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ABSTRACT: Kerogen is the primary hydrocarbon source of shale
oil/gas. The kerogen types and maturity are the two most crucial
indicators that can reflect the hydrocarbon generation potential of
shale oil/gas reservoirs. These indicators and the other
mechanochemical properties can be effectively studied in a
bottom-up strategy using kerogen molecular models. Thus, the
rapid construction of kerogen molecular models is the cornerstone
of shale oil/gas exploitation research. Because of the combinatorial
explosion problem, there are two inherent disadvantages of
traditional methods: being time- and material-consuming and
labor-intensive. We propose a new method that combines machine
learning with multiple nuclear magnetic resonance spectra to
intelligently and with a high throughput predict the kerogen
structures, types, and maturity. Neither the manual analysis of experimental spectra nor the enormous trial-and-error process is
required in our method. The 650,000 groups of samples are annotated as the sample datasets. Various spectral types can be analyzed
comprehensively using the multi-spectral form, and the predictive capability beyond that of the single input form is obtained. The
results demonstrate that the average similarity of prediction molecules and the targets is 91.78%. The prediction accuracy of kerogen
components, types, and maturity indexes is better than 92.4%, and the coefficients of determination R2 are all over 0.934. The results
exhibit the excellent comprehensive performance and effectiveness of our method. Thus, we anticipate that this work will shorten the
research cycle and tremendously reduce costs in constructing kerogen models and predicting kerogen properties.

1. INTRODUCTION

Kerogen is the most abundant source of organic compounds
on earth and the primary hydrocarbon source of shale oil/
gas.1−4 The two most fundamental indicators of kerogen: type
and maturity, can be directly characterized by using the
information on the kerogen molecular structure.5−9 The
kerogen types are used to indicate the origin and the
hydrocarbon generation type of kerogen. Generally, according
to the distribution of the kerogen component H/C and O/C
(H for hydrogen, O for oxygen, and C for carbon) atomic ratio
in the van Krevelen diagram, kerogen can be divided into three
types: Type I (oil-prone), Type II (oil- and gas-prone), and
Type III (gas-prone).10 The maturity is to represent the
predominant hydrocarbon potential of kerogen. The maturity
indicator, such as vitrinite reflectance %Ro, the molecule
maturity index (MMI), and the orbital hybridization maturity
index (OrbHMI), also can be evaluated from the kerogen
molecular models.11−14 Furthermore, kerogen models are the
cornerstone of exploring the mechanism of adsorption/
desorption, maturity evolution, pyrolysis behavior, and
generation of oil/gas through molecular simulation. Therefore,
the high-efficiency and high-quality construction of the

kerogen structural models is the bridge of shale oil/gas
exploitation.15−25

Traditionally, the construction of the kerogen models is
based on experiments, such as nuclear magnetic resonance
(NMR), X-ray diffraction (XRD), X-ray photoelectron spec-
troscopy (XPS), and pyrolysis gas chromatography and mass
spectrometry to approximate the natural structures. Initially,
only the main functional groups and the skeleton can be
determined roughly. Subsequently, the complete kerogen
molecular models begin to be constructed through a combined
analysis of various experiments.26−29 The kerogen models at
different evolution stages and in different mining areas are
established.30 Although the models are still displayed in the
two-dimensional (2D) form, the influence of the three-
dimensional (3D) configuration is considered.31 Finally, with
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the development of high-performance simulation methods
such as ab initio, density functional theory, and molecular
dynamics, 3D molecular construction methods are devel-
oped.32−36 Unlike the previous traditional techniques, the
molecular dynamics hybrid reverse Monte Carlo (MD-
HRMC) method is developed to construct the kerogen
model conveniently. The 2D model is not necessary to be
built as an intermediate medium in producing a 3D molecular
aggregate model using the MD-HRMC method. Only the
comprehensive analysis of experimental data is required.
However, the MD-HRMC method may cause isolated atoms
in the constructed structures, which will affect the mechanical
and chemical properties.37

There is no doubt that the above-mentioned molecular
construction methods are excellent. Nevertheless, due to the
combinatorial explosion problem, the theoretically existing
structures will explode to an astronomical number steeply with
the expansion of the molecular scale.38 However, there is only
one that fits the experimental spectra. As a result, an enormous
trial-and-error process based on experiments is required in the
traditional method, and the efficiency is extremely low. Two
inherent disadvantages exist in these methods. First, the
comprehensive analysis of experimental data requires powerful
professional ability and experience. Thus, these methods are

not conducive to engineering promotion. Second, tremendous
time and material resources are consumed during the repeated
construction and comparison processes. In the exploitation of
shale oil/gas, it is essential to construct the kerogen molecular
models for the mining areas before characterizing the
mechanochemical properties. However, because of the two
disadvantages, only a few kerogen molecular models of mining
samples (Green River, Duvernay, etc.) have been able to be
used to study the kerogen properties until now. Consequently,
it is imperative to develop an intelligent reverse construction
method for the kerogen models. Then, the researchers can
focus on the study of the molecular mechanochemical
properties.39−41

Artificial intelligence based on machine learning (ML)
neural networks has recently achieved remarkable and fruitful
results in many fields.42 The ML methods have powerful
intelligent information extraction and feature learning capa-
bilities and can convincingly solve high-complexity problems.43

Researchers try to introduce state-of-art ML methods into the
analysis of molecular properties.44−46 Although the data
collection and training of ML models are challenging, once
the successful ML models are trained, the kerogen molecular
models can be constructed from the experimental data
intelligently without any intervention by researchers. Thus,

Figure 1. Schematic diagram of using ML to construct the kerogen molecular models intelligently. The multi-spectral input form and the matching
ML model are designed to solve the combinatorial explosion problem. Also, 650,000 samples are labeled for the training process. The latent space,
which connects the multi-spectral and molecular models, is established in the trained ML model. Hence, the target structures can be constructed.
The intelligent high-throughput analysis and construction of the target molecules will be carried out in the latent space. Neither manual analysis nor
the trial-and-error process is required. Then, the prediction of kerogen types, maturity, and other mechanochemical properties can be obtained
through further molecular simulations.

