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A B S T R A C T   

This paper investigates the fatigue properties of 316L stainless steel manufactured by selective laser melting 
technology (SLM) under hot-isostatic-pressing (HIP) heat-treatment. The fatigue tests of 316L specimens were 
carried out under pulse tensile cyclic loading to obtain the fatigue performance. To avoid falling into local optima 
and improve the convergence speed, the dynamic multiswarm particle swarm optimizer (DMS-PSO) algorithm 
was first introduced for parameter optimization of the three-parameter Weibull distribution model, and then the 
S-N curves based on the model were obtained. The S-N curves were highly consistent with the metallographic 
and fractographic phenomena. Besides, both the S-N curves and fractographic analysis show that the resistance of 
high-stress fatigue fracture is significantly improved by using HIP heat-treatment.   

1. Introduction 

1.1. Metal additive manufacturing technology 

In the field of shoe mold, the application of metal additive 
manufacturing (AM) technology made integration of shoe design, 
replacing the traditional mold casting, which made the previously 
lengthy production process much faster. AM technology produces 
metallic components by dividing the digital model into different layers 
through the computer and printing entity model layer by layer. The 
development of metal additive manufacturing technology has brought 
new possibilities to the manufacturing industry and created a new in
dustrial production model that combines integrated design and fast 
manufacturing. Selective laser melting technology (SLM) is the most 
representative additive manufacturing technology based on the princi
ple of powder spreading. It is a manufacturing method that uses high- 
temperature lasers for melting and shaping the powder from bottom 
to top, then the metal parts of high-density and precise are produced by 
all the layers overlay [1,2]. In this way, freedom of the technical design 
has risen compared with traditional manufacturing, because powder 
melting molding improves the utilization efficiency of materials in 
preparation, and forms specific parts with complex shapes quickly. 
Consequently, SLM is suitable for the production of aerospace 

components, precision molds, dies of high-precision, etc. [3,4]. 

1.2. SLM of 316L 

Studies of AM metal parts in recent years focused on three aerospace 
materials including 316L, Ti6Al4V and AlSi10Mg. For 316L, an ultra- 
low carbon austenitic stainless steel, the quasi-static mechanical prop
erties were affected by the SLM process parameter strongly, which in
cludes laser energy power, laser scanning speed, scan line spacing, etc. 
And it has been known that mechanical properties were affected by the 
laser conditions: high power (HP) laser and low power (LP) laser [5]. 
Recent research compared the properties of SLM316L and convention
ally manufactured (CM) 316L under different scanning strategies [6]. 
For example, the greater scan line spacing comes the greater the surface 
roughness [7]. However, the appropriate parameters of SLM should not 
only achieve great mechanical properties but also improve the density. 
Part porosity and material connection have been observed by a nonde
structive test method (XCT) and traditional metallographic cross- 
sectional analysis [8]. There were inevitable defects in SLM produc
tion, such as metal warping and incomplete melting zone after rapid 
condensation. Therefore, different post-processes were applied to reduce 
the residual stress and surface roughness [9]. As an efficient way to 
improve hardness, post heat treatment has been the first choice of most 
factories. In addition, the mechanical structure and corrosion resistance 
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of AM materials were not related to the temperature of post heat 
treatment linearly [10], which are reflected by the microstructure after 
heat treatment [11]. 

For fatigue properties, laminated defects such as porosity in AM 
materials lead to increased experimental discreteness and premature 
failure. Although SLM 316L exhibits higher strength with finer micro
structure than CM316L, deteriorated fatigue properties caused by de
fects and rough surfaces occur in many instances [6]. Polishing can 
ameliorate this fatigue behavior, but it is difficult to implement for a 
specific structure. Hot-isostatic-pressing (HIP) heat treatment is bene
ficial to homogenize the surface morphology and crystal structure, 
thereby reducing the formation of defects, gas pores, and voids associ
ated with residual stresses. Diverse heat-treated processes affect the 
fatigue performance of materials directly [12]. Furthermore, research in 
early times has concluded that the fatigue life of SLM316L is higher than 
CM316L [13,14]. Therefore, we discussed the effect of HIP treatment at 
900℃ on SLM316L in this study. 

1.3. S-N curve estimating 

The fatigue performance of AM materials has not yet been well un
derstood because of their microstructure. Early studies have recognized 
that structural failure may be caused by cyclic load much lower than its 
static strength [15,16]. And fatigue damage begins with the propagation 
of microcracks, which leads to the collapse of the structure. Therefore, 
the fatigue life prediction can be divided roughly into three categories 
with different focuses: crack propagation, fatigue damage and S-N curve. 

For crack propagation, the interaction among cracks is considered by 
using two-dimensional or three-dimensional crack solutions to calculate 
the stress intensity factor of multi-surface cracks, which were verified 
with the finite element method (FEM) [17]. Fatigue life estimation using 
FEM has been a good alternative to experimental methods [18,19]. And 
FEM can predict not only the total fatigue life, but also the crack length 
in a certain number of load cycles. 

For fatigue damage, it is characterized by crack nucleation, coales
cence and propagation, which lead to yielding or brittle fracture ulti
mately [20]. The continuum damage mechanics (CDM) quantify the 
fatigue damage cumulatively, and predicts the remaining fatigue life 
(RFL) by computing damage parameters [21]. This prediction method 

follows the Palmgren-Miner linear damage rule (LDR), which is widely 
applied owing to its intrinsic simplicity [22,23]. Moreover, other 
nonlinear theories and thermodynamics-based CDM models have been 
developed to predict high-cycle fatigue life. Although this method is 
particularly useful, the rationality of CDM modeling requires long-term 
and expensive experimental tests. And the differences in specific mate
rials and structures are inevitable because of the different model pa
rameters and plastic deformation mechanism. 

For fatigue life, fatigue performance can be represented by the S-N 
curve which describes a relation between the load cycle and the stress. 
High-cycle fatigue life of materials was almost estimated by linear 
regression of S-N curve in double logarithmic scale. In this approach, 
linear parameters were obtained by the least-square method, and fatigue 
limits were determined by step-stress method before 107 loading cycles. 
Estimation in this way has proposed a hypothesis that failure data were 
normally distributed, which was inappropriate in the low probability 
rupture case [24]. 

