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This paper is mainly concerned with modeling nonlinear internal waves in the ocean of great depth. The ocean is assumed to
be composed of three homogeneous fluid layers of different densities in a stable stratified configuration. Based on the Ablowitz-
Fokas-Musslimani formulation for irrotational flows, strongly nonlinear and weakly nonlinear models are developed for the
“shallow-shallow-deep” and “deep-shallow-deep” scenarios. Internal solitary waves are computed using numerical iteration
schemes, and their global bifurcation diagrams are obtained by a numerical continuation method and compared for different
models. For the “shallow-shallow-deep” case, both mode-1 and mode-2 internal solitary waves can be found, and a pulse broad-
ening phenomenon resulting in conjugate flows is observed in the mode-2 branch. While in the “deep-shallow-deep” situation,
only mode-2 solitary waves can be obtained. The existence and stability of mode-2 internal solitary waves are confirmed by
solving the primitive equations based on the MITgcm model.
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1. Introduction

Due to temperature and salinity variations in the vertical
direction, the ocean features density inhomogeneity result-
ing in the pycnocline, a diffusive boundary between the up-
per lighter fluid and lower heavier fluid. When the pyc-
nocline fluctuates, internal waves, one of the most impor-
tant phenomena of stratified fluids, appear. Internal gravity
waves are ubiquitous in the ocean and are usually induced
by tidal or other currents in the condition of significant bot-
tom topography. Early famous field observations were car-
ried out by Perry and Schimke [1], who found groups of
internal waves up to 80 m high and 2000 m long on the
main thermocline near Sumatra and followed by Osborne
and Burch [2], who found internal solitary waves gener-
ated by tidal currents on the chain of the Andaman and
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Nicobar Islands. Compared with surface gravity waves, in-
ternal waves have a longer time scale and larger amplitude
due to the much smaller density difference across the pycn-
ocline than the air-water interface. Hence, they significantly
impact people’s daily production and life, ocean engineer-
ing, marine military, underwater communication, etc. For
example, the current induced by internal waves can affect the
mass and energy transport of the oceanic ecosystem and have
a considerable impact on offshore platforms and underwater
production facilities.

Many studies of internal waves use a simple mathemati-
cal idealization, which considers the pycnocline as a sharp
interface between two immiscible and homogeneous fluids
of different densities. Based on this simplification, weakly
and strongly nonlinear models were established in various
asymptotic limits, including, among others, the Korteweg-
de Vries (KdV) equation and its variants, the Benjamin-
Ono (BO) equation, and the Mayata-Choi-Camassa (MCC)
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Figure 1 a Vertical profile of potential density (kg/m3) measured at 21◦55.8′N, 117◦9.6′E, the South China Sea, on 20 May 2001. b, c Observed typical
temperature (◦C) profiles representing mode-2 convex and concave internal solitary waves, respectively. Figures are quoted from Ref. [3].

equations (the interested readers are referred to Refs. [4-6]
for more details). These celebrated model equations pro-
vide powerful tools to explain field observations and physical
mechanisms of the generation, propagation, and dissipation
of internal waves.

While various nonlinear dispersive models for the two-
fluid system have been successful in many aspects of in-
ternal wave problems, with the further development of field
observations, the original physical assumptions and theoreti-
cal models show disadvantages. Perhaps, one of the biggest
problems is that ignoring the thickness of the pycnocline re-
sults in the first baroclinic mode (mode-1) of internal waves
only. However, other modes also exist in the ocean and, par-
ticularly, physical oceanographers recently have made exten-
sive field observations on the second baroclinic mode (mode-
2) internal waves in a number of places, including the South
China Sea [7], the Andaman Sea of the Indian Ocean [8], the
northern Heng-Chun Ridge [9], and the New Jersey Coast
[10]. These mode-2 waves can be categorized into concave
and convex types according to morphologically opposite di-
rections of isotherm displacements (see Figs. 1b and c). In
reality, the bathythermograph information indicates that the
oceans display a basic three-layered structure akin to a sand-
wich in many places; see a typical ocean density profile in
Fig. 1a. Considering the thickness of the middle layer can
help to understand the higher-order modes of internal waves.

Experimental investigations on mode-2 internal waves are
also being carried out intensively. In laboratories, these
waves are generated by using the “gravitational collapse”
method for three homogeneous fluids of different densities
(see Ref. [11] for details). Based on the same technique,

experimentalists conducted further researches on mode-2 in-
ternal solitary-like waves to understand the effects of bottom
topography on their propagations [12, 13] and their capabil-
ity for mass transport [14]. On the theoretical side, to explain
these experimental results, we need to develop three-layer
weakly/strongly nonlinear dispersive models. As an added
benefit, three-layer models with two sharp interfaces can be
used to study internal waves when mode-1 and mode-2 com-
ponents co-exist. This situation frequently occurs, for exam-
ple, energy exchanges between mode-1 and mode-2 waves
through bottom topography [15-18]. Another example is that
the propagation of mode-2 solitary waves is usually accom-
panied by the tail of mode-1 waves [19], which has been ver-
ified theoretically by Akylas and Grimshaw [20] and numer-
ically by Vanden-Broeck and Turner [21].

Recently, Barros et al. [22] extended the two-layer MCC
model to three homogeneous layers confined between two
flat and rigid boundaries to study strongly nonlinear mode-2
solitary waves. Their model assumes that internal waves
characterized by deformations of two sharp interfaces are
long compared to the total depth of fluids. However, in many
cases, the bottom layer in the ocean is longer than internal
waves, and hence model equations accounting for this situa-
tion need to be developed. In the present paper, we attempt
to derive novel strongly/weakly nonlinear asymptotic mod-
els for the three-layer problem, where some layers are shal-
low, and the others are deep, compared with the characteristic
wavelength.

The rest of the paper is structured as follows. The mathe-
matical description and the Ablowitz-Fokas-Musslimani for-
mulation of the problem are given in Sect. 2. For the hori-
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zontally two-dimensional problem, strongly and weakly non-
linear model equations in the “shallow-shallow-deep” and
“deep-shallow-deep” scenarios are derived in Sects. 3 and
4, respectively. The equations derived here are based on sys-
tematic asymptotic expansions of the global integrals related
to the kinematic boundary conditions for different wave-
length and amplitude scales. In addition, solitary waves are
numerically computed in spatially one-dimensional models
using the Petviashvili and Newton iterative methods. The
corresponding global bifurcation diagrams are explored by
a numerical continuation method. Finally, a conclusion is
given in Sect. 5.