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.2c00738
Energy Fuels 2022, 36, 5749−5761

5750

https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00738?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00738?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00738?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c00738?fig=fig1&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c00738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the ML method is the most suitable method to solve the two
inherent shortcomings in the construction of the kerogen
model currently. In 2020, Kang et al. predicted the molecular
skeleton components and types of kerogen by combining ML
with the 13C NMR spectral dataset.47 This work proves the
feasibility of the ML method to predict the kerogen molecular
information intelligently based on the experimental spectra.
This work achieves the intelligent and high-throughput

reverse construction of the kerogen molecular models via the
comprehensive analysis of multi-spectral experimental data
(Figure 1). A sample dataset containing 650,000 groups of 13C
NMR and 1H NMR spectra and the corresponding molecular
labels is established to address this challenge. The spectral
combination method that the ML models can recognize is
proposed, and the predictive capability beyond the input form
of a single spectral type is achieved. The prediction results of
the trained ML model show that the average similarity between
the constructed molecules and the targets is 91.78%. The
prediction accuracy and goodness-of-fit about kerogen
components, types, and maturity indexes are superb and
significantly improved compared to those of the previous ML
models applied to predict the single structural information.
The above results prove that the trained ML model can
address the intelligent high-throughput reverse construction
for kerogen models without the manual analysis of
experimental data. Therefore, this work exhibits the effective-
ness and excellent performance of the ML method to solve the
two disadvantages of traditional molecular construction
methods. We estimate that our research is an essential
exploration of intelligent reverse construction of the kerogen
molecular models from the experimental data and will shorten
the research cycle and tremendously reduce costs in
constructing kerogen models and predicting kerogen proper-
ties.

2. METHODOLOGY AND MODELS
2.1. Combinatorial Explosion of Molecular Struc-

tures. There are several kinds of isomerism because of the
different bonding modes and binding sites for the same
number of atoms, such as chain isomerism, positional
isomerism, functional isomerism, optical isomerism, and so
forth. With the increase of atoms, the number of theoretically
existing structures increases exponentially. This phenomenon
is called combinatorial explosion and is the root of the
inefficiency of traditional techniques. There is no universal way
to calculate the number of isomers yet. We conservatively
estimate the magnitude by using the most superficial functional
groups. Only the position isomerism and the carbon skeleton
are considered. It is assumed that there are two functional
groups whose skeleton is composed of four carbon atoms. Two
binding sites are in one, and three binding sites are in another.
Considering that the molecule is only composed of two
functional groups, each with half, the number of structures that
meet the theoretical hypothesis is

× × = !
[ !]

× ≈ =a
a

C 3 2
( /2)

6 5 5a
a a a a a n/2 /2 /2

2
/4

(1)

where a is the number of functional groups and n is the
number of atoms in the molecule. In fact, the combination of
molecules is much more complicated and has more potential
configurations. More radically, considering that the four
binding sites of the carbon atom are all unique, the number

of possible structures is 4n. Even so, it has not evaluated all the
situations, such as ring formation. Therefore, constructing
molecular structures in reverse is an extraordinarily complex
and challenging problem.

2.2. Kerogen Maturity Indexes. Kerogen maturity is an
essential parameter for evaluating the hydrocarbon generation
potential. In this work, three maturity indicators are selected to
test the accuracy of the trained ML model. The Easy%Ro
assumes that vitrinite reflectance is related to the kerogen’s H/
C and O/C atomic ratio. Also, the calculation formula of Easy
%Ro maturity is given based on a large number of
experiments11

= − −r r%Ro 12exp( 3.2 ) 1.2H/C O/C (2)

where rH/C and rO/C are the ratios of the kerogen component
atoms H/C and O/C, respectively. The MMI is also based on
the kerogen components and is given in a more concise form

=
+ +r r

MMI
1

1 H/C O/C (3)

The thermal evolution experiments indicate that the MMI
positively correlates with vitrinite reflectance.13 Unlike the
above two indexes, the OrbHMI is based on atomic
hybridization. Thus, the OrbHMI is closer to the physical
basis of maturity. Also, the OrbHMI is expressed as

=
− +r r

OrbHMI
1

2.85 1.1 0.1c o (4)

where = +r n n n/( )sp sp spC
C C C

2 2 3 and = +r n n n/( )sp sp spO
O O O

2 2 3 . The

n is the number of hybrid orbitals of atoms, superscript C or O
denotes the carbon or oxygen atom, respectively, and subscript
sp2 or sp3 represents the type of atomic orbital hybridization.14

Thus, the Easy%Ro and MMI are directly related to the
chemical formula, but the OrbHMI is associated with the
structural information. All of the information is contained in
the molecular structural model.

