
International Journal of Engineering Science 178 (2022) 103730

A
0

T
e
W
S
S

A

K
I
T
I
C
S

1

o
&
R
u
f
2
Z

h
R

Contents lists available at ScienceDirect

International Journal of Engineering Science

journal homepage: www.elsevier.com/locate/ijengsci

hermo-mechanically coupled constitutive equations for soft
lastomers with arbitrary initial states
eiting Chen, Ya-Pu Zhao ∗

tate Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
chool of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

R T I C L E I N F O

eywords:
nitial stress
hermal effect
nternal constraint
onstitutive equation
oft elastomer

A B S T R A C T

It is a long-standing challenge to predict the thermo-mechanically coupled behaviors of
initially stressed soft elastomers since most of the existing theories ignore the influences of
thermoelastic deformation histories. The constitutive equations may be completely different
even for the same initial stresses, if the latter is originated from isothermal and adiabatic
deformations, respectively. In this paper, we establish a general framework for deriving
constitutive equations for soft elastomers with arbitrary initial states. Instead of using the
virtual stress-free configuration, we define the natural state by imposing the stress-free condition
and the natural temperature condition. The derivations are based on a new proposed intrinsic
embedding method of initial states, in which an additive decomposition of material strains is
employed and the material coordinates can be properly defined. Once the natural-state-based
free energy density and internal constraint are specified, the required constitutive equations
can be accordingly obtained. We then derive the explicit formulations of the Cauchy stress and
the entropy by linearization. On this basis, the embedding of initial states in Saint Venant–
Kirchhoff, Blatz–Ko, Mooney–Rivlin, Neo-Hookean, Gent, and exponential form elastomers are
detailed discussed. The influences brought by the initial stresses, the initial temperature, and
the internal constraint on the elastic coefficients are analyzed separately. The new proposed
constitutive equations show quantitative agreement with the classical theories under isothermal
circumstances and fill a theoretical blank in this field under non-isothermal circumstances. Our
approaches significantly improve the current constitutive theory of soft materials and may shed
some light on the theoretical modeling of multi-field coupling problems.

. Introduction

Soft materials including rubbers, foams, gels, living matter, granular matter, and organic matter, have received a wide range
f applications. From traditional rubber-like products (Beatty, 1987) to modern soft robots (Martinez, Glavan, Keplinger, Oyetibo,
Whitesides, 2014), electronics and transducers (Bustamante, Shariff, & Hossain, 2021; Carpi et al., 2015; Kim, Ghaffari, Lu, &

ogers, 2012; Rogers, Someya, & Huang, 2010), biomedical modeling (Gao, Li, Wang, & Feng, 2021; Yin, Li, & Feng, 2021), and
nconventional energies (Wang, Huang, Gao, & Zhao, 2021; Wang, Huang, Lin, & Zhao, 2019; Wang & Zhao, 2020). The first and
oremost problem is to accurately describe the mechanical responses of these materials (Anssari-Benam, Bucchi, & Saccomandi,
021; Boyce & Arruda, 2000; Destrade, Saccomandi, & Sgura, 2017; Marckmann & Verron, 2006; Signorini, 1961; Truesdell, 1956;
hao, 2018). Undoubtedly, hyperelastic constitutive relations are the simplest and most prevalent ones, which requires only the
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specification of strain energies and internal constraints. To establish the corresponding theoretical formulations which agree with the
experimental results, most of the existing constitutive models employ the stress-free hypothesis of reference configurations (Agoras,
Lopez-Pamies, & Ponte Castañeda, 2009; Arruda & Boyce, 1993; Beatty, 2003; Bechir, Chevalier, Chaouche, & Boufala, 2006; Blatz
& Ko, 1962; Dal, Açıkgöz, & Badienia, 2021; Gent, 1996; Hart-Smith, 1966; James, Green, & Simpson, 1975; Kachanov, 1992; Külcü,
2020; Lopez-pamies, 2010; Mooney, 1940; Ogden, 1972; Pucci & Saccomandi, 2002; Rajagopal & Saccomandi, 2016; Rivlin, 1948;
Shariff, 2000; Treloar, 1943; Xiang et al., 2018; Yeoh, 1990). These models have become the mainstream of mechanical analysis of
soft materials, for physical consistency and practicality.

Nonetheless, few materials undertake no initial stress (which reduces to residual stress when no initial traction is exerted).
eaving the most common gravity aside, initial stresses can be induced by non-uniform inelastic deformations, phase changes,
urface modifications, heating or cooling, chemical reactions, and even geological movements (Chen & Eberth, 2012; Chuong &
ung, 1983; Cowin, 2006; Eskandari & Kuhl, 2015; Heidbach et al., 2018; Hosford, 2010; Stylianopoulos et al., 2012; Withers &
hadeshia, 2001b; Zang & Stephansson, 2010). These desirable or undesirable initial stresses have notable effects on the mechanical
ehaviors of soft materials, such as fatigue strength, fracture toughness, structure stability, crack morphology, wear, and corrosion
James, 2011; Masubuchi, 1980; Severson & Assadi, 2013; Shen & Zhao, 2018; Sun, Shen, & Zhao, 2019; Suo, Yang, & Shen, 2015;
otten, Howes, & Inoue, 2002; Wang, Zhao, & Huang, 2010; Webster & Ezeilo, 2001). They also serve some unique functions, for
xample, maintaining internal mechanical conditions, influencing the morphogenesis and growth rate of bio-tissues, and inducing
uckling during evaporation (Ball, 2004; Ben-Amar & Goriely, 2005; Chuong & Fung, 1986; Fung, 1991; Holzapfel, Gasser, & Ogden,
000; Li, Cao, Feng, & Gao, 2011; Merodio & Ogden, 2016; Nam, Park, & Ko, 2012; Taber, 1998; Taber & Humphrey, 2001; Wang
t al., 2014). Because of this, the classical hyperelastic models are no longer appropriate. Proposing new constitutive relations that
he influences of initial stresses are included becomes the center of attention.

The magnitude and distribution of initial stresses can be obtained from various destructive or non-destructive measurements
Brinksmeier et al., 1982; Greco, Sgambitterra, & Furgiuele, 2021; Hoger, 1985, 1986; Huang, Liu, & Xie, 2013; Rossini, Dassisti,
enyounis, & Olabi, 2012; Schajer, 2013; Withers & Bhadeshia, 2001a). Thus one only needs to embed the given initial stress 𝝈0

in the strain energy of soft elastomers. In this regard, there are three main embedding methods. The first approach is based on the
theory of representations for tensor functions (Zheng, 1994), the strain energies therein are presupposed to be the functions of both
strains and the given initial stresses, while the latter just act as additional variables (Agosti, Gower, & Ciarletta, 2018; Ciarletta,
Destrade, & Gower, 2016; Ciarletta, Destrade, Gower, & Taffetani, 2016; Hoger, 1993a, 1993b; Joshi & Walton, 2013; Merodio,
Ogden, & Rodriguez, 2013; Ogden & Singh, 2011; Shams, Destrade, & Ogden, 2011). The specific form of the strain energy is
expressed as

𝑊 = 𝑊 (𝑭 e,𝝈0), (1.1)

here 𝑭 e is the subsequent deformation gradient. One can construct various combined invariants of 𝑭 e and 𝝈0 according to the
ehaved material symmetry (Spencer, 1971), and then formulate the corresponding strain energy. The advantage of this approach
s that it requires no information about the origin of the given initial stresses, thus can be applied to complex situations.

The second approach is by considering the implicit constitutive theory proposed by Rajagopal and co-workers (Bustamante
Rajagopal, 2010, 2015a, 2015b, 2018; Rajagopal, 2003, 2007, 2010, 2011, 2015; Rajagopal & Saravanan, 2012; Rajagopal &

rinivasa, 2007, 2009). Different from the classical forms of constitutive equations of Cauchy elasticity, 𝑭 e here are given as the
xplicit functions of the Cauchy stress 𝝈, but not the other way round, i.e.,

𝑭 e = H(𝝈). (1.2)

y this means, it is simpler and more convenient for embedding the given initial stresses, since the only additional condition that
eeds to be satisfied is that when the Cauchy stresses are equal to the initial stresses, the corresponding deformation gradients
educe to identity, namely, H(𝝈0) = 𝑰 . This is essentially an inverse problem in classical Cauchy elasticity.

It is noteworthy that the above two approaches require extra simulations and experiments to determine the presupposed material
oefficients therein, thus, in general, the explicit forms of the functional expressions of constitutive relations remain unknown. To
erive explicit constitutive equations that are convenient for direct applications, the third approach has appeared, which aims to
odel the whole process that produces the initial stresses (Chen & Hoger, 2000; Fung, 1990; Guillou & Ogden, 2006; Humphrey &
ajagopal, 2002; Lubarda & Hoger, 2002; Rajagopal & Srinivasa, 1998; Volokh, 2006). In particular, if one knows only the strain
nergies for initially stress-free hyperelastic materials, the given initial stresses can be properly embedded by employing the method
f multiplicative decomposition of deformation gradients (Ambrosi et al., 2011; Balbi, Kuhl, & Ciarletta, 2015; Du & Lü, 2017; Du,
ü, Chen, & Destrade, 2018; Holzapfel, 2000; Lematre, Feuillard, Le Clézio, & Lethiecq, 2006; Menzel & Kuhl, 2012; Rodriguez,
oger, & Mcculloch, 1994; Skalak, Zargaryan, Jain, Netti, & Hoger, 1996; Wang, Zhang, & Chen, 2017). That is, according to

𝑭 0 = 𝑭 0(𝝈0), 𝑊 = 𝑊 (𝑭 ), 𝑭 = 𝑭 e𝑭 0, (1.3)

he initial-stresses-embedded strain energy can be derived as

𝑊 (𝑭 e,𝝈0) = 𝑊 (𝑭 e𝑭 0(𝝈0)), (1.4)

here 𝑭 ,𝑭 0 are the total and the initial deformation gradient, respectively. Although the initial stresses are formulated by the
rescribed strain energy, it does not imply that the former is a result of prior elastic deformation, since the corresponding initial
2

eformation gradient 𝑭 0 may not satisfy the compatibility condition (Hoger, 1997). The latter leads to the definition of virtual
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stress-free configuration (Johnson & Hoger, 1993, 1995, 1998), which is the central concept in the whole theory. This approach is
practical and concise but powerful enough to accurately predict the mechanical behaviors of soft elastomers with residual stresses.

However, when trying to further apply the multiplicative-decomposition-based approach to more general situations, some
inherent shortcomings in the mathematical construction of the virtual stress-free configuration gradually are exposed. As Johnson
and Hoger have indicated, it is essentially an infinite set of discrete points and need not be determined explicitly or achievable
experimentally. Such a discontinuous concept can provide convenience for the constitutive derivation, but create a dilemma for
further employing the continuum mechanics. Namely, if the elastomer is naturally inhomogeneous, i.e., 𝑊 (𝑭 ,𝑿0), the strain energy

ill explicitly be dependent on the natural material coordinates 𝑿0, which cannot be determined by the approach. To be specific,
uppose 𝒙,𝑿 are the current and the reference material coordinates, then from

𝜕𝒙
𝜕𝑿0

= 𝑭 , 𝜕𝒙
𝜕𝑿

= 𝑭 e,
𝜕𝑿
𝜕𝑿0

= 𝑭 0, (1.5)

one finds that the following Pfaff equation

d𝑿0 − 𝑭 −1
0 (𝑿)d𝑿 = 0 (1.6)

s non-integrable when 𝑭 0 is not compatible, thus the corresponding 𝑿0 is often multi-valued. That is, the non-differentiability
f the fields defined over the virtual stress-free configuration originates from the multi-value of the natural material coordinates.
f the given initial stress is incompatible, differentiation cannot be done over the stress-free configuration. Therefore, not only
hose naturally inhomogeneous elastomers can not be considered, but also it is meaningless to take the material derivative of the
iscontinuous initial strains and densities. The latter limits the extension of the approach to nonlocal theories and strain gradient
odels.

More importantly, remarkable thermal effects can be observed accompanied by the deformation of soft materials (Chester &
nand, 2011; Witten, 1999), thus considering merely initial stresses may not determine the subsequent mechanical behaviors. For
xample, the same initial stresses can be originated from initially isothermal or adiabatic deformations. The former is essentially the
bove approach that has no variation of temperature, while the latter keeps the entropy unchanged and is likely to correspond to
ompletely different constitutive equations. Therefore, thermal effects are indispensable in improving and perfecting the embedding
ethod of given initial stresses.

In the present paper, we depart from the above three approaches by proposing a new intrinsic embedding method of initial states.
ere, the adjective ‘‘intrinsic’’ indicates that our embedding method is formulated purely in material forms (Sedov, 1966; Synge &
hien, 1941), irrespective of the extrinsic properties brought by the Euclidean space where the deformation takes place. And the use
f the term ‘‘initial states’’ but not the classical ‘‘initial stresses’’ mostly because the variation of temperature is taken into account
n our approach, where the state variables are stresses and temperature (or equivalently, strains and entropy). Thus an additive
ecomposition of material strains is naturally obtained based on the variation of Riemannian metrics of the corresponding material
anifold. By this means, the stress-free state is replaced by a continuum equipped with non-Euclidean metrics, namely, the natural

tate, where the given initial stresses and initial variation of temperature are removed. In other words, the natural state means that
he elastomer is simultaneously in a stress-free state and at a prescribed natural temperature. Figuratively speaking, we stick all
he discrete points of stress-free configuration together by introducing nonzero Riemannian curvatures to the material manifold
Fig. 1). The same idea has appeared in constructing the geometric field theory of defects (Bilby, Bullough, & Smith, 1955; Kleinert,
989; Kröner, 1981; Nagahama & Teisseyre, 2008), where affine connections and the corresponding curvatures and torsions are
ntroduced to eliminate the defects. Once the initial deformations satisfy the compatibility condition, then the natural state can be
hysically implemented into the Euclidean space, and thus it degenerates to the classical natural configuration. Only under such
ircumstances can coordinate transformations upgrade to deformation gradient using the linear structures of the Euclidean space,
nd then the multiplicative decomposition (1.3) can be valid. On this basis, if the variation of temperature is further neglected,
.e., considers only isothermal deformations, the new proposed additive-decomposition-based approach coincides with the above
ultiplicative-decomposition-based approach.

In the classical work of Saravanan (2008), the author used the terminologies stress-free reference configuration and stressed
eference configuration. They correspond to the stress-free configuration (or the natural state) and the reference configuration in our
aper, respectively. However, the concept of stress-free reference configuration is essentially different from our concept of stress-free
onfiguration (or the natural state). According to the definition of Saravanan (2008), the former is accessed through a non-dissipative
rocess from the stressed reference configuration. Thus, it is a continuum in Euclidean space. Our concept of stress-free configuration
or the natural state) is accessed through thermo–mechanically coupled unloading so that the initial stress and the initial temperature
re removed for any individual material element. Due to the arbitrariness of the initial stress and the initial temperature distribution,
he corresponding initial deformation that produces such an initial state may not be compatible. Therefore, the material elements
an only exist as a pile of discrete points in classical theories. Using our framework, i.e., the mapping between Riemannian and
uclidean spaces, this pile of discrete points becomes a continuum in Riemannian space.

Note that differentiation is always allowed on the stress-free reference configuration since it is a continuum in Euclidean space.
owever, differentiation is allowed on the stress-free configuration only and only if the latter has become a continuum in Riemannian

pace. In other words, the differentiability of the fields defined over the stress-free configuration can only be established in
ur framework. The direct use of stressed reference configuration can remove the need for mapping between Riemannian and
uclidean spaces, and the corresponding theory has been elegantly established by Saravanan (2008). However, such representation
3

or constitutive relations from a stressed reference configuration is irrespective of the origin of the initial stresses. The constitutive
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Fig. 1. Schematic diagram of the intrinsic embedding method of initial states.

equations may be completely different even for the same initial stress that experienced different thermo–mechanically coupled
deformation histories. Therefore, our framework’s motivation is to take the origin of initial stress into account, where using
Riemannian spaces is inevitable.