2. Mathematical formulation

2.1 Governing equations

Consider a three-dimensional incompressible and inviscid
fluid system, composed of three immiscible and homoge-
neous layers with adjacent layers separated by a sharp in-
terface (see Fig. 2 for a schematic of the problem). The
Cartesian coordinate system (x, y, z) is introduced such that
the gravity is directed into the negative z-axis. The top and
bottom layers are bounded by flat rigid lids located at z = h1

and z = −(h2 + h3), respectively, and the middle layer locates
between two sharp interfaces −h2+η2(x, y, t) < z < η1(x, y, t).
The fluid density in each layer is supposed to be constant,
designated by ρi (i = 1, 2, 3), and the system is in a stable
configuration, namely ρ1 < ρ2 < ρ3. The flow is assumed to
be irrotational in each layer, indicating that there exists a po-
tential function ϕi so that the velocity field can be expressed
as its gradient. Finally, the conservation of mass implies
that the velocity potential in each layer satisfies the Laplace

Figure 2 Mathematical idealization of the problem.

equation:

ϕixx + ϕiyy + ϕizz = 0 , for i = 1, 2, 3 . (1)

At the upper interface z = η1(x, y, t), the nonlinear kinematic
and dynamic boundary conditions read

η1t = ϕ1z − ∇η1 · ∇ϕ1 = ϕ2z − ∇η1 · ∇ϕ2 , (2)

ρ2

[
ϕ2t +

|∇ϕ2|2
2
+

1
2

(ϕ2z)2 + gη1

]
= ρ1

[
ϕ1t +

|∇ϕ1|2
2
+

1
2

(ϕ1z)2 + gη1

]
, (3)

where ∇ is the horizontal gradient operator and g is the accel-
eration due to gravity. Similarly, the kinematic and dynamic
boundary conditions at the lower interface z = −h2+η2(x, y, t)
can be expressed as

η2t = ϕ2z − ∇η2 · ∇ϕ2 = ϕ3z − ∇η2 · ∇ϕ3 , (4)

ρ3

[
ϕ3t +

|∇ϕ3|2
2
+

1
2

(ϕ3z)2 + gη2

]
= ρ2

[
ϕ2t +

|∇ϕ2|2
2
+

1
2

(ϕ2z)2 + gη2

]
. (5)

At two rigid lids, the impermeability boundary conditions

ϕ1z = 0 , at z = h1 , (6)

ϕ3z = 0 , at z = −(h2 + h3) (7)

hold, which complete the mathematical description of the
whole system.

2.2 Ablowitz-Fokas-Musslimani formulation

Recently, Ablowitz et al. [23] proposed an explicit non-local
formulation for the classical water-wave problem in two and
three dimensions. It was later generalized to study interfacial
waves with a free surface [24] and with a variable bottom to-
pography [25]. First of all, it is straightforward to verify that
the following identity

(ϕizψx+ϕixψz)x+(ϕizψy+ϕiyψz)y+(ϕizψz−∇ϕi ·∇ψ)z = 0 , (8)

holds for an arbitrary harmonic function ψ. Applying the di-
vergent theorem to Eq. (8) in the top layer yields∫ {[

η1x(ϕ1zψx + ϕ1xψz) + η1y(ϕ1zψy + ϕ1yψz)

− (ϕ1zψz − ∇ϕ1 · ∇ψ)
]
z=η1
− ∇ϕ1 · ∇ψ

∣∣∣
z=h1

}
dr = 0 , (9)

where r = (x, y) is a vector in the horizontal plane. Substitut-
ing ψ = eik·r+|k|z into Eq. (9) yields∫

eik·r[ (−|k|η1t + ik · ∇Φ−1
)

e|k|(η1−h1)

− ik · ∇ϕ1
∣∣∣
z=h1

]
dr = 0 , (10)
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where k = (kx, ky) is the wavenumber vector, |k| =
√

k2
x + k2

y

is the corresponding magnitude, and Φ−1 is defined as Φ−1 =
ϕ1(x, y, η1(x, y, t), t). Since ψ = eik·r−|k|z is also a solution to
the Laplace equation, one then obtains∫

eik·r[ (|k|η1t + ik · ∇Φ−1
)

e−|k|(η1−h1)

− ik · ∇ϕ1
∣∣∣
z=h1

]
dr = 0 . (11)

Subtracting Eq. (10) from Eq. (11) gives∫
eik·r
[
η1t cosh(|k|(h1 − η1))

+ ik · ∇Φ−1
sinh(|k|(h1 − η1))

|k|

]
dr = 0 . (12)

In the same vein, one can obtain the global relations for the
middle layer∫

eik·r+|k|(−h2+η2)( − |k|η2t + ik · ∇Φ−2
)
dr

+

∫
eik·r+|k|η1

(|k|η1t − ik · ∇Φ+2
)
dr = 0 , (13)

and∫
eik·r−|k|(−h2+η2)(|k|η2t + ik · ∇Φ−2

)
dr

+

∫
eik·r−|k|η1

( − |k|η1t − ik · ∇Φ+2
)
dr = 0 , (14)

where Φ±2 are defined as

Φ−2 = ϕ2(x, y,−h2 + η2(x, y, t), t) , Φ+2 = ϕ2(x, y, η1(x, y, t), t) .

It follows directly from adding and subtracting Eqs. (13) and
(14) that∫

eik·r[|k| sinh(|k|(h2 − η2))η2t + ik · ∇Φ−2 cosh(|k|(h2 − η2))

+ |k| sinh(|k|η1)η1t − ik · ∇Φ+2 cosh(|k|η1)
]
dr = 0 , (15)

and∫
eik·r
[
− cosh(|k|(h2 − η2))η2t − ik · ∇Φ−2

sinh(|k|(h2 − η2))
|k|

+ cosh(|k|η1)η1t − ik · ∇Φ+2
sinh(|k|η1)
|k|

]
dr = 0 . (16)

Substituting ψ = eik·r±|k|(z+h2+h3) into the global relation for
the bottom layer yields∫

eik·r[ik · ∇ϕ3

∣∣∣
z=−(h2+h3)

+ e|k|(h3+η2)
(
−ik · ∇Φ+3 + |k|η2t

) ]
dr = 0 , (17)

and∫
eik·r[ik · ∇ϕ3

∣∣∣
z=−(h2+h3)

+ e−|k|(h3+η2)(−ik · ∇Φ+3 − |k|η2t)
]
dr = 0 , (18)

where Φ+3 = ϕ3(x, y,−h2 + η2(x, y, t), t). Subtracting Eq. (18)
from Eq. (17) gives∫

eik·r
[

cosh(|k|(h3 + η2))η2t

− ik · ∇Φ+3
sinh(|k|(h3 + η2))

|k|

]
dr = 0 . (19)