Nowadays, the Basquin model is still applied to analyze the fatigue 
life of steel structures. However, the model only provides basic geo
metric descriptions of S-N curves, which do not consider the statistical 
distribution. In particular, stochastic amounts of defects could increase 
the scatter of the SLM316L parts [25]. Therefore, a linear model which 
follows the lognormal or Weibull life distribution is more efficient in life 
prediction [26]. Moreover, it has been known that the Weibull distri
bution is the most suitable one for life analysis [27]. The distribution 
model has been carried out to approximate the S-N curves of many 
materials [28–30], and the subsequent research made a contrastive 
analysis between Weibull distribution and experimental data. Klemenc J 
[31] has proposed a method to simulate probability density in each 
stress amplitude according to test data. And the distributed scatter was 
used to evaluate the reliability of materials, while the runouts obtained 
from the fatigue experiments are also considered in this method. 
Although there existed a threshold from the left side, and the fatigue 
limit calculation was an extra part of the approach [32], it still has 
applied value because of the association with fatigue data in real cases. 
The parameters of the S-N estimation are calculated by applying the 
maximum likelihood estimation (MLE) method [33], which requires two 
geometrical parameters and three parameters of the Weibull distribution 
as well. To obtain these parameters, the dynamic multiswarm particle 

Nomenclature 

v Laser scanning speed 
s Scan line spacing 
e Thickness of the powder layer 
P Laser energy power 
Ψ Energy density 
σm Mean stress 
σa,Sa Stress amplitude 
σmax Maximum stress 
a0 Constant term in a S–N curve equation 
a1 Scale coefficient in a S–N curve equation 
β Shape parameter of the Weibull distribution 
η Scale parameter of the Weibull distribution 
f(x) Probability density function 
F(x) Cumulative density function 
δi Characteristic parameter 
y Fracture probability 
ε Accuracy of termination condition 
pBest Historical optimal position of each particle 
gBest Global optimal position of the whole particle swarm 
sgBest Global optimal value of each sub-particle swarm 
vk

id Velocity of particle i in the k-th iteration 

xk
id Position of particle i in the k-th iteration 

ω Inertia weight coefficient 
c1 Local learning factor 
c2 Global learning factor 
r1, r2 Random number 
k Number of iterations 
Ncmax Maximum number of iterations 
m Population number 

Acronyms 
SLM Selective laser melting 
AM Additive manufacturing 
HIP Hot-isostatic-pressing heat-treatment 
DASA Differential ant-stigmergy algorithm 
PSO Particle swarm optimization 
DMS-PSO Dynamic multiswarm particle swarm optimizer 
HP High power laser 
LP Low power laser 
CM Conventionally manufactured 
XCT X-band communications Transponder 
MLE Maximum likelihood estimation cost function 
EDS Energy dispersive X-ray spectroscopic observation  
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swarm optimizer (DMS-PSO) was first applied to minimize negative 
values of the cost function, which is described specifically in section 4. 
DMS-PSO algorithm is an evolutionary algorithm with the ability to 
avoid the local optimum. And DMS-PSO algorithm gives better perfor
mance on complex multi-modal problems when compared with the 
traditional global algorithm [34]. However, the efficiency of fatigue life 
prediction for AM material based on three-parameter Weibull distribu
tion by DMS-PSO needs to be re-verified, for the specific manufacturing 
process which affected SLM fatigue properties severely [35]. Then 
further comparisons are made between the predicted results and 
experimental data of two real 316L cases under different post- 
processing. In research [36], fatigue performance of AM AlSi10Mg has 
been evaluated. Our research presents an application of S-N curve esti
mating in SLM316L, while detailed parametric studies using DMS-PSO 
are conducted to investigate the effects of HIP heat-treatment. The re
sults are analyzed and discussed by the fracture metallography. 

1.4. Outline of the paper 

This study tested 316L stainless steel prepared by SLM. During the 
preparation of the specimen, a part of them were heat-treated for two 
hours by hot-isostatic-pressing (HIP) process at 900℃, then air-cooled to 
room temperature, while others were untreated. After experimental fa
tigue data were gained by tests, the S-N estimating scatter can be 
characterized. The specific steps are as follows:  

1) Through quasi-static test and fatigue test, the static tensile properties 
and fatigue data of 316L in two processes were tested respectively;  

2) The predicted discrete scatter is obtained by citing the three- 
parameters Weibull distribution model, and the feasibility of the 
model is evaluated by comparing the results of the S-N estimating 
with the test data;  

3) Observe the fatigue fracture after fracture and analyze the reasons 
for the difference in mechanical properties of 316L prepared by SLM. 

2. Materials and specimen preparation 

2.1. 316L powder 

The 316L stainless steel in this study was manufactured by SLM, and 
the metal powder is shown in Fig. 1. In metal additive manufacturing, 
the mechanical properties of SLM specimens were relevant to the 

chemical composition of metal powders. The proportion of rare ele
ments Ni and Mo is an important criterion for the quality of stainless 
steel. The chemical composition of powders is shown in Table 1. (In 
316L, 10%~14% Ni element can improve the strength of the steel and 
maintain good plasticity; 2%~3% Mo element can refine the steel grains 
and improve corrosion resistance.) In the test, the fine powder (15 ~ 53 
μm) is selected for better strength and hardness, and the microscopic 
powder particles are almost spherical. 

2.2. SLM equipment 

The 316L stainless steel specimens were prepared by SLM equipment 
BLT-S400, which is shown in Fig. 2. In preparation, the laser of this 
equipment adopted the dual laser beams scanning method (laser power 
is 2 × 500 W, the maximum output power is 10 kW), while the 
maximum molding size is 400 mm × 250 mm × 400 mm, and the 
thickness of the print slice is 0.03 mm. Oxygen is evacuated from the 
forming cylinder during the preparation process to prevent the residual 
stress and the warping deformation caused by uneven heating of the 
specimen, while nitrogen is used for protection to maintain the molten 
layer condensed by high-pressure extrusion. The relationship of 
manufacturing parameters is listed as follows: 

ψ =
P

v⋅e⋅s
(1) 

where Ψ is the energy density, P is the laser energy power, v is the 
laser scanning speed, e is the thickness of the powder layer, and s is the 
scan line spacing. 

In Eq. (1), the energy density Ψ describes the total work of laser 
output per second and volume, which is directly proportional to the laser 
energy P and inversely proportional to other parameters [37]. When the 
energy density Ψ is high, residual stress results from uneven heating. 
When the energy density Ψ is small, it is easy to produce an incomplete 
melting region where the powder is not completely melted. Therefore, 
selecting a suitable energy density has a great impact on the mechanical 
properties of the material. The density of parts at high-power HP is 
usually higher than that under low-power LP, and large defects will also 

Fig. 1. powder of 316L stainless steel.  

Table 1 
Powder material parameters (wt.%).  

C Si Mn P S Cr Ni Mo O else  

0.012  0.69  1.26  0.010  0.007  16.47  12.72  2.44  0.062 —  

Fig. 2. SLM equipment BLT-S400.  
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decrease with the increase of energy density. However, if the energy 
density Ψ exceeds a certain critical value, the number of large defects 
will increase sharply [38]. In addition, the SLM device scans from the 
edge of the layer to the entire area along the parallel scanning path at a 
certain angle. The process parameters are shown in Table 2. 

For the mechanical test, the static mechanical properties of the ma
terial were measured through the quasi-static test at first. Then the fa
tigue performance of the material was tested based on the quasi-static 
experimental data. The specimens of the quasi-static test were carried 
out following the standard GB/T 228.1–2010 [39], as shown in Fig. 3(a). 
And the fatigue specimens were performed following the standard GB/T 
3075–2008 [40], as shown in Fig. 3(b). All specimens were built in 
vertical orientation, as shown in Fig. 3(c). If the printing plate is defined 
as the x-y plane of the Cartesian coordinate system, the mechanical 
property of the z-axis printing is the worst according to the vertical 
stacking direction of each layer [41]. This study analyzed the direction 

Table 2 
Equipment technological parameters.  

Number Model v(mm/s) s(Mm) e(Mm) P(W) Ψ(J/mm3) 

1 BLT-S400 960  0.1  0.03 245  85.07  

Fig. 3. Specimen size and forming direction: (a) static test specimen; (b) fatigue test specimen; (c) forming direction.  