We then aim to formulate the thermo-mechanically coupled constitutive equations for soft elastomers with arbitrary initial states
based on the newly proposed embedding method. Special attention is paid to the construction of the corresponding linearization
theory, i.e., small displacements are superposed upon initially finite deformations. The center of this theory is to derive the associate
elasticity tensor, which depends explicitly on the given initial states and is crucial in the study of wave propagation, structural
dynamics, and elastic stability. Note that the linearization theory is different from the classical incremental theory, where some
significant terms concerning the first order of displacement gradients may be missing. This is caused by the different orders of
taking derivatives and carrying out linearization (Hoger & Johnson, 1995a, 1995b; Rajagopal, 2018; Tonon, 2002, 2010).

Our theory is inherently more complex than the abovementioned approaches because the intrinsic embedding method of initial
states is based on rigorous mathematical derivations concerning Riemannian geometry. However, the new method has advantages
in engineering practices for the following three reasons. The first reason is the full incorporation of thermal effects, which is crucial
in modern engineering sciences and cannot be considered by the existing theories of initial stresses. In other words, the framework
proposed in this paper fills a theoretical blank in this field under non-isothermal circumstances.

Second, our theory has established a unified framework for the constitutive modeling of initially stressed materials, not only
thermoelastic elastomers. The embedding method of initial states is compatible with other developed continuum models because
the natural state is a continuum in our theory but a pile of discrete points in the existing theories. For instance, it is convenient
to establish the theory of residually stressed low-dimensional elastomers (rods, plates, shells, and membranes), initially stressed
electromagnetic elastomers, liquid crystals with initial states, strain gradient elasticity with residual stresses, and others. Especially
for the latter, gradients can only be performed in a continuum rather than a pile of discrete points. If we want to obtain explicit
forms of thermo–mechanically coupled constitutive relations, the information about the origin of the residual stress is necessary,
so we must carry out unloading and cannot directly use the stressed reference configuration. Thus, the need for mapping between
Riemannian and Euclidean spaces cannot be removed.

Last but not least, this paper actually provides a modularized approach that is convenient to apply. In the existing theories that
are based on the multiplicative decomposition of deformation gradients, the corresponding constitutive functions depend on the
initial deformation gradient. Therefore, using these theories, the first thing is to express the initial deformation gradient by the
given initial stress. The derivations of such expressions are often complicated and need to be carried out case by case since the
existing theories are entirely based on matrix multiplication. Meanwhile, our additive decomposition-based framework is rather
convenient. Although the constitutive functions depend on the natural material metrics, much effort has been made to carry out
calculations and derive the algebraic and differential relationships between variables. Therefore, for engineers to use our theory,
only two steps need to be followed: Firstly, to calculate the suggested coefficients and then construct the corresponding algebraic
equations. The desired constitutive relations can be obtained once these equations are solved. In this respect, the present formulation
has practical advantages.

The paper is arranged as follows. Section 2 outlines the preliminaries for the subsequent discussions, including the related
deformation geometry and the forms of free energy density and internal constraint. In Section 3, we propose the intrinsic embedding
method of initial states, which can be subdivided into two steps: first to establish the framework of additive decomposition of mate-
rial strains and then use it to embed the given initial states to the free energy density and the internal constraints. Next, we derive
explicitly in Section 4 the constitutive equations of the most common naturally isotropic elastomers. In Section 5, we linearize the
obtained equations and present the general formulations of the Cauchy stresses and the entropy. Five illustrative examples including
six prevailing hyperelastic models of Saint Venant–Kirchhoff, Blatz–Ko, Mooney–Rivlin, Neo-Hookean, Gent, and exponential form
are detailed analyzed in Section 6. Also, the comparison between our new formulations and the multiplicative-decomposition-based
and the implicit-constitutive-theory-based ones is carried out. Conclusions are provided in Section 7.
4
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2. Preliminaries

2.1. Deformation geometry

Suppose 0 is the given reference configuration, while  is the undetermined current configuration. They are both equipped with
he same material coordinates 𝑥𝑖. The associated reference and current coordinate bases are 𝒆𝑖 and 𝝐𝑖, respectively. Thus reference
aterial metrics can be derived as 𝑔𝑖𝑗 = 𝒆𝑖 ⋅ 𝒆𝑗 , which have contravariant 𝑔𝑖𝑗 . Here, 𝜀𝑖𝑗 denote strains while 𝐺𝑖𝑗 = 𝝐𝑖 ⋅ 𝝐𝑗 denotes

urrent material metrics. Thus 𝐺𝑖𝑗 = 𝑔𝑖𝑗 + 2𝜀𝑖𝑗 and they have contravariant1

𝐺𝑖𝑗 = 1
2𝐺

𝜖𝑖𝑘𝑚 𝜖𝑗𝓁𝑞𝐺𝑘𝓁𝐺𝑚𝑞 =
1
2𝐺

𝜖𝑖𝑘𝑚 𝜖𝑗𝓁𝑞
(

𝑔𝑘𝓁 + 2𝜀𝑘𝓁
) (

𝑔𝑚𝑞 + 2𝜀𝑚𝑞
)

=

(

1 + 21 + 42
)

𝑔𝑖𝑗 − 2
(

1 + 21
)

𝑖𝑗1 + 4𝑖𝑗2
1 + 21 + 42 + 83

,
(2.1)

where 𝜖𝑖𝑗𝑘 is the 3D Levi-Civita symbol, the contravariant of 𝑔𝑖𝑗 is 𝑔𝑖𝑗 = 1
2𝑔 𝜖

𝑖𝑘𝑚 𝜖𝑗𝓁𝑞𝑔𝑘𝓁𝑔𝑚𝑞 , inversely, 𝑔𝑖𝑗 = 𝑔
2 𝜖𝑖𝑘𝑚 𝜖𝑗𝓁𝑞𝑔

𝑘𝓁𝑔𝑚𝑞 , and
𝑔 = 1

6 𝜖
𝑖𝑘𝑚 𝜖𝑗𝓁𝑞𝑔𝑖𝑗𝑔𝑘𝓁𝑔𝑚𝑞 is the determinant of 𝑔𝑖𝑗 ,2 𝑖𝑗1 ,

𝑖𝑗
2 are polynomials of 𝜀𝑖𝑗 of degree one and two

𝑖𝑗1 = 𝑔𝑖𝑘𝑔𝑗𝓁𝜀𝑘𝓁 , 𝑖𝑗2 = 𝑔𝑖𝑘𝑔𝑗𝓁𝑔𝑚𝑞𝜀𝑘𝑚𝜀𝑞𝓁 , (2.2)

hile 1,2,3 are three principal strain invariants

1 = 𝑔𝑖𝑗
𝑖𝑗
1 , 2 =

1
2

(

2
1 − 𝜀𝑖𝑗

𝑖𝑗
1

)

, 3 =
1
3

(

312 − 3
1 + 𝜀𝑖𝑗

𝑖𝑗
2

)

. (2.3)

nd 𝐺 is the determinant of 𝐺𝑖𝑗 , it can be derived as

𝐺 = 1
6
𝜖𝑖𝑘𝑚 𝜖𝑗𝓁𝑞𝐺𝑖𝑗𝐺𝑘𝓁𝐺𝑚𝑞

= 1
6
𝜖𝑖𝑘𝑚 𝜖𝑗𝓁𝑞

(

𝑔𝑖𝑗 + 2𝜀𝑖𝑗
) (

𝑔𝑘𝓁 + 2𝜀𝑘𝓁
) (

𝑔𝑚𝑞 + 2𝜀𝑚𝑞
)

= 𝑔
(

1 + 21 + 42 + 83
)

.

(2.4)

Given 𝜌0 the reference mass density, then current mass densities 𝜌 can be determined by continuity equation

𝜌 =

√

𝑔
√

𝐺
𝜌0 =

𝜌0
√

1 + 21 + 42 + 83
. (2.5)

Suppose 𝒖 = 𝑢𝑖𝒆𝑖 is the displacement vector, then the transformations between the two different coordinate bases are specified in
the form of

𝝐𝑖 =
(

𝛿𝑗𝑖 + ∇𝑖𝑢𝑗
)

𝒆𝑗 , (2.6)

where 𝛿𝑗𝑖 are Kronecker symbols, and ∇𝑖𝑢𝑗 are displacement gradients, i.e.,

∇𝑖𝑢𝑗 =
𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝛤 𝑗𝑖𝑘𝑢

𝑘, 𝛤 𝑗𝑖𝑘 =
1
2
𝑔𝑗𝓁

(

𝜕𝑔𝑖𝓁
𝜕𝑥𝑘

+
𝜕𝑔𝑘𝓁
𝜕𝑥𝑖

−
𝜕𝑔𝑖𝑘
𝜕𝑥𝓁

)

, (2.7)

n which 𝛤 𝑗𝑖𝑘 are Christoffel symbols. According to (2.6), strains 𝜀𝑖𝑗 become

𝜀𝑖𝑗 =
1
2
(

𝐺𝑖𝑗 − 𝑔𝑖𝑗
)

= 1
2
(

∇𝑖𝑢𝑗 + ∇𝑗𝑢𝑖 + ∇𝑖𝑢𝑘∇𝑗𝑢𝑘
)

. (2.8)

If there is no deformation, i.e., 𝜀𝑖𝑗 = 0, current quantities 𝐺𝑖𝑗 , 𝐺𝑖𝑗 and 𝐺 will degenerate to 𝑔𝑖𝑗 , 𝑔𝑖𝑗 and 𝑔, respectively, while 𝝐𝑖 ≠ 𝒆𝑖
due to rigid rotations.

2.2. The free energy density and the internal constraint

The thermodynamic properties of the elastomer are specified by providing the following free energy density (per unit mass) and
internal constraint

 =  (𝑔𝑖𝑗 , 𝜀𝑖𝑗 , 𝑇 , 𝑥𝑖), (𝑔𝑖𝑗 , 𝜀𝑖𝑗 , 𝑇 , 𝑥𝑖) = 0, (2.9)

where 𝑇 is the absolute temperature. If the elastomer is isotropic, (2.9) reduce to the following forms

 =  (1,2,3, 𝑇 , 𝑥𝑖), (1,2,3, 𝑇 , 𝑥𝑖) = 0. (2.10)

1 All the expressions and definitions presented in this section are the same as those in Sedov (1966). The convention of summation of Latin alphabet indices
𝑗 𝑘𝓁, 𝑚, 𝑞 taken from 1 to 3 is adopted here. Note that coordinates 𝑥𝑖 are often curvilinear on  even though they may be initially Cartesian on 0, thus it is

necessary to distinguish covariant and contravariant tensors (equivalently, components with subscripts and superscripts).
2 We here use an important identical equation of the product of two Levi-Civita symbols: 𝜖𝑖𝑘𝑚 𝜖𝑗𝓁𝑞 = 𝑔

(

𝑔𝑖𝑗𝑔𝑘𝓁𝑔𝑚𝑞 + 𝑔𝑖𝓁𝑔𝑘𝑞𝑔𝑚𝑗 + 𝑔𝑖𝑞𝑔𝑘𝑗𝑔𝑚𝓁 − 𝑔𝑖𝑞𝑔𝑘𝓁𝑔𝑚𝑗 − 𝑔𝑖𝓁𝑔𝑘𝑗𝑔𝑚𝑞

−𝑔𝑖𝑗𝑔𝑘𝑞𝑔𝑚𝓁
)

.
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According to Sedov (1966), the explicit dependency of 𝑔𝑖𝑗 in (2.9) is for achieving tensor contractions. To explain this in more
detail, we consider (2.10), for instance, where 1,2,3 are variables for  and  and they are also the functions of 𝑔𝑖𝑗 and 𝜀𝑖𝑗
(recall (2.2) and (2.3)). In this way, the material metrics 𝑔𝑖𝑗 , of course, become variables for  and . In general, material metrics
are the core of Riemannian geometry and are crucial in contracting tensor components into scalar functions, especially in some
hyper-elastic models (see (4.1) and (4.2), (6.25) and (6.26) below), different material metrics 𝐺𝑖𝑗 , 𝑔∗𝑖𝑗 will be used, not only 𝑔𝑖𝑗 .

hus, it is necessary to specify which material metrics will be used in a specific constitutive model. These reasons explain why we
eed to add 𝑔𝑖𝑗 as variables for  and .

The Cauchy stress tensor is expressed as

𝝈 = 𝜎̂𝑖𝑗𝝐𝑖 ⊗ 𝝐𝑗 = 𝜎̂𝑘𝓁
(

𝛿𝑖𝑘 + ∇𝑘𝑢𝑖
)

(

𝛿𝑗𝓁 + ∇𝓁𝑢
𝑗
)

𝒆𝑖 ⊗ 𝒆𝑗 = 𝜎𝑖𝑗𝒆𝑖 ⊗ 𝒆𝑗 , (2.11)

hile the constraint multiplier and the mass entropy are denoted by 𝑝 and 𝑠, respectively. Then the thermo-mechanically coupled
onstitutive equations of the elastomer can be derived in the following forms

𝜎̂𝑖𝑗 = 𝜌
(

𝜕
𝜕𝜀𝑖𝑗

−
𝑝
𝜌
𝜕
𝜕𝜀𝑖𝑗

)

, 𝑠 = −
(

𝜕
𝜕𝑇

−
𝑝
𝜌
𝜕
𝜕𝑇

)

. (2.12)

. The intrinsic embedding method of initial states

.1. The additive decomposition of material strains

There are two conditions to achieve the natural state ∗: the stress-free (mechanical) condition and the natural temperature
thermal) condition. To be specific, if reference configuration 0 is not a natural state, there must exist initial stress 𝝈0 = 𝜎𝑖𝑗0 𝒆𝑖⊗ 𝒆𝑗
r initial increment of temperature 𝜗∗ = 𝑇0 − 𝑇 ∗, where 𝑇0 is the reference temperature of 0, while 𝑇 ∗ is the given natural
emperature of ∗. Namely, 0 = ∗ only and only if 𝜎𝑖𝑗0 = 0 and 𝜗∗ = 0.

If 0 ≠ ∗, free energy density and internal constraint (2.9) are no longer valid since they are made to describe the deformations
hat start from ∗, but not from 0. Thus it requires a modification so that 𝜎𝑖𝑗0 and 𝜗∗ can be embedded into (2.9) properly. By
ntroducing the material metrics of ∗, i.e, 𝑔∗𝑖𝑗 , the material strains that start from ∗ to 0 and 𝑡 can be derived as 𝜀∗𝑖𝑗 =

1
2 (𝑔𝑖𝑗 −𝑔

∗
𝑖𝑗 )

nd 𝜀tot𝑖𝑗 = 1
2 (𝐺𝑖𝑗 − 𝑔

∗
𝑖𝑗 ), respectively. By this means, one obtains the following additive decomposition

𝜀tot𝑖𝑗 = 𝜀∗𝑖𝑗 + 𝜀𝑖𝑗 . (3.1)

he additive decomposition of material strains was first proposed by Sedov (1966). The original purpose of introducing such a
ecomposition is to distinguish elastic and plastic deformations in non-linear elastoplastic analysis. The subsequent works extended
he additive decomposition to different types of material: elastoplasticity (Simo & Kennedy, 1992); thermoelasticity (Reddy & Chin,
998); viscoelasticity (Lubarda, 2011); growth (Liang & Mahadevan, 2011); swelling (van der Sman, 2015), and surface defects
Roychowdhury & Gupta, 2018). It is accustomed to regard that only multiplicative decomposition can be applied to study finite
eformations (Reina & Conti, 2014). However, no matter 𝜀𝑖𝑗 or 𝜀∗𝑖𝑗 are not assumed to be small in (3.1). The discord between the two
ypes of decomposition methods is originated in the employing of distinct coordinates. Multiplicative decomposition (1.5) requires
t least three different coordinates, i.e., 𝑿0,𝑿 and 𝒙, correspond to ∗, 0 and , respectively. Only in this way can chain rules
e applied properly and thus (1.3) be correct. However, different vector bases are associated with different coordinates, thus the
train components under different bases cannot be added together directly. That is why the classical additive decomposition can
e regarded as approximately valid only when the differences between these bases are small enough. In our approach, there is
nly one type of coordinates, i.e., 𝑥𝑖, thus all the components of the material metric can be added directly without any additional
equirements.