Next, we rewrite the dynamic boundary conditions using the
interfacial variables. At z = η1(x, y, t), the time evolution of
ρ2Φ

+
2 − ρ1Φ

−
1 satisfies

(ρ2Φ
+
2 − ρ1Φ

−
1 )t + g(ρ2 − ρ1)η1

+
ρ2

2

[
−

(η1t + ∇η1 · ∇Φ+2 )2

1 + |∇η1|2
+ |∇Φ+2 |2

]
− ρ1

2

[
|∇Φ−1 |2 −

(η1t + ∇η1 · ∇Φ−1 )2

1 + |∇η1|2
]
= 0 , (20)

while at z = −h2 + η2(x, y, t), the governing equation for
ρ3Φ

+
3 − ρ2Φ

−
2 reads

(ρ3Φ
+
3 − ρ2Φ

−
2 )t + g(ρ3 − ρ2)η2

+
ρ3

2

[−(η2t + ∇η2 · ∇Φ+3 )2

1 + |∇η2|2
+ |∇Φ+3 |2

]
− ρ2

2

[
|∇Φ−2 |2 −

(η2t + ∇η2 · ∇Φ−2 )2

1 + |∇η2|2
]
= 0 . (21)

3. Shallow-shallow-deep scenario

3.1 Strongly nonlinear models

In the two-layer system, when the thickness of the upper
fluid layer is small compared with the characteristic wave-
length and the lower layer is of great depth (which is termed
the “shallow-deep” case hereafter), weakly nonlinear models
were derived in Ref. [4] for two horizontal dimensions and
the strongly nonlinear model was derived in Ref. [5] for the
horizontally one-dimensional case. In the subsequent analy-
ses for deriving a novel strongly nonlinear model, the gener-
alization of Ref. [5] is twofold: three-layer configuration and
two horizontal dimensions. We assume the top and middle
layers are thin and the bottom layer is thick, compared to the
typical wavelength of interfaces. We call this configuration
the “shallow-shallow-deep” case. To continue the derivation,
the following scales

x, y, h3 ∼ λ , η1,2 ∼ h2 , t ∼ λ

c0
, Φ±1,2,3 ∼ λc0 , h1 ∼ h2

are used, where c0 is the characteristic speed, λ is the typical
wavelength, and no assumption is made on wave amplitude.
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We denote by µ = h2
λ

the small parameter measuring the ratio
of middle layer thickness to typical wavelength. After non-
dimensionalization, the global relations Eqs. (12), (15), (16),
and (19) become∫

eik·r
[

cosh(µ|k|(h1 − η1))η1t

+ ik · ∇Φ−1
sinh(µ|k|(h1 − η1))

µ|k|

]
dr = 0 , (22)∫

eik·r[µ|k| sinh(µ|k|(1 − η2))η2t

+ ik · ∇Φ−2 cosh(µ|k|(1 − η2))

+ µ|k| sinh(µ|k|η1)η1t

− ik · ∇Φ+2 cosh(µ|k|η1)
]
dr = 0 , (23)∫

eik·r
[
− cosh(µ|k|(1 − η2))η2t

− ik · ∇Φ−2
sinh(µ|k|(1 − η2))

µ|k| + cosh(µ|k|η1)η1t

− ik · ∇Φ+2
sinh(µ|k|η1)

µ|k|

]
dr = 0 , (24)

and∫
eik·r
[
µη2t − ik · ∇Φ+3

tanh(|k|(h3 + µη2))
|k|

]
dr = 0 , (25)

where we follow the original variables for ease of notation.
Expanding the global relations Eqs. (22)-(25) about the small
parameter µ and retaining terms valid up to O(µ), one obtains∫

eik·r [η1t + ik · ∇Φ−1 (h1 − η1)
]
dr = 0 , (26)∫

eik·r (ik · ∇Φ−2 − ik · ∇Φ+2
)

dr = 0 , (27)∫
eik·r[ − η2t − ik · ∇Φ−2 (1 − η2)

+ η1t − ik · ∇Φ+2η1
]
dr = 0 , (28)

and∫
eik·r
{
µη2t − ik · ∇Φ+3

[ tanh(|k|h3)
|k| + µη2

− µ tanh2(|k|h3)η2

]}
dr = 0 . (29)

Upon noting ik ∼ −∇ and k2 ∼ −∆, we take the inverse
Fourier transforms of Eqs. (26)-(29), which yield

η1t − h1∆Φ
−
1 + ∇ · η1∇Φ−1 = 0 , (30)

Φ−2 = Φ
+
2 , (31)

η1t − η2t + ∆Φ
−
2 − ∇ · η2∇Φ−2 + ∇ · η1∇Φ+2 = 0 , (32)

Φ+3 = µG−1
3 η2t + O

(
µ2
)
, (33)

where G3 is a pseudo-differential operator with the Fourier
symbol

Ĝ3 = |k| tanh (|k|h3) , (34)

where h3 = O(1) or even larger. On the other hand, with
the dimensionless variables, the dynamic boundary condi-
tions read

(ρ2Φ
+
2 − ρ1Φ

−
1 )t +

gh2(ρ2 − ρ1)
c2

0

η1 +
ρ2

2

[
|∇Φ+2 |2

−
µ2(η1t + ∇η1 · ∇Φ+2 )2

1 + µ2|∇η1|2
]
− ρ1

2

[
|∇Φ−1 |2

−
µ2(η1t + ∇η1 · ∇Φ−1 )2

1 + µ2|∇η1|2
]
= 0, (35)

and

(ρ3Φ
+
3 − ρ2Φ

−
2 )t +

gh2(ρ3 − ρ2)
c2

0

η2 +
ρ3

2

[
|∇Φ+3 |2

−
µ2(η2t + ∇η2 · ∇Φ+3 )2

1 + µ2|∇η2|2
]
− ρ2

2

[
|∇Φ−2 |2

−
µ2(η2t + ∇η2 · ∇Φ−2 )2

1 + µ2|∇η2|2
]
= 0 , (36)

where the characteristic speed c0 can be defined as

c0 =

√
gh2(ρ3 − ρ1)

ρ2
.