2.3. NMR Spectra. NMR is one of the most effective
methods for analyzing the components and structures of
unknown substances. The formation of the NMR spectra is
due to the vibration frequency shift of the atomic nuclei under
the influence of adjacent functional groups. Resonance occurs
under strong magnetic fields of different frequencies, and then,
the NMR signals are generated. The shift positions of the
NMR spectral peaks reflect the types of functional groups, and
the peak area reflects the number. Especially in the 1H NMR
spectra, the number of functional groups is directly propor-
tional to the integrated value of the NMR peak. The process of
constructing the molecular models is to comprehensively
combine the functional groups according to the various
experimental spectra.48,49 The relation is reflected by the
connection between shift peaks in NMR spectra.50 NMR
spectra of different measured nuclei such as 1H, 11B (boron),
13C, 17O and so forth are commonly used. The research object
of this work is the kerogen organic molecules, and the main
components are C, H, a small amount of O, nitrogen (N), and
sulfur (S). The properties (type, maturity, etc.) of kerogen are
only closely related to the skeleton structure, consisting of C,
H, and O. Thus, 13C NMR and 1H NMR are used for the
analysis and construction.

2.4. Simplified Molecular Input Line Entry System.
The simplified molecular input line entry system (SMILES)
was initiated by Weininger in 1987.51 In this way, the molecule

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.2c00738
Energy Fuels 2022, 36, 5749−5761

5751

pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c00738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


can be written as a single-line string. Generally, the single
bonds and hydrogen atoms are not displayed in SMILES, and
the double and triple bonds are denoted by = and #,
respectively. For example, ethylene can be written as CC.
The benzene molecule can be composed as c1ccccc1, where
the lowercase letters indicate that the atom is aromatic and the
numbers represent the closed-loop position. The linear
representation of molecules also has the International
Chemical Identifier (InChI) form, but InChI is far less legible
than SMILES. Therefore, SMILES is chosen as the tool of
molecular representation. There are many SMILES standards,
and the SMILES characters of the same molecule under
different standards may differ. Thus, the canonical SMILES is
selected to eliminate the impact of nonuniform standards.
Canonical SMILES can establish a one-to-one correspondence
between molecules and their International Union of Pure and
Applied Chemistry (IUPAC) names.
2.5. Molecular Fingerprints and Similarity. The

molecular fingerprints are designed to characterize the
substructures of molecules in the chemical database for
searching. With the expansion of fingerprint types and the
development, the fingerprints are beginning to be used to
analyze the similarity between molecules, predict the molecular
activity and virtual screening, and so forth.52−54 The most
famous fingerprints are the Morgan fingerprints, Molecular
ACCess System (MACCS) key fingerprints, and topological
fingerprints. The Morgan fingerprints are also known as the
circle fingerprints, which are obtained by searching the
molecular substructures with a defined radius r. The
MACCS key fingerprints compare molecular substructures
with the predefined substructural dictionary. If the defined
substructure is contained in the molecule, the value of the
corresponding key will be set as 1; otherwise, it is 0. These
fingerprints are the binary array containing only 0 and 1.
The similarity calculation methods based on molecular

fingerprints include Dice, Tanimoto, Cosine, and so forth.55

The Dice similarity coefficient (SDice) represents the ratio
between the double of the intersection and the union of the
two fingerprints. The calculation method is as follows

=
×
+

S
n

n n
2 AB

A B
Dice

(5)

where nAB means the number of elements of the intersection
between fingerprints A and B. The nA and nB are the total
numbers of elements in fingerprints A and B, respectively.
While the intersection is equal to the union, SDice = 100%, the
two molecules are same; on the contrary, if there is no
intersection between the fingerprints of the two molecules,
SDice = 0, the two molecules are completely different. The Dice
coefficient is proportional to the size of the intersection and is
associated with a clear physical meaning. Therefore, the Dice
coefficient of the Morgan fingerprint (ECFP2) is used to
characterize the similarity between the constructed molecules
and the targets.
The similarity map is drawn by coloring the same and the

different functional groups between molecules based on
fingerprints. The same and the different fragments between
molecules can be displayed in detail and intuitively.56 In the
analysis process of this work, the open-source toolkit RDKit is
used to calculate molecular fingerprints and similarity.57

2.6. ML Model. The ML neural network model is inspired
by how neurons are connected in the human brain. The
intelligent models are established with a self-learning ability by

combining computer science, probability statistics, optimiza-
tion theory, and so forth.58 Generally, the model includes four
parts: feedforward neural network, loss function, optimization
method,59 and backpropagation algorithm.60

The recurrent neural network (RNN) models are designed
to solve the sequence analysis problems.61 The RNN models
are mainly used in point-to-sequence,62 sequence-to-point,63

and sequence-to-sequence forms.64,65 In this study, the
structural construction through NMR multi-spectra is a
sequence-to-sequence problem essentially. The reconstructed
NMR spectra in this study and the canonical SMILES can be
seen as the sequence formed according to specific rules.
Therefore, referring to the natural language process model,
which is created to solve the sequence-to-sequence problem,
our ML model is also designed in two parts: an encoder and a
decoder. The encoder is built based on the residual neural
network (ResNet).66−68 The multi-NMR spectral data are
abstracted and encoded into a high-dimensional learning
molecular fingerprint,69 which contains 512 elements with
values between −1 and 1. The ResNet is developed based on
the convolutional neural network (CNN).70,71 It improves the
efficiency of information dissemination by connecting different
convolutional layers directly. Following this, the performance
of deep convolutional layers is improved. In the ResNet, the
ResNet unit can be expressed as