.2. The embedding of initial states

According to (2.9) and (3.1), the free energy density and the internal constraint now can be modified to the following forms

 =  (𝑔∗𝑖𝑗 , 𝜀
tot
𝑖𝑗 , 𝑇 , 𝑥

𝑖), (𝑔∗𝑖𝑗 , 𝜀
tot
𝑖𝑗 , 𝑇 , 𝑥

𝑖) = 0. (3.2)

hen from (2.12), the corresponding constitutive equations are expressed as3

𝜎̂𝑖𝑗 = 𝜌
(

𝜕
𝜕𝜀𝑖𝑗

−
𝑝
𝜌
𝜕
𝜕𝜀𝑖𝑗

)

(𝑔𝑖𝑗 − 2𝜀∗𝑖𝑗 , 𝜀
∗
𝑖𝑗 + 𝜀𝑖𝑗 , 𝑇0 + 𝜗, 𝑥

𝑖),

𝑠 = −
(

𝜕
𝜕𝜗

−
𝑝
𝜌
𝜕
𝜕𝜗

)

(𝑔𝑖𝑗 − 2𝜀∗𝑖𝑗 , 𝜀
∗
𝑖𝑗 + 𝜀𝑖𝑗 , 𝑇0 + 𝜗, 𝑥

𝑖).
(3.3)

ere, 𝜌0, 𝑔𝑖𝑗 , 𝑇0, 𝑇 ∗ (or equivalently, 𝜗∗) and 𝜎𝑖𝑗0 are given functions that act as initial conditions. Thus our main task is to express
∗
𝑖𝑗 in terms of these known quantities, i.e., to derive expressions 𝜀∗𝑖𝑗 = 𝜀∗𝑖𝑗 (𝑔𝑖𝑗 , 𝜌0, 𝜎

𝑖𝑗
0 , 𝜗

∗, 𝑇0, 𝑥𝑖).

3 To avoid confusion, the terms in the brackets containing commas, for instance, (∗, ∗, ∗), are actually arguments of the expressions before them.
6



International Journal of Engineering Science 178 (2022) 103730W. Chen and Y.-P. Zhao

n
t

S

T
i

M

a

w
e

(
W
e
r
a
t
c

By substituting 𝜎̂𝑖𝑗 = 0, 𝜌 = 𝜌∗, 𝑝 = 𝑝∗, 𝜀tot𝑖𝑗 = 𝜗 = 0 and 𝑇0 = 𝑇 ∗ into (3.3), natural constraint multiplier 𝑝∗ = 𝑝∗(𝑔𝑖𝑗 , 𝜌0, 𝜀∗𝑖𝑗 , 𝑇
∗, 𝑥𝑖),

atural entropy 𝑠∗ = 𝑠∗(𝑔𝑖𝑗 , 𝜌0, 𝜀∗𝑖𝑗 , 𝑇
∗, 𝑥𝑖) and natural mass density 𝜌∗ = 𝜌∗(𝑔𝑖𝑗 , 𝜌0, 𝜀∗𝑖𝑗 , 𝑇

∗, 𝑥𝑖) can be accordingly derived by solving
he following algebraic equations

(

𝜕
𝜕𝜀𝑖𝑗

−
𝑝∗

𝜌∗
𝜕
𝜕𝜀𝑖𝑗

)

(𝑔𝑖𝑗 − 2𝜀∗𝑖𝑗 , 0, 𝑇
∗, 𝑥𝑖) = 0,

(

𝑝∗

𝜌∗
𝜕
𝜕𝜗

− 𝜕
𝜕𝜗

)

(𝑔𝑖𝑗 − 2𝜀∗𝑖𝑗 , 0, 𝑇
∗, 𝑥𝑖) = 𝑠∗,

√

𝑔∗𝜌∗ =
√

𝑔𝜌0.

(3.4)

imilarly, by substituting 𝜎̂𝑖𝑗 = 𝜎𝑖𝑗0 , 𝜌 = 𝜌0, 𝑝 = 𝑝0, 𝜗 = 0 and 𝜀𝑖𝑗 = 0 into (3.3), one obtains the algebraic equations of 𝜀∗𝑖𝑗 and 𝑝0
(

𝜕
𝜕𝜀𝑖𝑗

−
𝑝0
𝜌0

𝜕
𝜕𝜀𝑖𝑗

)

(𝑔𝑖𝑗 − 2𝜀∗𝑖𝑗 , 𝜀
∗
𝑖𝑗 , 𝑇0, 𝑥

𝑖) =
𝜎𝑖𝑗0
𝜌0
,

(𝑔𝑖𝑗 − 2𝜀∗𝑖𝑗 , 𝜀
∗
𝑖𝑗 , 𝑇0, 𝑥

𝑖) = 0.
(3.5)

herefore, according to distinct thermo-mechanically coupled deformation histories, simultaneous equations (3.4) and (3.5) can be
nversely solved as

𝜀∗𝑖𝑗 = 𝜀∗𝑖𝑗 (𝑔𝑖𝑗 , 𝜌0, 𝜎
𝑖𝑗
0 , 𝜗

∗, 𝑇0, 𝑥
𝑖), 𝑝0 = 𝑝0(𝑔𝑖𝑗 , 𝜌0, 𝜎

𝑖𝑗
0 , 𝜗

∗, 𝑇0, 𝑥
𝑖). (3.6)

oreover, according to (3.3), initial entropy 𝑠0 can be derived as

𝑠0 = 𝑠0(𝑔𝑖𝑗 , 𝜌0, 𝜎
𝑖𝑗
0 , 𝜗

∗, 𝑇0, 𝑥
𝑖)

=

[

𝜕
𝜕𝜗

−
𝑝0(𝑔𝑖𝑗 , 𝜌0, 𝜎

𝑖𝑗
0 , 𝜗

∗, 𝑇0, 𝑥𝑖)
𝜌0

𝜕
𝜕𝜗

]

|

|

|𝜀∗𝑖𝑗=𝜀
∗
𝑖𝑗 (𝑔𝑖𝑗 ,𝜌0 ,𝜎

𝑖𝑗
0 ,𝜗

∗ ,𝑇0 ,𝑥𝑖)
.

(3.7)

Then we introduce the equivalent free energy density

̂ (𝑔𝑖𝑗 , 𝜀𝑖𝑗 , 𝜗, 𝜌0, 𝜎
𝑖𝑗
0 , 𝜗

∗, 𝑇0, 𝑥
𝑖)

=  |𝜀∗𝑖𝑗=𝜀
∗
𝑖𝑗 (𝑔𝑖𝑗 ,𝜌0 ,𝜎

𝑖𝑗
0 ,𝜗

∗ ,𝑇0 ,𝑥𝑖)
+ 𝑠0(𝑔𝑖𝑗 , 𝜌0, 𝜎

𝑖𝑗
0 , 𝜗

∗, 𝑇0, 𝑥
𝑖)𝜗 −

𝜎𝑖𝑗0 𝜀𝑖𝑗
𝜌0

,
(3.8)

nd the equivalent internal constraint

̂(𝑔𝑖𝑗 , 𝜀𝑖𝑗 , 𝜗, 𝜌0, 𝜎
𝑖𝑗
0 , 𝜗

∗, 𝑇0, 𝑥
𝑖) = |𝜀∗𝑖𝑗=𝜀∗𝑖𝑗 (𝑔𝑖𝑗 ,𝜌0 ,𝜎

𝑖𝑗
0 ,𝜗

∗ ,𝑇0 ,𝑥𝑖)
, (3.9)

here 𝜌0, 𝜎
𝑖𝑗
0 , 𝜗

∗ and 𝑇0 serve as given parameters. By substituting (3.8) and (3.9) into (3.3), the required constitutive equations are
xpressed in the form of

𝜎̂𝑖𝑗 =
𝜌
𝜌0
𝜎𝑖𝑗0 + 𝜌

(

𝜕̂
𝜕𝜀𝑖𝑗

−
𝑝
𝜌
𝜕̂
𝜕𝜀𝑖𝑗

)

, 𝑠 = 𝑠0 −
(

𝜕̂
𝜕𝜗

−
𝑝
𝜌
𝜕̂
𝜕𝜗

)

. (3.10)

Therefore, the problem of embedding the given initial states into (2.9) is converted to solve simultaneous algebraic equations
3.4) and (3.5). Also, the validity of the above embedding approach depends on the existence of the solutions of the equations.
hether the solutions exist or not is essentially a physical than a mathematical problem: if there is no solution for a certain type of

lastomer, the contradiction should be attributed to the inadequate chosen of (2.9). Conversely, given certain forms of (2.9), they will
estrict the possible distributions of initial states. It should be noted that the restrictions produced by the existence of the solutions
re distinct from those by the compatibility of material strains. The latter is the major limitation of the further developments of
he multiplicative-decomposition-based approach. However, in our new proposed additive-decomposition-based approach, material
oordinates 𝑥𝑖 are always existed no matter 𝑔∗𝑖𝑗 are Euclidean or not. In this respect, the intrinsic embedding method of initial states

compares favorably with other methods.

4. The naturally isotropic elastomer

If the natural state of an elastomer is isotropic, it is a naturally isotropic elastomer. The presence of initial states often brings the
anisotropy of the reference configuration (the initial-states-induced-anisotropy). When there is no initial stress or initial temperature
increment, the reference configuration is the natural state, and the naturally isotropic elastomer is the isotropic elastomer in its usual
sense. To naturally isotropic elastomers, (3.2) reduce to

 =  (𝐼1, 𝐼2, 𝐼3, 𝑇 , 𝑥𝑖),  = (𝐼1, 𝐼2, 𝐼3, 𝑇 , 𝑥𝑖), (4.1)

where 𝐼1, 𝐼2, 𝐼3 are three principal invariants of 𝜀tot𝑖𝑗

𝐼1 = 𝑔∗𝑖𝑗𝜀tot𝑖𝑗 , 𝐼2 =
1
2

(

𝐼21 − 𝑔∗𝑖𝑘𝑔∗𝑗𝓁𝜀tot𝑖𝑗 𝜀
tot
𝑘𝓁

)

,

𝐼 = 1 (

3𝐼 𝐼 − 𝐼3 + 𝑔∗𝑖𝑘𝑔∗𝑗𝓁𝑔∗𝑟𝑠𝜀tot𝜀tot𝜀tot
)

.
(4.2)
7
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Note that it is the contraction of 𝜀tot𝑖𝑗 and 𝑔∗𝑖𝑗 , but not 𝑔𝑖𝑗 , that constitutes the invariants. We here introduce the following
contravariant strains

 𝑖𝑗 = 𝑔∗𝑖𝑗 − 𝑔𝑖𝑗 (4.3)

o replace 𝜀∗𝑖𝑗 . The reason why  𝑖𝑗 is more convenient than 𝜀∗𝑖𝑗 is that  𝑖𝑗 and initial stresses 𝜎𝑖𝑗0 are both contravariant tensors. By
substituting 𝑔∗𝑖𝑗 = 𝑔𝑖𝑗 − 2𝜀∗𝑖𝑗 into (4.3), one obtains

𝜀∗𝑖𝑗 =
3𝑔𝑖𝑗 + 𝑔𝑖𝑘𝑔𝑗𝓁

[(

1 + 1
)

𝑘𝓁 −𝑘𝓁
]

2
(

1 + 1 + 2 + 3
) , (4.4)

n which 𝑖𝑗 = 𝑔𝑘𝓁 𝑖𝑘𝑗𝓁 , and

1 = 𝑔𝑖𝑗 𝑖𝑗 , 2 =
1
2
(

2
1 − 𝑔𝑖𝑗𝑖𝑗

)

,

3 =
1
3
(

312 − 3
1 + 𝑔𝑖𝑗𝑔𝑘𝓁 𝑖𝑘𝑗𝓁

)

(4.5)

are three principal invariants of  𝑖𝑗 . Note that  𝑖𝑗 = 0 only and only if 𝜀∗𝑖𝑗 = 0.
According to (4.4), 𝐼1, 𝐼2, 𝐼3 are expressed in the form of

𝐼1 =
1
2
1 + 1 + 1,

𝐼2 =
1
4
2 +

1
2
(

11 + 11 − 1 − 2
)

+ 4 − 3

+ 11 − 12 − 22 − 13 + 111 + 2,

𝐼3 =
1
8
3 +

1
4
(

2 + 31 + 21 − 11
)

+ 1
2
(

3 − 4

+12 − 11 + 12 + 32 + 13 − 111
)

+ 22 +
(

1 + 1 + 2 + 3
)

3,

(4.6)

here 1,2,3,4 are coupling terms concerning the influences of initial states to the subsequent deformations, i.e.,

1 =  𝑖𝑗𝜀𝑖𝑗 , 2 = 𝑖𝑗𝜀𝑖𝑗 , 3 = 𝑔𝑖𝑘𝑗𝓁𝜀𝑖𝑗𝜀𝑘𝓁 , 4 = 𝑔𝑖𝑘𝑗𝓁𝜀𝑖𝑗𝜀𝑘𝓁 . (4.7)

ote that the following two identities
(

𝑔𝑗𝓁𝑖𝑘 + 𝑔𝑖𝓁𝑗𝑘
)

𝜀𝑘𝓁 +  𝑖𝑘𝑗𝓁𝜀𝑘𝓁
= 1𝑖𝑗 − 2

𝑖𝑗
1 +

(

2 + 12 − 11
)

𝑔𝑖𝑗 +
(

1 − 11
)

 𝑖𝑗

+ 1
(

𝑔𝑗𝓁 𝑖𝑘 + 𝑔𝑖𝓁𝑗𝑘) 𝜀𝑘𝓁 ,

(4.8)

𝑔𝑘𝓁
(

 𝑖𝑘𝑗𝓁2 + 𝑗𝑘𝑖𝓁2
)

+ 𝑔𝑖𝑘𝑔𝑗𝓁𝑚𝑞𝜀𝑘𝑚𝜀𝑞𝓁

= 1
𝑖𝑗
2 − 2

𝑖𝑗
1 +

(

3 − 11 + 21
)

𝑔𝑖𝑗 +
(

1 − 11
)

𝑖𝑗1
+ 1

(

𝑔𝑗𝓁 𝑖𝑘 + 𝑔𝑖𝓁𝑗𝑘) 𝜀𝑘𝓁

(4.9)

an be derived by repeatedly applying the Hamilton–Cayley theorem, thus the other four invariants can be expressed as the
ombination of (4.5) and (4.7)

 𝑖𝑘𝑗𝓁𝜀𝑖𝑗𝜀𝑘𝓁 = 212 +  2
1 − 24 + 2

(

3 − 11
)

1 + 222,

 𝑖𝑘𝑗𝓁𝜀𝑖𝑗𝜀𝑘𝓁 = 12 +
[

12 − 4 +
(

3 − 11
)

1 + 22
]

1

+ 23,

𝑔𝑖𝑘𝑗𝓁𝑚𝑞𝜀𝑖𝑗𝜀𝑘𝑚𝜀𝑞𝓁 = 13 + 1
(

12 − 4
)

+
(

13 − 2
11

)

1

+
(

12 + 3
)

2,

 𝑖𝑘𝑗𝓁𝑚𝑞𝜀𝑖𝑗𝜀𝑘𝑚𝜀𝑞𝓁 = 1
(

 2
1 + 312 − 34

)

+ 31
(

3 − 11
)

1

+ 3
(

212 + 33
)

.

(4.10)

These results demonstrate that the following ten independent invariants

1, 2, 3, 1, 2, 3, 1, 2, 3, 4 (4.11)

compose a complete set of base function in describing the initially deformed elastomers (Fig. 2). The three invariants of (4.1) are
equivalent to the ten invariants of (4.11). We use the latter since they show more clearly how the initial stress influences the
subsequent deformation.

According to (2.3), the strain derivatives of 1,1,3 can be calculated as
𝜕1 = 𝑔𝑖𝑗 ,

𝜕2 = 1𝑔𝑖𝑗 − 𝑖𝑗1 ,
𝜕3 = 2𝑔𝑖𝑗 − 1

𝑖𝑗
1 + 𝑖𝑗2 . (4.12)
8

𝜕𝜀𝑖𝑗 𝜕𝜀𝑖𝑗 𝜕𝜀𝑖𝑗
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Fig. 2. Schematic diagram of the decomposition of invariants 𝐼1 , 𝐼2 , 𝐼3.