Fig. 4. Microscopic surface topography: (a) Group A surface (10–100 µm); (b) Group B surface (10–100 µm); (c) Group A surface (1–10 µm); (d) Group B surface 
(1–10 µm). 
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of low strength in 316L by SLM. The grain boundary and region division 
in the fatigue fracture could be observed clearly in this laser scanning 
strategy, due to the high ductility of the longitudinally. 

2.3. Surface of specimens 

Each slice layer of 316L prepared by SLM was formed by melting 
metal powder using middle power (MP) laser. And the spherical defects 
caused by spattering appeared in the region where the powder is not 
completely dissolved. This phenomenon also existed in this study. When 
the manufacturing parameters were fixed, it was found that there were 
obvious differences in the surface between the specimens of group A 
(heat-treated) with those of group B (not heat-treated). 

The surface of group B reflects the real surface condition after 
manufacturing, as shown in Fig. 4(b) and Fig. 4(d). There are unfused 
regions and spherical defects caused by splashing, which indicates that 
the laser power and speed are not adjusted properly. According to the 
surface, each printing layer may have pores that are not completely 
melted and condensed. However, the defects of the specimens in group A 
are significantly reduced, as the epitaxial dendrite phase is about 0.3 ~ 
0.5 μm. During the recrystallization process, the spatial migration path 
of the solid–liquid interface is blocked, and the crystal shape is irregular, 
as shown in Fig. 4(a) and Fig. 4(c). It can be seen that through the heat 
treatment process, the unfused and spherical defects on the metal sur
face will be recrystallized and precipitated into dendritic phases. And 
the gap in the melting region is smaller after heat treatment, indicating 

that the internal residual stress is released and the overall stability of the 
metal is improved. 

However, the overall surface morphology is rough under this process 
parameter, while the surface textures have significant negative effects 
on the fatigue strength. The incompletely melted powder particles on 
the surface will lead to the formation of a stress concentration area. And 
particles are potential crack initiation points [42], resulting in reducing 
the fatigue strength of the specimen [43,44]. 

Therefore, Specimens necessitate post-treatments to remove defects 
to ensure the reliability of the metal fatigue performance. In this test, all 
specimens were polished uniformly, and the original and polished sur
face roughness were respectively 15.18 μm and 0.5 μm. The surface 
morphology characteristics of the three directions after polishing are 
shown in Fig. 5. 

3. Test method 

3.1. Quasi-static test 

All tests were divided into two groups, A and B. Group A was heat- 
treated (900℃, 2 h) by HIP process, while group B was not heat- 
treated. The quasi-static tests had four tests in each group: the whole 
tensile properties were tested in the first to third tests, and the fourth test 
was only to test the Poisson’s ratio by a dynamic strain gauge in the 
elastic phase. The test equipment is a 300kN MTS universal testing 
machine with an extensometer, which model is E45.305. 

Fig. 5. Surface topography of each surface before and after polishing.  

Table 3 
Fatigue test plan.  

Number Mean stress 
σm (MPa) 

Stress amplitude 
σa (MPa) 

Number Mean stress 
σm (MPa) 

Stress amplitude 
σa (MPa) 

Number Mean stress 
σm (MPa) 

Stress amplitude 
σa (MPa) 

Heat treatment (Group A) 
1  248.72  248.72 9  186.54  186.54 17  124.36  124.36 
2  217.63  217.63 10  155.45  155.45 18  248.72  248.72 
3  186.54  186.54 11  124.36  124.36 19  217.63  217.63 
4  155.45  155.45 12  93.27  93.27 20  186.54  186.54 
5  124.36  124.36 13  248.72  248.72 21  155.45  155.45 
6a  108.82  108.82 14  217.63  217.63 22  124.36  124.36 
7  248.72  248.72 15  186.54  186.54 23  93.27  93.27 
8  217.63  217.63 16  155.45  155.45     

Not heat-treated (Group B) 
1  245.92  245.92 9  184.44  184.44 17  122.96  122.96 
2  215.18  215.18 10  153.70  153.70 18  245.92  245.92 
3  184.44  184.44 11  122.96  122.96 19  215.18  215.18 
4  153.70  153.70 12  92.22  92.22 20  184.44  184.44 
5  122.96  122.96 13  245.92  245.92 21  153.70  153.70 
6a  107.59  107.59 14  215.18  215.18 22  122.96  122.96 
7  245.92  245.92 15  184.44  184.44 23  92.22  92.22 
8  215.18  215.18 16  153.70  153.70     

a is the data used to validate the model. 
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3.2. Fatigue test 

Based on the results of the quasi-static test, the high-cycle fatigue life 
of specimens was tested using different stress levels to obtain a 316L 
fatigue life point diagram and a preliminary S-N curve. Four specimens 
were tested under reducing stress levels, until the loading cycles reached 
107 times which is regarded as the fatigue limit. The loading frequency f 
of fatigue testing machine (DST-1105) was set as 30 Hz, while cyclic 
loading stress ratio (R = 0) was the sine wave. The specific load con
ditions are shown in Table 3: 

3.3. Fracture metallography 

In metal fatigue rupture, abnormal fracture corresponds to unantic
ipated fatigue life. Therefore, it is necessary to observe the microstruc
ture of fatigue fracture under each stress level and analyze fatigue data 
associated with the surface morphology of formed parts. Specifically, a 

scanning electron microscope (FEI Apreo S) was used to analyze the 
fatigue fracture, as the Energy dispersive spectroscopy (SU1510) was 
used to analyze the elements of the fracture. 

In summary, the test process of this paper is carried out as shown in 
Fig. 6. 

4. S-N curve model 

4.1. High cycle fatigue life model based on MLE 

In terms of the S-N curve which illustrates the relation between cyclic 
load and failure stress, the formula of the classic method to estimate 
fatigue life in the high-cycle fatigue domain is as follows: 

N1

N2
=

(
S1

S2

)− k

(4) 

S1 and S2 are two amplitude forces in high cycle fatigue, N1 and N2 

Fig. 6. Test process of SLM 316L.  

Fig. 7. A schematic view of a two-dimensional PSO optimization.  
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Fig. 8. Optimization process by DMS-PSO.  

Table 4 
Fatigue test data list of S420MC steel.  

Sa(MPa) N Sa(MPa) N Sa(MPa) N Sa(MPa) N 

204 946,200 229 1,555,800 250 389,000 286 175,600 
207 1,851,500 229 1,358,000 267 199,400 286 136,500 
210 1,281,700 229 1,447,200 267 194,000 295 136,800 
211 1,215,000 232 488,400 267 224,800 295 129,900 
214 628,100 232 380,500 268 120,800 295 151,400 
214 1,307,600 232 567,000 268 139,800 196 2095800a 