σ= [ + ]+A A A Wg f( ) ( , )l l l l1
(6)

where Al represents the matrix value of the natural network
nodes in layer l; the g(Al) is the direct connect item, where the
input information passes through several layers of the network
to the output directly; the f(Al,Wl) is the trainable mapping
function, in which the target features are extracted; and σ(·) is
the nonlinear activation function. From eq 6, the difference
between the ResNet and the ordinary neural network is that
the ResNet adds a direct connection path that can pass the
input information into the output position directly. In this
work, the rectified linear unit activation function is used, h(Al)
≡ Al. Then, eq 6 can be simplified to Al+1 = Al + f(Al,Wl) in the
efficient nodes. Finally, the trainable mapping function is

= −+A W A Af ( , )l l l l1
(7)

and eq 7 shows that the prediction object is the residual
between the predicted value and the input value. This is also
the origin of the ResNet name. For the residual unit connected
across neural network layers (n) directly, the output is

∑= ++

=

+ −

A A A Wf ( , )l n l

i l

l n
i i

1

(8)

according to eq 8, in the ML backpropagation algorithm, the
gradient of the loss function L is

l
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A Wf1 ( , )l l n
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i l

l n
i i

1

(9)

The mean absolute error (MAE) loss function is selected to
evaluate the distance between the predicted value ypred and the
target ytrue

= | − |y yL
n

1
MAE

batch

true pred

(10)
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where nbatch represents the batch size, which is the number of
samples put into the ML model at each time. During the
training, the value ∂[∑i=l

l+n−1f(Ai,Wi)]/∂Al will not always be
−1, which ensures that the gradient of the deep neural network
always exists and avoids the problem of gradient disappearance.
At the beginning of constructing the ML model, the encoders
with varying scales of the fully connected neural network,
CNN, and ResNet are established. The test results prove that
the ResNet with eight residual layers combined with one fully
connected layer obtains the best performance.
The decoder implements transfer learning based on the

pretrained model of Winter et al.72 The encoded learning
molecular fingerprint is translated into the corresponding
SMILES formula in the RNN decoder. The RNN is designed
to process time-series data with specific arrangement rules. The
calculation process of the RNN can be expressed as

σ= + +

̂ = +
−h Wh Ux b

y Vh c

( )

softmax( )

t t t t

t t t

1

(11)

where ht is the hidden nodes of the RNN; U, V, and W
represent the weight matrix; b and c represent the bias
parameters; yt̂ is the predicted value of step t; and the softmax
function (softmax = exp(ai)/∑exp(ak)) reconstructs the
output of the neural network as a probability distribution
between 0 and 1 with a sum of 1. The negative log likelihood is
used as the loss function L* in the decoder model to measure
the distance between the target sequence y and the predicted
sequence ŷ

∑* ̂ = − [ ̂ | ̂ ̂ ]
τ

=
−L y y P y P y y y x x( , ) ( )ln ( , ..., , , ..., )

t
t t t T

1
1 1 1

(12)

During the RNN training process, it is required to take the
gradient of the loss function relative to the trainable
parameters (W, U, V, b, and c) and adjust the parameters
according to the optimization strategy. Combining eqs 11 and
12, the gradient of the loss function to matrix W is

i
k
jjjjj

y
{
zzzzz∑ ∑∂ *

∂
=

∂
∂

∂
∂

τ

= =

L
W

L
Z

Z
Wt k

t
t

k

k

1 1 (13)

where Zk = Whk−1 + Uxk + bk represents the linear output of
the neural network nodes. Then, the error term of the loss
function is obtained as

δ δσ=
∂
∂

=
∂

∂
∂
∂

∂
∂

= [ ′ ]
+

+
+

L
Z

L
Z

Z
h

h
Z

Z Wdiag ( )t k
t

k

t

k

k

k

k

k
k t k,

1

1 T
, 1

(14)

Then, the error term of previous layer nodes can be calculated
using the next layer, and the information is propagated
backward from the back to the front. This is the principle of
the RNN backpropagation algorithm. In addition, ∂Zk/∂wij =
hk−1. Finally, the ∂L*/∂W is obtained as

∑ ∑ δ∂ *
∂

=
τ

= =
−

L
W

h( )
t k

t

t k k
1 1

, 1
T

(15)

and in the same way, the gradients of the other parameters are
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then, the loss gradient information in the RNN can be
transmitted backward to update the training iteration
parameters.
The Adam optimizer is used during the training process and

sets the initial learning rate to 5 × 10−5. The ReduceLROn-
Plateau strategy of PyTorch73 is adopted for the learning rate,
which is dropped to 0.7 times of the current learning rate for
each adjusting step. The early stopping and batch regulariza-
tion strategies are adopted to prevent overfitting during the
training process. The ML model is built on two open-source
artificial intelligence frameworks: PyTorch and TensorFlow.74

In the evaluation of kerogen components, types, and maturity
indexes, the prediction accuracy Pacc and coefficient of
determination R2 are chosen to express the degree of fit
between the predicted value and the actual value

=
| − ′|

×P
y y

y
100%i i

i
acc

(17)

= −
∑ − ′

∑ − ̅
R

y y

y y
1

( )

( )
i i i

i i i

2
2

2
(18)

where yi and yi′denote the true value and the prediction value,
respectively, and y̅ is the mean value of the actual value. The
range of R2 is 0 to 1, and the closer the R2 value is to 1, the
better the performance of the model is.