Similarly, according to (4.7), the strain derivatives of 1,2,3,4 are
𝜕1
𝜕𝜀𝑖𝑗

=  𝑖𝑗 ,
𝜕2
𝜕𝜀𝑖𝑗

= 𝑖𝑗 ,
𝜕3
𝜕𝜀𝑖𝑗

= 𝑖𝑗 ,
𝜕4
𝜕𝜀𝑖𝑗

=  𝑖𝑗 , (4.13)

where 𝑖𝑗 =
(

𝑔𝑖𝑘𝑗𝓁 + 𝑔𝑗𝑘 𝑖𝓁) 𝜀𝑘𝓁 and  𝑖𝑗 =
(

𝑔𝑖𝑘𝑗𝓁 + 𝑔𝑗𝑘𝑖𝓁
)

𝜀𝑘𝓁 . Then by substituting (4.12) and (4.13) into (3.3), 𝜎̂𝑖𝑗 can be
derived as

𝜎̂𝑖𝑗

𝜌
=
{(

𝜕
𝜕𝐼1

−
𝑝
𝜌
𝜕
𝜕𝐼1

)

+
(

1 + 1 − 2 + 11 − 12 +
1
2
1

)

×
(

𝜕
𝜕𝐼2

−
𝑝
𝜌
𝜕
𝜕𝐼2

)

+ 1
4

[

2
(

11 − 11 + 13 + 2 − 1
)

+ 2

+ 3 + 42
(

1 + 1 + 2 + 3
)

+ 412

] (

𝜕
𝜕𝐼3

−
𝑝
𝜌
𝜕
𝜕𝐼3

) }

𝑔𝑖𝑗

+
{

(

2 − 1
)

(

𝜕
𝜕𝐼2

−
𝑝
𝜌
𝜕
𝜕𝐼2

)

− 1
2

[

21
(

1 + 1 + 2 + 3
)

+ 1 + 22 + 3

]

(

𝜕
𝜕𝐼3

−
𝑝
𝜌
𝜕
𝜕𝐼3

) }

𝑖𝑗1

+
[(

𝜕
𝜕𝐼1

−
𝑝
𝜌
𝜕
𝜕𝐼1

)

+ 1
2
(

21 + 211 + 1 − 1
)

×
(

𝜕
𝜕𝐼2

−
𝑝
𝜌
𝜕
𝜕𝐼2

)

− 1
4
(

211 + 21 + 1
)

(

𝜕
𝜕𝐼3

−
𝑝
𝜌
𝜕
𝜕𝐼3

)]

 𝑖𝑗

+ 1
4

[(

𝜕
𝜕𝐼3

−
𝑝
𝜌
𝜕
𝜕𝐼3

)

− 2
(

𝜕
𝜕𝐼2

−
𝑝
𝜌
𝜕
𝜕𝐼2

)] [

(

1 + 21
)

𝑖𝑗 − 2 𝑖𝑗

+ 2
(

1 + 1
)

𝑖𝑗
]

+
[

(

1 + 1 + 2 + 3
)

(

𝜕
𝜕𝐼3

−
𝑝
𝜌
𝜕
𝜕𝐼3

)]

𝑖𝑗2 .

(4.14)

If  =  𝑖𝑗 = 0, there is no internal constraint and initial deformation, thus 𝐼1 = 1, 𝐼2 = 2, 𝐼3 = 3, and (4.14) degenerate to the
following classical forms

𝜎̂𝑖𝑗

𝜌
=
(

𝜕
𝜕𝐼1

+ 1
𝜕
𝜕𝐼2

+ 2
𝜕
𝜕𝐼3

)

𝑔𝑖𝑗 −
(

𝜕
𝜕𝐼2

+ 1
𝜕
𝜕𝐼3

)

𝑖𝑗1 + 𝜕
𝜕𝐼3

𝑖𝑗2 . (4.15)

If 𝜀𝑖𝑗 = 0, there is no subsequent deformation, thus 𝐼1 = 1
21, 𝐼2 = 1

42, 𝐼3 = 1
83, and (4.14) reduce to the following algebraic

equations

𝜎𝑖𝑗0 = 𝛽0𝑔
𝑖𝑗 + 𝛽1 𝑖𝑗 + 𝛽2𝑖𝑗 , (4.16)

in which coefficients 𝛽0, 𝛽1, 𝛽2 are explicitly expressed as

𝛽0 =
𝜌0
4

[

4
(

𝜕
𝜕𝐼1

−
𝑝0
𝜌0

𝜕
𝜕𝐼1

)

+ 21

(

𝜕
𝜕𝐼2

−
𝑝0
𝜌0

𝜕
𝜕𝐼2

)

+
(

2 + 3
)

(

𝜕
𝜕𝐼3

−
𝑝0
𝜌0

𝜕
𝜕𝐼3

)](

1
2
,
2
4
,
3
8
, 𝑇0, 𝑥

𝑖
)

,

𝛽1 =
𝜌0
4

[

4
(

𝜕
𝜕𝐼1

−
𝑝0
𝜌0

𝜕
𝜕𝐼1

)

+ 2
(

1 − 1
)

(

𝜕
𝜕𝐼2

−
𝑝0
𝜌0

𝜕
𝜕𝐼2

)

−1

(

𝜕
𝜕𝐼3

−
𝑝0
𝜌0

𝜕
𝜕𝐼3

)](

1
2
,
2
4
,
3
8
, 𝑇0, 𝑥

𝑖
)

,

𝛽2 =
𝜌0

[(

𝜕 −
𝑝0 𝜕

)

− 2
(

𝜕 −
𝑝0 𝜕

)](

1 ,
2 ,

3 , 𝑇0, 𝑥
𝑖
)

.

(4.17)
9
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By multiplying 𝑔𝑖𝑘𝜎𝑘𝓁0 to both sides of (4.16), one obtains

𝑔𝑘𝓁𝜎
𝑖𝑘
0 𝜎

𝑗𝓁
0 = 𝛼0𝑔

𝑖𝑗 + 𝛼1 𝑖𝑗 + 𝛼2𝑖𝑗 , (4.18)

here coefficients 𝛼0, 𝛼1, 𝛼2 are derived as

𝛼0 = 𝛽20 + 2𝛽1𝛽23 + 𝛽2213,

𝛼1 = 2𝛽0𝛽1 − 2𝛽1𝛽22 + 𝛽22
(

3 − 12
)

,

𝛼2 = 2𝛽0𝛽2 + 𝛽21 + 2𝛽1𝛽21 + 𝛽22
(

2
1 − 2

)

.

(4.19)

e then introduce the following three invariants of 𝜎𝑖𝑗0

1 = 𝑔𝑖𝑗𝜎
𝑖𝑗
0 , 2 = 𝑔𝑖𝑗𝑔𝑘𝓁𝜎

𝑖𝑘
0 𝜎

𝑗𝓁
0 , 3 = 𝑔𝑖𝑗𝑔𝑘𝑚𝑔𝑞𝓁𝜎

𝑖𝑘
0 𝜎

𝑗𝓁
0 𝜎

𝑚𝑞
0 . (4.20)

y repeatedly employing the Hamilton–Cayley theorem to both (4.16) and (4.18), one obtains the following algebraic equations

1 = 3𝛽0 + 𝛽11 + 𝛽2
(

2
1 − 22

)

,

2 = 3𝛼0 + 𝛼11 + 𝛼2
(

2
1 − 22

)

,

3 = 3𝛼0𝛽0 +
(

𝛼0𝛽1 + 𝛼1𝛽0
)

1

+
(

𝛼0𝛽2 + 𝛼1𝛽1 + 𝛼2𝛽0
) (

2
1 − 22

)

+
(

𝛼1𝛽2 + 𝛼2𝛽1
) (

3
1 − 312 + 33

)

+ 𝛼2𝛽2
(

4
1 − 42

12 + 413 + 22
2
)

.

(4.21)

o solve 𝑝0, we still need initial constraint equation


(

1
2
,
2
4
,
3
8
, 𝑇0, 𝑥

𝑖
)

= 0. (4.22)

imultaneous equations (4.21) and (4.22) are the isotropic versions of algebraic equations (3.5). Here, 1,2,3, 𝑝0 are unknowns
while 1,2,3 are given. The corresponding solutions take the form of

1 = 1(𝜌0,1,2,3, 𝜗
∗, 𝑇0, 𝑥

𝑖),

2 = 2(𝜌0,1,2,3, 𝜗
∗, 𝑇0, 𝑥

𝑖),

3 = 3(𝜌0,1,2,3, 𝜗
∗, 𝑇0, 𝑥

𝑖),

𝑝0 = 𝑝0(𝜌0,1,2,3, 𝜗
∗, 𝑇0, 𝑥

𝑖).

(4.23)

One can solve (4.16) and (4.18) inversely and thus  𝑖𝑗 ,𝑖𝑗 become

 𝑖𝑗 =

(

𝛽2𝛼0 − 𝛽0𝛼2
)

𝑔𝑖𝑗 + 𝛼2𝜎
𝑖𝑗
0 − 𝛽2𝑔𝑘𝓁𝜎𝑖𝑘0 𝜎

𝑗𝓁
0

𝛽1𝛼2 − 𝛽2𝛼1
,

𝑖𝑗 =

(

𝛽0𝛼1 − 𝛽1𝛼0
)

𝑔𝑖𝑗 − 𝛼1𝜎
𝑖𝑗
0 + 𝛽1𝑔𝑘𝓁𝜎𝑖𝑘0 𝜎

𝑗𝓁
0

𝛽1𝛼2 − 𝛽2𝛼1
.

(4.24)

e continue to introduce the coupling invariants of 𝜎𝑖𝑗0 and 𝜀𝑖𝑗

1 = 𝜎𝑖𝑗0 𝜀𝑖𝑗 , 2 = 𝑔𝑘𝓁𝜎
𝑖𝑘
0 𝜎

𝑗𝓁
0 𝜀𝑖𝑗 ,

3 = 𝑔𝑖𝑘𝜎𝑗𝓁0 𝜀𝑖𝑗𝜀𝑘𝓁 , 4 = 𝑔𝑖𝑘𝑔𝑚𝑞𝜎
𝑗𝑚
0 𝜎𝑞𝓁0 𝜀𝑖𝑗𝜀𝑘𝓁 .

(4.25)

Then by substituting (4.24) into (4.7), one obtains the following algebraic equations of four invariants

1 =

(

𝛽2𝛼0 − 𝛽0𝛼2
)

1 + 𝛼21 − 𝛽22

𝛽1𝛼2 − 𝛽2𝛼1
,

2 =

(

𝛽0𝛼1 − 𝛽1𝛼0
)

1 − 𝛼11 + 𝛽12

𝛽1𝛼2 − 𝛽2𝛼1
,

3 =

(

𝛽2𝛼0 − 𝛽0𝛼2
) (

2
1 − 2

)

+ 𝛼23 − 𝛽24

𝛽1𝛼2 − 𝛽2𝛼1
,

4 =

(

𝛽0𝛼1 − 𝛽1𝛼0
) (

2
1 − 2

)

− 𝛼13 + 𝛽14

𝛽1𝛼2 − 𝛽2𝛼1
.

(4.26)

inally, by substituting (4.23) into (3.7), 𝑠0 can be derived as

𝑠0 = 𝑠0(𝜌0,1,2,3, 𝜗
∗, 𝑇0, 𝑥

𝑖)

=
[

𝑝0(𝜌0,1,2,3, 𝜗∗, 𝑇0, 𝑥𝑖) 𝜕 − 𝜕
]

|

| ,
(4.27)
10

𝜌0 𝜕𝜗 𝜕𝜗 |𝑖=𝑖(𝜌0 ,1 ,2 ,3 ,𝜗∗ ,𝑇0 ,𝑥𝑖)
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then from (4.23), (4.26) and (4.27), the equivalent free energy density and the equivalent internal constraint can be explicitly
expressed as

̂ = ̂ (1,2,3,1,2,3,4, 𝜗, 𝜌0,1,2,3, 𝜗
∗, 𝑇0, 𝑥

𝑖),

̂ = ̂(1,2,3,1,2,3,4, 𝜗, 𝜌0,1,2,3, 𝜗
∗, 𝑇0, 𝑥

𝑖),
(4.28)

here 𝜌0,1,2,3, 𝜗∗, and 𝑇0 serve as given parameters. According to (3.8) and (3.9), ̂ and ̂ are functional of 𝑔𝑖𝑗 , 𝜀𝑖𝑗 , 𝜎
𝑖𝑗
0 , 𝜗, 𝜌0,

∗, 𝑇0, and 𝑥𝑖. These variables are undoubtedly independent. The difference between (3.8), (3.9), and (4.28) is that 𝑔𝑖𝑗 , 𝜀𝑖𝑗 , and 𝜎𝑖𝑗0
re combined into ten invariants 1, 2, 3, 1, 2, 3, 1, 2, 3, 4. According to the theory of representations for isotropic tensor
unctions (Zheng, 1994), the ten invariants are independent. Therefore, all the variables on the right side of (4.28) are independent.

. Linearization

.1. The general forms of the linearized constitutive equations

If displacement gradients and temperature variation are small enough (in comparison with the natural temperature) while other
uantities remain finite, all the above derivations can be linearized to the first-order of ∇𝑖𝑢𝑗 and 𝜗 = 𝑇 − 𝑇0. Geometric equations
2.8) now reduce to the classical Cauchy strains 𝜀𝑖𝑗 =

1
2

(

∇𝑖𝑢𝑗 + ∇𝑗𝑢𝑖
)

, then (2.1) become

𝐺𝑖𝑗 = 𝑔𝑖𝑗 − 2𝑖𝑗1 = 𝑔𝑖𝑗 − 𝑔𝑗𝑘∇𝑘𝑢𝑖 − 𝑔𝑖𝑘∇𝑘𝑢𝑗 . (5.1)

The square root of (2.4) is linearized as
√

𝐺 =
√

𝑔
(

1 + 1
)

=
√

𝑔
(

1 + ∇𝑖𝑢𝑖
)

, (5.2)

hus according to continuity Eq. (2.5), 𝜌 degenerates to the classical form

𝜌 = 𝜌0
(

1 − 1
)

= 𝜌0
(

1 − ∇𝑖𝑢𝑖
)

. (5.3)

Hoger and Johnson have demonstrated that linearizations cannot be performed before taking the respective derivatives (Hoger
Johnson, 1995a, 1995b). Thus equivalent internal constraint (3.9) should be expended to the second order of 𝜀𝑖𝑗 and 𝜗 (Chadwick
Scott, 1992), i.e.,

̂ = 𝜒 𝑖𝑗𝜀𝑖𝑗 − 𝜉𝜗 +
1
2
𝐶 𝑖𝑗𝑘𝓁𝜀𝑖𝑗𝜀𝑘𝓁 − 𝜙𝑖𝑗𝜀𝑖𝑗𝜗 −

𝜂
2
𝜗2, (5.4)

here the coefficients are derived in the form of

𝜒 𝑖𝑗 = 𝜕̂
𝜕𝜀𝑖𝑗

|

|

|0
, 𝜉 = − 𝜕̂

𝜕𝜗
|

|

|0
, 𝐶 𝑖𝑗𝑘𝓁 = 𝜕2̂

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝓁
|

|

|0
,

𝜙𝑖𝑗 = − 𝜕2̂
𝜕𝜀𝑖𝑗𝜕𝜗

|

|

|0
, 𝜂 = − 𝜕

2̂
𝜕𝜗2

|

|

|0
,

(5.5)

n which ‘‘|0’’ means that it takes value at 𝜀𝑖𝑗 = 𝜗 = 0. The linearized constraint equation takes the following form

𝜒 𝑖𝑗𝜀𝑖𝑗 = 𝜒 𝑖𝑗∇𝑖𝑢𝑗 = 𝜉𝜗. (5.6)

he physical explanation of 𝜉 is that it represents the influences of temperature variation on the internal constraint (Humphrey &
ajagopal, 1997). If 𝜉 = 0, (5.6) degenerates to the classical form of isothermal constraint 𝜒 𝑖𝑗∇𝑖𝑢𝑗 = 0. Similarly, equivalent free
nergy density (3.8) should also be expanded as

̂ =
𝑝0
𝜌0

(

𝜒 𝑖𝑗𝜀𝑖𝑗 − 𝜉𝜗
)

