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A B S T R A C T

In the context of oceanic internal gravity waves, one of the most widely-used theories on examining wave
dynamics and interpreting observational data is the Korteweg–de Vries (KdV) equation. Nonetheless, the
characters of unidirectional propagation and unbounded phase and group velocities restrict its application
to some general cases (Benjamin et al., 1972). Thus, using the Dirichlet–Neumann operator with the rigid-lid
approximation, we derive both bidirectional and unidirectional Whitham type equations in the Hamiltonian
framework, which retain the full linear dispersion relation of the Euler equations. The effect of topography is
also incorporated in modeling due to its practical relevance, although the invoked scaling plausibly excludes
the accommodation of a significant bottom variation. There are no analytic solutions of internal solitary
waves explicitly given in the newly proposed equations, even though these equations possess a concise form.
Therefore, a modified Petviashvili iteration method is implemented to obtain the numerical solutions to
circumvent this difficulty. Facilitated by these techniques, several numerical experiments are investigated and
compared among different models: the KdV equation, the Whitham type equations, and the primitive equations.
The discrepancies and similarities between the various models jointly indicate the advantage of full dispersion
and bidirectional propagation and, thus, the effectiveness of the Whitham type equations.
1. Introduction

Internal wave is a ubiquitous phenomenon in the coastal ocean
(Ramp et al., 2004; Shroyer et al., 2010). As the name implies, the
largest amplitude of internal waves emerges in the interior, usually
near the pycnocline, and decays along with both upward and down-
ward directions. Internal waves play an important role in the vertical
transport of momentum, heat, and mass, which help maintain the over-
turning circulation to impact the climate system further. In addition,
internal waves are important for submarine navigation and detection;
for instance, the disaster of the Indonesian submarine in the Bali Sea
that occurred in April 2021 is plausibly attributed to internal waves,
see Barker (2021).

Generally, considering the typical background environment, oceanic
internal gravity waves with an amplitude of (100)m merely induce
surface waves with an amplitude of (1) cm. This almost invisible
feature on the surface makes detection difficult. Nonetheless, as the
restoring force of buoyancy is essentially weak, internal waves can
possess large amplitudes and strong currents even induced by a small

∗ Corresponding author at: Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, PR China.
E-mail address: zwang@imech.ac.cn (Z. Wang).

disturbance. Therefore, these waves pose potential threats on oil plat-
forms, and indeed, it has been recorded that, after a passage of internal
waves in the Andaman Sea, the oil drilling platform was rotated 90◦

and pushed 30.48 m away from its installation site. Similarly, in the
South China Sea, a mooring oil tank swung 110◦ in less than 5 minutes
when it encountered internal waves; see Cai and Gan (2001) for more
ocean engineering accidents due to internal waves.

Internal waves possess different spatial (from few meters to one hun-
dred kilometers) and temporal (from few minutes to dozens of hours)
scales and internal solitary waves (also called internal solitons), usu-
ally with high nonlinearity and large amplitude, have attracted much
attention. In the 1960s, by virtue of the development of modern instru-
ments for in-situ observation, the quantitative measurement of internal
waves emerged. One of the earliest clear observational evidence of
internal solitary waves was in the Strait of Gibraltar (Ziegenbein, 1969,
1970). These waves were also recorded by Osborne and Burch (1980),
and more importantly, they provide a paradigm for implementing
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the Korteweg–de Vries (KdV) equation to describe observational inter-
nal solitary waves. The celebrated KdV equation, which had already
achieved great success in the fields of nonlinear waves (hydrodynamics,
plasma, etc.), prospered in this new aspect owing in large part to
its good delineation of observations (see Ostrovsky and Stepanyants,
2005; Klymak et al., 2006; Li et al., 2015; Grimshaw et al., 2016 for
instance) and, as well, its succinct form. Inspired by these, several
variants of the KdV equation were proposed. Of note is the Gardner
equation for large-amplitude internal waves by introducing the cubic
nonlinearity (Djordjevic and Redekopp, 1978; Grimshaw et al., 2002),
the Ostrovsky equation by involving a nonlocal term reflecting the
Earth’s rotation (Ostrovsky, 1978), and the variable-coefficient KdV
equation by incorporating the effects of background shear, continuous
stratification, and slowly varying topography (Grimshaw, 1981; Zhou
and Grimshaw, 1989). Theoretically, the KdV type equations shall only
be applied to the shallow-water situation. In contrast, the Intermediate
Long Wave (ILW) equation proposed by Joseph (1977) and Kubota
et al. (1978) accounts for intermediate depth, and the Benjamin–Ono
(BO) equation is adopted for infinitely deep fluids (Benjamin, 1966;
Ono, 1975). On the other hand, owing to the disparity of the internal
and surface waves’ length scales, their interactions are of interest;
see Craig et al. (2012) and Jiang et al. (2019) for example.

Although the equations mentioned above are widely implemented
on internal solitary waves, one of their theoretical premises – the
assumption of weak nonlinearity – limits their applications, especially
when large-amplitude waves are involved. Miyata (1988) and Choi and
Camassa (1999) derived the Miyata–Choi–Camassa (MCC) equations
with full nonlinearity and weak dispersion to circumvent this short-
coming. Recently, strongly nonlinear models for three-layer flows were
also developed to study the mode-2 internal waves by Barros et al.
(2020) and Wang et al. (2022). Nonetheless, a more accurate way to
investigate internal solitary waves is in the framework of the Dubreil–
Jacotin–Long (DJL) equation (Benjamin, 1966; Tung et al., 1982),
which amounts to the full set of stratified Euler equations. However,
the trade-off is that the DJL equation is time-independent, and it cannot
delineate wave evolution scenarios.

In recent years, benefited from the rapid advance of satellite tech-
niques, the accumulation of many remote sensing images has facilitated
the investigations on three-dimensional (3D) internal solitary waves.
One of the most prominent theoretical models is the Kadomtsev–
Petviashvili (KP) equation (Kadomtsev and Petviashvili, 1970), which is
generally a variant of the KdV equation. A few pieces of research, such
as Cai and Xie (2010) and Yuan et al. (2018), invoked the KP equation
to study internal solitary waves propagating over two-dimensional
(2D) topographies under a two-layer or a continuously stratified fluid.
Nevertheless, the KP equation is unidirectional, and it only suits the
case in which variations in the 𝑦-direction are one order smaller than
hose in the 𝑥-direction. Thus Yuan et al. (2020) derived a bidirectional

isotropic model for internal waves, termed the modified Benney–Luke
equation indicating the heritage of the classic Benney–Luke equation
for free-surface water waves.

