3.23nm2 /s, θ∞ = 1025K, θc

k = 703K, α = 0.8 
Parameters related to kinetic temperature 
ck = 0.8MJ /m3K, κk = 11J /(K ⋅ s)

Fig. 4. The predicted and experimental stress-strain curves of metallic glass during compressive deformations under the ambient temperatures from 
295K to 643K and applied strain rate of 1 × 10− 4s− 1 (Lu, 2002). 

Fig. 5. The predicted and experimental stress-strain curves of metallic glass during compressive deformations under the ambient temperature of 
643K and applied strain rates from 2 × 10− 4s− 1 to 1 × 10− 2s− 1 (Lu, 2002). 
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work of Jiang and Dai (2009) and Thamburaja and Ekambaram (2007), they are taken as ck = 0.8MJ /m3K and κk = 11W /mK. 
All the values for the material parameters used in this work are listed in Table 2, unless noted otherwise. 

4. Simulation and discussion 

In this section, we firstly model some macroscopic deformations of metallic glass under different strain rates and ambient tem
peratures provided by Lu (2002), and compare the predicted stress-strain curves with the corresponding experimental ones to validate 
the effectiveness of the developed model. Then, based on the simulations, we discuss the origin of deformation mode during the 
deformation of metallic glass under different applied conditions. Finally, small scale finite element models are constructed to simulate 
the local deformation of metallic glass so that the initiation and propagation of shear bands can be captured. 

4.1. Macroscopic deformations 

From the work of Thamburaja and Ekambaram (2007), it is determined that the deformation of metallic glass is relatively ho
mogeneous when the strain rate is small (i.e., 1× 10− 4 s− 1) and the ambient temperature is close to the glass transition temperature, or 

Fig. 6. The predicted and experimental compressive stress-strain curves for a jump-in-strain-rate experiment from a strain rate of (a) 3.2 ×10− 3s− 1 

to 1× 10− 2s− 1, and (b) 5 × 10− 3s− 1 to 1 × 10− 2s− 1 and back 5× 10− 3s− 1. Both the two experiments are conducted at the ambient temperature of 
643K (Lu, 2002). 

W. Rao et al.                                                                                                                                                                                                           



International Journal of Plasticity 154 (2022) 103309

16

the strain rate is applied from 1× 10− 4 s− 1 to 3.2× 10− 2 s− 1, but the ambient temperature is larger than the glass transition tem
perature. In addition, the shear localization has little effect on the overall stress–strain responses of metallic glasses before failure 
occurs, since the shear localization is only constrained within narrow bands whose size is much smaller than the size of samples in the 
work of Lu (2002). Thus, we use a three-dimensional finite element model with only one finite element to model the deformations of 
metallic glass in this section. To capture the evolution of the kinetic temperature in the stage of deformation, the C3D8T finite element 
is adopted. 

To prove the effectiveness of the newly developed constitutive model in predicting the deformations of metallic glass, the quasi- 
static deformations (the strain rate is 1× 10− 4 s− 1) of metallic glass from room temperature (295 K) to the supercooled liquid re
gion (643 K) are predicted. Fig. 4 shows a comparison of the predicted overall stress–strain curves with the corresponding experimental 
curves. The comparison results show that the predicted results are in good agreement with the experimental results. This indicates that 
the new constitutive model can well predict the deformations of metallic glass under different ambient temperatures. 

To further demonstrate the reasonability of the proposed constitutive model in describing the deformations of metallic glass under 
different applied strain rates, we also simulate the deformations of metallic glass under 643 K and strain rates from 2 ×10− 4 s− 1 to 1 ×
10− 2 s− 1. Fig. 5 shows the modeled stress–strain curves and their corresponding experimental curves. It can be seen from the com
parison results that the modeling results agree well with the corresponding experiments. Thus, it can be concluded that the new 
constitutive model can well characterize the deformations of metallic glass under different applied strain rates. 