3. RESULTS AND DISCUSSION
3.1. ML Datasets. Establishing qualified datasets is

prerequisite for ML methods. All the target features need to
be contained in the training dataset and distributed reasonably.
In this way, the generalization ability of target features can be
learned by the ML model during the iterative training. Tens of
thousands of qualified samples are often required for the ML
models. It is challenging to collect massive kerogen molecular
samples as the training dataset. However, according to the
characteristics of the ML model, the chemical bonding rules,
which are common to all molecules, are learned by the ML
model during the training process. The ML model can obtain
the predictive ability of the kerogen molecular model through
the training of the other organic molecules. Thus, the sample
molecules are derived from the open-source molecular
database ChemPub,75 historical paper,4,32,50 and experi-
ments.34,47 The NMR spectra are calculated using software
MestRenova 14.2.76 The 650,000 groups of 13C NMR and 1H
NMR spectra and their corresponding molecular SMILES
structural labels are marked in this study to improve the
generalization ability as much as possible. Also, the NMR
spectra automatic labeling algorithm, in which the NMR
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spectra of the molecules can be labeled automatically, is
compiled. Thus, it is possible to label massive samples for the
training of the ML model. Since there is no practical way to
convert the 2D spectra into the form that can be input into the

ML model, we creatively standardize the 13C NMR spectrum
and 1H NMR spectrum into a one-dimensional (1D) array on
the labeling algorithm through fitting and equally spaced
sampling.47 The horizontal axis, which is the shift position of

Table 1. All-Atom-Scale Information of Molecules in the Sample Datasets

name number average variance minimum maximum median

total dataset 650,000 41.35 14.05 5 119 39
training dataset 550,000 41.35 14.06 5 119 39
validation dataset 50,000 41.33 14.00 5 107 39
test dataset 50,000 41.34 14.00 6 108 39

Table 2. Number Information of Carbon and Oxygen Atoms in the Sample Datasets

name number average variance minimum maximum median

total dataset 650,000 20.14 7.06 2 46 19
training dataset 550,000 20.14 7.06 2 46 19
validation dataset 50,000 20.17 7.03 4 46 19
test dataset 50,000 20.13 7.05 4 44 19

Figure 2. Distribution of the total molecular scale and C, O skeleton scale in the training, validation, and test datasets. (a) Molecular scale of
datasets. The molecular scale is the number of all atoms. (b) C, O scale of datasets. The C, O skeleton scale, which is the measure of SMILES,
representes only the number of C and O in the molecule.

Figure 3. (a) 13C NMR and 1H NMR spectra. (b) 2D reconstruction form of the NMR spectra. (c) Visual form of the combined multi-spectra.
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the NMR peaks, is implied in the 1D array index. A total of
4096 sampling points are set during conversion in this work,
and the horizontal axes of 13C NMR and 1H NMR spectra
range from −20 ppm to 230 ppm and −2 ppm to 10 ppm,
respectively.
As shown in Table 1, the number of atoms in the sample

molecules labeled in this work is between 5 and 119. The
median atomic scale of the molecules is 39, and the average is
41.35. In the SMILES, the H atoms are implied to be
coordinating the molecules and do not appear directly. The
complexity of the molecular SMILES is only affected by the
number of the C and O atoms and their combination forms.
Thus, the number of C and O atoms in the sample molecules is
counted. As shown in Table 2, the number of C and O atoms is
between 2 and 46, the average number of atoms is 20.14, and
the median number is 19.
The total 650,000 samples are randomly divided into

training, validation, and test datasets according to
550,000:50,000:50,000 (Tables 1 and 2). The training dataset
is made for training the ML models. The validation dataset is
responsible for adjusting the hyperparameter. The test dataset
is built to verify the generalization ability of the trained model.
It should be pointed out that no intersection exists among the
three datasets. In order to ensure the uniformity of the feature
distribution, both in terms of the molecular atom scale and the
C and O atom scale, the average, variance, and median
parameters of the three datasets are almost the same. Figure
2a,b show the molecular proportions of different scales in the
training, validation, and test datasets in detail to illustrate the
distribution between the datasets. The same distribution of the
molecular scale and C, O skeleton atoms proves the
effectiveness of the datasets. Also, the scales of the molecular
C, O skeleton in the datasets are mainly concentrated between
10 and 30 (the full-atom scale of molecules is 20−60), and
only a few of the samples are between 2−10 and 30−50.
3.2. Preprocessing of NMR Spectra. The origin NMR

spectra (Figure 3a) are processed as a 1D matrix during the
sample labeling, and the horizontal axis information is implicit
in the index. The 1D data are generally processed using the 1D
convolution technique in the ML neural network. However,
limited by the perceptual domain of the 1D convolutional
layer, the contact information between the peaks of the NMR
spectra cannot be obtained by the shallow network layers.
Then, part of the implicit information will be lost, which is
harmful for the construction of the structures. Because of this,
a 2D method that aims to fold the NMR spectral sequence is
designed. As displayed in Figure 3b, the NMR spectral features
of a certain distance away will be extracted simultaneously

during the training process. The connection between the peaks
will also be reflected in the shallow layers.
In order to comprehensively analyze the multi-spectra, we

also design a combination of spectral input strategies (Figure
3c). Each reconstructed 2D spectrum will occupy one single
channel of the combined multi-spectrum, and the combined
NMR spectrum will be entered into the neural network model.
Then, the molecule can be predicted by the combined
spectrum of its 13C and 1H NMR spectra. The test results
show that the combined input can significantly improve the
performance of the ML model (the details are discussed in
Section 3.3). Not only is this method suitable for 13C and 1H
NMR spectra, but also the other spectra that are used to
characterize the molecular structures, such as XRD, XPS, and
infrared spectra, may be combined to train the ML models.
Also, the interfaces are reserved in the model, which can be
used for other spectra directly.