Nowadays, with the development of computational fluid dynam-
ics and the availability of powerful supercomputers, comprehensive
oceanic models possessing the ability to resolve a large number of
multi-scale dynamical processes simultaneously are being increasingly
used to simulate internal waves; see the reviews by Simmons et al.
(2011) and Guo and Chen (2014). These models are usually based
on the primitive Navier–Stokes equations, which are so complicated
that using a very fine resolution in large 3D simulations is generally
impossible due to the limitation of supercomputers. In practice, pa-
rameterization schemes are implemented to represent the contributions
of these unresolved small-scale phenomena, which, however, requires
a deep insight into the dynamical processes. Nevertheless, the full
Navier–Stokes equations with complicated free boundary conditions
2

are generally inconvenient for exploring the physical properties of a d
specific phenomenon; still, theoretical models can come into play in
this case.

The rest of the paper is structured as follows. To overcome the
shortcomings of the widely-used KdV equation (unidirectional propaga-
tion and no lower bound of the phase velocity at large wavenumber),
we derive the Whitham type equations that retain the full dispersion
relation in Section 2. Since conducting a deep analysis of the proposed
equations is too mathematically involved and beyond the scope of
the paper, we resort to detailed numerical simulations in Section 3,
together with the illustrations of numerical results. Finally, we conclude
and discuss in Section 4.

2. Derivation

2.1. Mathematical formulation

We consider two two-dimensional incompressible, inviscid, and
homogeneous fluids bounded together, with the lighter fluid lying on
top of the heavier one. Two fluids are immiscible and separated by a
sharp interface 𝑧 = 𝜂(𝑥, 𝑡), where 𝑥 is the direction of wave propagation,
and the 𝑧-axis points upwards with 𝑧 = 0 the undisturbed interface. A
sketch of the system is shown in Fig. 1. The upper layer is bounded
above by a flat rigid lid 𝑧 = ℎ+, while the lower layer is bounded
below by a bottom topography 𝑧 = −ℎ− + 𝑏(𝑥). It is noted that the
justification of the rigid-lid approximation on the two-layer fluid has
been provided by Duchene (2014). The subscripts + and - refer to fluid
properties associated with the upper and lower layers, respectively. The
fluid density in each layer is supposed to be constant, designated by 𝜌±,
and the system is in a stable density configuration, namely 𝜌+ < 𝜌−.
The motion of each fluid is assumed to be irrotational; thus, we can
introduce velocity potentials 𝜙±, which satisfy the Laplace equation in
the corresponding layers, namely

𝜙−
𝑥𝑥 + 𝜙

−
𝑧𝑧 = 0 , for −ℎ− + 𝑏(𝑥) < 𝑧 < 𝜂(𝑥, 𝑡) ,

+
𝑥𝑥 + 𝜙

+
𝑧𝑧 = 0 , for 𝜂(𝑥, 𝑡) < 𝑧 < ℎ+ .

n the interface 𝑧 = 𝜂(𝑥, 𝑡), the nonlinear kinematic and dynamic
oundary conditions read

𝑡 = 𝜙−
𝑧 − 𝜂𝑥𝜙−

𝑥 = 𝜙+
𝑧 − 𝜂𝑥𝜙+

𝑥 , (1)

0 = 𝜌−
(

𝜙−
𝑡 + 𝑔𝜂 + 1

2
|∇𝜙−

|

2
)

− 𝜌+
(

𝜙+
𝑡 + 𝑔𝜂 + 1

2
|∇𝜙+

|

2
)

, (2)

here 𝑔 is the acceleration due to gravity. The kinematic boundary
ondition (1) implies that the normal velocity is continuous across the
nterface

𝜙−
𝑥 , 𝜙

−
𝑧
)⊤

⋅ 𝐧 =
(

𝜙+
𝑥 , 𝜙

+
𝑧
)⊤

⋅ 𝐧 , (3)

here 𝐧 = (−𝜂𝑥, 1)⊤
/

√

1 + 𝜂2𝑥 is the unit normal vector on the interface
ointing upwards. Finally, the impermeability boundary conditions,

𝜙+
𝑧 = 0 , at 𝑧 = ℎ+ , (4)

𝜙−
𝑧 − 𝑏𝑥𝜙−

𝑥 = 0 , at 𝑧 = −ℎ− + 𝑏(𝑥) , (5)

complete the whole system. For 𝑏 = 0, linearizing the above governing
equations and boundary conditions and then solving for wavy solu-
tions, one obtains the dispersion relation between wavenumber 𝑘 and
frequency 𝜔:

𝜔2 =
𝑔(𝜌− − 𝜌+)|𝑘|

𝜌− coth(|𝑘|ℎ−) + 𝜌+ coth(|𝑘|ℎ+)
. (6)

.2. Hamiltonian formulation

Benjamin and Bridges (1997) proved that the interfacial wave
ystem has a Hamiltonian structure. The canonical variables are the

− −
ifference between interfacial velocity potentials 𝜉 = 𝜌 𝜙 (𝑥, 𝜂, 𝑡) −
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Fig. 1. Sketch of the problem and coordinate system.
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𝜌+𝜙+(𝑥, 𝜂, 𝑡) and the interface displacement 𝜂. The Hamiltonian func-
tional is the sum of kinetic and potential energies, i.e.,

[𝜂, 𝜉] =
𝜌−

2 ∫R ∫

𝜂

−ℎ−+𝑏
|∇𝜙−

|

2d𝑧d𝑥 +
𝜌+

2 ∫R ∫

ℎ+

𝜂
|∇𝜙+

|

2d𝑧d𝑥

+
(𝜌− − 𝜌+)𝑔

2 ∫R
𝜂2d𝑥 , (7)

and the canonical variables satisfy Hamilton’s equations

𝜂𝑡 =
𝛿
𝛿𝜉

, 𝜉𝑡 = − 𝛿
𝛿𝜂

. (8)

he Dirichlet–Neumann operator (DNO) is essential for investigating
ree boundary problems in potential theory. We first define the velocity
otentials at the interface as
−(𝑥, 𝑡) = 𝜙−(𝑥, 𝜂(𝑥, 𝑡), 𝑡) , 𝜉+(𝑥, 𝑡) = 𝜙+(𝑥, 𝜂(𝑥, 𝑡), 𝑡).