Fig. 7. The configurational temperature-applied strain during the compressive deformation under (a) the ambient temperatures from 295K to 643K 
and applied strain rate of 1× 10− 4s− 1, and (b) the ambient temperature of 643K and applied strain rates from 2 × 10− 4s− 1 to 1 × 10− 2s− 1. 
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Furthermore, two simple compression jump-in-strain-rate experiments at an ambient temperature of 643 K are also modeled. Fig. 6 
(a) shows the predicted and experimental results in which the sample is first compressed at a strain rate of 0.0032 s− 1, and then the 
strain rate is instantaneously increased to 0.01 s− 1 when the applied strain reaches 8.3%. As shown in Fig. 6(a), the predicted results 
are in very good agreement with the experimental results. Fig. 6(b) shows the modeling and experimental stress–strain curves in which 
the sample is deformed at jump-in-strain rates from 0.005 s− 1 to 0.01 s− 1 and back to 0.005 s− 1 (the strains at which the jumps occur 
are 19.4% and 39.2%, respectively). Fig. 6(b) shows that there is a small calculation error between the predicted results and the 
experimental results. Thus, it can be further concluded that the strain rate dependence of deformations for metallic glass can be well 
described by the constructed constitutive model. 

Many experiments show that the diverse modes of deformation exhibited in metallic glass are closely related to the evolution of the 
structure disorder degree and kinetic temperature. To investigate the origin of diverse deformation modes exhibited by metallic glass, 
we investigate the temporal evolution of configurational and kinetic temperatures during deformation under different ambient 
temperatures and applied strain rates. Fig. 7(a) gives the configurational temperatures to the response of the applied strain of the 
sample under different ambient temperatures (from 295 K to 643 K). It is clear that the configurational temperatures begin to increase 
at the onset of yielding and continue to increase rapidly until they reach equilibrium values when the ambient temperature is lower 
than the glass transition temperature; where the lower the ambient temperature is, the higher the equilibrium value is. However, once 
the ambient temperature is higher than the glass transition temperature, the configurational temperature has a slight decrease instead 

Fig. 8. The kinetic temperature-applied strain during the compressive deformation under (a) the ambient temperatures from 295K to 643K and 
applied strain rate of 1× 10− 4s− 1, and (b) the ambient temperature of 643K and applied strain rates from 2 × 10− 4s− 1 to 1 × 10− 2s− 1. 
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of increasing. Fig. 7(b) provides the curves of the configurational temperature and applied strain under 643 K at various strain rates 
from 2 × 10− 4s− 1 to 1× 10− 2s− 1. It is determined that the strain rate and the ambient temperature have a similar effect on the 
evolution of configurational temperature; under a higher strain rate, the configurational temperature is more rapid to reach its 
equilibrium value, and the equilibrium value is larger. Fig. 8(a) and (b) show the kinetic temperature-applied strain relations under 
different ambient temperatures and strain rates, respectively. From Fig. 8, it can be seen that the kinetic temperatures only begin to rise 
if the inelastic strain is large enough (much larger than the yielding strain); with a decrease in the ambient temperature or an increase 
in the applied strain rate, the rise in kinetic temperature occurs much later, but the rise rate is larger. Comparing Fig. 4 with Figs. 7 and 
8, it is not difficult to determine that the evolution of the configurational temperature remains at almost the same pace as the cor
responding stress responses. Under different deformation modes, the configurational temperature exhibits different evolution trends. 
Thus, compared with the kinetic temperature, we believe that the configurational temperature has a stronger effect on the deformation 
of metallic glass. 

As discussed in Section 2, the distribution of energy between the two subsystems is closely related to the nonequilibrium state of the 
total system. With an increase in nonaffine deformations, the nonequilibrium state of the total system is constantly evolving; thus, the 
distribution ratio of dissipative energy (i.e., θc

θc+θk 
given in Eq. (58a), (58b) is not constant. Meanwhile, the different distribution ratios 

have different effects on the nonequilibrium state of the total system, which plays an important role in determining the deformation 

Fig. 9. The evolution of distribution ratio of dissipative energy during the deformations at different ambient temperatures and strain rates: (a) 
deformations at different temperatures; (b) deformations at different strain rates. 
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mode of metallic glass. In view of the distribution ratio value of energy, Fig. 9 shows the evolution of the distribution ratios of energy 
during the nonaffine deformation of metallic glass under different ambient temperatures and strain rates. Fig. 9(a) shows that the 
distribution ratio increases remarkably during deformation at room temperature when a flow stress drop occurs, while it continues to 
increase at a small rate during deformation at high temperatures and low strain rates. It should be noted that an obvious drop in the 
distribution ratios can be observed in the last stage of deformation under relatively low temperatures. Moreover, Fig. 9(a) shows that 
the distribution ratio of deformations at a low temperature is always larger than that of deformation at a high temperature when the 
ambient temperature is smaller than a critical value (a lower critical value of the glass transition temperature zone); instead, the 
situation often reveals the opposite when the ambient temperature is larger than such a critical value. We conclude that this difference 
is related to the deformation mode of metallic glass. Fig. 9(b) shows that the effect of the strain rate on the distribution ratio is slight 
during quasi-static deformation at high temperatures. In fact, the distribution ratio only has a slight variation with an increasing 
deformation and strain rate. Nevertheless, with an increase in deformation, the distribution ratio still increases first and decreases later 
during deformation under high temperatures. This evolution trend is similar to the trend during deformation at room temperature. As 
discussed in the introduction, the deformation mode of metallic glass at room temperature is different from that at high temperatures. 
Thus, the obvious difference between the distribution ratio of energy during deformation at room temperature and that at high 
temperatures can be explained. 