Since the difference betweenΦ−2 andΦ+2 is O
(
µ2
)
, which will

not be involved in the reduced model, we can suppress the su-
perscript of Φ−1 , Φ±2 and Φ+3 for simplicity. Substituting Eq.
(33) into Eq. (36) and retaining terms valid up to O(µ), Eq.
(36) can be rewritten as

Φ2t −
R3 − 1

R3 − R1
η2 +

1
2
|∇Φ2|2 − µR3G−1

3 η2tt = 0 , (37)

where R1 =
ρ1
ρ2
< 1 and R3 =

ρ3
ρ2
> 1. Using Eq. (37) to

eliminate Φ2t in Eq. (35), one obtains

Φ1t −
1 − R1

R1(R3 − R1)
η1 −

R3 − 1
R1(R3 − R1)

η2

+
1
2
|∇Φ1|2 −

µR3

R1
G−1

3 η2tt = 0 . (38)

Finally, Eqs. (30) and (32) can be recast to

η1t − h1∆Φ1 + ∇ · η1∇Φ1 = 0 , (39)

η2t − h1∆Φ1 − ∆Φ2 + ∇ · η1∇Φ1

+ ∇ · (η2 − η1)∇Φ2 = 0 . (40)

Equations (37)-(40) form a closed system for four unknowns
Φ1,2 and η1,2, a fully nonlinear weakly dispersive model. This
model generalizes the Miyata-Choi-Camassa equations pro-
posed in Ref. [5] to the three-fluid system and horizontally
two-dimensional situation (this fact becomes apparent if we
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use u1,2 = ∇Φ1,2 and η1,2 as unknowns). We finally remark
that if the problem is y-independent and the bottom layer is
infinitely deep, the system Eqs. (37)-(40) reduces to

η1t −
[
(h1 − η1)u1

]
x = 0 ,

η2t −
[
(h1 − η1)u1

]
x −
[
(1 + η1 − η2)u2

]
x = 0 ,

u1t −
1 − R1

R1(R3 − R1)
η1x −

R3 − 1
R1(R3 − R1)

η2x + u1u1x

=
µR3

R1
H
[
(h1 − η1)u1 + (1 + η1 − η2)u2

]
xt ,

u2t −
R3 − 1

R3 − R1
η2x + u2u2x

= µR3H
[
(h1 − η1)u1 + (1 + η1 − η2)u2

]
xt ,

(41)

where H is the Hilbert transform with the Fourier symbol
isgn(k) .

3.2 Weakly nonlinear models

To derive weakly nonlinear models, we assume a small-
amplitude motion in addition to the long-wave assumption,
then choose the following scales

x, y, h3 ∼ λ , h1 ∼ h2 , η1,2 ∼ a ,

kx, ky ∼
1
λ
, t ∼ λ

c0
, Φ±i ∼

aλ
h2

c0 ,

where a is the characteristic scale of wave amplitude, and
other quantities are the same as the strongly nonlinear model.
Two small parameters, µ = h2

λ
and ϵ = a

h2
, are introduced

to measure the dispersive and nonlinear effects, respectively.
To continue the derivation, we follow the same procedure as
Sect. 3.1:
• Non-dimensionalizing the global relations and dynamic

boundary conditions;
• Expanding these expressions about the small parame-

ters µ and ϵ;
• Retaining terms valid up to O(µ, ϵ) where µ ∼ ϵ for bal-

ancing dispersion and nonlinearity.
After a tedious calculation, one finally arrives at

η1t − h1∆Φ1 + ϵ∇ · η1∇Φ1 = 0 , (42)

η2t − h1∆Φ1 − ∆Φ2 + ϵ∇ · η1∇Φ1

+ ϵ∇ · (η2 − η1)∇Φ2 = 0 , (43)

Φ1t −
1 − R1

R1(R3 − R1)
η1 −

R3 − 1
R1(R3 − R1)

η2 +
ϵ

2
|∇Φ1|2

− µR3

R1
G−1

3 η2tt = 0 , (44)

Φ2t −
R3 − 1

R3 − R1
η2 +

ϵ

2
|∇Φ2|2 − µR3G−1

3 η2tt = 0 . (45)

Equations (42)-(45) form a Boussinesq type model. We can
further reduce the number of equations to two by eliminating

η1,2. For this purpose, we take the derivative of Eqs. (44)
and (45) with respect to t and then eliminate η1t and η2t using
Eqs. (42) and (43). Finally, replacing η1 with R1

D Φ1t− Φ2t
D and

η2 with Φ2t
1−D where D = 1−R1

R3−R1
, one obtains

0 =Φ1tt −
h1

R1
∆Φ1 −

1 − D
R1
∆Φ2

− µR3

R1
G−1

3 ∆(h1Φ1 +Φ2)tt + ϵ
(
|∇Φ1|2t +Φ1t∆Φ1

)
+
ϵ

D
∇ ·
[
(1 − D)Φ1t −

1
R1
Φ2t

]
∇(Φ1 −Φ2), (46)

and

0 =Φ2tt − h1(1 − D)∆Φ1 − (1 − D)∆Φ2

− µR3G−1
3 ∆(h1Φ1 +Φ2)tt + ϵ

(
|∇Φ2|2t +Φ2t∆Φ2

)
+
ϵ(1 − D)

D
∇ · (R1Φ1t −Φ2t)∇(Φ1 −Φ2) . (47)

Equations (46) and (47) form a closed system for two un-
knowns Φ1,2, It is noted that Eqs. (46) and (47) are de-
rived based on the Benjamin-Ono scaling, with the Benney-
Luke type nonlinearities, hence termed the Benjamin-Ono-
Benney-Luke system hereafter.

3.3 Results

In the following subsections, we focus on the numerical com-
putation of solitary waves, a type of traveling-wave solutions
decaying in the direction of propagation. We confine our-
selves to the horizontally one-dimensional situation in the
“shallow-shallow-deep” models and send h3 to infinity for
simplicity. Both strongly and weakly nonlinear models will
be calculated and compared with each other.

3.3.1 Dispersion relation

Before computing solitary waves, we derive the linear dis-
persion relation of the problem, which can predict the speed
range of solitary waves. Whether the strongly nonlinear
model (Eqs. (37)-(40)) or weakly nonlinear model (Eqs.
(42)-(45)) is used for the “shallow-shallow-deep” case, the
linearized system is the same. Solutions to the linearized
equations are sought as being proportional to eik(x−ct), with
the wavenumber k and phase speed c; namely, we write
η1,2 = η̂1,2eik(x−ct) and Φ1,2 = Φ̂1,2eik(x−ct). The linearized
system for η̂1,2 and Φ̂1,2 is homogeneous, and the existence
of non-trivial solutions indicates the relation between c and
k, which satisfies

[R1 + µR3(h1 + R1)|k|]c4 − [(1 − D)R1

+ h1 + µh1R3D|k|]c2 + D(1 − D)h1 = 0 . (48)

It is not difficult to verify that the four roots of Eq. (48) are
all real and can be divided into two categories according to
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the magnitude. The phase speed is termed mode-1 for larger
magnitude and mode-2 for smaller magnitude. In the long-
wave limit (k → 0), the linear phase speeds c±0 read

(c±0 )2 =
(1 − D)R1 + h1

2R1

±
√

[(1 − D)R1 − h1]2 + 4R1h1(1 − D)2

2R1
, (49)

while for the short-wave limit (k → ∞),

c−∞ = 0 ,
(
c+∞
)2
=

Dh1

R1 + h1
, (50)

where superscripts “+” and “-” refer to mode-1 and mode-
2, respectively. A straightforward calculation shows that
c+∞ ≥ c−0 , and the equality holds if and only if D = 0.

