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ABSTRACT: After evaporation of a sessile colloidal droplet, the coffee stain always emerges
with disordered structures. This may be unfavorable for many applications, such as droplet-
based printing. Therefore, to realize uniform and ordered patterns is becoming an urgent task.
In this work, we realize ultrafast fabrication of uniform colloidal crystals by suppressing the
coffee ring effect in flash evaporation of a droplet. The low-pressure environment can
tremendously improve the evaporation rate, which will accelerate the colloidal particles to be
captured by the gas−liquid interface and self-assemble into ordered structures instantaneously.
With the control of the pressure and concentration, the uniform and ordered patterns can be
realized in several seconds. The colloidal photonic crystals with diverse structural colors can
be easily and rapidly obtained by adjusting the particle sizes. We think this work may have
instructive significance in the rapid fabrication of high-quality and high-performance printed
electronics.

Evaporation of colloidal droplets has attracted increasing
attention,1−3 not only because rich and diverse physical

phenomena emerge, including the coffee ring effect, but also its
widespread applications in industry,4,5 such as printing and
coating technologies,6,7 medical diagnosis,8 and biochemical
detection.9 To achieve a uniform and ordered pattern is
becoming quite necessary for many potential applications, such
as printed electronics,10,11 because the high-quality printed
structures are the foundation of high-performance devices.12

The pattern formation from an evaporating droplet is closely
related to its evaporation processes. Therefore, a large number
of studies focus on evaporative convection and particle
transport, to control the morphology and structure of the
deposition patterns.13−15 It mainly involves the capillary flow
and the Marangoni flow inside the droplet. The capillary flow,
which is caused by the uneven evaporation flux, can transport
colloidal particles toward the edge of the droplet and form a
coffee ring structure.16 Then, the structure can present a
transition from ordered arrays to disordered packing.17 The
Marangoni flow, which results from the surface tension
gradient,18,19 may be caused by the temperature gradient,
solvent concentration gradient, or surfactants. The Marangoni
recirculating flow has complex influences on the deposition
pattern.20 Besides, the deposition pattern can be affected by
the Derjaguin−Landau−Verwey−Overbeek (DLVO) attrac-
tion between the particles and the substrate,21 the
sedimentation effect of gravity,22,23 and the interfacial capture
effect.24 Therefore, the comprehensive effects of these complex
convections and dynamic processes determine the morphology
of the final deposition patterns. Although a lot of work has
been conducted to suppress the coffee ring and obtain uniform

patterns by regulating the Marangoni effect,25 wettability of
substrate,26 acoustic fields,27 and particle shapes,28 the
disordered microstructures and a large number of defects are
inevitable for these patterns.
Evaporation-driven self-assembly on the gas−liquid interface

has been proven to be a simple and low-cost way of
constructing long-range ordered structures.29 However, the
slow evaporation rate will lead to low assembly efficiency.
Although Li et al. have realized the rapid assembly of particles
in water-based colloidal droplets by heating methods,30 the
high temperature can easily result in complex convections,
such as the thermal Marangoni flow and the Rayleigh−Benard
flow. These extra flows are not conducive to the formation of
ordered structures. For example, the Marangoni flow could
easily result in defects of the printed film.31 In comparison to
heating the substrate, we assume that the low-pressure-assisted
evaporation (LPAE) may not cause extra internal flow;
therefore, the microstructure of the deposits could be more
uniform. In addition, LPAE is more appropriate to temper-
ature-sensitive polymer substrates or biological samples than
heating methods. In this letter, we study the rapid evaporation
dynamics of colloidal droplets by the LPAE method, further
revealing the mechanisms of ultrafast assembly behavior on the
gas−liquid interface, and finally realize the regulation and
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construction of the ordered structure of colloidal photonic
crystals.
Aqueous colloidal droplets dispersed with polystyrene

microspheres were gently deposited on a hydrophilic glass
substrate. Then, the glass substrate was put into a vacuum tank,
whose pressure can be adjusted, as shown in Figure S1 of the
Supporting Information. The real-time evolution process of the
droplets was recorded by the microscope with diverse
pressures. The structures of the final patterns were
characterized by the spectrometer and scanning electron
microscope (see part 1 of the Supporting Information for
details). Experimental results show that colloidal droplets can
evaporate completely in a few seconds under the LPAE.
Correspondingly, atmospheric pressure evaporation takes
several minutes.
The fast evaporation of the droplet can be described by the

quasi-steady-state evaporation theory. The steam around the
droplet is assumed as an ideal gas, and the droplet evaporates
as a constant contact radius (CCR) mode. Then, the mass
change rate ṁ in the process of evaporation satisfies32

m RDC H(1 )(0.27 1.3)v
2π θ− ̇ = − + (1)