To investigate the temperature and strain rate dependences of the microstructure evolution of metallic glass, we also investigate the 

Fig. 10. The viscosity-applied strain during the compressive deformation under (a) the ambient temperatures from 295K to 643K and applied strain 
rate of 1× 10− 4s− 1, and (b) the ambient temperature of 643K and applied strain rates from 2 × 10− 4s− 1 to 1× 10− 2s− 1. 
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evolution of viscosity and the Deborah number. According to the work of Jiang and Dai (2009), they can be defined as η = τ /γ̇ and κc =

tr /te, where tr = η /μ is the Maxwell time or internal structural relaxation time under loading, and te is the macroscopic imposed time 
of external loading. Fig. 10(a) and (b) provide the viscosity-applied strain curves during deformation under different ambient tem
peratures and strain rates, respectively. Fig. 10(a) shows that the viscosity first drops sharply and then slightly increases before finally 
leveling off with a further increase in deformation when the ambient temperature is lower than the glass transition temperature. 
However, with an increasing ambient temperature, the initial drop in the viscosity of metallic glass becomes increasingly gentle in the 
early stage of deformation, and if the ambient temperature is higher than the glass transition temperature, no drop is found in the 
viscosity of the metallic glass. Fig. 10(b) shows that the viscosity first drops rapidly until an inflection point appears and then decreases 
slowly when the applied strain rate is relatively large. However, with a decrease in the applied strain rate, the declining rates of 
viscosity decrease in the early stage of deformation. Comparing Fig. 10 (a) with Fig. 4 and Fig. 10(b) with Fig. 5, it is determined that a 
significant drop in stress always occurs in the sample with an obvious drop in viscosity, and if the drop in viscosity is not obvious, then 
the stress drop would not occur. Fig. 11(a) and (b) show the Deborah number-applied strain relations during deformation under 
different ambient temperatures and different applied strain rates. From Fig. 11(a), it can be determined that the Deborah number soon 
decreases to be smaller than one in the early stage of deformation, and then an inflection point appears. Finally, the Deborah number 
continues to decrease at a small drop rate during the quasi-static deformations (the strain rate is 1× 10− 4s− 1) under different 

Fig. 11. The Deborah number-applied strain during the compressive deformation under (a) the ambient temperatures from 295K to 643K and an 
applied strain rate of 1× 10− 4s− 1, and (b) the ambient temperature of 643K and applied strain rates from 2 × 10− 4s− 1 to 1 × 10− 2s− 1. (The dotted 
lines divided the curves into two parts whose Deborah numbers are larger than one and smaller than one, respectively). 
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temperatures. With an increasing ambient temperature, the Deborah numbers reach the inflection points more quickly, and the values 
of the Deborah number under the same applied strain are always smaller. Fig. 11(b) shows that the Deborah number first drops rapidly 
and then decreases slowly during deformation at 643 K and strain rates from 2 × 10− 4s− 1 to 1× 10− 2s− 1. It should be noted that the 
inflection point is not obvious, and that the Deborah number may always be larger than one if the applied strain rate is sufficiently 

Fig. 12. The finite element model for metallic glass (a) without notch, and (b) with notch; (c) The contour for the actieval energy in the initial 
configuration. 

Fig. 13. The contour for the accumulated inelastic strain at different applied engineering strains.  
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large. From Fig. 11, we can conclude that the deformation mode of metallic glass is always transforming from the solid-like state to the 
liquid-like state; however, with a decrease in the ambient temperature and an increase in the applied strain rate, this transformation 
becomes increasingly difficult; even if the applied strain is too large or the ambient temperature is too low, this transformation may not 
be complete before failure occurs. 