Following Craig and Sulem (1993), we introduce the Dirichlet-
Neumann operators (DNOs)

𝐺+ (

𝜂, ℎ+
)

𝜉+ =
[

𝜂𝑥𝜙
+
𝑥 − 𝜙+

𝑧

]

𝑧=𝜂
= ∇𝜙+ ⋅ (−𝐧)

√

1 + 𝜂2𝑥 , (9)

𝐺− (𝜂, ℎ−, 𝑏) 𝜉− =
[

𝜙−
𝑧 − 𝜂𝑥𝜙−

𝑥

]

𝑧=𝜂
= ∇𝜙− ⋅ 𝐧

√

1 + 𝜂2𝑥 . (10)

The DNOs essentially map the Dirichlet boundary conditions to normal
derivatives by solving Laplace’s equations. We suppress the dependency
of DNOs on ℎ±, 𝑏, and 𝜂 in subsequent analyses for the simplicity of
notations. Then the kinematic boundary condition at the interface can
be rewritten as a compact form

𝜂𝑡 = 𝐺−𝜉− = −𝐺+𝜉+ , (11)

hich gives the relations between 𝜉 and 𝜉±:
+𝜉 = (𝜌−𝐺+ + 𝜌+𝐺−)𝜉− ⟹ 𝜉− = (𝜌−𝐺+ + 𝜌+𝐺−)−1𝐺+𝜉 , (12)

𝐺−𝜉 = −(𝜌−𝐺+ + 𝜌+𝐺−)𝜉+ ⟹ 𝜉+ = −(𝜌−𝐺+ + 𝜌+𝐺−)−1𝐺−𝜉 . (13)

Based on the DNOs, the Hamiltonian can be rewritten as

[𝜂, 𝜉] = 1
2 ∫R

𝜉𝐺− (

𝜌−𝐺+ + 𝜌+𝐺−)−1 𝐺+𝜉d𝑥+
(𝜌− − 𝜌+)𝑔

2 ∫R
𝜂2d𝑥 . (14)

.3. Expansions of DNOs

Meyer (1985) proved that the DNO is an analytic function if the
1-norm and Lipschitz-norm of 𝜂 are smaller than a certain constant.

t then follows that DNOs can be naturally written in the form of
onvergent Taylor expansion in 𝜂. A recursive formula for the expan-
ion of the DNO in the two-dimensional water-wave problem with flat
ottom was initially obtained by Craig and Sulem (1993), and later on
eneralization to include variable bottom topography by Craig et al.
3

2005). Recently, Ablowitz et al. (2006) proposed an explicit non-local
ormulation for the classical water-wave problem in two and three
imensions. It was also generalized to include the bottom topography
y Fokas and Nachbin (2012) and Andrade and Nachbin (2018).

In the present paper, we derive the Taylor expansion of DNOs
y virtue of the Ablowitz–Fokas–Musslimani formulation in the spirit
f Whitham (1974), namely to retain the full linear dispersion relation
or weakly nonlinear long-wave models. First of all, it is straightforward
o verify that the following identity
(

𝜙±
𝑧 𝜓𝑥 + 𝜙

±
𝑥𝜓𝑧

)

𝑥 +
(

𝜙±
𝑧 𝜓𝑧 − 𝜙

±
𝑥𝜓𝑥

)

𝑧 = 0 (15)

holds for an arbitrary harmonic function 𝜓 . Applying the divergent
theorem to Eq. (15) in the lower layer yields

0 = ∫
[

𝑏𝑥
(

𝜙−
𝑧 𝜓𝑥 + 𝜙

−
𝑥𝜓𝑧

)

−
(

𝜙−
𝑧 𝜓𝑧 − 𝜙

−
𝑥𝜓𝑥

)]

𝑧=−ℎ−+𝑏 d𝑥

+ ∫
[

−𝜂𝑥
(

𝜙−
𝑧 𝜓𝑥 + 𝜙

−
𝑥𝜓𝑧

)

+
(

𝜙−
𝑧 𝜓𝑧 − 𝜙

−
𝑥𝜓𝑥

)]

𝑧=𝜂 d𝑥 .
(16)

Substituting 𝜓 = 𝑒i𝑘𝑥+|𝑘|𝑧 into Eq. (16) gives

0 = ∫ 𝑒i𝑘𝑥+|𝑘|(𝜂+ℎ−) [
|𝑘|𝜂𝑡 − i𝑘𝜉−𝑥

]

d𝑥 + ∫ 𝑒i𝑘𝑥+|𝑘|𝑏 [i𝑘𝛷𝑏
𝑥
]

d𝑥 , (17)

here Eqs. (1) and (5), as well as the definition of 𝜉−, have been used,
nd 𝛷𝑏 = 𝜙−(𝑥,−ℎ− + 𝑏, 𝑡) is the velocity potential at the bottom. Since
i𝑘𝑥−|𝑘|𝑧 is also a solution to the Laplace equation, one also obtains

= ∫ 𝑒i𝑘𝑥−|𝑘|(𝜂+ℎ−) [−|𝑘|𝜂𝑡 − i𝑘𝜉−𝑥
]

d𝑥 + ∫ 𝑒i𝑘𝑥−|𝑘|𝑏 [i𝑘𝛷𝑏
𝑥
]

d𝑥 . (18)

dding and subtracting (17) and (18) yield

= ∫ 𝑒i𝑘𝑥 [
|𝑘| sinh(|𝑘|(𝜂 + ℎ−))𝜂𝑡 − i𝑘𝜉−𝑥 cosh(|𝑘|(𝜂 + ℎ−))

+ i𝑘𝛷𝑏
𝑥 cosh(|𝑘|𝑏)

]

d𝑥 (19)

nd

= ∫ 𝑒i𝑘𝑥
[

cosh(|𝑘|(𝜂 + ℎ−))𝜂𝑡 − i𝑘𝜉−𝑥
sinh(|𝑘|(𝜂 + ℎ−))

|𝑘|

+ i𝑘𝛷𝑏
𝑥
sinh(|𝑘|𝑏)

|𝑘|

]

d𝑥 . (20)

In the same vein, one can obtain the global relation for the upper layer:

0 = ∫ 𝑒i𝑘𝑥
[

cosh(|𝑘|(ℎ+ − 𝜂))𝜂𝑡 + i𝑘𝜉+𝑥
sinh(|𝑘|(ℎ+ − 𝜂))

|𝑘|

]

d𝑥 . (21)
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To derive weakly nonlinear models in the shallow-water regime,
we assume a small-amplitude motion in addition to the long-wave
assumption. Supposing that the typical bottom amplitude is similar to
the interface, the Boussinesq scaling is used:

𝑥 ∼ 𝐿 , 𝑧 ∼ ℎ− , 𝜂, 𝑏 ∼ 𝑎 , 𝑡 ∼ 𝐿
√

𝑔ℎ−(1 − 𝑅)
, 𝜉± ,

𝛷𝑏 ∼
𝑎𝐿

√

𝑔(1 − 𝑅)
√

ℎ−
, (22)

here 𝑎 is the typical amplitude, and 𝐿 is the typical wavelength.
mall parameters 𝜖 = 𝑎

ℎ− and 𝜇 = ℎ−

𝐿 are introduced to measure the
onlinearity and dispersion, respectively, and 𝜎 = ℎ+

ℎ− is (1) hereafter.
fter non-dimensionalization, the global relations (19)–(21) read

= ∫ 𝑒i𝑘𝑥 [𝜇|𝑘| sinh(𝜇|𝑘|(1 + 𝜖𝜂))𝜂𝑡 − i𝑘𝜉−𝑥 cosh(𝜇|𝑘|(1 + 𝜖𝜂))

+ i𝑘𝛷𝑏
𝑥 cosh(𝜖𝜇|𝑘|𝑏)

]

d𝑥 , (23)

0 = ∫ 𝑒i𝑘𝑥
[

cosh(𝜇|𝑘|(1 + 𝜖𝜂))𝜂𝑡 − i𝑘𝜉−𝑥
sinh(𝜇|𝑘|(1 + 𝜖𝜂))