Figure 3 shows the dispersion relation of the “shallow-
shallow-deep” case for R1 = 0.5, R3 = 1.3, and h1 = 5.
Note that only the positive roots to Eq. (48) are plotted, and
both mode-1 (solid line) and mode-2 (dashed line) curves are
monotonically decreasing functions of wavenumber. Since
c+0 is finite and c+∞ > c−0 , it can be inferred from the linear
dispersion relation that solitary waves may bifurcate from c±0
and exist for c > c+0 and c−0 < c < c+∞, where c is the trans-
lating speed of a solitary wave. We next show that the termi-
nologies, mode-1 and mode-2, are also rational for solitary
waves. The linearized system implies

η̂1

η̂2
= 1 − 1 − D

c2 . (51)

The two interfaces are locked in-phase at c = c+0 since
η̂1/̂η2 > 0 due to the explicit expression Eq. (49). On the
other hand, it is not difficult to show that η̂1/̂η2 < 0 at c = c−0 ,

Figure 3 Dispersion relation Eq. (48) for R1 = 0.5, R3 = 1.3, and h1 = 5:
solid line, mode-1 branch; dashed line, mode-2 branch. Critical points are
labeled by circles: c+0 = 3.1850, c−0 = 0.4807, and c+∞ = 0.7538.

the two interfaces are out-of-phase. It is noted that a solution
with the translating speed c ∈

(
c−0 , c

+
∞
)

is usually called the
gap solitary wave in the literature.

3.3.2 Solitary waves

This section is intended to give internal solitary-wave so-
lutions to strongly and weakly nonlinear models derived in
Sects. 3.1 and 3.2, respectively. Both mode-1 and mode-
2 solitary waves are shown to exist in these models. The
weakly nonlinear model can be solved analytically with
the aid of the famous Benjamin-Ono equation. While the
strongly nonlinear model will be solved using the numerical
method based on the Petviashvili iteration scheme.

We start with the weakly nonlinear model. A moving co-
ordinate ξ = x − ct is introduced such that the traveling
wave propagating with the same velocity becomes static in
the new frame of reference. The subsequent analyses show
that the system Eqs. (42)-(45) can be asymptotically approx-
imated by the steady Benjamin-Ono equation, which pos-
sesses a one-parameter family of solitons with algebraic de-
cay. Firstly, in the moving frame, it can be inferred from Eqs.
(42) and (44) that

Φ1ξ = −
c
h1
η1 −

ϵc
h2

1

η2
1 + O(ϵ2),

Φ1ξ = −
D

cR1
η1 −

1 − D
cR1

η2 +
ϵ

2c3R2
1

[
Dη1 + (1 − D)η2

]2
− µcR3

R1
H
[
η2ξ

]
+ O(ϵ2),

based on the equivalent substitution. Subtracting one equa-
tion from the other to eliminate Φ1ξ, one can express η1 in
terms of η2, valid up to O(ϵ, µ), as

η1 =
(1 − D)h1

c2R1 − Dh1
η2 −

3ϵ(1 − D)2c2R1h1

2(c2R1 − Dh1)3 η2
2

+
µc2R3h1

c2R1 − Dh1
H
[
η2ξ
]
+ O(ϵ2) . (52)

In the same vein, Eqs. (43) and (45) can be rewritten as

Φ2ξ = c (η1 − η2) − ϵc (η1 − η2)2 + O(ϵ2) ,

Φ2ξ = −
1 − D

c
η2 +

ϵ(1 − D)2

2c3 η2
2 − µcR3H

[
η2ξ

]
+ O(ϵ2) ,

which can be used to establish another relation between η1

and η2 by eliminating Φ2ξ[
c2 − (1 − D)

]
η2 − c2η1 + ϵ

[
c2(η1 − η2)2

+
(1 − D)2

2c2 η2
2

]
− µc2R3H

[
η2ξ
]
+ O(ϵ2) = 0 . (53)
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Upon substituting Eq. (52) into Eq. (53) to cancel η1 and
retaining terms valid up to O(ϵ, µ), one obtains the steady
Benjamin-Ono equation in a moving frame

−λη2 +
α

2
η2

2 − βH
[
η2ξ

]
= 0 , (54)

where

λ =(1 − D)
(
c2R1 − Dh1

)
− c2
(
c2R1 − h1

)
,

α =ϵ

3(1 − D)2c4R1h1(
c2R1 − Dh1

)2 + (1 − D)2(c2R1 − Dh1
)

c2

+
2c2(h1 − c2R1

)2
c2R1 − Dh1

 ,
β =µc2R3

(
c2h1 + c2R1 − Dh1

)
.

Eq. (54) was initially solved by Ono [26], who gave an ana-
lytical traveling-wave solution:

η2(ξ) =
aδ2

δ2 + ξ2 , (55)

where λ = aα
4 and |δ| = 4β

aα . Then Eq. (55) provides an
asymptotic solution to the weakly nonlinear model Eqs. (42)-
(45) including leading- and next-to-leading-order approxi-
mations for both mode-1 and mode-2 solitary waves depend-
ing on the choice of c.