From Figs. 4, 7(a), 8(a) and 10(a), it can be determined that during the deformation of metallic glass, some shear transformations 
occur when the ambient temperature is smaller than the glass transition temperature, which results in a rapid drop in the viscosity. The 
degree of structural disorder is easier to change at lower viscosities. If the viscosity is small enough, the degree of microstructure 
disorder would increase rapidly with the help of the high applied stress. This rapid increase in the microstructure disorder degree 
would result in an increasing number of shear transformations occurring in metallic glass; subsequently, the viscosity would continue 
to drop rapidly, and the microstructure disorder degree would increase so rapidly that abundant shear transformations would lead to 
instability. A significant flow stress drop can then be observed. Finally, the microstructure disorder degrees reach their saturation 
points, the rate of shear transformation would also reach an equilibrium value, and the viscosity would barely change. However, with 
an increase in the ambient temperature, since the initial viscosity is already smaller, the drop in viscosity is slight in the early stage of 
deformation, although more shear transformations occur in the sample at elevated temperatures; this leads to a very low change in the 
degree of microstructure disorder; finally, the flow stress drop is not significant. In fact, if the ambient temperature is larger than the 
glass transition temperature, no flow stress drop can be found when the applied strain rate is approximately quasi-static. By com
parison, we find that no obvious rise in the kinetic temperature is found until a significant flow stress drop occurs under both high and 
low ambient temperatures; thus, we conclude that the rise in the kinetic temperature has little effect on the flow stress drop. 
Remarkably, a small flow stress drop can be found when an obvious rise in the kinetic temperature occurs; however, at this stage of 
deformation the degree of microstructure disorder never changes. Thus, this small flow stress drop may be mainly determined by the 
rise in the kinetic temperature. From Fig. 11(a), with an increase in deformation the deformation mode of metallic glass always 
changes from a solid-like one to a liquid-like one during quasi-static deformation; however, such changes become increasingly difficult 
with a decrease in the ambient temperature. Under room temperature, the macroscopic response of metallic glass exhibits significant 
softening once some local regions complete the change of deformation mode first; subsequently, without the help of high applied 

Fig. 14. The contour for the configurational temperature at different applied engineering strains.  
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stress, the change in the deformation mode would not occur in the other region. However, under a high ambient temperature there is 
no significant flow stress drop. The change in the deformation mode in the matrix continues, even if the change in the deformation 
mode occurs in some local regions. Thus, the macroscopic deformation mode of metallic glass exhibits significant differences under 
different ambient temperatures. 

Combining Figs. 5, 7(b), and 8(b) with 10(b), we find that since there is not enough time to complete a large amount of shear 
transformation, the yielding stress of the metallic glass rapidly increases at the early stage of deformation under a high ambient 
temperature (higher than the glass transition temperature) with an increasing applied strain rate; however, an increasing number of 
shear transformations are activated with an increasing applied loading. Thus, there is a significant drop in viscosity of the metallic glass 
when the strain rate is high. Such a significant drop in the viscosity makes the degree of microstructure disorder easier to change with 
the high applied loading; thus, with an increase in deformation, the degree of microstructure disorder increases significantly in the 
early stage of deformation. Subsequently, as the microstructure disorder degree increases to a critical value, avalanche-type shear 
transformations occur, and a relatively significant flow stress drop can be found. Finally, with the microstructure disorder degree 
reaching its saturation value, the flow stress generally levels off. Furthermore, Fig. 11(b) shows that with an increase in the applied 
strain rate, the Deborah number is more difficult down to values that are smaller than one, and its lower limit becomes larger. Thus, on 
the one hand shear localization may occur since there is instability during the deformation of metallic glass at a high applied strain 
rate; on the other hand, from the evolution tendency of the Deborah number, we find that the deformation mode changes from 
Newtonian flow into non-Newtonian flow since the macroscopic imposed time of external loading is so small that the internal response 
has insufficient time when the applied strain rate is large enough. 

4.2. Shear localization 

Shear localization at room temperature has seriously restricted the application of metallic glass in the engineering field. In this 
section, a full-field numerical simulation is conducted to investigate the evolution of the shear band in metallic glass during defor
mation at an ambient temperature of 295 K and a strain rate of 1× 10− 4s− 1. As is known, a shear band is a form of plastic instability 

Fig. 15. The contour for the kinetic temperature at different applied engineering strains.  
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that localizes large shear strains in a relatively thin band when a material is deformed. Thus, we use the distribution nephogram of 
accumulative inelastic strain to characterize the evolution of the shear band in this work. 