214 1,316,000 232 701,800 268 159,100 196 2176000a 

214 1,410,600 232 553,000 268 187,100 200 2051500a 

214 851,900 232 630,000 268 219,600 200 2001300a 

214 1,566,600 248 286,700 268 238,600 204 2135500a 

214 959,900 248 376,900 271 259,500 205 2002800a 

214 1,159,400 248 488,300 271 313,000 205 2003000a 

219 1,095,800 248 650,100 271 346,100 205 2051500a 

219 1,499,200 248 585,900 286 61,600 207 2041400a 

221 1,926,800 248 698,500 286 119,400 211 2168200a 

224 1,999,500 250 313,700 286 81,600 214 2022700a 

224 997,600 250 256,900 286 132,000 214 2013300a 

229 690,600 250 238,800 286 130,000 214 2147000a 

229 730,500 250 323,500 286 104,300 214 2012500a 

229 1,009,600 250 213,700 286 97,400    

a -Run-outs. 
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are cycles of fatigue rupture under corresponding stress levels, and k is 
the exponent of the S–N curve. Eq. (4) can be transformed into a linear 
form by N1 = N and S1 = S. Early research estimated the S-N curve of 
many materials in this approach [45], 

log(N) = log(N2)+ k⋅log(S2) − k⋅log(S) (5) 

which is transformed into a Basquin model if: 

a0 = log(N2)+ k⋅log(S2); a1 = − k 

In this method, the S-N curve is estimated based on the fatigue life of 
two different amplitude stress levels in the high cycle fatigue domain. 
Although this method is easy to implement, it has some obvious disad
vantages [31]: Choosing two amplitudes to estimate the probability 
distribution is a probability hypothesis in itself, which is not suitable for 
situations with few experimental species. Furthermore, the independent 
calculation of the probability distribution under each stress level will 
lead to a relatively large discreteness and illogical failure probability 
curve. Therefore, the probability density function (PDF) and cumulative 
density function (CDF) of failure cycles based on different failure 
probabilities were introduced. For this reason, it was decided to apply 
the three-parametric Weibull distribution to PDF: 

f (N/σmax) =
β

η(σmax)
⋅(

N
η(σmax)

)
β− 1⋅exp[− (

N
η(σmax)

)
β
] (6)  

η(σmax) = 10a0+a1log(σmax); a0 > 0, a1 < 0
β = const; β > 0
σmax = σa + σm

(7) 

where β and η are the shape parameter and scale parameter, σa and 
σm are the stress amplitude and mean stress respectively, a0 and a1 are 
the intercept and slope of the Basquin’s curve, so the scale parameter η in 
the equation is not estimated at a single stress level, but is related to all 
stress levels in the high-cycle fatigue domain. The parameters a0 and a1 
confirmed by the test data are substituted into the maximum likelihood 
estimation (MLE) cost function [46], and the parameter with the mini
mum negative value will be the final result. The MLE cost function is 
shown in Eq. (8): 

MLE[a0, a1, β] =
∑n

i=1
{δi⋅ln[f (Ni|σmax)] + (1 − δi)⋅ln[1 − F(Ni|σmax)]}

δi =

{
1.0, for fatigue failure

0, for run − out specimens

F(Ni|σmax) =

∫ Ni

0
f (Ni|σmax)dN = 1 − exp

[

− (
N

η(σmax)
)

β
]

(8) 

where δi is the characteristic parameter related to the test, and F(Ni/ 
σmax) is the CDF of the Weibull distribution. The maximum likelihood 
estimation of the equation considers the effect of failure specimens 
through δi. Therefore, the cumulative probability function can be 
introduced for fatigue analysis when the number of test cycles exceeds 
the limit. 

In this study, the dynamic multiswarm particle swarm optimizer 
(DMS-PSO) algorithm [47] is applied to minimize the negative value of 
the cost function, which is compared with the differential ant-stigmergy 
algorithm (DASA) in the research [48] on astringency. For each 

Table 5 
Optimization comparison between DMS-PSO and DASA.  

S420MC steel Experimental data Simulated data 

algorithm DASA DMS-PSO DMS-PSO 

Number of experimental data points 65 65 500 
Requested precision of solution ε 0.0001 0.0001 0.0001 
Maximum number of iterations 40,000 40,000 40,000 
Optimal solution for parameter a0 25.6317 25.5065 24.5027 
Optimal solution for parameter a1 − 8.3340 − 8.2813 − 7.8965 
Optimal solution for parameter β 2.8163 2.8082 3.9384 
Final value of cost function 873.7368 873.7270 6447.9255  

Fig. 9. Estimated scatter of the S–N curves for S420MC.  
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equidistant stress level σmax, separate Weibull distributions of three 
fracture probabilities (5%, 50% and 95%) will be approximately 
calculated. In addition, the CDF of any fracture probability y can be 
built, see Eq. (9): 

y = F(Ni|σmax) =

∫ Ni

0
f (Ni|σmax)dN = 1 − exp[− (

N
η(σmax)

)
β
]

⇒Ny = Ny(σmax) = η(σmax)⋅[− ln(1 − y)]1/β

(9) 

Therefore, the DMS-PSO algorithm necessitates evaluation in the 
ability of search, specifically in finding the a0, a1 and β parameters that 
minimize the MLE. The optimization is divided into four steps: 

Fig. 10. Estimated scatter of the S–N curves for a simulated sample set with 500 data points.  

Fig. 11. Iterative convergence of estimation by DMS-PSO.  

Fig. 12. Variations in the estimated results by the DMS-PSO against the 
experimental data. 
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Fig. 13. 316L mechanical properties: (a) stress–strain curve; (b) transverse strain-longitudinal strain curve.  

Table 6 
Experimental results.  

Specimen Yang’s Elastic Modulus (GPa) Poisson’s Ratio Yield strength (MPa) Ultimate tensile strength (MPa) Elongation 
(%) 

Reduction of area (%) 

A 1 145.6 0.2720 387.5 615.3 46.90 47.50 
2 140.5 0.2790 377.2 610.2 47.20 50.60 
3 168.2 0.2930 411.8 640.0 46.80 35.00 
4 149.0 0.2560 — — — — 
Average 154.3 0.2750 392.2 621.8 47.97 44.37 
C.V (%) 8.022 5.594 4.530 2.563 0.4432 18.61  

B 1 131.8 0.2780 500.1 615.7 41.40 47.20 
2 135.4 0.2700 503.2 616.4 44.80 51.60 
3 138.8 0.2330 496.9 612.2 45.80 43.50 
4 143.6 0.2420 — — — — 
Average 137.4 0.2558 500.1 614.8 44.00 47.43 
C.V (%) 3.657 8.461 0.6399 0.3660 5.2421 8.5489  

Fig. 14. 316L fatigue performance (R = 0): (a) S-N curve; (b) Q-Q’ graph.  
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1) Experimental data points are expanded into a large number of virtual 
data sets [25], which were used as training sets for DMS-PSO 
algorithm.  

2) The experimental and simulated data set are imported into the DMS- 
PSO algorithm, to obtain the minimum negative value in MLE cost 
function iteratively.  

3) After optimizing the optimal values of a0, a1 and β, the S-N curves 
and scatters under 5%, 50% and 95% fracture probability were ob
tained by the three-parameter Weibull distribution model.  

4) Finally, the feasibility of the optimization by DMS-PSO algorithm 
was evaluated by comparison between test data and estimated 
scatter. 

Fig. 15. Fatigue performance of 316L stainless steel under different processes.  

Table 7 
PSO optimization result (heat treatment, m = n).  