+ 1
2
𝐸𝑖𝑗𝑘𝓁𝜀𝑖𝑗𝜀𝑘𝓁 − 𝜓 𝑖𝑗𝜀𝑖𝑗𝜗 −

𝑐
2𝑇0

𝜗2, (5.7)

here the coefficients are derived in the form of

𝐸𝑖𝑗𝑘𝓁 = 𝜕2̂
𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝓁

|

|

|0
, 𝜓 𝑖𝑗 = − 𝜕2̂

𝜕𝜀𝑖𝑗𝜕𝜗
|

|

|0
, 𝑐 = −𝑇0

𝜕2̂
𝜕𝜗2

|

|

|0
. (5.8)

ere, 𝑐 can be regarded as the heat capacity at constant reference volume.
By substituting (5.4) and (5.7) into (3.10), 𝜎̂𝑖𝑗 are derived as

𝜎̂𝑖𝑗 = 𝜎𝑖𝑗0 +
[

𝜌0𝐸
𝑖𝑗𝑘𝓁 −

(

𝑝0 + 𝑝̂
)

𝐶 𝑖𝑗𝑘𝓁 − 𝑔𝑘𝓁
(

𝜎𝑖𝑗0 + 𝑝0𝜒 𝑖𝑗
)]

𝜀𝑘𝓁

+
(

𝑝𝜙𝑖𝑗 − 𝜌0𝜓 𝑖𝑗
)

𝜗 − 𝜒 𝑖𝑗 𝑝̂,

= 𝜎𝑖𝑗0 +
[

𝜌0𝐸
𝑖𝑗𝑘𝓁 −

(

𝑝0 + 𝑝̂
)

𝐶 𝑖𝑗𝑘𝓁
]

∇𝑘𝑢𝓁 −
(

𝜎𝑖𝑗0 + 𝑝0𝜒 𝑖𝑗
)

∇𝑘𝑢𝑘
( 𝑖𝑗 𝑖𝑗) 𝑖𝑗

(5.9)
11

+ 𝑝𝜙 − 𝜌0𝜓 𝜗 − 𝜒 𝑝̂,
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in which 𝑝̂ = 𝑝 − 𝑝0 is the increment of constraint multiplier, it may be large and thus bi-linear terms 𝑝̂∇𝑖𝑢𝑗 cannot be neglected.
Then by substituting (5.9) into (2.11), Cauchy stresses 𝜎𝑖𝑗 can be expressed as

𝜎𝑖𝑗 = 𝜎𝑖𝑗0 +
(

𝜌0𝐸
𝑖𝑗𝑘𝓁 + 𝑔𝑖𝓁𝜎𝑗𝑘0 + 𝑔𝑗𝓁𝜎𝑖𝑘0

)

∇𝑘𝑢𝓁

−
[(

𝑝0 + 𝑝̂
)

𝐶 𝑖𝑗𝑘𝓁 + 𝑝̂
(

𝑔𝑖𝓁𝜒 𝑗𝑘 + 𝑔𝑗𝓁𝜒 𝑖𝑘
)]

∇𝑘𝑢𝓁

−
(

𝜎𝑖𝑗0 + 𝑝0𝜒 𝑖𝑗
)

∇𝑘𝑢𝑘 +
[(

𝑝0 + 𝑝̂
)

𝜙𝑖𝑗 − 𝜌0𝜓 𝑖𝑗
]

𝜗 − 𝜒 𝑖𝑗 𝑝̂.

(5.10)

Also according to (3.10), entropy 𝑠 can be expressed in the form of

𝑠 = 𝑠0 +
[

𝜓 𝑖𝑗 −
𝑝0 + 𝑝̂
𝜌0

(

𝜙𝑖𝑗 + 𝜉𝑔𝑖𝑗
)

]

𝜀𝑖𝑗 +

[

𝑐
𝑇0

−
𝜂
(

𝑝0 + 𝑝̂
)

𝜌0

]

𝜗 −
𝜉𝑝̂
𝜌0
,

= 𝑠0 +
[

𝜓 𝑖𝑗 −
𝑝0 + 𝑝̂
𝜌0

(

𝜙𝑖𝑗 + 𝜉𝑔𝑖𝑗
)

]

∇𝑖𝑢𝑗 +

[

𝑐
𝑇0

−
𝜂
(

𝑝0 + 𝑝̂
)

𝜌0

]

𝜗 −
𝜉𝑝̂
𝜌0
.

(5.11)

(5.10) and (5.11) together constitute the linearized constitutive equations.

5.2. The naturally isotropic and temperature-controlled-compressible elastomer

In practice, the elastomer is often assumed to be naturally isotropic and temperature-controlled-compressible. To be specific, the
internal constraint is specified in the following form (Gurtin & Guidugli, 1973)

 =
√

𝐺 −
√

𝑔∗ − 𝜁 (𝑇 ) = 0, (5.12)

where 𝜁 is a given function satisfies 𝜁 (𝑇 ∗) = 0, it means that the volume of the elastomer is controlled by temperatures, and if
≡ 𝑇 ∗, i.e., isothermal deformations, thus (5.12) degenerates to classical incompressible constraint 𝐺 = 𝑔∗. By substituting (2.4)

nto (5.12), one concludes that

̂ =
√

𝑔

(

√

1 + 21 + 42 + 83 −
1

√

1 + 1 + 2 + 3

)

− 𝜁 (𝑇0 + 𝜗),

=
√

𝑔
(

√

1 + 21 + 42 + 83 − 1
)

− 𝜁 (𝑇0, 𝜗),

(5.13)

here 𝜁 (𝑇0, 𝜗) = 𝜁 (𝑇0 + 𝜗) − 𝜁 (𝑇0) is the increment of 𝜁 , and

√

𝑔 −
√

𝑔∗ =
√

𝑔

(

1 − 1
√

1 + 1 + 2 + 3

)

= 𝜁 (𝑇0) (5.14)

s the explicit form of initial constraint Eq. (4.22). Then by substituting (5.13) into (5.4), ̂ can be expanded in the form of

̂ =
√

𝑔
(

1 + 22 −
1
2
2
1

)

−
𝜕𝜁
𝜕𝜗

|

|

|0
𝜗 − 1

2
𝜕2𝜁
𝜕𝜗2

|

|

|0
𝜗2. (5.15)

ccording to (5.15), coefficients (5.5) are explicitly derived as

𝐶 𝑖𝑗𝑘𝓁 =
√

𝑔
(

𝑔𝑖𝑗𝑔𝑘𝓁 − 𝑔𝑖𝑘𝑔𝑗𝓁 − 𝑔𝑖𝓁𝑔𝑗𝑘
)

,

𝜒 𝑖𝑗 =
√

𝑔𝑔𝑖𝑗 , 𝜉 =
𝜕𝜁
𝜕𝜗

|

|

|0
, 𝜙𝑖𝑗 = 0, 𝜂 =

𝜕2𝜁
𝜕𝜗2

|

|

|0
.

(5.16)

Thus linearized constraint Eq. (5.6) becomes

∇𝑖𝑢𝑖 =
𝜉𝜗
√

𝑔
. (5.17)

f 𝜉 = 0, (5.17) degenerates to classical incompressible condition ∇𝑖𝑢𝑖 = 0.
Naturally isotropic free energy density (4.1) now can be expanded as

 = 1
4

[

4𝐾1 + 2𝐾21 +𝐾3
(

2 + 3
)

]

1 +
1
4
(

𝐾3 − 2𝐾2
)

2

+ 1
4

[

4𝐾1 + 2𝐾2
(

1 − 1
)

−𝐾31

]

1 +𝐾4𝜗

+ 1
2
(

𝐾3 − 2𝐾2
) (

1 + 1
)

3 +
1
2
(

2𝐾2 −𝐾3
)

4

+ 1
2

[

2𝐾51 + 2𝐾6
(

2 + 3
)

+ 2𝐾71
(

2 + 3
)

+𝐾11 +𝐾122
1 +𝐾13

(

2 + 3
)2

]

2
1

+ 1
2

[

2𝐾2
(

1 − 2
)

+𝐾3
(

1 + 22 + 3
)

]

2

+ 1 [

2𝐾
(

 − 1
)

− 2𝐾  − 2𝐾 
(

 − 1
)

12

2 5 1 6 1 7 1 1
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+𝐾11 +𝐾12
(

1 − 1
)2 +𝐾132

1

]

 2
1

+ 1
2

[

(

2𝐾2 −𝐾3
) (

1 + 1
)

+ 2𝐾5
(

21 − 1
)

− 2𝐾72
1

+ 2𝐾6
(

2 + 3 − 1
)

+ 2𝐾7
(

1 − 1
) (

2 + 3
)

+ 2𝐾11 + 2𝐾121
(

1 − 1
)

− 2𝐾131
(

2 + 3
)

]

11

+ 1
2

[

𝐾3 − 2𝐾2 − 2𝐾5 + 2𝐾6 + 2𝐾7
(

1 − 2 − 3
)

− 2𝐾121 + 2𝐾13
(

2 + 3
)

]

12

+
[

𝐾6 −𝐾5 +𝐾7
(

21 − 1
)

−𝐾12
(

1 − 1
)

−𝐾131

]

12

+ 1
2
(

𝐾12 − 2𝐾7 +𝐾13
)

 2
2 +

[

𝐾8 +𝐾91 +𝐾10
(

2 + 3
)

]

1𝜗

+
[

𝐾8 +𝐾9
(

1 − 1
)

−𝐾101

]

1𝜗 +
(

𝐾10 −𝐾9
)

2𝜗 +
1
2
𝐾14𝜗

2,

(5.18)

n which the coefficients are expressed as

𝐾1 =
𝜕
𝜕𝐼1

|

|

|

|0
, 𝐾2 =

𝜕
𝜕𝐼2

|

|

|

|0
, 𝐾3 =

𝜕
𝜕𝐼3

|

|

|

|0
, 𝐾4 =

𝜕
𝜕𝜗

|

|

|

|0
,

𝐾5 =
1
2

𝜕2
𝜕𝐼1𝜕𝐼2

|

|

|

|0
, 𝐾6 =

1
4

𝜕2
𝜕𝐼1𝜕𝐼3

|

|

|

|0
, 𝐾7 =

1
8

𝜕2
𝜕𝐼2𝜕𝐼3

|

|

|

|0
,

𝐾8 =
𝜕2
𝜕𝐼1𝜕𝜗

|

|

|

|0
, 𝐾9 =

1
2
𝜕2
𝜕𝐼2𝜕𝜗

|

|

|

|0
, 𝐾10 =

1
4
𝜕2
𝜕𝐼3𝜕𝜗

|

|

|

|0
,

𝐾11 =
𝜕2
𝜕𝐼21

|

|

|

|0
, 𝐾12 =

1
4
𝜕2
𝜕𝐼22

|

|

|

|0
, 𝐾13 =

1
16
𝜕2
𝜕𝐼23

|

|

|

|0
, 𝐾14 =

𝜕2
𝜕𝜗2

|

|

|

|0
.

(5.19)

herefore, elastic coefficients 𝐸𝑖𝑗𝑘𝓁 are derived in the following forms

𝐸𝑖𝑗𝑘𝓁 =
{

𝐾2
(

1 − 2
)

+
𝐾3
2

(

1 + 22 + 3
)

+ 2𝐾51 +𝐾122
1

+𝐾11 +
(

2 + 3
) [

2𝐾6 + 2𝐾71 +𝐾13
(

2 + 3
)]

}

𝑔𝑖𝑗𝑔𝑘𝓁

+
[𝐾2
2

(

2 − 1
)

−
𝐾3
4

(

1 + 22 + 3
)

]

(

𝑔𝑖𝑘𝑔𝑗𝓁 + 𝑔𝑗𝑘𝑔𝑖𝓁
)

+
[ 1
2
(

2𝐾2 −𝐾3
) (

1 + 1
)

+𝐾5
(

21 − 1
)

−𝐾72
1

+𝐾11 +𝐾6
(

2 + 3 − 1
)

+𝐾7
(

2 + 3
) (

1 − 1
)

+𝐾121
(

1 − 1
)

−𝐾13
(

2 + 3
)

1

]

(

𝑔𝑖𝑗𝑘𝓁 + 𝑔𝑘𝓁 𝑖𝑗)

+
[ 𝐾3

2
−𝐾2 −𝐾5 +𝐾6 +𝐾7

(

1 − 2 − 3
)

−𝐾121 +𝐾13
(

2 + 3
)

]

(

𝑔𝑖𝑗𝑘𝓁 + 𝑔𝑘𝓁𝑖𝑗
)

+
[

2𝐾5
(

1 − 1
)

− 2𝐾61 + 2𝐾71
(

1 − 1
)

+𝐾11 +𝐾12
(

1 − 1
)2 +𝐾132

1

]

 𝑖𝑗𝑘𝓁

+
[

𝐾6 −𝐾5 +𝐾7
(

21 − 1
)

−𝐾12
(

1 − 1
)

−𝐾131

]

(

 𝑖𝑗𝑘𝓁 + 𝑘𝓁𝑖𝑗
)

+ 1
4
(

𝐾3 − 2𝐾2
) (

1 + 1
) (

𝑔𝑖𝑘𝑗𝓁 + 𝑔𝑖𝓁𝑗𝑘 + 𝑔𝑗𝑘 𝑖𝓁 + 𝑔𝑗𝓁 𝑖𝑘)

+ 1
4
(

2𝐾2 −𝐾3
) (

𝑔𝑖𝑘𝑗𝓁 + 𝑔𝑖𝓁𝑗𝑘 + 𝑔𝑗𝑘𝑖𝓁 + 𝑔𝑗𝓁𝑖𝑘
)

+
(

𝐾12 − 2𝐾7 +𝐾13
)

𝑖𝑗𝑘𝓁 .

(5.20)

lso coupling coefficients 𝜓 𝑖𝑗 are derived as

𝜓 𝑖𝑗 =
[

𝐾101 +𝐾9
(

1 − 1
)

−𝐾8
]

 𝑖𝑗 +
(

𝐾9 −𝐾10
)

𝑖𝑗
[ ( )] 𝑖𝑗 (5.21)
13

− 𝐾8 +𝐾91 +𝐾10 2 + 3 𝑔 .
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Besides, 𝑐 = −𝑇0𝐾14. Algebraic equations (4.16) now become

𝜎𝑖𝑗0 =
𝜌0
4

[

4𝐾1 + 2𝐾21 +𝐾3
(

2 + 3
)

− 4
√

𝑔
𝑝0
𝜌0

]

𝑔𝑖𝑗

+
𝜌0
4

[

4𝐾1 + 2𝐾2
(

1 − 1
)

−𝐾31
]

 𝑖𝑗 +
𝜌0
4

(

𝐾3 − 2𝐾2
)

𝑖𝑗 ,
(5.22)

hile initial entropy (4.27) becomes

𝑠0 = −𝐾4 −
𝑝0
𝜌0
𝜉. (5.23)

Finally, by substituting (5.16) and (5.20) into (5.10), 𝜎𝑖𝑗 are derived as

𝜎𝑖𝑗 = 𝜎𝑖𝑗0 +
[

𝜌0𝐸
𝑖𝑗𝑘𝓁 +

√

𝑔𝑝0
(

𝑔𝑖𝑘𝑔𝑗𝓁 + 𝑔𝑖𝓁𝑔𝑗𝑘
)

+ 𝑔𝑖𝓁𝜎𝑗𝑘0 + 𝑔𝑗𝓁𝜎𝑖𝑘0
]

∇𝑘𝑢𝓁

−

[(

𝜎𝑖𝑗0
√

𝑔
+ 2𝑝0𝑔𝑖𝑗 + 𝑝̂𝑔𝑖𝑗

)

𝜉 + 𝜌0𝜓 𝑖𝑗
]

𝜗 −
√

𝑔𝑔𝑖𝑗 𝑝̂.
(5.24)

lso by substituting (5.16) and (5.20) into (5.11), 𝑠 can be derived as

𝑠 = 𝑠0 + 𝜓 𝑖𝑗∇𝑖𝑢𝑗 +

[

𝑐
𝑇0

−
𝜂
(

𝑝0 + 𝑝̂
)

𝜌0
−

(

𝑝0 + 𝑝̂
)

𝜉2

𝜌0
√

𝑔

]

𝜗 −
𝜉𝑝̂
𝜌0
. (5.25)

According to (5.24) and (5.25), one concludes that if 𝜉, 𝜂 ≠ 0, bi-linear term 𝑝̂𝜗 cannot be eliminated and the corresponding linearized
equations are still somewhat nonlinear. Further assume that 𝜎𝑖𝑗0 are small compared with the elastic moduli of the elastomer while
𝜉, 𝜂 = 0, then all the terms containing 𝜎𝑖𝑗0 ∇𝑘𝑢𝓁 , 𝑝0∇𝑖𝑢𝑗 or 𝜎𝑖𝑗0 𝜗 are higher-order infinitesimal, thus can be neglected. By this means,
(5.24) and (5.25) degenerate to

𝜎𝑖𝑗 = 𝜎𝑖𝑗0 −
𝜌0𝐾2
2

(

𝑔𝑖𝑘𝑔𝑗𝓁 + 𝑔𝑗𝑘𝑔𝑖𝓁
)

∇𝑘𝑢𝓁 + 𝜌0𝐾8𝑔
𝑖𝑗𝜗 −

√

𝑔𝑔𝑖𝑗 𝑝̂,

𝑠 = 𝑠0 −𝐾14𝜗,
(5.26)

which are the classical constitutive equations of constrained thermoelastic elastomers with initial stresses (Kachanov, Shafiro, &
Tsukrov, 2003). Here, only three coefficients 𝐾2, 𝐾8, 𝐾14 are required, and the superposition principle is valid.