To effectively capture the main evolution characteristics of the microstructure, we should build a suitable finite element model. To 
be more convenient towards directly observing the evolution of shear bands without losing generality, a 2-D axial plane strain finite 
element model is used in this work according to the work of Rao et al. (2018). Fig. 12 (a) and (b) show the finite element model of the 
metallic glass without and with a notch, respectively. The sizes for these two samples in the numerical simulation are 0.5 μm in width 
and 1 μm in height. In Fig. 12(b), the radius of the semicircular notch is 0.1 µm. To reasonably consider the thermomechanical coupling 
of metallic glass, the CPE4R element is adopted to mesh the finite element model. To capture the main characteristics of the shear band, 
the size of the mesh in Fig. 12(a) is set as approximately 20 nm, which matches the characteristic dimension of the shear band; to 
capture the characteristic of microstructure evolution at the notch root as effectively as possible, we set the size of the mesh in Fig. 12 
(b) as approximately 10 nm. Furthermore, to effectively describe the local deformation in the sample without a notch, we introduce 
some initial defects into the sample, as shown in Fig. 12(c), by referring to the work of Rao et al. (2018) and Thamburaja (2011). 

The experiment shows that the shear localization is very significant during both the tensile and compressive deformations (Greer 
et al., 2013). Here, the evolution of shear band during tensile deformation is investigated. In fact, since the effect of pressure has been 
neglected, the following predicted conclusions are also suitable for the compressive deformation. To model the deformation of the 
metallic glass during the monotonic uniaxial tensile loading along the y-direction shown in Fig. 11, the displacement boundary 
conditions are applied as follows for the domain (0<x<l1, 0<y<l2): ux(0,0) = uy(0,0) = 0; uy(x,0) = 0; uy(x, l2) = δ; and δ is the 
applied displacement. All simulations in this section are conducted using a strain-controlled numerical algorithm at a constant strain 
rate of 1 × 10− 4 s− 2 and an ambient temperature of 295 K. During the deformation of the test specimens conducted by Lu (2002), a 
thermocouple placed next to the surface of the specimens were measuring fluctuations of 0.5 K (relative to ambient temperature). 
Here, we will fix the kinetic temperature on the remaining four outer surfaces of the finite-element mesh to remain at the respective 

Fig. 16. The contour for the accumulated inelastic strain at different applied engineering strains predicted by the constitutive model with neglecting 
the diffusion term of configurational temperature. 
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ambient temperature. Since the configuration temperature is only used to characterize the nonequilibrium phenomena in amorphous 
materials, there could exist no energy exchange between configuration subsystem and surrounding environment directly. Then, the 
adiabatic boundary condition is set for configuration subsystem. 

Figs. 13–15 show the contours of accumulative inelastic strain and configurational and kinetic temperatures in metallic glass 
without a notch, respectively. The formation of shear band can be divided into three consecutive stages. First, in the early stage of 
deformation, since the activation energy in the defect regions is smaller than that in the matrix, shear localization first occurs in these 
defect regions. Second, several viable bands for shearing are created with the help of the local stress concentration. In these bands the 
viscosity begins to decrease rapidly; thus, the evolution of the microstructure becomes easier. Then the structure inside is disordered in 
these bands with the help of applied loading. Due to structural rejuvenation, the activation rate of shear transformation along these 
bands becomes increasingly larger. However, it should be noted that the inelastic strain throughout the band is not large in this stage, 
and that the local heating resulting from the plastic dissipation can be neglected. Finally, following the creation of the softened path, an 
increasing amount of shear transformation occurs in these bands, and inelastic instability is pioneered in one of these bands. Then, the 
large plastic strains rapidly undergo inelastic instability in the band. As a result, a main shear band with significant shear localization is 
created. In the third stage, the shear-band material experiences such large plastic strains that significant heating is now possible; 
however, since the thermal diffusivity is quite high, this local heating disperses so rapidly that the kinetic temperature field in the 
entire sample is homogeneous. Thus, the increase in kinetic temperature is very small in the stage of shear band formation. This 
predicted formation process of the shear band is similar to that discussed in the two-stage scenario (Greer et al., 2013). However, it 
should be noted that these three stages are not independent of one another in the time domain; in fact, the next stage has begun before 
the previous step completes. 