3.3. Impact of the Training Sample Number and
Multi-Spectra. The ML models are trained by using the
training datasets containing 10,000, 20,000, 40,000, 80,000,
120,000, 240,000, and 500,000 samples, respectively. Also, the
influence of samples number during the molecular con-
struction is explained in detail. Figure 4a exhibits the validation
results of the trained models on the same validation dataset.
The relationship between the validation error and the training
sample number is

= − +f x x( ) 0.079lg( ) 0.563 (19)

where x is the number of samples included in the training
dataset and f(x) is the validation error. The value of R2 is
0.990, which proves the extremely strong correlation between
the fitted formula and the original data. The validation error is
proportional to the logarithm of the sample number in the
training dataset. Therefore, the training samples will increase
exponentially, while the same improvement is obtained using
the ML model. The relationship between the training sample
number and the validation error is described in eq 19. When
the number of training samples reaches about 1.33 × 107

groups, the validation error will be close to zero. In fact, the
generalization ability will eventually stabilize with the samples
improving, and it is impossible to develop according to the
linear relationship expressed by eq 19 indefinitely. Obtaining
such an astronomical number of qualified molecules and
labeling them are considerable workload. Therefore, it is more
feasible to improve the performance by optimizing the ML
model itself than by adding more samples while the
generalization ability reaches a certain accuracy, especially in
the fields where collecting samples is complex.

Figure 4. Influence of the model generalization error due to the number of samples in the training dataset. (a) Change of the validation error with
the training sample number. (b,c) Constructed sample number proportion histogram and the cumulative curve of different similarities in the
models that are trained using 1H NMR, 13C NMR, and the combined NMR spectra.
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The advantages of the combined input form of spectra over
the single input are introduced in Figure 4b,c. The ML models
are trained using a single 1H NMR spectral training dataset, a
single 13C NMR spectral training dataset, and a combined form
of 13C NMR and 1H NMR spectral training dataset,
respectively. The same 500,000 sample molecules are
contained in the three training datasets during the training
process. All the three trained models are validated in the same
50,000 group samples. There is no intersection between the
training dataset and the validation dataset. Thus, all influencing
factors except the input form of spectra are excluded.
The validation results are shown in Figure 4b. The

construction accuracy of the three input forms shows the
same distribution trend. The proportion of the sample number
gradually increases with the similarity degree, and the
maximum value is reached at the similarity SDice = 100%.
The result means that the single 1H NMR or 13C NMR
spectral dataset can enable the ML model to obtain the
molecular construction ability. Even so, the single input form
accuracy is not as good as that of the multi-spectral input form,
especially the single 1H NMR spectrum. The construction
accuracy is much lower than that of the multi-spectral input
form. It can be clearly seen from Figure 4c that the molecules
predicted by the multi-spectral trained model of SDice < 80%
are significantly less than that by the single input model.
However, the case for SDice > 80% is the opposite. Hence, the
effectiveness of the multi-spectral input form and the trained
model is proved. The trained ML model can comprehensively
analyze the combined spectra and obtain the predictive ability
that is difficult to be achieved with a single spectral type. In

addition to NMR spectra, the XPS spectra, XRD spectra, and
so forth can also be used to characterize the structures. The
different types of spectra usually indicate unique molecular
characteristics. Consequently, increasing the number of
spectral types is an effective way to improve the performance
of the ML model where the number of samples is insufficient.
The spectral reconstruction method is entirely adaptable to
these 2D spectra. Compared with the previous single-input
model, our model has more outstanding expansion capabilities
and potential.

3.4. Training Process of the Optimal ML Model. The
training process of the optimal ML model with 13C NMR and
1H NMR multi-spectra is shown in Figure 5. The early
stopping strategy is set during the training process, and a total
of 151 iterative epochs are carried out (Figure 5a). The
optimal model is achieved at the 136th epoch. The
corresponding training error is 0.082, and the validation
error is 0.108. The element value of learning a molecular
fingerprint is between −1 and 1. According to the definition of
the MAE loss function (eq 10), the validation error of the
model for each element is about 5.4%. The training error
decreases with epochs in subsequent training iterations, but the
validation error oscillates at 0.109. The ML model has not
achieved a better performance during the following training.
Figure 5b shows the molecular percentage of the average

similarity and the complete accuracy in the test dataset during
the training process. In the first 15 epochs, the performance of
the training model is rapidly improved. The validation error is
reduced from 0.227 to 0.139, and the average similarity is
increased from 64.96% to 86.56%. The proportion of

Figure 5. (a) Change of the training error and validation error during the training process. (b) Average similarity and the entirely matched sample
(SDice = 100%) percentage with epochs.