The numerical scheme for seeking solitary-wave solutions
in the strongly nonlinear model Eq. (41) is a modification
of the method initially proposed by Petviashvili [27], and the
basic idea is to perform the fixed-point iteration in the Fourier
space. For a fully localized traveling wave, the system (41)
reads

cη1 + (h1 − η1)u1 = 0 ,

cη2 + (h1 − η1)u1 + (1 + η1 − η2)u2 = 0 ,
1
2

u2
1 − cu1 −

D
R1
η1 −

1 − D
R1

η2

+
µcR3

R1
H [(h1 − η1)u1 + (1 + η1 − η2)u2]ξ = 0 ,

1
2

u2
2 − cu2 − (1 − D)η2 + µcR3H [(h1 − η1)u1

+(1 + η1 − η2)u2]ξ = 0 ,

(56)

where the equations have been integrated with respect to ξ.
Applying the Fourier transform to the system Eq. (56) and
writing the system in the matrix form, one obtains

L̂s Λ̂s = N̂s [Λs] , (57)

where the hat symbol denotes the Fourier transform,

L̂s =


−c 0 −h1 0

0 −c −h1 −1

− D
R1
− 1−D

R1
−c − ch1R3

R1
|k|µ − cR3

R1
|k|µ

0 −(1 − D) −ch1R3|k|µ −c − cR3|k|µ


,

Λ̂s =


η̂1

η̂2

û1

û2


,

and

N̂s [Λs] =


−η̂1u1

η̂1u2 − η̂1u1 − η̂2u2

− 1
2 û2

1 −
µcR3
R1
|k|û1η1 +

µcR3
R1
|k| ̂u2(η1 − η2)

− 1
2 û2

2 − µcR3|k|û1η1 + µcR3|k| ̂u2(η1 − η2)


.

We can then rewrite the system (56) as

Λ̂s = L̂−1
s N̂s [Λs] = Q

[
Λ̂s

]
, (58)

where the operator Q is short for the combination of the lin-
ear and nonlinear operators. Since the Fourier transforms of
the product terms in N̂s [Λs] can be expressed as convolu-
tions of Λ̂s, we write Q as a function of Λ̂s. Following Refs.
[23,27], we can use Eq. (58) to propose the iteration scheme
as

Λ̂s,n+1 = (αn)mQ
[
Λ̂s,n

]
, with αn =

∫
|Λ̂s,n|

2
dk∫

Λ̂∗s,nQ[Λ̂s,n] dk
, (59)

where the asterisk indicates complex conjugation and m is a
free parameter that needs to be appropriately chosen for good
convergence. We found empirically that the iteration scheme
converges for m > 1, and m = 2 is used in all subsequent
computations. A theoretical solution to the weakly nonlinear
model is usually chosen as the first step of iteration, which
makes the numerical comparison more convenient.

Figure 4 shows the bifurcation diagram and typical wave
profiles of mode-1 solitary waves with R1 = 0.9, R3 = 1.4,
and h1 = 0.3. Mode-1 solitary waves bifurcate from c+0 =
1.0412. The amplitudes of interfaces are strictly decreasing
functions versus the wave speed, where the wave amplitude
is parametrized by the center displacement deviating from
the equilibrium position. Both interfaces feature a single de-
pression pulse with a monotonic decaying tail on either side
of the wave trough. A comparison between numerical solu-
tions to the strongly nonlinear model Eq. (57) and analytical
solutions to the weakly nonlinear model (which are given by
Eq. (55)) is presented. The weakly nonlinear model provides
a good approximation for small-amplitude waves but over-
estimates the amplitudes of large-amplitude solutions. Ac-
cording to the linear theory, mode-2 solitary waves are a type
of gap soliton and hence possibly exist when c ∈

[
c−0 , c

+
∞
)

(otherwise, the solitary pulse can resonate with linear waves
resulting in a generalized solitary wave). Figure 5 demon-
strates the results for mode-2 internal solitary waves with
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Figure 4 Mode-1 internal solitary waves computed with R1 = 0.9, R3 = 1.4, and h1 = 0.3. a Speed-amplitude bifurcation curves: numerical solutions to the
strongly nonlinear model (red lines); theoretical solutions to the weakly nonlinear model (black lines); upper-interface bifurcation (dotted lines); lower-interface
bifurcation (solid lines). b Wave profiles for c = 1.1662; line styles are the same as a.
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Figure 5 Mode-2 internal solitary waves computed with R1 = 0.6, R3 = 1.4, and h1 = 3. a Numerical solutions to the strongly nonlinear model (red lines);
theoretical solutions to the weakly nonlinear model (black lines); upper-interface bifurcation (dotted lines); lower-interface bifurcation (solid lines). b Wave
profiles for c = 0.5459; line styles are the same as a.

R1 = 0.6, R3 = 1.4, and h1 = 3. The mode-2 solitary
waves bifurcate at c−0 = 0.4875 from a free stream and exist
above this threshold. Similar to the mode-1 result, the dif-
ference in wave amplitude between the numerical solutions
to the strongly nonlinear model and the theoretical predic-
tion of the weakly nonlinear model becomes significant as
the wave speed increases. Mode-2 solitary waves only ex-
ist for a small range of wave speed in the strongly nonlin-
ear model (note that c ∈ [0.4875, 0.6455) is only a neces-
sary condition for the existence of solitary waves). We stop
the computation when the iteration diverges or oscillates and
fails to reach the desired accuracy. We do not know whether
solutions can fill the whole gap under this set of parameters.
However, through a large number of numerical experiments,
it is found that sometimes mode-2 solitary waves can exist
in the strongly nonlinear model when approaching c+∞. A
typical example for c very close to c+∞ is shown in Fig. 6,
computed with R1 = 0.5, R3 = 1.5, and h1 = 2.1 (such that

c+∞ ≈ 0.6355). Figure 7 shows a comparison in wave pro-
file between mode-1 and mode-2 solutions for the same set
of parameters, where the mode-1 speed, c1, and the mode-2
speed, c2, satisfy c1−c+0 = c2−c−0 . As shown in this figure, the
amplitude and pulse width of the mode-1 solution are more
significant than the mode-2 solution, which coincides with
Ref. [16]. At the same time, this comparison also testifies, to
a certain extent, why the observations of mode-2 waves are
less than mode-1 waves.

One of the most striking phenomena for interfacial solitary
waves is the broadening of solitary pulse and the resultant
conjugate flow. That is, the midsection of the interface de-
velops a plateau that becomes infinitely long when the wave
speed approaches a limiting value (see the numerical com-
putations [22,28] in two- and three-layer fluid systems in the
shallow-water regime). It is found in this work that the broad-
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ening phenomenon also occurs in mode-2 solitary waves in
great depth for some suitable parameters. As shown in Fig. 8,
both interfaces develop into a wide platform-like structure,
with the horizontal width increasing indefinitely as the wave
amplitude/speed increases. We can infer from the bifurca-
tion diagram and typical wave profiles that when the wave
speed reaches a certain value, the solitary pulse of the in-
terface starts to broaden (labeled by circles in Fig. 8a). It
is noted that the upper and lower interfaces have different
threshold speeds for broadening. In this example (R1 = 0.9,
R3 = 1.1, h1 = 0.9, c+∞ = 0.5000, and c−0 = 0.4370), the
critical speeds are c = 0.452094 for the upper interface and
c = 0.451552 for the lower interface. Both bifurcation dia-
grams and wave profiles show that the lower interface begins
to widen before the upper interface. It is worth mentioning
that, during the broadening process, both wave amplitude and
speed change slightly, and therefore they are not suitable to
be used as the bifurcation parameter. Instead, the area be-
tween the solitary wave and the undisturbed interface is used
to continue the branch of solutions (the interested readers are
referred to Ref. [28] for more details).