To reveal the effect of the nonlocal diffuse term of the configurational temperature on the evolution of shear band, we also adopt 
the constitutive model neglecting the diffusion term of the configurational temperature to model the tensile deformation of metallic 
glass at room temperature (295 K) and a quasi-static strain rate of 1 × 10− 4 s− 2. Figs. 16 and 17 show the predicted distribution of the 
accumulative inelastic strain and configurational temperature, respectively. Comparing Fig. 13 with Fig. 16, it can be determined that 

Fig. 17. The contour for the configurational temperature at different applied engineering strains with neglecting the diffusion term of configu
rational temperature. 
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the nonlocal term in the configurational relation has little effect on the evolution of the shear band. Comparing Fig. 14 with Fig. 17, we 
also find that there is little difference between these two predicted distributions of the configurational temperature. These results imply 
that for large-volume samples (where the size of the sample is larger than 0.5 µm), the nonlocal term in the configurational relations 
has a negligible effect on the overall deformation behavior of the sample. This conclusion agrees with the results in the work of 
Thamburaja (2011). 

Figs. 18 and 19 show the modeling contours of the accumulative inelastic strain and configurational temperature of the metallic 
glass sample with a notch, respectively. Remarkably, since the nonlocal term in the configurational relations has little effect on the 
deformation of the large-volume sample, the diffusion term of the configurational temperature is also neglected in this simulation, so 
that a large amount of computer cost can be saved. Figs. 18 and 19 show that many shear transformations first occur at the notch root 
with the help of a high local stress, and then an obvious local inelastic zone forms. With an increasing deformation, on the one hand the 
size of such an inelastic zone increases; on the other hand, the localization degree is more significant. Once the size of the inelastic zone 
is larger than a critical value, the viable bands for shearing begin to be launched from the notch root to the other side of the sample. In 
these viable bands, the configurational temperature reached a critical value, which did not increase with an increasing deformation. 
Then, following the formation of viable bands, significant plastic deformation occurs in this viable band, and the realistic shear band 
passes through the sample rapidly. This indicates that the precondition of shear band propagation is that the disorder degree of the 
microstructure in the local zone needs to reach a saturation value. Furthermore, it is also determined that the viable bands become 
wider when significant shear localization occurs in such viable bands. This indicates that there is an apparent competition between the 
sharp shear localization and diffuse shear during the tensile deformation of a sample with a notch. If the diffuse shear banding is 
significant, then necking of the ligament may be found under tension; otherwise, catastrophic failure will take place. 

5. Conclusions 

Based on the out-of-equilibrium statistical concept and the STZ concept, a finite deformation constitutive model was developed 

Fig. 18. The contour for the accumulated inelastic strain at different applied engineering strains in the sample with notch.  

W. Rao et al.                                                                                                                                                                                                           



International Journal of Plasticity 154 (2022) 103309

27

within the thermodynamic framework of an irreversible continuum medium. In this constitutive model, metallic glass is regarded as a 
solid composed of weakly interacting configurational and kinetic subsystems, so that the mismatching of time scales between the 
vibrations around a mechanically stable microscopic configuration and structural evolution can be reasonably dealt with. Moreover, a 
locally stored transformation energy was introduced into the evolution equation of inelastic shear strain to consider the reverse shear 
transformation, which is caused by a strain energy field accumulated along with the shear transformation. To verify the effectiveness of 
the newly developed constitutive model in predicting the deformation of metallic glass, this constitutive model was implemented into a 
finite element code by writing a UMAT; then, the deformations of metallic glass under different loading conditions were modeled. The 
predicted results were compared with the corresponding experiments and theories, and three important conclusions were obtained as 
follows:  

(1) The main deformation mechanisms of metallic glass are well captured by the newly constructed constitutive model, and then 
the deformation of metallic glass under different ambient temperatures and applied strain strains can be effectively predicted.  

(2) The developed model shows that the deformation modes exhibited by metallic glass are related to the configuration disorder 
degree, which determines the internal structural relaxation time. The internal structural relaxation time is large, and metallic 
glass exhibits a solid-like behavior if the configuration disorder degree is relatively small; otherwise, metallic glass exhibits 
liquid-like behavior.  

(3) Based on the new model, it is determined that the precondition of shear band formation is that the viable band, in which the 
configuration disorder degree reaches a saturation value, is created for shear. 
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Fig. 19. The contour for the configurational temperature at different applied engineering strains in the sample with notch.  
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