𝜇|𝑘|

+ i𝑘𝛷𝑏
𝑥
sinh(𝜖𝜇|𝑘|𝑏)

𝜇|𝑘|

]

d𝑥 , (24)

and

0 = ∫ 𝑒i𝑘𝑥
[

cosh(𝜇|𝑘|(𝜎 − 𝜖𝜂))𝜂𝑡 + i𝑘𝜉+𝑥
sinh(𝜇|𝑘|(𝜎 − 𝜖𝜂))

𝜇|𝑘|

]

d𝑥 . (25)

Taking the Taylor series expansions of the global relations around 𝜖 = 0
and retaining terms valid up to 𝑂(𝜖), one obtains

0 = ∫ 𝑒i𝑘𝑥
{

𝜇|𝑘|
[

sinh(𝜇|𝑘|) + 𝜖𝜇|𝑘| cosh(𝜇|𝑘|)𝜂
]

𝜂𝑡 − i𝑘𝜉−𝑥
[

cosh(𝜇|𝑘|)

+ 𝜖𝜇|𝑘| sinh(𝜇|𝑘|)𝜂
]

+ i𝑘𝛷𝑏
𝑥

}

d𝑥 , (26)

0 = ∫ 𝑒i𝑘𝑥
{

[

cosh(𝜇|𝑘|) + 𝜖𝜇|𝑘| sinh(𝜇|𝑘|)𝜂
]

𝜂𝑡

− i𝑘𝜉−𝑥

[

sinh(𝜇|𝑘|)
𝜇|𝑘|

+ 𝜖 cosh(𝜇|𝑘|)𝜂
]

+ i𝑘𝛷𝑏
𝑥(𝜖𝑏)

}

d𝑥 , (27)

0 = ∫ 𝑒i𝑘𝑥
{

[

cosh(𝜇|𝑘|𝜎) − 𝜖𝜇|𝑘| sinh(𝜇|𝑘|𝜎)𝜂
]

𝜂𝑡

+ i𝑘𝜉+𝑥

[

sinh(𝜇|𝑘|𝜎)
𝜇|𝑘|

− 𝜖 cosh(𝜇|𝑘|𝜎)𝜂
] }

d𝑥 . (28)

Upon noting i𝑘 ∼ −𝜕𝑥 and 𝑘2 ∼ −𝜕𝑥𝑥, the inverse Fourier transforms of
(26)–(28) give

0 = 𝜇𝐷 tanh(𝜇𝐷)𝜂𝑡 − 𝜖𝜇2(𝜂𝜂𝑡)𝑥𝑥 + 𝜉−𝑥𝑥 + 𝜖
[

𝜇𝐷 tanh(𝜇𝐷)𝜂𝜉−𝑥
]

𝑥 −
𝛷𝑏
𝑥𝑥

cosh(𝜇𝐷)
,

(29)

0 =
[

1 + 𝜖𝜇𝐷 tanh(𝜇𝐷)𝜂
]

𝜂𝑡 +
tanh(𝜇𝐷)
𝜇𝐷

𝜉−𝑥𝑥 + 𝜖(𝜂𝜉
−
𝑥 )𝑥 −

𝜖
(

𝑏𝛷𝑏
𝑥
)

𝑥
cosh(𝜇𝐷)

, (30)

0 =
[

1 − 𝜖𝜇𝐷 tanh(𝜇𝐷𝜎)𝜂
]

𝜂𝑡 −
tanh(𝜇𝐷𝜎)

𝜇𝐷
𝜉+𝑥𝑥 + 𝜖(𝜂𝜉

+
𝑥 )𝑥 , (31)

where 𝐷 = (−𝜕𝑥𝑥)1∕2 with the Fourier symbol |𝑘|. It follows directly
hat Eq. (29) can be used to decouple 𝛷𝑏 from the system. In the
pirit of Whitham, who retained the full linear dispersion relation
hile deriving a weakly nonlinear model in the classical water-wave
roblem (Whitham, 1974), we keep the linear terms unchanged in the
bove three equations and apply the series expansion about 𝜇 = 0 in all
he nonlinear terms. Thus, taking the Taylor expansions of the 𝜖-related
erms in Eqs. (30) and (31) around 𝜇 = 0 and retaining terms valid up
o 

(

𝜖, 𝜇2
)

, one obtains

𝑡 =
[

𝐷 tanh(𝜇𝐷)
𝜇

− 𝜖𝜕𝑥(𝜂 − 𝑏)𝜕𝑥

]

𝜉− = −
[

𝐷 tanh(𝜇𝐷𝜎)
𝜇

+ 𝜖𝜕𝑥𝜂𝜕𝑥

]

𝜉+ ,

(32)
4

where 𝛷𝑏 has been replaced with 𝜉− due to (29). Eq. (32) gives the
Taylor expansions of DNOs valid up to 

(

𝜖, 𝜇2
)

, namely

𝐺− ≈
𝐷 tanh(𝜇𝐷)

𝜇
− 𝜖𝜕𝑥(𝜂 − 𝑏)𝜕𝑥 , 𝐺+ ≈

𝐷 tanh(𝜇𝐷𝜎)
𝜇

+ 𝜖𝜕𝑥𝜂𝜕𝑥 . (33)

2.4. Whitham type equation

The dimensionless Hamiltonian reads

[𝜂, 𝜉] = 1
2 ∫R

[

𝜉𝐺− (

𝐺+ + 𝑅𝐺−)−1 𝐺+𝜉 + 𝜂2
]

d𝑥 , (34)

here we denote by 𝑅 = 𝜌+
/

𝜌− < 1 the density ratio between two flu-
ds. Formally expanding the pseudo-differential operator
− (

𝐺+ + 𝑅𝐺−)−1 𝐺+ is crucial to derive a fully dispersive and weakly
onlinear model. Following (Whitham, 1974), we again keep the
eading-order term, and take the Taylor expansion around 𝜇 = 0 for
erms with 𝜂 and 𝑏. By virtue of (33), we obtain, after a straightforward
alculation,

− (

𝐺+ + 𝑅𝐺−)−1 𝐺+ =
𝐷 tanh(𝜇𝐷) tanh(𝜇𝐷𝜎)

𝜇 [tanh(𝜇𝐷𝜎) + 𝑅 tanh(𝜇𝐷)]
+
𝜖(𝑅 − 𝜎2)
(𝜎 + 𝑅)2

𝜕𝑥𝜂𝜕𝑥

+ 𝜖𝜎2

(𝜎 + 𝑅)2
𝜕𝑥𝑏𝜕𝑥 + h.o.t. (35)

Substituting (35) into (34) and neglecting the higher-order terms, we
obtain an approximate Hamiltonian as