6. Examples

6.1. The Saint Venant–Kirchhoff elastomer

In the first example, we aim to provide thermo-mechanically coupled constitutive equations for a one-dimensional Saint Venant–
Kirchhoff elastomer with arbitrary initial states (it deforms in one direction, and the deformations in the other two directions are
assumed to be zero, similar to plane waves). Here, the aforementioned embedding method can be carried out explicitly and clearly
while the concrete usage of our new formulations is illustrated in detail.

The only material coordinate is 𝑥, thus all the tensor indices can be omitted, i.e., 𝑔∗𝑥𝑥, 𝑔𝑥𝑥, 𝐺𝑥𝑥, 𝜎
𝑥𝑥
0 , 𝜎𝑥𝑥, 𝜀∗𝑥𝑥, 𝜀𝑥𝑥, 𝑥𝑥 are denoted

y 𝑔∗, 𝑔, 𝐺, 𝜎0, 𝜎, 𝜀∗, 𝜀 and  , respectively. If 0 = ∗, the free energy density of Saint Venant–Kirchhoff elastomer can be specified
n the following quadratic form

𝜌0 = 𝜆
2
2
1 + 𝜇2 −𝐾𝛼1

(

𝑇 − 𝑇0
)

−
𝜌0𝑐v
2𝑇0

(

𝑇 − 𝑇0
)2 , (6.1)

here 𝜆, 𝜇,𝐾 are Lamé constants and bulk modulus, respectively, 𝛼 is the coefficient of bulk expansion and 𝑐v is the heat capacity
at constant reference volume. However, if 0 ≠ ∗, then 0 is the reference configuration with arbitrary initial states while ∗ is
undetermined. (6.1) should be modified as

𝜌∗ = 𝜆
2
𝐼21 + 𝜇𝐼2 −𝐾𝛼𝐼1

(

𝑇 − 𝑇 ∗) −
𝜌∗𝑐v
2𝑇 ∗

(

𝑇 − 𝑇 ∗)2 . (6.2)

or simplicity, 𝑔 is assumed to be 1, thus 𝑔∗ = (1 + )−1 according to (4.3). By substituting 𝑔∗ = 1 − 2𝜀∗ into (4.4), one concludes
that

 = 2𝜀∗
1 − 2𝜀∗

, 𝜀∗ = 
2 (1 + )

. (6.3)

In this way, 𝐼1 and 𝐼2 can be derived as

𝐼1 =
𝜀∗ + 𝜀
𝑔∗

= 𝜀∗ + 𝜀
1 − 2𝜀∗

= 
2
+ (1 + ) 𝜀, 𝐼2 = 0. (6.4)

Then according to 𝜌∗
√

𝑔∗ = 𝜌0, (6.2) becomes

 =
 + 2 (1 + ) 𝜀

√

[

𝜆 + 2𝜆 (1 + ) 𝜀 − 4𝐾𝛼
(

𝜗∗ + 𝜗
)]

−
𝑐v (𝜗∗ + 𝜗)

2

∗ . (6.5)
14

8𝜌0 1 +  2𝑇



International Journal of Engineering Science 178 (2022) 103730W. Chen and Y.-P. Zhao

A

O
e

t

T

o

O
a

𝜎
c
t
s

T

f

A

By substituting (6.5) into (3.3), 𝜎̂ and 𝑠 can be derived as

𝜎̂
𝜌
=

√

1 + 
2𝜌0

[

𝜆 + 2𝜆 (1 + ) 𝜀 − 2𝐾𝛼
(

𝜗∗ + 𝜗
)]

,

𝑠 =
𝐾𝛼 [ + 2 (1 + ) 𝜀]

2𝜌0
√

1 + 
+
𝑐v (𝜗∗ + 𝜗)

𝑇 ∗ .
(6.6)

From (3.4), one obtains 𝑠∗ = 0. Then by substituting 𝜀 = 𝜗 = 0 and 𝜌 = 𝜌0 into (6.6), algebraic equation (3.5)1 now becomes

𝜎0 =

√

1 + 
2

(

𝜆 − 2𝐾𝛼𝜗∗
)

. (6.7)

lso initial entropy 𝑠0 can be derived as

𝑠0 =
𝐾𝛼

2𝜌0
√

1 + 
+
𝑐v𝜗∗

𝑇 ∗ . (6.8)

nce 𝜎0, 𝜗∗ and dimensionless coefficients 𝐾𝛼𝑇 ∗∕𝜆, 𝜌0𝑐v∕𝐾𝛼 are given, (6.7) becomes a cubic equation of  . If the solution of (6.7)
xists, then by substituting this solution into (6.8), initial entropy 𝑠0 can be accordingly obtained.

In many applications, (6.7) can be simplified. Firstly, the initial states are assumed to be originated from initially isothermal
ensions/compressions, i.e., 𝜗∗ = 0, then (6.7) and (6.8) become

𝜎0
𝜆

= 
2

√

1 +  ,
𝜌0𝑠0
𝐾𝛼

= 
2
√

1 + 
. (6.9)

o guarantee the existence of solutions of (6.9), a restriction on the possible values of 𝜎0 arises, that is 𝜎0 ⩾ −
(
√

3∕9
)

𝜆. This
inequality indicates that there exists a minimum value of initial compression, which is similar to the buckling of rods. If the given 𝜎0 is
smaller than −

(
√

3∕9
)

𝜆, (6.1) may no longer be an appropriate description of the elastomer. Furthermore, if −
(
√

3∕9
)

𝜆 ⩽ 𝜎0 < 0,
there exist two negative solutions, while if 𝜎0 ⩾ 0, only one positive solution exists. We here choose the branch that satisfies
(0, 0) = 0.

Secondly, the initial states are assumed to be originated from initially free thermal expansions. By substituting 𝜎0 = 0 into (6.7),
ne concludes that

 = 2𝐾𝛼𝑇 ∗

𝜆
𝜗∗

𝑇 ∗ ,
𝜌0𝑠0
𝐾𝛼

= 
2
√

1 + 
+
𝜌0𝑐v
𝐾𝛼

𝜗∗

𝑇 ∗ . (6.10)

nce 𝜗∗ is given, then both  and 𝑠0 can be uniquely determined. Lastly, the initial states are assumed to be originated from initially
diabatic tensions/compressions. By substituting 𝑠0 = 𝑠∗ = 0 into (6.8), one obtains

𝜎0
𝜆

=

√

1 + 
2

(

 − 2𝐾𝛼𝑇
∗

𝜆
𝜗∗

𝑇 ∗

)

, 
2
√

1 + 
= −

𝜌0𝑐v
𝐾𝛼

𝜗∗

𝑇 ∗ . (6.11)

In (6.11), 𝜎0 and 𝜗∗ cannot be given independently. If one gives 𝜗∗, then  and 𝜎0 can be determined uniquely. While if one gives
0, (6.11) reduce to another cubic equation that is different from (6.9). This fact indicates that the classical approaches, which
oncern only mechanical but not thermal effects, may be insufficient to derive the appropriate constitutive equations. Different
hermo-mechanically coupled deformation histories correspond to different subsequent mechanical responses, even if they share the
ame 𝜎0. In particular, when  and 𝜗∗ are small, (6.7) and (6.8) reduce to linear equations

𝜎0
𝜆

= 
2
− 𝐾𝛼𝑇 ∗

𝜆
𝜗∗

𝑇 ∗ ,
𝜌0𝑠0
𝐾𝛼

= 
2
+
𝜌0𝑐v
𝐾𝛼

𝜗∗

𝑇 ∗ . (6.12)

he solutions of (6.12) are expressed as

lin = 2
(

𝜎0
𝜆

+ 𝐾𝛼𝑇 ∗

𝜆
𝜗∗

𝑇 ∗

)

,

(𝜌0𝑠0
𝐾𝛼

)

lin
=
𝜎0
𝜆

+
(

𝐾𝛼𝑇 ∗

𝜆
+
𝜌0𝑐v
𝐾𝛼

)

𝜗∗

𝑇 ∗ .
(6.13)

Now we introduce two dimensionless coefficients 𝛾 =
√

1 +  and 𝛽 = 𝑇0∕𝑇 ∗ to replace  and 𝜗∗, respectively. The equivalent
ree energy density becomes

̂ =
𝛾3𝜆
2𝜌0

𝜀2 −
𝛾𝐾𝛼
𝜌0

𝜀𝜗 −
𝛽𝑐v
2𝑇0

𝜗2. (6.14)

ccording to (6.14), one concludes that

𝐸𝑥𝑥𝑥𝑥 =
𝛾3𝜆

, 𝜓𝑥𝑥 =
𝛾𝐾𝛼

, 𝑐 = 𝛽𝑐v. (6.15)
15
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By substituting (6.15) into (5.10) and (5.11), the thermo-mechanically coupled constitutive equations of one-dimensional Saint
Venant–Kirchhoff elastomers with arbitrary initial states are derived in the form of

𝜎 = 𝜎0 +
(

𝜆𝛾3 + 𝜎0
)

𝜀 − 𝛾𝐾𝛼𝜗 = 𝜎0 + 𝜆′𝜀 −𝐾 ′𝛼′𝜗,

𝑠 = 𝑠0 +
𝛾𝐾𝛼
𝜌0

𝜀 +
𝛽𝑐v
𝑇0

𝜗 = 𝑠0 +
𝐾 ′𝛼′

𝜌0
𝜀 +

𝑐′v
𝑇0
𝜗,

(6.16)

where

𝜆′

𝜆
= 𝐾 ′

𝐾
= 𝛾3 +

𝜎0
𝜆
, 𝛼′

𝛼
=

𝛾
𝛾3 + 𝜎0

𝜆

,
𝑐′v
𝑐v

= 𝛽 (6.17)

are ratios between the initial-states-effected values and their natural ones. The influences of initial states are reflected in coefficients
𝛾 and 𝛽. If 𝜎0 = 𝜗∗ = 0, then 𝛾 = 𝛽 = 1, thus 𝜆′ = 𝜆,𝐾 ′ = 𝐾, 𝛼′ = 𝛼, 𝑐′v = 𝑐v and (6.16) reduce to

𝜎 = 𝜎0 + 𝜆𝜀 −𝐾𝛼𝜗, 𝑠 = 𝑠0 +
𝐾𝛼
𝜌0

𝜀 +
𝑐v
𝑇0
𝜗. (6.18)

To illustrate the quantitative influences of initial states, we here take nylon, for instance. Here, 𝑇 ∗ is assumed to be 300 K,
nd coefficients 𝐾𝛼𝑇 ∗∕𝜆 and 𝜌0𝑐v∕𝐾𝛼 are specified as 0.076 and 2.2, respectively. We first consider initially isothermal ten-
ion/compression (6.9), where 𝜎0∕𝜆 = 𝛾

(

𝛾2 − 1
)

∕2 and 𝜌0𝑠0∕𝐾𝛼 =
(

𝛾2 − 1
)

∕2𝛾. The relations between various coefficients and
𝜎0∕𝜆 are plotted in Fig. 3(a). It can be concluded that 𝜆′ > 𝜆,𝐾 ′ > 𝐾, 𝛼′ < 𝛼 and 𝑠0 > 0 when 𝜎0 > 0, but quite the opposite
when 𝜎0 < 0. The heat capacity remains unchanged because 𝛽 ≡ 1. We then consider initially free thermal expansion (6.10), where
𝜆′∕𝜆 = 𝐾 ′∕𝐾 = 𝛾3 and 𝛼′∕𝛼 = 𝛾−2. The relations between various coefficients and 𝛽 = 1 + (𝜗∗∕𝑇 ∗) are plotted in Fig. 3(b). It can
e concluded that 𝜆′ > 𝜆,𝐾 ′ > 𝐾, 𝑐′v > 𝑐v, 𝛼′ < 𝛼 and 𝑠0 > 0 when 𝑇0 > 𝑇 ∗, but quite the opposite when 𝑇0 < 𝑇 ∗. We finally
onsider initially adiabatic tension/compression (6.11), where 𝜎0 is given. The relations between various coefficients and 𝜎0∕𝜆 are
lotted in Fig. 3(c). In this situation, the mechanical coefficients, i.e., 𝜆′∕𝜆,𝐾 ′∕𝐾, 𝛼′∕𝛼 and 𝛾, behave in a similar way to those in the

isothermal case, only small differences can be found between the isothermal and the adiabatic coefficients. However, the thermal
coefficients, i.e., 𝑐′v∕𝑐v and 𝛽, behave in a completely different way to those in the isothermal case. Here, 𝑇0 < 𝑇 ∗ and 𝑐′v < 𝑐v when
0 > 0, but quite the opposite when 𝜎0 < 0.

These results prove that the constitutive coefficients may behave differently even for the same initial stresses if the latter
s originated from isothermal and adiabatic deformations, respectively. Especially for the thermal coefficients, which are most
nfluenced by thermo-mechanically coupled deformation histories. As a consequence, the subsequent thermoelastic behaviors could
e completely distinct. From this perspective, our new proposed framework is necessary and has certain practical value.

Moreover, we would like to compare our additive-decomposition-based approach to the multiplicative-decomposition-based
sothermal theory. Suppose the stress-free length of the elastomer is 𝐿∗, while the initial and the current length are 𝐿0 and 𝐿,

respectively. According to deformation gradients

𝐿0
𝐿∗ = 𝛾0,

𝐿
𝐿0

= 𝛾e,
𝐿
𝐿∗ = 𝛾t , (6.19)

ne obtains classical multiplicative decomposition 𝛾t = 𝛾0𝛾e. If the Cauchy stress is specified in the form of 𝜎 = 𝛴(𝛾t ), which satisfies
(1) = 0, then

𝜎0 = 𝛴(𝛾0), 𝜎 = 𝛴(𝛾0𝛾e). (6.20)

ow, we introduce the following Green strain

𝜀e =
1
2

(

𝐿2 − 𝐿2
0

𝐿2
0

)

= 1
2
(

𝛾2e − 1
)

, 𝛾e =
√

1 + 2𝜀e. (6.21)

hen 𝜀e is small, the Cauchy stress is derived in the form of

𝜎 = 𝛴(𝛾0 + 𝛾0𝜀e) = 𝜎0 + 𝛾0
𝜕𝛴(𝛾0)
𝜕𝛾t

𝜀e. (6.22)

hen according to (6.6), one concludes that

𝛴(𝛾̂) = 𝜆
2
𝛾t
(

𝛾2t − 1
)

, 𝜎0 =
𝜆
2
𝛾0

(

𝛾20 − 1
)

,
𝜕𝛴(𝛾0)
𝜕𝛾t

= 𝜆
2
(

3𝛾20 − 1
)

. (6.23)

By substituting (6.23) into (6.22), one obtains the Cauchy stress

𝜎 = 𝜆
2
𝛾0

[

𝛾20 − 1 +
(

3𝛾20 − 1
)

𝜀e
]

, (6.24)

hich is the same as (6.16), only and only if 𝛾0 = 𝛾, 𝜀e = 𝜀 and 𝜗 = 0. This result verifies the equivalence of two approaches in the
sothermal situations.
16
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Fig. 3. Various coefficients vs dimensionless initial states that originated from different thermo-mechanically coupled deformation histories. Dotted line represents
𝛾lin =

√

1 + lin. (a) Initially isothermal tension/compression (b) Initially free thermal expansion (c) Initially adiabatic tension/compression.