Figure 6. Evolution of the target molecular sample [SMILES: COc1ccc(C2CC(O)C3C(C2)OC2C(C(O)CC(c4ccc(OC)cc4)C2)-
C3c2ccc(OC)c(OC)c2)cc1] at epoch = 1, 7, 23, 40, 70, and 136.
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molecules, whose predictions are exact, is increased sharply
from 1.24% to 34.40%. Then, the training enters the plateau
period, and the performance is improved slowly. In the last
16−151 epochs of training, the validation error is only reduced
by 0.031 to 0.108. Correspondingly, the average similarity
increases to 91.78%, and the proportion of entirely accurate
molecules increases to 54.78%.
The molecular model evolution process is exhibited in

Figure 6 to explain the model performance changes during
training. The matched functional group distribution between
the constructed molecules at epoch = 1, 7, 23, 40, 70, and 136
and the target are exhibited detailly. The similarities (SDice) are
65.38%, 76.54%, 80.00%, 94.05%, 97.62%, and 100%,
respectively. With the accuracy of the training models
increasing, the number of identical functional groups (marked
green) between the constructed molecule and the target
structure increases. Also, the different functional groups
(purple area) reduce correspondingly. The predicted structures
evolve in the direction of the target, and finally, the molecules
that are completely consistent with the target are constructed.
Figure 6 shows that only a few functional groups are different
between the molecular structures with the similarity of over
80.00% and the target. Also, only individual characters are
shifted or missing in the SMILES formula. The reason is that
the completely accurate canonical SMILES expression is
unique, and the syntax is rigorous. As a result, the performance
at the level of 80% average similarity can be quickly achieved,
but it is challenging to improve further. By recalling the
training process of the 11th to 136th epochs, the results exhibit
that the similarity of constructed molecules is maintained to be
in the range from 80% to 100% until they match the target
completely. These intermediate structures only have individual
functional groups that do not match the target molecule.
Hence, the difficulty of constructing molecules based on
experimental data is illustrated further.
3.5. Construction Accuracy of the Trained Model.

Although the generalization ability can be indirectly reflected
by the validation error, it cannot explain the exact situation of
the constructed molecular structures in the test dataset.
Therefore, the percentage information of constructed mole-
cules with different similarities is counted in Figure 7. The

proportion of the constructed molecules increases with the
similarity, and the maximum is reached at SDice = 100%. The
molecules with the similarity of SDice < 60% account for only
2.14%. Compared with this, the proportion of molecules with
the similarity of SDice > 80% reaches 82.51%, and the complete
accurate molecules account for 54.78%. Consequently, these

parameters exhibit the superb generalization ability of the
trained model.
Due to the combinatorial explosion, the difficulty of

constructing molecules for different scales varies greatly. Figure
8a,b show the construction accuracy distribution of the trained
model for the test samples in different C, O scales. It can be
seen from Figure 8a that the molecular similarity with the C, O
skeleton scale smaller than 30 is distributed in the range of
90% < SDice ≤ 100%, and the similarity of 30−50 is distributed
in the range of 60% < SDice ≤ 100%. Figure 8b shows the
proportion of the construction accuracy with the different
scales in the test dataset. At the accuracy level of the similarity
SDice > 80%, although the proportion of constructed molecules
decreases as the molecular skeleton scale increases, the overall
degree of decline is not significant. The ratio of up-to-standard
molecules with the skeleton scale less than 30 is between
78.4% and 86.3%, and the ranges 30−40 and 40−50 can also
reach 73.8% and 62.0%, respectively. Unlike the case of SDice >
80%, the proportion of wholly matched molecules (SDice =
100%) gradually decreases with the increase of the C, O
skeleton scale. On the scale of 0−10, the ratio of completely
accurate molecules is achieved at 70.0%. However, while the
skeleton scale expands to 40−50, only 9.0% is left.
Combining with the molecular scale distribution of the

training dataset and validation dataset in Figure 2, the samples
with the C, O skeleton scale distributed between 10 and 40 are
the highest, accounting for about 96.1%. The skeleton scale in
the range of 0−10 is 2.9% and that in the range of 40−50 is
only 1.0%. Although a few samples are in ranges 0−10 and
40−50, the construction ability, which is analogous to that of
10−40 at the accuracy level of SDice > 80%, is still obtained.
This shows that the fine analytical capabilities for the
functional groups in the NMR spectral peaks are learned
from the training dataset. The learned ability can be accurately
applied to other unknown molecules. At the accuracy level of
entirely accurate, the predictive ability gradually decreases with
the skeleton scale, indicating that the predictive ability for the
large-scale molecules is greatly affected by the explosive
increase in the construction complexity caused by the
expansion of the molecular scale. The correlation with the
proportion of the corresponding scale samples in the training
dataset is weaker. After all, the skeleton scales from 10 to 30
account for the most samples. The proportion of molecules
whose constructed structures are completely accurate still
decreases with the scale increasing. The conclusion points out
that the construction ability of the larger molecules can be
learned from the training dataset where a sufficient amount of
the smaller molecules is included. Increasing the number of
small-molecule samples can make up for the difficulty of
obtaining the large-molecule samples to a certain extent.