Number of data points n 
(m = n) 

Parameter a0 Parameter a1 Parameter β Cost function (MLE) 

a0
sr=0 Final 

iteration 
difference % a1

sr=0 Final 
iteration 

difference % βsr=0 Final 
iteration 

difference % Lmin Lmin/m 

45  17.40  17.05  − 2.000  − 4.78  − 4.61  − 3.491 4  4.09  2.189  597.52  13.278 
90  17.41  17.19  − 1.274  − 4.79  − 4.67  − 2.476 4  3.61  − 9.737  1203.10  13.368 
180  17.13  17.01  − 0.672  − 4.66  − 4.59  − 1.570 4  3.96  − 1.118  2401.56  13.342 
450  17.14  17.10  − 0.214  − 4.67  − 4.63  − 0.863 4  4.01  0.334  5987.39  13.305 
900  16.90  16.94  0.208  − 4.57  − 4.56  − 0.241 4  4.02  0.413  11987.03  13.312 
1350  16.83  16.91  0.471  − 4.54  − 4.55  − 0.160 4  4.04  0.982  17965.16  13.308  

Table 8 
PSO optimization result (not heat-treated, m = n).  

Number of data points n 
(m = n) 

Parameter a0 Parameter a1 Parameter β Cost function (MLE) 

a0
sr=0 Final 

iteration 
difference % a1

sr=0 Final 
iteration 

difference % βsr=0 Final 
iteration 

difference % Lmin Lmin/m 

45  18.85  18.87  0.066  − 5.39  − 5.37  − 0.433 4  3.40  − 15.035  598.57  13.301 
90  19.30  19.30  − 0.027  − 5.57  − 5.54  − 0.533 4  3.66  − 8.568  1193.84  13.265 
180  19.12  19.16  0.731  − 5.46  − 5.49  0.573 4  3.97  − 0.696  2372.66  13.181 
450  18.99  19.09  0.481  − 5.44  − 5.46  0.202 4  3.92  − 2.024  5950.62  13.224 
900  18.99  19.08  0.463  − 5.44  − 5.45  0.181 4  3.94  − 1.479  11911.45  13.235 
1350  19.05  19.12  0.342  − 5.46  − 5.47  0.019 4  4.01  0.139  17840.33  13.215  
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4.2. Optimization of Weibull’s parameters based on DMS-PSO algorithm 

4.2.1. Particle swarm optimization 
Because of the fewer parameters and fast convergence in model 

optimization, DMS-PSO is applied in parameter optimization in three- 
parameter Weibull distribution model. The Particle swarm optimiza
tion (PSO) algorithm was first proposed in 1995 [49]. The algorithm 
simulates the process of birds foraging and fish predation, which obtains 
the optimal solution to the problem through group collaboration. [50] 
The schematic diagram of finding the optimal solution in two- 
dimensional is shown in Fig. 7. And the dimension of the particle rep
resents the number of parameters to be optimized for the problem vix and 
viy are the flying speed of the particle in the x and y directions, 
respectively. 

The objective function of this study is MLE, and the solution to 
calculate the optimal parameters a0, a1 and β is a three-dimensional 

Fig. 16. Variations of optimization iteration value: (a) heat treatment; (b) no heat treatment.  

Table 9 
Optimization of iteration data and time cost.  

iterations Heat treatment iterations Not heat-treated 

a0 a1 β MLE time(s) a0 a1 β MLE time(s) 

0  16.83  − 4.54 4   – 0  19.05  − 5.46 4   – 
10  20.12  − 5.84 2.71  18509.60  0.43 10  20.55  − 6.05 3.26  18009.07  0.45 
20  20.05  − 5.82 2.63  18495.66  1.23 20  20.46  − 6.01 3.39  17988.26  1.30 
30  20.03  − 5.81 2.66  18490.12  2.51 30  20.37  − 5.98 3.36  17975.71  2.62 
40  19.48  − 5.58 2.63  18383.35  4.54 40  19.82  − 5.76 3.36  17906.48  4.48 
50  19.36  − 5.54 2.64  18362.46  6.95 50  19.73  − 5.72 3.34  17899.89  6.63 
60  19.13  − 5.45 2.38  18320.02  9.86 60  19.68  − 5.70 3.49  17883.72  9.86 
70  18.97  − 5.39 2.70  18293.88  13.43 70  19.55  − 5.64 3.51  17873.01  13.36 
80  18.75  − 5.30 2.74  18250.77  17.34 80  19.41  − 5.59 3.63  17857.98  17.45 
90  18.58  − 5.23 2.74  18226.59  21.91 90  19.29  − 5.54 3.65  17852.17  21.86 
100  18.18  − 5.07 2.71  18181.87  26.81 100  19.20  − 5.50 3.74  17845.87  24.88 
500  16.91  − 4.55 4.04  17965.16  1787.61 500  19.12  − 5.47 4.01  17840.33  1803.59 
1000  16.91  − 4.55 4.04  17965.16  2482.01 1000  19.12  − 5.47 4.01  17840.33  2713.18  

Table 10 
specific parameters of DMS-PSO optimization.  

Case Heat treatment Not heat-treated 

Population m 1350 1350 
Number of data points in the sample set 1350 1350 
The maximum number of iterations Ncmax 1000 1000 
Final value of cost function Lmin 17965.16 17840.33 
Reference factor Lmin/m 13.308 13.215 
Parameter a0 optimal solution 16.91 19.12 
Parameter a1 optimal solution − 4.55 − 5.47 
Parameter β optimal solution 4.04 4.01  
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optimization process. In global optimization, the conditions for ending 
updating of particles can be as follows: the maximum number of itera
tions; the global optimal value remains unchanged for successive gen
erations; and the objective function value is less than the setting 
accuracy ε. In traditional PSO algorithm, two iterative positions are 
recorded with the randomly distributed initial position: the historical 
optimal position of each particle pBestk, and the global optimal position 
of the whole particle swarm gBestk, as shown in Eq. (8). 
{

vk+1
id = vk

id + c1⋅r1⋅(pBestk
id − xk

id) + c2⋅r2⋅(gBestk
id − xk

id)

xk+1
id = xk

id + vk+1
id

(8) 

where vk
id and xk

id are the velocity and position of particle i in the k-th 
iteration respectively; ω is the inertia weight coefficient; c1 and c2 are 

local learning factors and global learning factors respectively. r1 and r2 
are random numbers between [0,1]. In conventional particle swarm 
optimization, ω is set as linearly decreasing values: ωmax = 0, ωmin = 0.2, 
See Eq. (9); c1 and c2 are defined asynchronously and dynamically, as 
shown in Eq. (10), which expand the search scope to the global 
optimizing. 

w = wmax − (wmax − wmin)
k

Ncmax
(9)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1 = c1,max −
(
c1,max − c1,min

) k
Ncmax

c2 = c2,max −
(
c2,max − c2,min

) k
Ncmax

(10) 

Fig. 17. CDF of different fatigue rupture probability (5%, 50% and 95%).  

Fig. 18. S-N curve estimating by DMS-PSO for simulated sample sets: (a) heat treatment; (b) not heat-treated.  
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where k is the number of iterations; Ncmax is the maximum number of 
iterations; c1,max = c2,max = 2.5, c1,min = c2,min = 0.5. 

However, the PSO algorithm with the global variant also has the 
problem of local optima. And one of the solutions is to improve the local 
search ability by minimizing neighborhoods [51]. Liang JJ [47] 
designed Dynamic multi-swarm Particle swarm Optimization (DMS- 

PSO), which used a small Particle swarm to solve complex problems and 
dynamically recombined small Particle swarm so that the particles can 
exchange information among different populations and improve the 
exploration accuracy. In DMS-PSO, the whole particle swarm is sepa
rated into several small sub-particle swarms, and each sub-particle 
swarm is optimized as an independent population. Then, at a certain 

Fig. 19. Comparison of experimental data with estimated scatter.  