To confirm all these findings, we examine the exis-
tence/stability of mode-2 internal solitary waves in the
fully nonlinear and non-hydrostatic Massachusetts Institute
of Technology general circulation model (MITgcm), which
solves the primitive Navier-Stokes equations using the finite
volume method (the interested readers are referred to Ref.
[29] for more details). The MITgcm model is widely used
to simulate the realistic oceanic environment and check the
capability of simplified theoretical equations; for instance,
see cases of internal solitary waves in Ref. [30]. Here the
three layers are chosen with thicknesses of h1 = 100 m,
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Figure 6 A mode-2 solitary wave close to c+∞ ≈ 0.6355, computed with the
strongly nonlinear model for R1 = 0.5, R3 = 1.5, h1 = 2.1, and c = 0.6355.
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Figure 7 Mode-1 and mode-2 internal solitary waves with R1 = 0.7,
R3 = 1.3, h1 = 3, c+0 = 2.1331, and c−0 = 0.4852. Mode-1 solitary wave
for c1 = 2.1831 (dashed line); mode-2 solitary wave for c2 = 0.5352 (solid
line).
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Figure 8 Pulse broadening phenomenon of mode-2 solitary waves. The parameters are chosen as R1 = 0.9, R3 = 1.1, and h1 = 0.9. a Speed-amplitude
bifurcation curves for the upper interface (black line) and lower interface (red line). b Wave profiles for c = 0.451552 (dotted line), c = 0.452775 (dash-dotted
line), and c = 0.453023 (solid line).
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Figure 9 A stable mode-2 convex internal solitary waves in the MITgcm
simulations.

h2 = 100 m, h3 = 1000 m (an approximation to “shallow-
shallow-deep”) and with densities of ρ1 = 1000.8 kg/m3,
ρ2 = 1012.0 kg/m3, ρ3 = 1023.3 kg/m3. A theoretical so-
lution of internal solitary waves solved in the Benjamin-Ono
equation is adopted as the initial wave to launch the model.
As predicted by the aforementioned theories, the mode-2
wave can survive and stably propagates forward (Fig. 9),
although together with some inevitable almost imperceptible
disturbances due to numerical errors.

4. Deep-shallow-deep scenario

4.1 Strongly nonlinear model

This section derives a strongly nonlinear model in the “deep-
shallow-deep” configuration, which usually happens in lab-
oratory experiments (see Ref. [11] for example) though not
very common in the real ocean. In the intermediate-long-
wave regime (h1,3 & λ ≫ h2) and without any assumption on
wave amplitude, we use the scales in Sect. 3.1 and denote
by µ = h2

λ
, a parameter measuring the small dispersive ef-

fect. We follow the same procedure stated in Sect. 3.1: non-
dimensionalizing the global relations and dynamic boundary
conditions, expanding these expressions about the small pa-

rameter µ, and retaining terms valid up to O(µ). After a te-
dious calculation, one finally arrives at

(η1 − η2)t + ∇ ·
[
(η1 − η2)∇Φ2

]
+ ∆Φ2 = 0 , (60)

Φ2t + Dη1 +
1
2
|∇Φ2|2 + µR1G−1

1 η1tt = 0 , (61)

Φ2t − (1 − D)η2 +
1
2
|∇Φ2|2 − µR3G−1

3 η2tt = 0 , (62)

where the pseudo-differential operators, G1 and G3, are de-
fined in the Fourier space as

Ĝ1 = |k| tanh(|k|h1) , Ĝ3 = |k| tanh(|k|h3) ,

and it is noted that h1,3 have been non-dimensionalized by h2.
Subtracting Eq. (61) from Eq. (62) yields

η2 = −
D

1 − D
η1 −

µR1

1 − D
G−1

1 η1tt

+
µDR3

(1 − D)2 G−1
3 η1tt + O(µ2) . (63)

Eliminating η2 in Eq. (60) by the substitution of Eq. (63),
one obtains

0 = η1t + (1 − D)∆Φ2 + ∇ · (η1∇Φ2)

+ µ
(
R1G−1

1 −
DR3

1 − D
G−1

3

)
η1ttt

+ µ∇ ·
[(

R1G−1
1 −

DR3

1 − D
G−1

3

)
η1tt∇Φ2

]
. (64)

Equations (61) and (64) form a closed system for unknowns
η1 and Φ2, which will be used for computing solitary waves
in Sect. 4.3. Finally, we should point out that the newly
developed long-wave model under the “deep-shallow-deep”
scenario only supports model-2 solutions since η1 and η2 are
of opposite signs to leading order due to the relation Eq. (63).

4.2 Weakly nonlinear models

Weakly nonlinear models include the additional expectation
of small-amplitude motions. In addition to the fundamental
assumption for intermediate-long waves (h1,3 & λ ≫ h2),
we non-dimensionalize the system by choosing the scales as
Sect. 3.2. By introducing the small parameters, µ = h2

λ
and

ϵ = a
h2

, as the usual way, it is not difficult to obtain

η1t − η2t + ∆Φ2 + ϵ∇ ·
[
(η1 − η2)∇Φ2

]
= 0 , (65)

Φ2t + Dη1 + µR1G−1
1 η1tt +

ϵ

2
|∇Φ2|2 = 0 , (66)

Φ2t − (1 − D)η2 − µR3G−1
3 η2tt +

ϵ

2
|∇Φ2|2 = 0 . (67)

We can further recast the Boussinesq-type system Eqs. (65)-
(67) into a single equation by eliminating η1,2. To achieve
this, we take the derivative of Eqs. (66) and (67) with re-
spect to t and eliminate η1t and η2t in Eq. (65). Finally, upon
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noticing η1 = −Φ2t
D + O(µ, ϵ) and η2 =

Φ2t
1−D + O(µ, ϵ), one

obtains

Φ2tt − D(1 − D)∆Φ2 − µ
[
R1(1 − D)2G−1

1

+ R3D2G−1
3
]
∆Φ2tt + ϵ

[
(|∇Φ2|2)t +Φ2t∆Φ2

]
= 0 , (68)

again a Benjamin-Ono-Benney-Luke equation.