where R = 0.91 × 10−3 m is the droplet radius, Cv = 1.63 ×
10−2 kg/m3 is the saturated vapor concentration, H = 0.22 is
the water content, θ is the contact angle between the droplet
and the substrate varying with time, θ0 = 38° is the initial
contact angle, T = 292 K is the ambient temperature of the
experiment, and ρ = 1000 kg/m3 is the density of water. The
vapor diffusion coefficient D is related to the pressure, which
satisfies
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where D0 = 0.22 × 10−4 m2/s is the diffusion coefficient of
water vapor under standard conditions and T0 = 273 K. The
final evaporation time ts of a sessile spherical cap droplet
satisfies33
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t
t

t( ) 0

s
0θ

θ
θ= − +

(5)

then

t
t

t
m

RDC H
0.27 1 1.3 d

(1 )

t

0 s

2

0
2

v

s
i

k

jjjjjjj
i
k
jjjjj

y
{
zzzzz

y

{

zzzzzzz∫ θ
π

− + =
− (6)

Therefore, the relationship between evaporation time (ts) and
pressure (P) can be deduced from eqs 1−6.

P
P

t 356 (s)s
0

=
(7)

From eq 7, we can find that the evaporation time is
proportional to pressure. This theoretical relationship can be
represented by the solid line in Figure 1b. The discrete points

in Figure 1b represent the experimental results, in which the
green points represent colloidal droplets and the blue points
represent the aqueous droplets. As seen from Figure 1b, the
experiment is in good agreement with the theory for aqueous
droplets. However, the evaporation rate is slightly slower for
colloidal droplets. Maybe it is due to the colloidal particles
being captured and covering the gas−liquid interface, which
reduces the effective evaporating area of the droplet, thus
slowing the evaporation rate.
Therefore, we assume that the acceleration of the

evaporation rate caused by a lower pressure could influence
the interface capture effect, whose strength can be reflected by
the Peclet number.34−36 We estimate the Peclet number of the
system

Figure 1. (a) Schematic diagram of the internal flow of droplets by
the LPAE. The descent of the gas−liquid interface caused by rapid
evaporation makes most of the particles to be captured by the
interface and finally form ordered colloidal crystals. The capillary flow
caused by uneven evaporation causes the particles to move to the
edge and form a coffee ring. The comparison of the two flows affects
the final deposition pattern. (b) Experimental values of evaporation
time of colloidal droplets and experimental and theoretical values of
aqueous droplet evaporation time under different pressures. The
experimental results are consistent with the theoretical values, which
indicates that the evaporation time of droplets is proportional to the
pressure. The illustrations show the deposition patterns of colloidal
droplets with a particle size of 193 nm, a volume of about 0.4 μL, and
a concentration of 2 wt % at pressures of 0.1, 0.2, 0.3, 0.4, and 0.5 atm.
The scale is 400 μm. It can be seen that, with the decrease of the
pressure, the coffee ring gradually disappears and the colloidal crystals
become more uniform and ordered. When the pressure is 0.1 atm,
there is almost no coffee ring.
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DL is the diffusion coefficient
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where KB = 1.38 × 10−23 J/K is the Boltzmann constant, r ≈
100 nm is the particle radius, η ≈ 10−3 Pas is the viscosity
coefficient of water, and A is the evaporation area of the
droplet. When these parameter values are brought into
equations, we finally obtain

Pe
P
P P

126
10≈ ∝

(11)

It can be found that, when it is atmospheric pressure
evaporation, Pe ≈ 126 ≫ 1. This means that the interface
capture effect cannot be ignored in this system. With the
decrease of the pressure, through eq 11, the Peclet number will
further increase (for example, when P = 0.1 atm, Pe ≈ 1260).
In other words, the lower the pressure, the stronger the capture
effect. Meanwhile, because the contact line is pinned and the
contact angle is small, the capillary flow cannot be ignored
either. Therefore, the final deposition pattern in this system
might be determined by the competitive relationship between
these two effects, as shown in Figure 1a. When the capillary
flow caused by uneven evaporation dominates, most particles
are transported to the edge of the droplet and form the coffee
ring. When the pressure decreases, the interface capture effect
gradually increases, and then most particles are captured by the
interface; therefore, the coffee ring weakens.
We confirmed the above analysis through experiments. As

shown in Figure 1b, with the decrease of the pressure, the
Peclet number gradually increased and the coffee ring gradually
weakened. In addition, we also noticed that, with the decrease
of the pressure, the deposition pattern gradually became more
uniform and the color became more bright. This means that an
ordered crystal structure may be formed. By observation of the
microstructure of the deposition pattern, a hexagonal close-
packed (HCP) colloidal crystal can be obtained, as shown in
Figure S2 of the Supporting Information. Therefore, the
decrease of the pressure can not only improve the evaporation
efficiency but also weaken the coffee ring and form a uniform
and ordered structure.
For a further understanding of the assembly process of