Fig. 20. Comparison between DMS-PSO results and experimental data.  
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recombination period P, the whole particle swarm is randomly recom
bined again and the particle position is updated, as shown in Eq. (11). 
sgBestk

id is the global optimal value of each sub-particle swarm. 
{

vk+1
id = w⋅vk

id + c1⋅r1(pBestk
id − xk

id) + c2⋅r2(sgBestk
id − xk

id)

xk+1
id = xk

id + vk+1
id

(11) 

The specific steps of DMS-PSO are shown in Fig. 8: 

4.2.2. Fatigue S-N curve estimating based on DMS-PSO 
In the Weibull parameter optimization of this study, the optimization 

results of the DMS-PSO and DASA algorithms were compared. The data 
were obtained from 65 fracture tests of S420MC in the study of Klen
menc J [31], as shown in Table 4. In addition, the optimization termi
nation condition in DMS-PSO is set to reach the maximum number of 
iterations, because the number of particles in PSO cannot be completely 

equivalent to the number of ant colonies in DASA. And it is hard to 
define whether the final PSO convergence is global when the termina
tion condition is accuracy ε. Compared with DASA, the advantages of 
DMS-PSO are mainly embodied in search speed and data processing. The 
total calculation of 40,000 iterations based on experimental data lasted 
32.76 s. And it is found that the minimum MLE value of the two algo
rithms has a slight difference on the premise of control variables. The 
MLE value of DMS-PSO is slightly smaller than that of DASA about 
0.00112%, while the varies of a0, a1 and β are − 0.488%, 0.632% and 
− 0.288% respectively, as shown in Table 5. The difference was very 
small after repeated confirmation. 

When constructing the sample set, the virtual sample set formed by 
the bootstrap procedure was divided into two subsets according to the 
stress size. The training set of 500 data points was also divided into two 
parts, and the data of each part were randomly selected from the two 
subsets of the bootstrap procedure [52]. Fig. 9 shows the discrete dis
tribution of test data in the S-N domain, and Fig. 10 shows the discrete 
distribution of 500 virtual data in the S-N domain. For a specific 
mathematical model MLE, the effects of maximum iterations Ncmax on 
a0, a1 and β of the PSO algorithm necessitate analysis. Fig. 11 shows the 
influence of the maximum number of iterations on the results. When the 
maximum number of iterations is 1000, the values of the three param
eters are determined, and the objective function value achieves the 
minimum. Because of the population recombination of DMS-PSO, the 
position updates of all particles have been completed. Since more pop
ulation number m indicates more optimizer and better search capability, 
the number of particles is set as 500 in the DMS-PSO algorithm. Fig. 12 
shows the comparison between the predicted data and the test data of 
S420MC steel. The predicted data are all in the three error bands of 
estimated scatter, which proves that the MLE estimating method based 
on DMS-PSO is effective. 

5. Results and discussion 

5.1. Quasi-static mechanical properties 

The mechanical properties of 316L stainless steel prepared by SLM 
were obtained by the quasi-static tensile test. And the stress–strain curve 
is shown in Fig. 13(a). The stress–strain curves of group A and group B 
have no obvious yield point. For the three curves of each group, it is 
found that the discreteness of the stress–strain curve in group A is 
slightly larger than that in group B. And the specimens in group A have 
higher ultimate stress, higher ductility, and lower yield strength 
generally. 

The transverse and longitudinal strain curve is shown in Fig. 13(b), 

Fig. 21. Fracture morphology of fatigue specimen A-05: (a) Fracture diagram; (b) Microscopic morphology of each area.  

Fig. 22. EDS scan area.  

Table 11 
X-ray analysis.  

Element Atomic % Conc % Units MDL 

Si  3.750  1.874 wt.%  0.186 
Cr  18.833  17.425 wt.%  0.820 
Fe  60.900  60.518 wt.%  2.070 
Ni  12.090  12.627 wt.%  1.148 
Mo  4.426  7.555 wt.%  0.602  
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according to the standard GB/T 22315–2008 [53]. The Poisson’s ratio is 
calculated by linear fitting. The ratio of transverse and longitudinal 
strain εx-εy is calculated by the least square method for linear fitting 
(slope of the line is Poisson’s ratio). Within the range of 2000 axial strain 
in the elastic stage, the slope of group A which is equal to Poisson’s ratio 
is generally larger. The specific data is shown in Table 6, and C.V in 
Table 6 means the coefficient of variation. For material reliability in this 
study, the yield strength and ultimate strength of 316L stainless steel 
prepared by SLM meet the production requirements of GB/T 3280–2015 
[54]. The standard value of yield strength and ultimate strength of steel 
plate are 180 MPa and 485 MPa, and the standard value of elongation is 
40%. For all specimens, the range of elastic modulus is 131.8 ~ 168.2 
GPa; the range of Poisson’s ratio is 0.2330 ~ 0.2930; the range of yield 
strength is 377.2 ~ 503.2 MPa; the range of tensile strength is 610.2 ~ 
640.0 MPa; the range of elongation is 41.40%~47.20%; the range of 
area shrinkage is 35.00%~50.60%. In addition, the yield strength of 

heat-treated specimens is lower than that of unheated specimens, while 
the tensile strength, elastic modulus, and elongation are higher. 

5.2. Fatigue life results 

The fatigue data are shown in Fig. 14(a), while the fatigue life of both 
groups A and B are over 107 cycles at 30% stress level. According to the 
standard GB/T 24176–2009 [55], the logarithmic linear fitting S-N 
curve (σmax-N, σmax = σm + σa) is obtained by analyzing the S-N rela
tionship with a linear mathematical model. For 7 heat-treated specimens 
at a high-stress level (σm = 248.72 MPa) are measured, the normalized 
deviation of the log-linear fitting is close to the normal distribution, as 
shown in Fig. 14(b). The logarithmic fitting equations of heat-treated 
specimens and unheated specimens are lg(σmax) = 3.8135–0.2366 × lg 
(N) and lg(σmax) = 3.6394–0.2043 × lg(N), Where R2 is 0.8697 and 
0.8343, respectively. 

All the fatigue data points are sorted out and combined with the 
existing data in an article [56], as shown in Fig. 15 including the two 
processes in the test and the two processes (mechanical polishing and as- 
built) in the article. Fig. 14(a) shows that two life curves intersect at 
around σmax = 350 MPa, and the improvement of fatigue life by heat 
treatment diminishes with the decreasing stress. However, the different 
discreteness under different stress is not well reflected in the fitting 
method. For these reasons, the S-N estimating model is introduced to 
predict the fatigue life and fit the S-N curve. 