[𝜂, 𝜉] ≈ 1
2 ∫

[

𝜉𝐷 tanh(𝜇𝐷) tanh(𝜇𝐷𝜎)𝜉
𝜇 [tanh(𝜇𝐷𝜎) + 𝑅 tanh(𝜇𝐷)]

+
𝜖(𝜎2 − 𝑅)
(𝜎 + 𝑅)2

𝜂𝜉2𝑥

− 𝜖𝜎2

(𝜎 + 𝑅)2
𝑏𝜉2𝑥 + 𝜂

2
]

d𝑥 . (36)

And then, taking variational derivatives yields the model equations

𝜂𝑡 =
𝛿
𝛿𝜉

=  ∗ 𝜉 −
𝜖(𝜎2 − 𝑅)
(𝜎 + 𝑅)2

(𝜂𝜉𝑥)𝑥 +
𝜖𝜎2

(𝜎 + 𝑅)2
(𝑏𝜉𝑥)𝑥 , (37)

𝜉𝑡 = − 𝛿
𝛿𝜉

= −𝜂 −
𝜖(𝜎2 − 𝑅)
2(𝜎 + 𝑅)2

𝜉2𝑥 . (38)

Here the asterisk stands for convolution, and  is a pseudo-differential
operator with the Fourier symbol

̂ =
|𝑘| tanh(𝜇|𝑘|) tanh(𝜇|𝑘|𝜎)

𝜇 [tanh(𝜇|𝑘|𝜎) + 𝑅 tanh(𝜇|𝑘|)]
, (39)

where the hat represents the Fourier transform. Eqs. (37)–(38) form
a closed system for 𝜂 and 𝜉, and the numerics for the system is
not difficult to implement based on the fast Fourier transform tech-
nique (Aceves-Sánchez et al., 2013; Carter, 2018; Milewski and Tabak,
1999). Nonetheless, we can further convert these two first-order equa-
tions into a single second-order equation describing bidirectional prop-
agations. Taking the time derivative of Eq. (38) and replacing 𝜂𝑡 with
Eq. (37), one obtains

𝜉𝑡𝑡+ ∗ 𝜉−
𝜖(𝜎2 − 𝑅)
(𝜎 + 𝑅)2

(𝜂𝜉𝑥)𝑥+
𝜖𝜎2

(𝜎 + 𝑅)2
(𝑏𝜉𝑥)𝑥+

𝜖(𝜎2 − 𝑅)
2(𝜎 + 𝑅)2

(

𝜉2𝑥
)

𝑡 = 0 . (40)

Finally, replacing 𝜂 with −𝜉𝑡 gives

𝜉𝑡𝑡 + ∗ 𝜉 +
𝜖(𝜎2 − 𝑅)
(𝜎 + 𝑅)2

[(

𝜉2𝑥
)

𝑡 + 𝜉𝑡𝜉𝑥𝑥
]

+ 𝜖𝜎2

(𝜎 + 𝑅)2
(𝑏𝜉𝑥)𝑥 = 0 , (41)

hich is a generalization of the one-spatial-dimensional Benney–Luke
quation (Yuan et al., 2020), termed the Whitham equation for internal
aves. Returning to the dimensional variables, Eq. (41) becomes

𝑡𝑡 + K ∗ 𝜉 + 𝛾
[(

𝜉2𝑥
)

𝑡 + 𝜉𝑡𝜉𝑥𝑥
]

+ 𝛽(𝑏𝜉𝑥)𝑥 = 0 , (42)

here

̂ =
𝑔(1 − 𝑅)|𝑘| tanh(ℎ−|𝑘|) tanh(ℎ+|𝑘|)

tanh(ℎ+|𝑘|) + 𝑅 tanh(ℎ−|𝑘|)
, 𝛾 = 𝜎2 − 𝑅

(𝜎 + 𝑅)2
,

𝛽 =
𝑔(1 − 𝑅)𝜎2

(𝜎 + 𝑅)2
. (43)
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Finally, the fluctuation of the interface 𝜂(𝑥, 𝑡) can be rewritten in the di-
mensional variables as, to the leading order approximation of Eq. (38),

𝜂 = −
𝜉𝑡

𝑔(1 − 𝑅)
. (44)

While the Whitham Eq. (42) is a bidirectional propagation model, its
simplified version, the unidirectional equation, is sometimes adequate
to delineate practical scenarios. Indeed, the Whitham equation was
initially proposed as a unidirectional model to describe breaking and
peaking in shallow water, the phenomena contained in the full Euler
equations but not in the KdV theory. Following Whitham’s idea, as-
suming one-way propagation and combining full linear dispersion with
long wave nonlinearity, the unidirectional Whitham type model for
interfacial waves can be expressed as

𝜂𝑡 +ℋ
[

K
1
2 ∗ 𝜂

]

+ 𝛼𝜂𝜂𝑥 = 0 , (45)

where ℋ represents the Hilbert transform and acts on the Fourier
symbol to render i sgn(𝑘), and the quadratic nonlinear coefficient 𝛼 is

= 3
2

√

𝑔(1 − 𝑅)
(𝜎 + 𝑅)ℎ+

(

𝜎2 − 𝑅
𝜎 + 𝑅

)

. (46)

Nevertheless, one of the most widely-used models for internal waves,
the KdV type equation (Grimshaw et al., 2002), can be derived di-
rectly from the Whitham-type equations by expanding and truncating
the pseudo-differential operator. Thus, the KdV equation is generally
written as

𝜂𝑡 + 𝑐0𝜂𝑥 + 𝛼𝜂𝜂𝑥 + 𝜆𝜂𝑥𝑥𝑥 = 0 . (47)

Here the nonlinear coefficient 𝛼 is the same as Eq. (46), whereas the
linear phase speed 𝑐0 and dispersive coefficient 𝜆 are given by

𝑐20 =
𝑔(1 − 𝑅)ℎ+

𝜎 + 𝑅
, 𝜆 =

(𝑅ℎ+ + ℎ−)ℎ+
√

𝑔(1 − 𝑅)ℎ+

6(𝜎 + 𝑅)3∕2
. (48)

More importantly, it is well-known that the KdV Eq. (47) admits of a
soliton solution, analytically represented as

𝜂 = 𝜂0 sech2

[

√

𝛼𝜂0
12𝜆

𝑥 −
(

𝑐0 +
𝜂0𝛼
3

)

𝑡

]

, (49)

here 𝜂0 is the wave amplitude. The linear dispersion relations of the
dV Eq. (47) and the Whitham type Eqs. (42), (45) are

= 𝑐0𝑘 − 𝜆𝑘3 and 𝜔2 =
𝑔(1 − 𝑅)|𝑘| tanh(ℎ−|𝑘|) tanh(ℎ+|𝑘|)

tanh(ℎ+|𝑘|) + 𝑅 tanh(ℎ−|𝑘|)
, (50)

respectively. These results are illustrated in non-dimensional forms in
Fig. 2. We immediately note an important consequence that the linear
speeds (either the phase speed 𝑐 = 𝜔∕𝑘 or the group speed 𝑐𝑔 = d𝜔∕d𝑘)
of these two equations are very close when long waves are considered
with 𝑘 ≈ 0, which, however, become diverse as the evolution being
away from the regime of the longwave. More significantly, the phase
velocity of the KdV equation becomes negative for sufficient short
waves (large wavenumber 𝑘), contradicting the original assumption
of forward-propagation waves. In contrast, our proposed Whitham
type equations retain the full linear dispersion relation of the Euler
equations, and as a result, 𝑐 → 0 and 𝑐𝑔 → 0 as 𝑘 → ∞. These
results imply some potential advantage of our proposed Whitham type
equations for some cases of practical interest.