colloidal particles, the dynamic evolution of a flash evaporating
droplet was in situ microscopically observed and studied.
Figure 2 shows the color change during the whole evaporation
process of a colloidal droplet under low-pressure conditions.
The surface of the droplet rapidly appears light dark red after
entering the low-pressure environment for 0.2 s, as shown in
panels a and b of Figure 2. In the next 1 s, the color becomes
brighter and brighter and becomes green near the edge, as
shown in panels c and d of Figure 2. As evaporation progresses,
in 1.74 s, the whole gas−liquid interface forms a dense
arrangement, as shown in Figure 2e. After 2 s, the droplet color

changes again as the contact line shrinks, as shown in panels f−
j of Figure 2. We think that the color change of the droplet is
caused by the film formed at the interface. Therefore, in the
evaporation process, we conducted a disturbance test on the
surface of the droplet (to disturb the interface during
evaporation with a fine wire, and the fine wire was placed on
the droplet surface in advance), confirming the existence of the
film, as shown in panels a−f of Figure S3 of the Supporting
Information. In addition, by replacement of large particles, the
process of the island particle layer gradually forming at the
interface is observed directly, as shown in Figure S3g of the
Supporting Information.
To further verify the source of bright colors of the film

formed on the surface, we measured the real-time reflection
spectrum during evaporation. Then, we found that the film was
a crystal structure (as shown in Figure S4 of the Supporting
Information, the Bragg scattering peaks shift and increase with
evaporation, corresponding to the gradual change and
enhancement of color in Figure 2). As for the color of
droplets changed from green to blue, this may be due to the
ordered crystal film being transferred to the substrate. With the
dewetting by the way of the contact line shrinking, the medium
between particles changed from water to air, and then the color
changed. By measurement of the change of scattering peaks
after rewatering the pattern, the conjecture has been confirmed
(as shown in Figure S5 of the Supporting Information).
Therefore, in the process of rapid evaporation caused by a

low pressure, the capture effect of the gas−liquid interface is
dominated. A large number of colloid particles are gradually
captured by the gas−liquid interface, which will form an
ordered crystal film structure immediately. With dewetting, the
crystal film is transferred to the substrate, forming the final
deposition pattern.
On the basis of the LPAE method, we realized the

construction of multi-color photonic crystals by changing the
particle diameter at an appropriate concentration. It is worth
noting that the concentration will not only affect the
uniformity of the pattern, but also as the concentration
decreases, when the layer thickness is only several nanospheres,
the color hues will change significantly38 (for more detailed
information about the effect of the concentration, see Figure

Figure 2. Droplet color change during the LPAE with a concentration
of 1 wt % and a particle size of 193 nm at the pressure of 0.001 atm. (a
and b) Color of the droplet surface changes rapidly after entering the
low-pressure environment. (c and d) Change of color is more and
more obvious, and the droplet edge reaches green faster than the
middle. (e) Whole gas−liquid interface turns green. (f and g) As the
droplet gradually evaporates, the edges begin to dewet and the color
changes from green to blue. (h and i) Uniform particle layer on the
liquid surface is gradually pulled and divided at last, resulting in
fragmentation. (j) Particle layer on the liquid surface eventually
spreads out onto the substrate in a fragmented state and even forms a
hole.37 The scale is 400 μm.
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S6 and part 6 of the Supporting Information). Here, we
selected the particles with sizes of 193, 220, 240, and 310 nm,
and the prepared photonic crystals correspond to blue, green,
orange, and orchid in the illustration of Figure 3 [using

scanning electron microscopy (SEM), we observed the
microstructure of the two kinds of particles, and they showed
a HCP crystal structure, as shown in Figure S2 of the
Supporting Information]. Through the measurement of the
reflection spectrum, it can be found that the corresponding
Bragg scattering wavelengths are consistent with the
corresponding theoretical value (see part 7 of the Supporting
Information for details). In comparison to the previous study,
the LPAE method can realize the ultrafast construction of
photonic crystals with rich and ordered structural colors. It is
worth noting that we found that the LPAE process of droplets
is insensitive to size to a certain extent. However, when the
contact angle is too large or the heat transfer from the substrate
is insufficient, freezing is likely to occur (see Figure S2 and part
8 of the Supporting Information for details).
In summary, we experimented with LPAE of colloidal

droplets and found that the low-pressure environment can
drastically increase the evaporation rate. Further analysis
indicates that the increase of the evaporation rate will lead
to the increase of the Peclet number and then strengthen the
interface capture effect. Therefore, when the pressure
decreases, a large number of particles will be quickly captured
by the interface, thereby weakening the coffee ring effect.
Through experiments and analysis, it is found that the particles
captured by the interface will form an ordered crystal structure
and finally be transported to the substrate. In the end, high-
quality photonic crystals with diverse structural colors can be
prepared ultrafast under flash evaporation by controlling
several key factors, such as the pressure, concentration, and
particle size. Through the LPAE method, the formation time of
colloidal crystals can be shortened from hundreds of seconds
under normal pressure to several seconds. We think that this

method has potential applications for the high-efficient
fabrication of large-area photonic crystals, perovskite solar
cells, and printed flexible electronics.
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