6.2. The Blatz–Ko elastomer

In the second example, we will study the three-dimensional deformations of Blatz–Ko elastomer, which has no internal constraint
either. Suppose the initial states of the elastomer are originated from initially isothermal uniform tensions/compressions. Instead of
𝐼1, 𝐼2, 𝐼3, strain energies are often expressed in terms of the following three invariants in hyperelastic theory

1 = 𝑔∗𝑖𝑗𝐺𝑖𝑗 = 3 + 2𝐼1,

2 =
1
2
(

21 − 𝑔
∗𝑖𝑘𝑔∗𝑗𝓁𝐺𝑖𝑗𝐺𝑘𝓁

)

= 3 + 4𝐼1 + 4𝐼2,

3 =
1
3
(

312 − 31 + 𝑔
∗𝑖𝑘𝑔∗𝑗𝓁𝑔∗𝑚𝑞𝐺𝑖𝑗𝐺𝑘𝑚𝐺𝑞𝓁

)

= 1 + 2𝐼1 + 4𝐼2 + 8𝐼3.

(6.25)

The natural strain energy density of Blatz–Ko elastomers is often specified as

𝜌∗ =
𝜇
(

2 + 2
√

3 − 5
)

, (6.26)
17
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where 𝜇 is the elastic modulus. According to initial continuity equation 𝜌0
√

𝑔 = 𝜌∗
√

𝑔∗ and (6.25), the free energy density of
latz–Ko elastomer becomes

 =
𝜇
(

3 + 4𝐼1 + 4𝐼2
1 + 2𝐼1 + 4𝐼2 + 8𝐼3

+ 2
√

1 + 2𝐼1 + 4𝐼2 + 8𝐼3

)

2𝜌0
√

1 + 1 + 2 + 3
. (6.27)

ere, 𝑥𝑖 are specified as Descartes coordinates, where 𝑔𝑖𝑗 = 𝛿𝑖𝑗 and thus there is no need to distinguish superscripts and subscripts.
o initially uniform extension,  𝑖𝑗 = 𝛿𝑖𝑗 and thus 1 = 3 ,2 = 32,3 = 3. By introducing coefficient 𝛾 =

√

1 +  , then nine
nonzero coefficients in (5.19) are derived as

𝐾1 =
𝜇
(

2𝛾2 + 𝛾5 − 3
)

𝜌0𝛾11
, 𝐾2 =

2𝜇
(

𝛾2 + 𝛾5 − 3
)

𝜌0𝛾11
, 𝐾3 =

4𝜇
(

𝛾5 − 3
)

𝜌0𝛾11
,

𝐾5 =
𝜇
(

12 − 6𝛾2 − 𝛾5
)

𝜌0𝛾17
, 𝐾6 =

𝜇
(

12 − 4𝛾2 − 𝛾5
)

𝜌0𝛾17
,

𝐾7 =
𝜇
(

12 − 2𝛾2 − 𝛾5
)

𝜌0𝛾17
, 𝐾11 =

𝜇
(

12 − 8𝛾2 − 𝛾5
)

𝜌0𝛾17
,

𝐾12 =
𝜇
(

12 − 4𝛾2 − 𝛾5
)

𝜌0𝛾17
, 𝐾13 =

𝜇
(

12 − 𝛾5
)

𝜌0𝛾17
.

(6.28)

By substituting (6.28) into (5.22) while taking uniform tension 𝜎𝑖𝑗0 = 𝜎0𝛿𝑖𝑗 and 𝑔 = 1, 𝑝0 = 0 into account, coefficient 𝛾 can be
xpressed in terms of 𝜎0

𝛾 =
(

1 −
𝜎0
𝜇

)− 1
5
. (6.29)

hus the equivalent free energy density is given by

̂ =
𝜇
2𝜌0

[(

3 − 4
𝜎0
𝜇

)

2
1 − 4

(

1 − 2
𝜎0
𝜇

)

2
]

, (6.30)

lso the elastic coefficients are derived as

𝐸𝑖𝑗𝑘𝓁 =
𝜇
𝜌0
𝛿𝑖𝑗𝛿𝑘𝓁 +

𝜇
𝜌0

(

1 − 2
𝜎0
𝜇

)

(

𝛿𝑖𝑘𝛿𝑗𝓁 + 𝛿𝑗𝑘𝛿𝑖𝓁
)

. (6.31)

inally, by substituting (6.31) into (5.24), the Cauchy stress is derived as

𝜎𝑖𝑗 = 𝜎0𝛿
𝑖𝑗 + 𝜇

[

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 +
(

1 −
𝜎0
𝜇

)( 𝜕𝑢𝑗
𝜕𝑥𝑖

+
𝜕𝑢𝑖
𝜕𝑥𝑗

)]

. (6.32)

rom (6.32), one finds that the initially-isothermal-uniform-extension Blatz–Ko elastomer is still isotropic. But its elastic moduli are
hanged, i.e.,

𝜇′

𝜇
=
𝜇 − 𝜎0
𝜇

, 𝐾 ′

𝐾
=

5𝜇 − 2𝜎0
5𝜇

,

𝐸′

𝐸
=

2
(

𝜇 − 𝜎0
) (

5𝜇 − 2𝜎0
)

5𝜇
(

2𝜇 − 𝜎0
) , 𝜈′

𝜈
=

2𝜇
2𝜇 − 𝜎0

,
(6.33)

in which 𝜇,𝐾 = 5𝜇∕3, 𝐸 = 5𝜇∕2 and 𝜈 = 1∕4 are natural values of shear, bulk, Young moduli and Poisson ratio, respectively, while
′, 𝐾 ′, 𝐸′ and 𝜈′ are the corresponding initial-states-effected ones when 𝜎0 ≠ 0. The relations between various coefficients and 𝜎0∕𝜇

are plotted in Fig. 4(a). It can be concluded that 𝐾 ′ < 𝐾,𝐸′ < 𝐸, 𝜇′ < 𝜇 and 𝜈′ > 𝜈 when 𝜎0 > 0, but quite the opposite when 𝜎0 < 0.
t also shows that the bulk modulus is the least affected, while the shear modulus is the most, by the given initial stress.

.3. The Mooney–Rivlin elastomer

In the third example, we aim to derive the constitutive equations of initially isothermal sheared Mooney–Rivlin elastomers. The
atural strain energy density of Mooney–Rivlin elastomer is often expressed as

𝜌∗ = 𝑐1
(

1 − 3
)

+ 𝑐2
(

2 − 3
)

. (6.34)

ccording to initially isothermal incompressible constraint
√

𝐺 =
√

𝑔∗, one obtains 𝜌∗ = 𝜌0. Then by substituting (6.25) into (6.34),
becomes

 =
2
(

𝑐1 + 2𝑐2
)

𝐼1 + 4𝑐2𝐼2
𝜌0

. (6.35)

hus 𝐾1 = 2
(

𝑐1 + 2𝑐2
)

∕𝜌0 and 𝐾2 = 4𝑐2∕𝜌0 are the only two nonzero coefficients in (5.19). Here, 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧 are still
Cartesian coordinates. By substituting 𝐾1, 𝐾2 into (5.22), one concludes that

𝑖𝑗 ( ) ( 𝑖𝑗 𝑖𝑗) ( 𝑖𝑗 𝑖𝑗) 𝑖𝑗
18

𝜎0 = 2 𝑐1 + 2𝑐2 + 𝑐21 𝛿 +  − 2𝑐2  + − 𝑝0𝛿 , (6.36)
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Fig. 4. Various coefficients vs dimensionless initial stresses that originated from different isothermal deformations. (a) Initially uniform tensile/compressed
Blatz–Ko elastomer. (b) Initially simple sheared Mooney–Rivlin elastomer.

and the constraint equation is 1 + 2 + 3 = 0. To initially isothermal simple shear, the only three nonzero  𝑖𝑗 are 𝑥𝑦 = 𝑦𝑥 = 𝛾

and 𝑥𝑥 = 𝛾2, thus 𝑥𝑥 = 𝛾2 + 𝛾4,𝑥𝑦 = 𝑦𝑥 = 𝛾3,𝑦𝑦 = 𝛾2 are four nonzero 𝑄𝑖𝑗 . Therefore, 1 = −2 = 𝛾2 and 3 = 0. Note that 𝑝0
can be determined by letting 𝜎𝑧𝑧0 = 0, then the solutions of algebraic equations (6.36) can be expressed as follows

𝜎𝑥𝑥0 = 2𝑐1𝛾2, 𝜎𝑦𝑦0 = −2𝑐2𝛾2, 𝜎𝑥𝑦0 = 𝜎𝑦𝑥0 = 2
(

𝑐1 + 𝑐2
)

𝛾,

𝜎𝑥𝑧0 = 𝜎𝑧𝑥0 = 𝜎𝑦𝑧0 = 𝜎𝑧𝑦0 = 𝜎𝑧𝑧0 = 0, 𝑝0 = 2
(

𝑐1 + 2𝑐2 + 𝑐2𝛾2
)

.
(6.37)

Once initial shear stress 𝜎𝑥𝑦0 is given, 𝛾 can then be derived as 𝜎𝑥𝑦0 ∕2
(

𝑐1 + 𝑐2
)

, thus all the initial stresses can be accordingly obtained.

The equivalent free energy density is expressed in the form of

̂ =
𝑝01 + 4𝑐2

[(

1 + 𝛾2
) (

2 − 3 + 11
)

+ 4 − 12
]

𝜌0
. (6.38)

We here introduce combinations 𝛾 𝑖𝑗 = 𝑖𝑗 −
(

1 + 𝛾2
)

 𝑖𝑗 , which have nonzero components 𝛾𝑥𝑥 = 0, 𝛾𝑥𝑦 = 𝛾𝑦𝑥 = −𝛾, 𝛾𝑦𝑦 = 𝛾2. By this
means, initial stresses (6.36) can be compactly expressed as 𝜎𝑖𝑗0 = 2𝑐1 𝑖𝑗 − 2𝑐2𝛾 𝑖𝑗 . According to (5.20), the elastic coefficients are

expressed as the functions of 𝛾

𝐸𝑖𝑗𝑘𝓁 =
2𝑐2
𝜌0

[

(

𝛿𝑖𝑘𝛾𝑗𝓁 + 𝛿𝑖𝓁𝛾𝑗𝑘 + 𝛿𝑗𝑘𝛾 𝑖𝓁 + 𝛿𝑗𝓁𝛾 𝑖𝑘
)

−
(

1 + 𝛾2
) (

𝛿𝑖𝑘𝛿𝑗𝓁 + 𝛿𝑗𝑘𝛿𝑖𝓁
)

− 2𝛿𝑖𝑗𝛾𝑘𝓁
]

,
(6.39)

where terms containing 𝛿𝑘𝓁 are removed since 𝛿𝑘𝓁𝜀𝑘𝓁 = 0 is the linearized constraint equation. From (5.16), one concludes that

𝐶 𝑖𝑗𝑘𝓁 = −
(

𝛿𝑖𝑘𝛿𝑗𝓁 + 𝛿𝑖𝓁𝛿𝑗𝑘
)

and 𝜒 𝑖𝑗 = 𝛿𝑖𝑗 . Thus the Cauchy stresses can be derived in the following forms

𝜎𝑖𝑗 = 𝜎𝑖𝑗0 + 2𝑐1

(

 𝑖𝑘 𝜕𝑢𝑗
𝜕𝑥𝑘

+ 𝑗𝑘 𝜕𝑢𝑖
𝜕𝑥𝑘

)

+ 2
(

𝑐1 + 𝑐2
)

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

+ 2𝑐2

(

𝛾𝑗𝑘
𝜕𝑢𝑘 + 𝛾 𝑖𝑘

𝜕𝑢𝑘
)

− 4𝑐2𝛿𝑖𝑗𝛾𝑘𝓁
𝜕𝑢𝑘 − 𝛿𝑖𝑗 𝑝̂.

(6.40)
19
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Constitutive equations (6.40) behave strongly with shear-induced anisotropy. We here provide specific forms of each component of
the Cauchy stresses

𝜎𝑥𝑥 = 2𝑐1𝛾2 + 4
(

𝑐1 + 𝑐2
)

(

𝛾
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑥
𝜕𝑥

)

+ 4𝛾2
(

𝑐1
𝜕𝑢𝑥
𝜕𝑥

− 𝑐2
𝜕𝑢𝑦
𝜕𝑦

)

− 𝑝̂,

𝜎𝑦𝑦 = −2𝑐2𝛾2 + 4
(

𝑐1 + 𝑐2
)

(

𝛾
𝜕𝑢𝑦
𝜕𝑥

+
𝜕𝑢𝑦
𝜕𝑦

)

− 𝑝̂,

𝜎𝑧𝑧 = 4
(

𝑐1 + 𝑐2
) 𝜕𝑢𝑧
𝜕𝑧

+ 4𝑐2𝛾
(

𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦
𝜕𝑥

− 𝛾
𝜕𝑢𝑦
𝜕𝑦

)

− 𝑝̂,

𝜎𝑥𝑦 = 2
(

𝑐1 + 𝑐2
)

[

𝛾 +
𝜕𝑢𝑥
𝜕𝑦

+
(

1 + 𝛾2
)
𝜕𝑢𝑦
𝜕𝑥

]

+ 2
(

𝑐2 − 𝑐1
)

𝛾
𝜕𝑢𝑧
𝜕𝑧

,

𝜎𝑥𝑧 = 2
(

𝑐1 + 𝑐2
)

(

𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥

)

+ 2𝑐1𝛾
(

𝛾
𝜕𝑢𝑧
𝜕𝑥

+
𝜕𝑢𝑧
𝜕𝑦

)

− 2𝑐2𝛾
𝜕𝑢𝑦
𝜕𝑧

,

𝜎𝑦𝑧 = 2
(

𝑐1 + 𝑐2
)

( 𝜕𝑢𝑦
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑦

)

+ 2𝑐2𝛾
(

𝛾
𝜕𝑢𝑦
𝜕𝑧

−
𝜕𝑢𝑥
𝜕𝑧

)

+ 2𝑐1𝛾
𝜕𝑢𝑧
𝜕𝑥

.

(6.41)

he influences of initial stresses are reflected in coefficients 𝛾 and 𝛾2. The relations between various coefficients and 𝜎𝑥𝑦0 ∕
(

𝑐1 + 𝑐2
)

re plotted in Fig. 4(b).

.4. The Neo-Hookean elastomer

Up till now, we have derived the constitutive equations for one-dimensional unconstrained elastomers with arbitrary initial states
Example 6.1), and three-dimensional unconstrained and constrained elastomers with isothermal initial stresses (Example 6.2, 6.3).
n this example, we will consider the most general situation, i.e., to derive the thermo-mechanically coupled constitutive equations
or Neo-Hookean elastomers with arbitrary initial states.

The natural strain energy density of Neo-Hookean elastomer is expressed as

𝜌∗ = 𝑘𝑇
(

1 − 3
)

, (6.42)

n which 𝑘 is the material parameter concerning the Boltzmann constant and the chain density. Here, we employ temperature-
ontrolled compressible constraint (5.12), where 𝜁 (𝑇 ) = 𝜉 (𝑇 − 𝑇 ∗), and coordinates 𝑥𝑖 are still Cartesian, thus 𝜌∗ = 𝜌0∕ (1 − 𝜉𝜗∗).