The objective function is set as the cost function MLE. In DMS-PSO 
optimization, the population m is selected as 10, the dimension n is 3, 
and the maximum number of iterations Ncmax is 1000. Before starting 
the iteration, the amplitude of a0, a1 and β is limit: a0,max = 50; a0,min =

0; a1,max = -1; a1,min = -30; βmax = 20; βmin = 0.5. According to the 
bootstrap procedure, a small amount of test data is expanded into data 
set S={(σmax,i, Ni); i = 1,2…,n}, the data set S is divided according to t 
increasing stress levels (180 ~ 400 MPa, t = 45). Meanwhile, n data are 
selected for the training set for optimization (n = 45, 90, 180, 450, 900, 
1350). and the variations of the final cost function under different vir
tual sample sets were observed. In the optimization, the variable P=(x1, 
x2, x3)=(a0, a1, β), and the initial shape parameter β is set as β = 4. The 
initial values of a0 and a1 are estimated by linear regression of σmax,i and 
Ni in the data of sample set S, as shown in Eq. (10). Table 7 and Table 8 
show the three-parameter optimization results of heat-treated and un
heated 316L prepared by SLM respectively. 

[
asr=0

0

asr=0
1

]

= (XT ⋅X)− 1⋅XT ⋅Y;X =

⎡

⎣

1 log(σmax, 1)

⋮

1 log(σmax, n)

⎤

⎦

n×2

,Y =

⎡

⎣
log(N1)

⋮
log(Nn)

⎤

⎦

n×1

(10) 

In Table 7 and Table 8, different sample sets correspond to different 
final values of parameters a0, a1 and β. With larger sample set, better 
description of the probabilistic distribution of fatigue data can be ach
ieved. Since the cost function results with little difference, the parameter 
with more data points n in the sample set is preferentially selected, 
because it is more representative. 

For the sample set of 1350 data points, it is found that after 1000 
times, the iteration result had maintained global convergence, the value 
of Lmin/m remained unchanged in the optimization process, and the cost 
function converged to the minimum value. The values of the stable 
parameters are shown in Fig. 16, and the specific results of the iteration 
are shown in Table 9. All algorithm calculations in this article are carried 
out on an HP desktop computer with the Intel(R) Core (TM) I7-9700 CPU 
processor and memory capacity of 8.00 GB. Procedure code develop
ment is realized in MATLAB software. 

DMS-PSO optimization in large sample sets is feasible and fast. 
Compared with DASA [57], the feasibility of PSO optimization in this 
application is embodied as follows: 1) A large number of populations 
cost less time, when the optimal values of a0, a1 and β in MLE were 

Fig. 23. Defects of fatigue fracture: (a) pores; (b) spherical region; (c) cracks 
propagation. 
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searched. 2) DMS-PSO always converges to the global optimal value of 
the cost function, but DASA occasionally converges to the local optimal 
value[36]. Specific DMS-PSO optimization parameters are shown in 
Table 10: 

Finally, the optimal solutions of a0, a1 and β are substituted into Eq. 
(8) to obtain the cumulative density function (CDF). According to Eq. 
(9), the estimated scatter of arbitrary fracture probability y can be ob
tained, as shown in Fig. 17. According to Eq. (4), the specific Weibull 
distribution mathematical model is established. Fig. 18(a) and Fig. 18(b) 
are the fatigue life discrete band of the simulated S-N curve after HIP and 
without heat treatment relatively. Different patterns represent 10 groups 
of 50 fatigue test data. The dotted lines in Fig. 19 represent the 
boundaries of 95%, 50%, and 5% of rupture probability from top to 
bottom. 

Compared with the experimental data, most experimental data are 
distributed in the estimated scatter, as shown in Fig. 19. Two test data of 
specimens (A-06 and B-06) are imported into the estimating model for 
secondary verification, and the results showed that they were all in the 
three error bands of the prediction model, as shown in Fig. 20. In gen
eral, the high cycle fatigue life of heat-treated specimens is longer than 
that of specimens not heat-treated. However, the S-N curves of the two 
treatments intersect at around the point (250 MPa, 106), which means 
that the HIP treatment can improve fatigue life at relatively high stresses 
(σmax > 250 MPa), but has little help in low stresses. It is related to the 
fatigue response with different yield strengths and ductility values [58]. 
Materials with higher yield strength perform better in low-stress fatigue, 
while ductility predominantly governs the fatigue life under higher 
stresses. Therefore, the HIP treatment can be beneficial in high-stress 
conditions. Moreover, the failure probability and the life scatters of 
the material can be an indication of finite life design. Therefore, the 
Weibull model based on DMS-PSO algorithm is capable of depicting 
probabilistic S-N curves for the endurance limit of each stress. SLM316L 
in this study has little probability for fracture under 1000,000 cycles at 
200 MPa, around 32% percent of the ultimate tensile strength. 

5.3. Fatigue fracture 

The influencing factors of the predicted fatigue performance were 
analyzed by fracture metallography. Fig. 21 shows the overall 
morphology of the fatigue fracture of the No. 5 specimen in group A 
(σmax = 248.72 MPa, N = 769865). The fatigue fracture is composed of 
three regions: the fatigue source, the crack propagation region, and the 
final fracture region. Fig. 21(a) is the region diagram of the fatigue 
fracture. The fracture cracks are first generated from the fatigue source. 
Then the cracks extend to the final instantaneous fracture region, 
resulting in the overall fracture. In this process, the crack in the fatigue 

growth region is similar to the brittle fracture, while the rupture in the 
final instantaneous fracture region is similar to the plastic fracture. 
Therefore, the micromorphology of the propagation region is mostly a 
stepped cleavage morphology. In contrast, the micromorphology of the 
final fracture region is mostly a denser dimple morphology. The specific 
fracture morphology is shown in Fig. 21(b). 

The energy-dispersive X-ray spectroscopic (EDS) observation area of 
the fracture morphology of the No. 5 specimen is shown in Fig. 22. Based 
on the local chemical analysis of the dimple area in Table 11, it can be 
concluded that the element composition of the dimple structure with 
severe fracture does not deviate significantly from that of 316L powder 
material. 

In the process of SLM preparation, the high-speed melting and so
lidification of the powder make part of the powder insufficiently melted, 
which is called incomplete melting in the molten pool (unfused region). 
The connection between adjacent deposition layers is insufficient in this 
area, resulting in larger internal gaps, cracks, and delamination. And the 
spherical defects in the propagation region are mostly pore defects, 
which are mostly caused by insufficient cooling and gas escaping during 
condensation. These defects are always stress-concentrated areas in fa
tigue cracks, which necessitate observation in detail. Fig. 23(a) shows 
the pores of the fatigue fracture of the No. 11 specimen in group A (σmax 
= 248.72 MPa, N = 377096). Compared with the No. 5 specimen (σmax 
= 248.72 MPa, N = 769865) of the same level of stress, the fatigue life of 
the two is several times different. The pore size shown in the figure is 20 
~ 25 μm, which is widely existed in the fracture of the No. 6 specimen. 
As shown in Fig. 23(b), the spherical region formed by continuous pore 
defects has a destructive effect on fatigue life. Fig. 23(c) shows the 
cracks propagation region before the rupture. 