3. Numerical results

3.1. Numerical method

Note that it is challenging to obtain general solutions to the
Whitham type equations, and thus we have to resort to a numeri-
cal method. Considering the second term of the Whitham Eq. (42)
involving a pseudo-differential operator, we, naturally, propose a nu-
merical scheme based on the fast Fourier transform implemented with
5

u

a pseudo-spectral method, refer to Milewski and Tabak (1999). The
Whitham Eq. (42) can be rewritten as
(

𝜕2

𝜕𝑡2
+ 2

)

𝜉 =  (𝑏, 𝜉, 𝜉𝑡, ) , (51)

here the operator  = K
1
2 , and  represents both the nonlinear

nd topographic terms. Since our derived Whitham equation retains
he full dispersion of the Euler equations, the operator  gives rise to

wide range of time scales, while the comparatively slow evolution
nfluenced by nonlinearity  is often of research interest. However,
o study this slow evolution, the fast frequencies associated with 
ave to be resolved, which practically renders the selection of tiny time
teps in numerical simulations. To circumvent the stiffness problem, we
ntroduce one intermediate variable,

=
( 𝜕
𝜕𝑡

+ i
)

𝜉 , (52)

and as a result, Eq. (51) reduces to a temporally first-order equation
( 𝜕
𝜕𝑡

− i
)

𝜑 =  (𝑏, 𝜉, 𝜉𝑡) . (53)

ote that 𝜉 and 𝜉𝑡 can be calculated from the real part and imaginary
arts of 𝜑:

𝑡 = Re (𝜑) , 𝜉 = Im (𝜑) , (54)

hich implies that Eq. (53) is a single evolution equation with one
nknown 𝜑. Next, applying the Fourier transform to this equation in
yields

( 𝜕
𝜕𝑡

− i ̂
)

𝜑̂(𝑘, 𝑡) = 
[

 (𝑏, 𝜉, 𝜉𝑡)
]

(𝑘, 𝑡) , (55)

here both ⋅̂ and  represent the Fourier transform. Then, multiplying
he above equation by an integrating factor, 𝑒−i̂𝑡, yields

𝑑𝜗
𝑑𝑡

= 𝑒−i ̂𝑡
[

 (𝑏, 𝜉, 𝜉𝑡)
]

, where 𝜗 = 𝑒−i ̂𝑡𝜑̂ . (56)

The variations of fast frequencies, which, if not appropriately resolved
with a small time step, yield numerical instabilities in Eqs. (51) and
(53), have been rearranged at the right-hand side of (56). It was shown
that this rearrangement overcomes the difficulty of stiffness, and hence
a larger time step can be chosen. In practice, what remains is to relate
𝜗 or 𝜑̂ with 𝜉 and 𝜉𝑡. It can be achieved by manipulating the Fourier
transform of Eq. (52), which ultimately gives:

𝜉𝑡 = −1
{

𝜑̂(𝑘, 𝑡) + 𝜑̂∗(−𝑘, 𝑡)
2

}

, 𝜉 = −1

⎧

⎪

⎨

⎪

⎩

𝜑̂(𝑘, 𝑡) − 𝜑̂∗(−𝑘, 𝑡)

i
[

̂(𝑘) + ̂(−𝑘)
]

⎫

⎪

⎬

⎪

⎭

, (57)

here the superscript asterisk designates complex conjugation and −1

tands for the inverse Fourier transform. Nevertheless, one difficulty is
hat 𝜉 cannot be recovered from Eq. (57) for 𝑘 = 0, as the denominator
quals zero, ̂(0) = 0, but instead, it can be numerically evaluated by
ntegrating the 𝜉𝑡 equation. In the temporal domain, we choose the
lassic 4th-order Runge–Kutta scheme with typical time step of 0.2 s.

.2. Wave evolution

To examine the abilities of these equations on delineating the wave
volution, in the following sections, we design several numerical exper-
ments. In all cases, the thicknesses are ℎ+ = 100m and ℎ− = 300m from
op to bottom, while the respective densities are 𝜌+ = 1000.8 kg/m3

nd 𝜌− = 1012.0 kg/m3, which corresponds to 5PSU and 20PSU at
emperature 25◦C in the ocean, refer to Millero and Poisson (1981).
irst, we choose a ‘box’ as the initial condition to launch the simulation,
hereby internal undular bores (also called dispersive shock waves)
nd linear ramps with trailing oscillations are rendered. It is noted that

ndular bores are rank-ordered waves whose nonlinearities decrease
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Fig. 2. Dimensionless linear dispersion relations of the KdV equation and the Whitham equation. Note that the wavenumber 𝑘 is normalized by the thickness of upper layer ℎ+,
while both the linear phase speed 𝑐 and group speed 𝑐𝑔 are normalized by 𝑐0 as given in Eq. (48).
Fig. 3. Left panel: initial box as given in Eq. (58) with the amplitude 𝐴0 = −30m and width 2𝜘 = 80 km. Right panel: evolution results of the initial box with zero horizontal
particle velocity launched at 𝑡 = 2700 s. Note that the resultant internal undular bores and linear ramps with trailing oscillations, along with their propagation directions, are
accentuated using insets and green arrows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
from the solitary waves in the front to the periodic waves in the rear,
see Fig. 3 as an example.

Considering the length of the domain in the 𝑥-direction is about
100 km (resolved by 215 = 32768 discrete points), the initial box is
expressed as

𝜂(𝑥, 𝑡 = 0) = 1
2
𝐴0

{

tanh
[𝑥 + 𝜘

500

]

− tanh
[𝑥 − 𝜘

500

]}

, (58)

where 𝐴0 = −9m and 𝜘 = 4 km in the unidirectional Whitham
equation and the KdV equation, see Fig. 4. The choice of the mi-
nus sign is attributed to the fact that the thicknesses of two layers,
ℎ− > ℎ+, support the survival of depression leading waves, which
designates negative amplitude in our coordinate system. To conduct a
quantitative comparison, we choose 𝐴0 = −18m in the bidirectional
Whitham equation, as here the initial box will evolve towards two
symmetric wave patterns, each possessing the height half of its startup
and propagating along with opposite directions. Another issue is that
the bidirectional Whitham equation needs both 𝜉 and 𝜉𝑡 to be given
as the initial conditions, where 𝜉𝑡(𝑡 = 0) can be easily calculated from
𝜂(𝑡 = 0) according to Eq. (44). It remains to determine 𝜉(𝑡 = 0); here we
use 𝜉(𝑡 = 0) = 0 and hence 𝜉𝑥(𝑡 = 0) = 0, which means that the initial
horizontal particle velocity is set to be zero.
6