4.3 Solitary waves

To search for solitary waves, we focus on the horizon-
tally one-dimensional problem. Furthermore, we assume
h1,3 → ∞ for simplicity, and as a consequence, the pseudo-
differential operators G1,3 reduce to Ĝ1,3 = |k|. We first cal-
culate the linear dispersion relation for the “deep-shallow-
deep” scenario. Substituting Φ2 = Φ̂2eik(x−ct) into Eq. (68)
and neglecting the nonlinear terms, one then obtains

c2 =
D(1 − D)

1 + µ
[
R1(1 − D)2 + R3D2] |k| . (69)

It follows directly that in contrast to the “shallow-shallow-
deep” case, models for the “deep-shallow-deep” scenario
only support solitary waves of a single mode, which exist for
c > c0 =

√
D(1 − D) (see Fig. 10 for the dispersion relation

with R1 = 0.7 and R3 = 1.1).
Solitary waves in the weakly nonlinear model Eq. (68) can

be solved analytically. As before, substituting ξ = x − ct into
Eq. (68) yields[
c2 − D(1 − D)

]
u − µc2[R1(1 − D)2

+ R3D2]H [uξ] − 3ϵc
2

u2 = 0 , (70)

where u = Φ2ξ. Equation (70) is the steady Benjamin-Ono
equation, and its solitary-wave solution has been given in Eq.
(55). Finally, wave profiles of the two interfaces can be re-
covered from Eqs. (66) and (67).

On the other hand, the strongly nonlinear model, Eqs. (61)
and (64), has to be solved by using the numerical iteration
scheme. Substituting ξ = x − ct into these two governing
equations yields

− cu + Dη1 +
1
2

u2 + µc2R1H
[
η1ξ

]
= 0 , (71)

(u − c)η1 + (1 − D)u

+ µc2(u − c)
(
R1 −

DR3

1 − D

)
H
[
η1ξ
]
= 0 . (72)

After taking the Fourier transform of Eqs. (71) and (72), we
can write them in the matrix form as

X̂ = Â−1N̂[X] , (73)
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Figure 10 Dispersion relation Eq. (69) with R1 = 0.7 and R3 = 1.1.

where

Â =
 D − µc2R1|k| −c

−c + µc3
(
R1 − DR3

1−D

)
|k| 1 − D

 , X̂ =
η̂1

û

 ,
and

N̂[X] =

 − 1
2 û2

−ûη1 − µc2
(
R1 − DR3

1−D

) ̂uH
[
η1ξ

] .
An example of solitary waves in the “deep-shallow-deep”

regime is presented in Fig. 11 with R1 = 0.8 and R3 = 1.2,
which compares the weakly (black lines) and strongly (red
lines) nonlinear models. Solitary waves in the strongly non-
linear model Eq. (73) are solved numerically employing the
modified Petviashvili iteration, while the corresponding so-
lutions to the weakly nonlinear model are given by Eq. (55).
Only mode-2 solitary waves are found regardless of whether
the model is weakly or strongly nonlinear. Again, the an-
alytical prediction is in good agreement with the numerical
solution to the strongly nonlinear model for small-amplitude
waves; however, it overestimates the wave amplitude as the
wave speed increases. Finally, the pulse broadening phe-
nomenon is not detected in our computations.

5. Concluding remarks

Our primary focus in the current paper is modeling inter-
nal solitary waves in a three-layer fluid system of great total
depth. Based on the relation between the typical wavelength
and the thickness of each layer, two scenarios have been
considered: the “shallow-shallow-deep” and “deep-shallow-
deep” cases. Both strongly and weakly nonlinear dispersive
models have been derived for the two scenarios. Horizon-
tally one-dimensional solitary waves have been obtained an-
alytically or numerically in these models. It is found that
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Figure 11 Mode-2 internal solitary wave in the “deep-shallow-deep” regime with R1 = 0.8 and R3 = 1.2. a Numerical solutions to the strongly nonlinear
model (red lines); theoretical solutions to the weakly nonlinear model (black lines); upper-interface bifurcation (dotted lines); lower-interface bifurcation (solid
lines). b Wave profiles for c = 0.5150; line styles are the same as a.

both mode-1 and mode-2 solitary waves exist in the shallow-
shallow-deep case, but surprisingly, only mode-2 waves exist
in the deep-shallow-deep models. The analytical solutions
to the weakly nonlinear models agree well with the numer-
ical solutions to the strongly nonlinear models for small-
amplitude waves; however, the differences become signif-
icant as the wave amplitude increases. These theoretical
predictions, particularly the existence and stability of mode-
2 solitary waves, have been validated by numerically solv-
ing the primitive equations based on the MITgcm simula-
tions. Moreover, the limiting configuration of mode-2 soli-
tary waves, which features the infinite broadening of solitary
pulse, has also been confirmed numerically by the strongly
nonlinear model in the shallow-shallow-deep situation.

We have provided theoretical and numerical evidence for
the existence of mode-2 internal solitary waves in deep
oceans under the three-layer assumption. However, there
has not been an in-depth study of the dynamics of these
waves, including their generation, evolution, and dissipation
mechanisms, interactions with bottom topography or mode-
1 waves, flow structure when solitary waves sweep over an
area, and so on. As shown in Ref. [22], multi-humped soli-
tary waves appear along mode-2 branches in the “shallow-
shallow-shallow” scenario; however, we failed to find this
type of solutions when the three-fluid system is of great total
depth. All the above-mentioned issues merit further inves-
tigations. On the other hand, all findings presented in this
paper need to be validated by solving the full Euler equa-
tions. Finally, it is necessary to understand the hydrodynamic
forces exerted by mode-2 internal solitary waves, which can
provide important references for marine engineering in deep
water.
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大大大深深深度度度三三三层层层流流流体体体中中中的的的海海海洋洋洋内内内孤孤孤立立立波波波

王梓安,王展,袁春鑫
摘要 本文致力于研究深海非线性内波. 将海洋抽象为由三种流体构成的具有稳定密度层结的系统. 基于无旋流动

的Ablowitz-Fokas-Musslimani公式,我们对“浅水-浅水-深水”和“深水-浅水-深水”两种情形建立新的强非线性和弱非线性模型,并详细

比较了不同模型中内孤立波波形及“速度-振幅”的全局分叉图. 对于“浅水-浅水-深水”情形,可以获得一模态和二模态两种类型的内孤

立波,并且在二模态内波中观察到脉冲展宽现象及其极限形态—共轭流. 然而对于“深水-浅水-深水”情形,只能得到二模态内孤立波.

基于MITgcm求解原始方程,我们证实了深海中二模态内波的存在性和稳定性.
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