The fatigue failure process can be well described by the crack initi
ation and cracks propagation. In this study, Multiple cracks were initi
ated from the small notch on the surface, which is consistent with 
previous studies [14]. Fig. 24(a) illustrates the directions of crack 
propagation in No. 5 specimen (σmax = 248.72 MPa, N = 769865), which 
starts from two main crack sources. But the rupture of the No. 11 
specimen in group A (σmax = 248.72 MPa, N = 377096) was originated 
from a large group of crack sources, while the crack propagation is 
characterized by a radial flow pattern towards the core. The micro
structure of the multidirectional cracks propagation, as shown in Fig. 24 
(b), was characterized by a pattern of ripples called striations, which 
represent the crack condition under each fatigue load cycle. Multi-cracks 
led to a large drop height perpendicular to the fracture surface, while the 
overall fatigue life is shortened by the smaller final fracture region. 
Moreover, the dimples morphology in No. 11 specimen in group A (σmax 
= 248.72 MPa, N = 377096) was relatively flat. Therefore, the gener
ation of multiple fatigue sources may be the reason for the deviation of 

Fig. 24. Crack initiation and cracks propagation: (a) fatigue specimen A-05; (b) fatigue specimen A-011.  
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fatigue data. 
The generation of crack sources in AM materials is influenced not 

only by the edge surface, but also by the invisible defects inside the 
materials. For example, concentric bridges closed to the edge will in
crease the possibility of crack initiation, as shown in Fig. 25(a). And the 
pores created by gas entrapment will change the direction of crack 
propagation, as shown in Fig. 25(b). Fig. 25(c) displays an un-melted 
powder in the No. 3 specimen in group B (σmax = 368.88 MPa, N =
146229), resulting from the incomplete re-melting of the previous layer 
[59]. 

The effect of HIP treatment on fatigue performance was analyzed 
qualitatively by observing the morphology of fracture regions under 
polishing for all specimens in this study. For the specimens constructed 
vertically, the columnar grains of the long axis were stretched in the 
propagation region, where existed a large number of cleavage steps. 
Fig. 26(a) and Fig. 26(b) are cleavage steps of No. 4 specimen in group A 
(σmax = 310.9 MPa, N = 550005) and No. 4 specimen in group B (σmax =

307.4 MPa, N = 249220) respectively. The columnar grains after HIP are 
finer, with higher drop height in load direction. It indicates that the 
grains are stretched more intensely and fully, which may be attributed to 
the high plasticity after HIP treatment. Influenced by the range and 
depth of crack propagation, secondary cracks often appear when cracks 
grow into striations, with the consumption of propagation energy and 
reduction of crack propagation rate. Therefore, the fatigue life after HIP 
treatment is improved. 

when the specimens cannot resist cyclic loading, they fracture 
immediately from the unstable crack propagation. Fig. 27(a) is the 
microscopic morphology of the fracture dimples of the No. 1 specimen in 
group A (σmax = 497.44 MPa, N = 11545), and Fig. 27(b) is the 
morphology of the fracture dimples of the No. 1 specimen in group B 
(σmax = 491.84 MPa, N = 22051). In the case of low-cycle and high- 
stress levels, the fracture of the specimens in the final rupture regions 
is close to a quasi-static fracture which endured sufficient plastic 
deformation with large and deep dimples. In the study, It was found that 
the dimples of the No. 1 specimen in group A are smaller and denser than 
those of the No. 11 specimen in group B. According to the difference of 
surface morphology and molten layer, group A releases more internal 
residual stress in the process than group B, resulting in smaller crystal 
grains and melting gaps. 

Fig. 28(a) shows the microscopic morphology of the fracture dimples 
of the No. 6 specimen in group A under high-cycle fatigue (σmax =

217.63 MPa, N = 1544911), and Fig. 28(b) shows the dimples of the No. 
6 specimen in group B (σmax = 215.18 MPa, N = 3929614). The two 
figures show that the overall fracture dimples under high-cycle low- 
stress cycles are small. Such fracture is typical for low-stress intensity 
factors when the cyclic stress is lower than the yield point of the ma
terial. However, it was found that the dimples of group B were smaller 
than group A at this time, which is different from the low-cycle and high- 
stress situation. After scanning the fractures of other high-cycle fatigue 
specimens, the microscopic morphology of the fracture dimples of the 

Fig. 25. Defects in crack propagation: (a) concentric bridge; (b) the direction of 
crack propagation; (c) powder. 

Fig. 26. Cleavage steps: (a) fatigue specimen A-04; (b) fatigue specimen B-04.  
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No. 5 specimen in group A (σmax = 248.72 MPa, N = 769865) as shown 
in Fig. 28(c). Fig. 28(d) is the morphology of the fracture dimples of the 
No. 5 specimen in group B (σmax = 245.92 MPa, N = 1158335). The 
dimples of group B showed smaller fineness and more irregular surface 
than group A. When observing the morphology with a larger magnifi
cation, the dimple fracture of group B is stepped fluctuating, while the 
dimple fracture of group A is relatively flat. It shows that the final 
rupture region of group B has experienced a severe rupture. The fatigue 
life under low stress is related to crack propagation. However, a severe 
fracture means a shorter response time from crack propagation to final 
rupture. As a result, this phenomenon is consistent with the longer life of 
group B than group A in crack propagation of the high-cycle fatigue, 
with the better performance of the quasi-static properties of yield 
strength. 

6. Conclusion 

The study focuses on the fatigue performance of 316L stainless steel 
manufactured by SLM under HIP heat-treatment. And the three- 
parameter Weibull distribution model is applied to obtain the S-N 

curves and fatigue life scatters, in which the DMS-PSO algorithm is first 
introduced to optimize the parameters of the model. The DMS-PSO al
gorithm can always get the optimal value in the parameter estimating in 
Weibull model of various sample sets for self-adaptation with efficiency, 
ease of use, and simplicity of implementation. The effectiveness of the 
fatigue life prediction based on three-parameter Weibull distribution 
model optimized by the DMS-PSO algorithm is proved by comparison 
with that by the existing DASA algorithm. The MLE value of DMS-PSO is 
slightly smaller than that of DASA about 0.00112%, while the varies of 
a0, a1 and β are − 0.488%, 0.632% and − 0.288% respectively. And the 
results show DMS-PSO algorithm can avoid the local optimal solutions 
and achieve faster convergence. When fatigue life prediction based on 
the model by DMS-PSO algorithm was applied in the fatigue-life curves 
estimation of SLM316L, the S-N curves were highly consistent with the 
metallographic and fractographic phenomena. 

For SLM316L, the HIP process can homogenize the microstructure 
and reduce negative influences by the defects (unfused regions, spher
ical regions, and pores), which is explained by the metallographic 
structure of the fatigue fracture with the consistent roughness surface. 
And the crack initiation often starts at the internal defects caused by the 

Fig. 27. Comparison of low-cycle fatigue fracture dimples: (a) fatigue specimen A-01; (b) fatigue specimen B-01.  

Fig. 28. Comparison of high-cycle fatigue fracture dimples: (a) fatigue specimen A-06 (b) fatigue specimen B-06; (c) fatigue specimen A-05; (d) fatigue specimen 
B-05. 
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laser melting process. Moreover, HIP heat-treatment contributes to a 
reduction of about 22% percent in the yield strength (from 500.1 MPa to 
392.2 MPa in this study), and an increase in the ductility and elastic 
modulus of the material by around 10% percent. The S-N curve esti
mation exhibits that the HIP heat-treatment improved the fatigue life of 
specimens at high stresses (σmax > 250 MPa), while the as-built state is 
enough for lower stress applications. The visible stabilization of high- 
stress fatigue life brought by HIP treatment is still the main advantage 
in post-treatments of SLM technology. 
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