The results are illustrated in Fig. 4, in which the results of the
unidirectional and bidirectional Whitham equations do not exhibit
perceptible disparities. By contrast, differences between the KdV equa-
tion and the Whitham type equations are clearly shown in the figure,
where the latter equations feature larger amplitude and faster speed, a
phenomenon similar to the comparison between the KdV and Whitham
equations in surface water waves (Carter, 2018). Note that the unidirec-
tional Whitham equation and the KdV equation have the same nonlin-
earity but the latter with less accurate dispersion, given the fact that the
Whitham type equations reproduce the Euler phase and group speeds;
see Fig. 2. To validate these reduced theoretical models, We conduct
simulations based on a fully nonlinear non-hydrostatic MIT general
circulation model (MITgcm) (Marshall et al., 1997). Although the
MITgcm model numerically solves the incompressible Navier–Stokes
equations with the Boussinesq assumption, it amounts to solving the
stratified Euler equations by setting the viscosity coefficients in the
momentum equations and diffusion coefficient in the salinity equation
to be zero (here, the temperature is treated as a constant). The set-
ups in the MITgcm model are the same as those in the theoretical
models. Free boundary conditions suffice to simulate this localized
phenomenon considering the given large domain (∼ 200 km) in Fig. 4.
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Fig. 4. Evolutions of the initial boxes (shown in the inset) in the KdV, unidirectional Whitham (labeled as Uni-Whitham), bidirectional Whitham (labeled as Bi-Whitham) equations,
and the MITgcm model at 𝑡 = 3.0 × 104 s. Note that the height of the initial boxes for the KdV and Uni-Whitham equations is half of that for the Bi-Whitham equation and the
MITgcm model.
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It is clear that the wave amplitudes in the MITgcm model are smaller
than those in the theoretical models, and the reason can be partly
ascribed to the numerical truncation errors and numerical viscosity. In
addition, a continuous stratification is generally needed for the MITgcm
model. Hence the used two-layer configurations must be subject to a
redistribution of salinity (as the temperature is settled as uniform, so
the salinity is treated as a passive tracer). It then leads to a thin pycno-
cline whose dynamical manner will be essentially distinguished from
the standard two-layer set-ups. Nevertheless, the wave patterns are
genuinely similar, suggesting the validity of these reduced theoretical
models.

To further confirm the accuracy of our proposed models, we design
numerical experiments with Gaussian initial conditions,

𝜂(𝑥, 𝑡 = 0) = 𝐴0 exp
[

−
( 𝑥
5000

)2
]

, (59)

here the initial amplitudes 𝐴0 = −10m for the unidirectional Whitham
quation and the KdV equation, but 𝐴0 = −20m for the bidirectional
hitham equation, see Fig. 5. The initial lumps evolve to get trains of

ank-ordered solitary waves in all models. Although the KdV equation
anifests itself with smaller amplitude and slower speed, the number of

he emerged solitons is the same, and the wave pattern is also similar.
Although Ehrnström et al. (2012) proved that solitary-wave solu-

ions exist in the Whitham type equations, it is challenging to obtain the
xplicit expressions. Thus, we suggest a numerical method based on the
etviashvili iteration to find the solutions. The basic idea is to perform
he iteration in the Fourier space supplemented by a normalization
actor upon the degree of nonlinearity. Assuming a wave propagates
n the 𝑥-direction with a translating speed 𝑐, then applying the Fourier
ransform to Eq. (42) leads to

̂=
𝑐𝛾

(

i𝑘𝜉2𝑥 + 𝜉𝑥𝜉𝑥𝑥
)

K̂ − 𝑐2𝑘2
≜ [𝜉] . (60)

ollowing Ablowitz et al. (2006), a multiplier is introduced in every
teration step to prevent amplitude from going into zero or infinity,
hat is
̂ = 𝜏 [𝜉 ] , (61)
7

𝑛+1 𝑛 𝑛 o
here the subscript 𝑛 indicates the index of iteration step and 𝜏𝑛 is
iven by

𝑛 =
∫ |𝜉𝑛|

2
𝑑𝑘

∫ 𝜉∗𝑛[𝜉𝑛]𝑑𝑘
. (62)

In practice, to obtain the solutions describing internal solitary waves in
the Whitham type equations, the KdV solitary wave solution (49) can be
used to launch this iteration. The iteration process will be terminated
when the relative error 𝜒 ,

𝜒 =
∑

𝑚 |𝜉𝑛+1 − 𝜉𝑛|
∑

𝑚 |𝜉𝑛|
, (63)

s smaller than some specific value (we select 1.0 × 10−17 in the related
xperiments hereafter), where 𝑚 represents the index of discrete points.

Using the solitary-wave solutions obtained with the aforementioned
etviashvili iteration method to prepare the initial condition, we inves-
igate the overtaking collision between a large internal solitary wave
ith an amplitude of 20m and a small wave with an amplitude of 4m in
ig. 6. When the large wave approaches the small one, the discrepancies
etween the bidirectional and unidirectional models emerge. The large-
mplitude solitary wave in the bidirectional Whitham equation features
relatively slower speed and a slightly smaller amplitude than in

he unidirectional model, see panel (b). These discrepancies evolve
o become more and more sensible afterward, as shown in panels
c) and (d). The evolution behaviors of the small-amplitude solitary
aves in the bi- and uni-directional Whitham equations are almost the

ame, differing from that in the KdV equation. Although there are no
erceptible disparities between the two unidirectional models before
ollision (panels (a) and (b)), separation commences after the large
ave surpasses the small one (panel (c)). Nonetheless, it showcases that

he overtaking collision leads to phase lags of the small wave and phase
dvances of the large wave in all three models, albeit to a different
xtent, see panel (d). Noticeably, these discrepancies and similarities
ay be a result of the combination of linear and nonlinear effects, both

f which can modify the wave propagation velocity.
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Fig. 5. Left panel: Gaussian initial conditions. Right panel: snapshots of wave profile at 𝑡 = 1.5 × 105 s.
Fig. 6. Overtaking collision between a large-amplitude internal solitary wave (max |𝜂| = 20m) and a small-amplitude one (max |𝜂| = 4m): (a) 𝑡 = 0 s, (b) 𝑡 = 5.1 × 104 s, (c)
= 1.05 × 105 s, (d) 𝑡 = 1.5 × 105 s. For comparison, evolutions of the respective waves without collision are plotted as the dark solid line at 𝑡 = 1.5 × 105 s in panel (d).
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Among the above-mentioned reduced models, the bidirectional
hitham type equation is the only one suitable for simulating non-