3.6. Prediction Accuracy of Kerogen Parameters. The
kerogen types directly depend on the structure. Three
thousand groups of kerogen fragment samples are recon-
structed to further verify the effectiveness of the trained ML
model. Part of these kerogen samples are obtained from the
pyrolysis products of Erdos and Songliao kerogen models,34,47

and others are the fragments of the published models.32,33,50

The prediction accuracy of C, H, and O skeleton components
is shown in Figure 9a−c. The accuracies of C, H, and O can
reach 99.1%, 98.1%, and 97.1%, respectively, and the R2 values
are 0.990, 0.970, and 0.957, respectively, which proves the
excellent goodness-of-fit between the predicted value and the
true value. Compared with ref 47 (C: 96.1%, H: 94.8%, and O:

Figure 7. Prediction similarity distribution of the test dataset.
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81.7%), the prediction accuracy of each component is
significantly improved. The high-precision prediction of the
components makes the kerogen types more accurate. The H/C
and O/C atomic ratios are calculated in Figure 9d,e based on
the skeleton components, and then, the prediction accuracy of
kerogen types is analyzed (Figure 9f). The prediction accuracy
of Type I kerogen is 95.8% (increase by 5.8%), of Type II is

98.5% (increase by 9.5%), and of Type III is 94.8% (increase
by 5.4%).
Maturity is another important inherent parameter of

kerogen. The %Ro and MMI parameters can also be calculated
from the component information. These two indexes are
analyzed in Figure 10a,b. The prediction accuracy of %Ro
maturity indexes is 92.4%, with an R2 of 0.947, and the MMI’s
accuracy is 99.4%, with an R2 of 0.949. Unlike %Ro and the

Figure 8. (a) Violin figure of similarity distribution with the C, O skeleton scale. The red area represents the probability density distribution. The
diamond-shaped point represents the median value, the thick straight line is the 25%−75% distribution interval of samples, and the thin straight line
is the 5%−95% distribution interval of samples. (b) Percentage of samples with the C, O skeleton scale.

Figure 9. Prediction accuracy of kerogen skeleton components and types.

Figure 10. Prediction accuracy of kerogen maturity indexes.
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MMI, the OrbHMI is based on the hybrid orbital of the
kerogen structure. It is directly related to the molecular bond
and is closer to the physical nature of kerogen cracking to oil/
gas. The hybrid orbital information can also be obtained from
the molecular structure. Figure 10c shows the accuracy of the
constructed molecules to predict the OrbHMI maturity. The
accuracy is 99.6%, and R2 is 0.976. This result is significantly
higher than that in ref 14: Pacc = 95.1% and R2 = 0.6837. The
results of kerogen components, types, and maturity prove that
the molecular structures constructed using the ML method can
exhibit excellent performance for predicting the kerogen
properties. Also, the prediction accuracy is also better than
that of the previous ML models, which are applied to predict
the single structural information.
Limited by the training dataset, our method can only exhibit

excellent performance in the molecular model where the
skeleton atom number is less than 50 (about 600 Da). The
molecular scale is about 1/4−1/8 of the commonly used
kerogen monomer molecules. However, it is believed that the
ML method is the most promising method to completely solve
the complex problems in kerogen model construction by far,
and our work has laid a solid foundation for the construction of
larger-scale models in the future.

4. CONCLUSIONS
In summary, we propose an intelligent high-throughput reverse
construction method of kerogen molecular models. The
kerogen models can be constructed using the trained ML
model with combined experimental data directly. Neither the
manual analysis of experimental spectra nor the enormous
trial-and-error process is required. Thus, this study will save
much time and materials in the fields involving the reverse
construction of molecules and accelerate the kerogen ripening
mechanism research.
The 2D spectral combination input method is designed in

this study. The different types of spectra can be comprehen-
sively analyzed, and the method is verified using the 1H NMR
and 13C NMR spectra. The performance beyond that of a
single spectral input is achieved by the ML model trained with
multi-spectra. Therefore, the more robust expansion capa-
bilities and higher development potential are contained in our
ML model. Combined with the multi-spectral input method,
we annotate a sample dataset containing 650,000 groups of 1H
NMR, 13C NMR, and their corresponding labels independ-
ently. The ML model is trained by 550,000 group samples of
the training dataset and 50,000 group samples of the validation
dataset. The test results, in which 50,000 molecular models are
constructed reversely, show that the average similarity is
91.78%, and the accuracy of the trained model is 82.51% with a
similarity of SDice > 80% and 54.78% with completely matched
similarity (SDice = 100%). Finally, 3000 kerogen molecules are
used to verify the prediction accuracy and the effectiveness of
the trained model. The results exhibit that the prediction
accuracy of kerogen components, types, and maturity indexes
can be achieved at 92.4%−99.6%, and the R2 coefficients are all
over 0.934. The prediction accuracy and goodness-of-fit about
kerogen components, types, and maturity indexes are superb
and significantly improved than the previous ML models
applied to predict the single structural information. Thus, the
results prove the effectiveness and superb comprehensive
performance of the ML method.
Overall, this work realizes the comprehensive analysis of

different types of spectra, and excellent predictive ability is

achieved. Our work proves the feasibility of constructing the
kerogen structural models based on the experimental spectra
using ML methods reversely. Although the constructed
molecular scale is less than the commonly used kerogen
monomer molecules, we believe that this research is an
essential exploration of reverse construction of the kerogen
molecular models from the experimental data and will shorten
the research cycle and tremendously reduce costs in
constructing kerogen models and predicting kerogen proper-
ties.
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