inear interactions between two oppositely propagating waves. Here
e examine the head-on collision between an internal solitary wave
nd an internal undualr bore in Fig. 7. With passing through the
ndular bore, the persistent waveform of the solitary wave begins
o destruct, owing to the nonlinear interactions between these two
aves. The leading wave features a smaller amplitude and a slower

peed, with a trailing oscillation emerging in the rear. Meanwhile, the
ndular bore undergoes a slight phase shift, although no perceptible
aveform changing is found (see panel (d)). As shown in Fig. 3, a box
ith zero initial horizontal velocity will render, in addition to undular
ores, linear ramps with trailing oscillations. Indeed, Ablowitz et al.
2018) investigated a solitary wave collide with a linear ramp in the
dV dynamics. These authors solved the problem by using the inverse
cattering transform method and showed that the interaction dynamics
8

epend on the amplitude of the solitary wave. If the amplitude is large o
nough, a proper spectral data solution indicates that the solitary wave
an pass through the linear ramp; however, if the amplitude is under
threshold, the solitary wave will be trapped inside the rarefaction

amp. Here we try to reproduce these interesting phenomena in the
hitham equation, and the results are illustrated in Fig. 8. Except for

he expected scenarios of tunneling and trapped solitary waves, we also
ind that, after the collision, the amplitudes of solitary waves become
maller in both cases, which will naturally result in lower propagation
peeds.

One of the significant modifications we made on the Whitham
ype equation is that, in the derivation, the bottom topographic effects
re considered. Since the scalings (22) assumed that the height of
opography is the same order as that of the interface amplitude, thus
ignificant topography is presumably inappropriate, and here we would
ot risk doing this. However, the validity range needs more research
o be determined. In Fig. 9, referring to the typical cases in the real

cean, we put a gentle shoaling topography below an initial solitary
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Fig. 7. Collision between an internal solitary wave and an undular bore. Note that an initial box is used to generate the undular bore as shown in panel (a). Panels (b–d):
snapshots of wave profile at 𝑡 = 9.0 × 103 s, 𝑡 = 1.8 × 104 s, and 𝑡 = 2.7 × 104 s. Two zoom-ins are inserted to accentuate the waveform. For comparison, the evolution results of a
single solitary wave and an undular bore without collision are exhibited in dark densely dashed lines and green loosely dashed lines, respectively.

Fig. 8. Interactions between internal solitary waves and linear ramps. Panels (a1–a3): snapshots of tunneling solitary wave at 𝑡 = 0 s, 𝑡 = 1.13 × 105 s, and 𝑡 = 2.3 × 105 s. Panels
(b1–b3): snapshots of trapped solitary wave at 𝑡 = 0 s, 𝑡 = 1.13 × 105 s, and 𝑡 = 2.3 × 105 s. Note that the propagation directions are illustrated in green arrows.
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Fig. 9. Evolution of a solitary wave propagating over a mild topography. Wave profiles at 𝑡 = 0 s, 𝑡 = 2.5 × 104 s, and 𝑡 = 4.5 × 104 s are shown in panels (a–c). The shoaling
topography considered is plotted in panel (d), where read dots indicate locations of the solitary wave in panels (a–c). Note that, for comparison, the wave evolution without
topography is also illustrated by the dark dashed line.
wave to check the effectiveness of the Whitham equation. It is clear that
the shoaling topography slackens the wave propagation and augments
the wave amplitude; more importantly, some small trailing wavetrains
appear in the rear of the leading solitary waves.

4. Conclusion

The pioneering works on the Whitham type equations are Whitham
and Lighthill (1967) and Whitham (1974) for free-surface waves, and
they have attracted researchers’ attention in the last several decades. Of
note is the work of Aceves-Sánchez et al. (2013) and Moldabayev et al.
(2015) who extended Whitham’s idea to study bidirectionally propa-
gating surface waves, Aceves-Sánchez et al. (2013) and Vargas-Magaña
and Panayotaros (2016) who examined the varying topographic effects
on wave dynamics using the modified Whitham type equations, Dinvay
et al. (2017) and Carter (2018) who took the surface tension into
account, and Dinvay et al. (2019) and Wang (2022) who generalized
the equation to describe hydroelastic waves. In addition to these, the
properties of the Whitham equations have been explored by Ehrnström
and Kalisch (2009, 2013), Sanford et al. (2014) and Hur and Johnson
(2015) amongst many others. Aceves-Sánchez et al. (2013) claimed
that peaked soliton solutions are accommodated in the Whitham type
equations, in addition to smooth solitary-wave solutions (Ehrnström
et al., 2012). More importantly, Carter (2018) conducted a series of
comparisons between laboratory experiments and seven theoretical
reduced models (including the KdV equation) to show that the Whitham
type equations provide more accurate approximations than others. This
accuracy was also confirmed in Moldabayev et al. (2015).

The advantage of the Whitham type equations and the previous
research on this subject inspire us to derive the same type of equation
for internal waves. We have utilized the Hamiltonian formulation of the
two-layer fluid system and expanded the kinetic energy associated with
the Dirichlet–Neumann operators to derive a Whitham type equation.
10
The newly developed equation is a fully dispersive and weakly nonlin-
ear model with bidirectional propagations. To make it more suitable
for practice interest, we have involved a term representing the effects
of varying topography in the model equation. This model can also
yield a unidirectional Whitham type equation by assuming a one-way
propagation.

The KdV equation is the most widely-used theoretical reduced
model for investigating wave dynamics and interpreting in-situ obser-
vational data. However, the characters of unidirectional-propagation
assumption and unbounded phase and group velocities imply an in-
appropriate model for some general cases (say, for example, head-on
collisions between solitary waves), see Benjamin et al. (1972) for
more details. The proposed Whitham type equations overcome these
shortcomings, and the comparisons with the KdV equation and the
MITgcm model confirm this point. The disparities between the KdV
equation and the Whitham type equations provide new insight into
wave dynamics and embody the importance of full dispersion and
bidirectional propagation. We have also investigated the solitary wave
colliding with undular bore, which is not suitable to be examined with
unidirectional models.

Finally, it is necessary to indicate the shortcomings of the Whitham
type equations. Although the proposed equation plausibly possesses
a concise form, finding its analytical solitary-wave solutions is chal-
lenging. In this paper, we suggest a modified Petviashvili iteration
method to numerically search for solitary waves, which, however,
highly depends on the given initial guess, as the equation may admit
of more than one type of solution, say the cusped soliton and the form
close to the sech-squared function (Aceves-Sánchez et al., 2013). Note
that the effects of variable topography are taken into account, but we
caution that much care should be given when significant topography is
involved. Except that, the stratification is approximated to a two-layer
scheme, and it is a good approximation for some cases. Nonetheless,
sometimes, we still need to consider the continuous stratification. Yuan
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and Wang (2022) showed a layering scheme to determine the respective
thickness and density of each layer based on the continuous stratifica-
tion. This method can maintain the kinematical equivalence to the most
considerable extent and undoubtedly be combined with the Whitham
type equations.
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