Then one obtains the following free energy density

 =
2𝑘 (1 − 𝜉𝜗∗)

(

𝑇0 + 𝜗
)

𝐼1
𝜌0

. (6.43)

y substituting (6.43) into (5.19), the only three nonzero coefficients are

𝐾1 =
2𝑘𝑇0
𝜌0

(

1 − 𝜉𝜗∗
)

, 𝐾4 =
𝑘1
𝜌0

(

1 − 𝜉𝜗∗
)

, 𝐾8 =
2𝑘 (1 − 𝜉𝜗∗)

𝜌0
. (6.44)

Then by substituting (6.44) into (5.22), algebraic equations take the forms of

𝜎𝑖𝑗0
𝑘𝑇0

+
𝑝0𝛿𝑖𝑗

𝑘𝑇0
= 2

(

1 − 𝜉𝜗∗
) (

𝛿𝑖𝑗 +  𝑖𝑗) , 1 + 1 + 2 + 3 =
(

1 − 𝜉𝜗∗
)−2 . (6.45)

Also from (3.4) and (4.27), the initial and the reference entropies are derived as

𝑠0 =
6𝑘𝑇0 (1 − 𝜉𝜗∗) −

(

3 + 2𝜉𝑇0
)

𝑝0 − 1

2𝜌0𝑇0
, 𝑠∗ = −

2𝑘𝜉𝑇 ∗ (1 − 𝜉𝜗∗)
𝜌0

. (6.46)

In summary, the equivalent free energy density can be expressed as

̂ =
𝑝0

(

1 − 𝜉𝜗
)

+ 2𝑘 (1 − 𝜉𝜗∗)
(

1 + 1
)

𝜗
𝜌0

, (6.47)

hile according to (5.20), (5.21) and (6.45), one obtains 𝐸𝑖𝑗𝑘𝓁 = 0, and

𝜓 𝑖𝑗 = −
𝜎𝑖𝑗0 −

𝑝0𝛿𝑖𝑗 . (6.48)
20
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Thus the Cauchy stresses and the entropy can be derived as

𝜎𝑖𝑗 = (1 − 𝜉𝜗) 𝜎𝑖𝑗0 + 𝑝0

( 𝜕𝑢𝑗
𝜕𝑥𝑖

+
𝜕𝑢𝑖
𝜕𝑥𝑗

− 2𝜉𝜗𝛿𝑖𝑗
)

+ 𝜎𝑗𝑘0
𝜕𝑢𝑖
𝜕𝑥𝑘

+ 𝜎𝑖𝑘0
𝜕𝑢𝑗
𝜕𝑥𝑘

− (1 + 𝜉𝜗) 𝑝̂𝛿𝑖𝑗 +
(

𝜎𝑖𝑗0 + 𝑝0𝛿𝑖𝑗
) 𝜗
𝑇0
,

𝑠 =
3𝑘 (1 − 𝜉𝜗∗)

𝜌0
−
𝑝0 + 1
2𝜌0𝑇0

−
𝜎𝑖𝑗0
𝜌0𝑇0

𝜕𝑢𝑖
𝜕𝑥𝑗

−
(1 + 𝜉𝜗)

[

𝑝0 + 𝜉𝑇0
(

𝑝0 + 𝑝̂
)]

𝜌0𝑇0
,

1 =
𝑝30 + 1𝑝20 + 2𝑝0 + 3

(1 − 𝜉𝜗∗)
(

2𝑘𝑇0
)3

,

(6.49)

here 1 = 1,2 =
1
2

(

2
1 − 2

)

,3 =
1
6

(

3
1 − 312 + 23

)

are three principal invariants of 𝜎𝑖𝑗0 . (6.49)3 is the thermo-mechanically
oupled version of the determining equation of initial constraint multiplier 𝑝0. If 𝜉 = 0, there is no thermal effect and (6.49)3
egenerates to the classical form of Gower, Ciarletta, and Destrade (2015), i.e., 𝑝30 +1𝑝20 +2𝑝0 +3 =

(

2𝑘𝑇0
)3. Once 𝜎𝑖𝑗0 and 𝜗∗ are

given, one can solve cubic equation (6.49)3 to obtain 𝑝0 = 𝑝0(1,2,3, 𝜗∗), then by substituting it into (6.45),  𝑖𝑗 =  𝑖𝑗 (𝜎𝑖𝑗0 , 𝜗
∗) can

be accordingly obtained. Thus the thermo-mechanically coupled constitutive equations of Neo-Hookean elastomers with arbitrary
initial states are derived.

The simplest situation of the initial states is that they are originated from initially isothermal uniform tensions/compressions,
thus 𝜗∗ = 0 and 𝜎𝑖𝑗0 = 𝜎0𝛿𝑖𝑗 . Due to the incompressible constraint, there is no initial deformation, i.e.,  𝑖𝑗 = 0. Since 1 = 3𝜎0,2 =
3𝜎20 ,3 = 𝜎30 , then (6.49)3 and (6.46)1 are solved as

𝑝0
2𝑘𝑇0

= 1 −
𝜎0

2𝑘𝑇0
,

𝜌0𝑠0
𝑘

= 2𝜉𝑇0

(

𝜎0
2𝑘𝑇0

− 1
)

. (6.50)

quivalent free energy density (6.47) now becomes

̂ =

(

2𝑘𝑇0 − 𝜎0
) (

1 − 𝜉𝜗
)

+ 2𝑘1𝜗
𝜌0

. (6.51)

And constitutive equations (6.49) take the following forms

𝜎𝑖𝑗 = 2𝑘𝑇0

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2𝜉𝜗𝛿𝑖𝑗
)

+
[

2𝑘𝜗 + (1 + 𝜉𝜗)
(

𝜎0 − 𝑝̂
)]

𝛿𝑖𝑗 ,

𝑠 = 2𝑘
𝜌0

[

1 −
(

1 + 𝜉𝑇0
)

(1 + 𝜉𝜗)
]

+
𝜉 (1 + 𝜉𝜗)

𝜌0

(

𝜎0 − 𝑝̂
)

.
(6.52)

f one regards 𝜎0 − 𝑝̂ as a new constraint multiplier, the constitutive equations remain unchanged. This fact indicates that
nitially isothermal uniform tensions/compressions nearly do not influence the subsequent thermal and mechanical performances
f Neo-Hookean elastomers.

In the second situation, the initial states are assumed to be originated from initially isothermal uniaxial tensions/compressions
long the 𝑧 direction, where 𝜎𝑧𝑧0 is the only nonzero initial stress, thus 1 = 𝜎𝑧𝑧0 ,2 = 3 = 0. We here introduce coefficient
=

√

1 + 𝑧𝑧, then 𝑧𝑧 = 𝛾2 − 1 and 𝑥𝑥 = 𝑦𝑦 = 𝛾−1 − 1. By this means, cubic equation (6.49)3 and initial entropy (6.46)1 are
solved as

𝜎𝑧𝑧0
2𝑘𝑇0

= 𝛾2 − 1
𝛾
,

𝑝0
2𝑘𝑇0

= 1
𝛾
,

𝜌0𝑠0
𝑘

= 3 − 𝛾2 −
2
(

1 + 𝜉𝑇0
)

𝛾
. (6.53)

quivalent free energy density (6.47) now becomes

̂ =
2𝑘𝑇0

(

1 − 𝜉𝜗
)

+ 2𝑘
[

1 +
(

𝛾3 − 1
)

𝜀𝑧𝑧
]

𝜗
𝛾𝜌0

. (6.54)

And constitutive equations (6.49) take the following forms

𝜎𝑖𝑗 =
2𝑘𝑇0
𝛾

( 𝜕𝑢𝑗
𝜕𝑥𝑖

+
𝜕𝑢𝑖
𝜕𝑥𝑗

− 2𝜉𝜗𝛿𝑖𝑗
)

+
[

2𝑘𝜗
𝛾

− (1 + 𝜉𝜗) 𝑝̂
]

𝛿𝑖𝑗

+ 𝜎𝑧𝑧0

[

𝛿𝑖𝑧
𝜕𝑢𝑗
𝜕𝑧

+ 𝛿𝑗𝑧
𝜕𝑢𝑖
𝜕𝑧

+
(

1 + 𝜗
𝑇0

− 𝜉𝜗
)

𝛿𝑖𝑧𝛿𝑗𝑧
]

,

𝑠 = 2𝑘
𝜌0𝛾

[

3 − 𝛾2

2𝛾−1
+
(

1 − 𝛾3
) 𝜕𝑢𝑧
𝜕𝑧

−
(

1 + 𝜉𝑇0
)

(1 + 𝜉𝜗)
]

−
𝜉 (1 + 𝜉𝜗)

𝜌0
𝑝̂.

(6.55)

According to (6.55), one concludes that the influences of initially isothermal uniaxial tensions/compressions on the constitutive
equations are mainly reflected in coefficients 𝛾, 𝛾2 and 𝛾3, and the initial-states-effected material parameter is 𝑘′ = 𝑘∕𝛾. The relations
between various coefficients and 𝜎𝑧𝑧0 ∕𝑘𝑇0 are plotted in Fig. 5(a). It can be concluded that both 𝛾, 𝛾2 and 𝛾3 increase with 𝜎𝑧𝑧0 , while
𝑘′ < 𝑘 when 𝜎𝑧𝑧0 > 0, but quite the opposite when 𝜎𝑧𝑧0 < 0. More importantly, 𝜌0𝑠0∕𝑘′ ⩽ 𝜌∗𝑠∗∕𝑘, that the initial entropy is always
kept decreasing. If 𝜉 = 0, by taking the 𝛾 derivative of (6.53)3, one obtains

−𝜌0𝑇0
𝜕𝑠0 =

2𝑘𝑇0
(

𝛾2 − 1
)

=
𝜎𝑧𝑧0 . (6.56)
21
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Fig. 5. Various coefficients vs dimensionless initial states that originated from different thermo-mechanically coupled deformation histories. (a) Initially
isothermal uniaxial tension/compression (b) Initially free thermal expansion (c) Initially adiabatic uniform tension/compression (d) Initially adiabatic uniaxial
tension/compression.

(6.56) is the classical formula for describing isothermally uniaxial tension in rubber-like entropy elasticity. In addition, according
to (6.53)1, one can specify 𝛴(𝛾𝑡) = 2𝑘𝑇0

(

𝛾2𝑡 − 𝛾
−1
𝑡

)

. Then from (6.22), the multiplicative-decomposition-based axial Cauchy stress
can be expressed in the form of

𝜎 =
2𝑘𝑇0
𝛾0

[

𝛾30 − 1 +
(

2𝛾30 + 1
)

𝜀e
]

. (6.57)

By substituting 𝜗 = 0, 𝜕𝑢𝑥∕𝜕𝑥 = 𝜕𝑢𝑦∕𝜕𝑦 = − 1
2 𝜕𝑢𝑧∕𝜕𝑧 = − 1

2 𝜀e and 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 0 into (6.55)1, 𝜎𝑧𝑧 is equal to 𝜎 only and only if 𝛾 = 𝛾0.
This verifies once more the equivalence of the two approaches in isothermal situations.

In the third situation, the initial states are assumed to be originated from initially free thermal expansions, where 𝜎𝑖𝑗0 = 0 and
 𝑖𝑗 = 𝛿𝑖𝑗 , thus 1 = 2 = 3 = 0. We here introduce coefficient 𝛾 =

√

1 +  , then it can be derived that

𝑝0 = 1 , 1 − 𝜉𝜗∗ = 1 ,
𝜌0𝑠0 =

3
(

1 − 𝛾2
)

− 2𝜉𝑇0𝛾2 . (6.58)
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Equivalent free energy density (6.47) now becomes

̂ =
2𝑘𝑇0

(

1 − 𝜉𝜗
)

+ 2𝑘1𝜗
𝛾𝜌0

. (6.59)

And constitutive equations (6.49) take the following forms

𝜎𝑖𝑗 =
2𝑘𝑇0
𝛾

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2𝜉𝜗𝛿𝑖𝑗
)

+
[

2𝑘𝜗
𝛾

− (1 + 𝜉𝜗) 𝑝̂
]

𝛿𝑖𝑗 ,

𝑠 = 2𝑘
𝜌0𝛾

[

3 − 𝛾2

2𝛾2
−
(

1 + 𝜉𝑇0
)

(1 + 𝜉𝜗)
]

−
𝜉 (1 + 𝜉𝜗)

𝜌0
𝑝̂.

(6.60)

ccording to (6.60), the influences of initially free thermal expansions are mainly reflected in coefficients 𝛾 and 𝛾2, and the initial-
tates-effected material parameter is also 𝑘′ = 𝑘∕𝛾. The relations between various coefficients and 𝜉𝜗∗ are plotted in Fig. 5(b). It can
e concluded that 𝛾 and 𝛾2 increase with 𝜗∗, while 𝑘′ < 𝑘, 𝜌0𝑠0∕𝑘′ < 𝜌∗𝑠∗∕𝑘 when 𝜗∗ > 0, but quite the opposite when 𝜗∗ < 0.

In the fourth situation, the initial states are assumed to be originated from initially adiabatic uniform tensions/compressions,
here 𝜎𝑖𝑗0 = 𝜎0𝛿𝑖𝑗 , 𝑖𝑗 = 𝛿𝑖𝑗 and 𝑠0 = 𝑠∗. We here still employ coefficient 𝛾 =

√

1 +  . Then according to (6.46), cubic equation
(6.49)3 can be solved as

𝜉𝜎0
𝑘

=
𝛾3

(

3 + 2𝜉𝑇0
) (

𝛾2 − 1
)

+ 2
(

𝛾3 − 1
)

𝛾6
, 1 − 𝜉𝜗∗ = 1

𝛾3
,

𝑝0
2𝑘𝑇0

= 1
𝛾
−

𝜎0
2𝑘𝑇0

=
𝛾3 − 3𝛾5 + 2 + 2𝛾3𝜉𝑇0

2𝛾6𝜉𝑇0
.

(6.61)

imilar to (6.11), 𝜎0 and 𝜗∗ are not independent. Suppose 𝜎0 is given and 𝜗∗ can be accordingly determined. By this means, (6.47)
akes the following forms

̂ =

(

2𝑘𝑇0 − 𝛾𝜎0
) (

1 − 𝜉𝜗
)

+ 2𝑘1𝜗
𝛾𝜌0

. (6.62)

And constitutive equations (6.49) take the following forms

𝜎𝑖𝑗 =
2𝑘𝑇0
𝛾

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2𝜉𝜗𝛿𝑖𝑗
)

+
[

2𝑘𝜗
𝛾

+ (1 + 𝜉𝜗)
(

𝜎0 − 𝑝̂
)

]

𝛿𝑖𝑗 ,

𝑠 = 2𝑘
𝜌0𝛾

[

3 − 𝛾2

2𝛾2
−
(

1 + 𝜉𝑇0
)

(1 + 𝜉𝜗)
]

+
𝜉 (1 + 𝜉𝜗)

𝜌0

(

𝜎0 − 𝑝̂
)

.
(6.63)

he influences of initially adiabatic uniform tensions/compressions are also reflected in coefficients 𝛾 and 𝛾2, while the initial-
tates-effected material parameter and constraint multiplier are 𝑘′ = 𝑘∕𝛾, 𝜎0 − 𝑝̂, respectively. In Humphrey and Rajagopal (1997),
he authors suggested that 𝜉 = 5 × 10−4 K−1. If 𝑇 ∗ is assumed to be 300 K, then 𝜉𝑇0 = 1.15 − 𝛾−3. The relations between various

coefficients and 𝜉𝜎0∕𝑘 are plotted in Fig. 5(c). It can be concluded that both 𝛾 and 𝛾2 increase with 𝜎0, while 𝑘′ < 𝑘, 𝜗∗ > 0 when
𝜎0 > 0, but quite the opposite when 𝜎0 < 0. If 𝜉 = 0, then 𝛾 = 1 and 𝜎0 = 0, which means that there is no adiabatic uniform
tension/compression for incompressible constraint.

In the last situation, the initial states are assumed to be originated from initially adiabatic uniaxial tensions/compressions along
the 𝑧 direction, where 𝑠0 = 𝑠∗, while 𝜎𝑧𝑧0 is the only nonzero initial stress. Here, we still employ coefficient 𝛾 =

√

1 + 𝑧𝑧, then
ccording to (6.46), one concludes that

𝜎𝑧𝑧0
2𝑘𝑇0

=
(

1 − 1
𝛾

)

𝛾 (𝛾 + 1) (5 + 2𝜉𝑇 ∗) + 2
2 − 𝛾3 + 𝛾 (3 + 2𝜉𝑇 ∗)

,
𝑝0

2𝑘𝑇0
= 1
𝛾
,

𝑥𝑥 = 𝑦𝑦 =
2 − 𝛾3 − 𝛾
2𝛾 (2 + 𝜉𝑇 ∗)

, 1 − 𝜉𝜗∗ =
2 (2 + 𝜉𝑇 ∗)

2 − 𝛾3 + 𝛾 (3 + 2𝜉𝑇 ∗)
.

(6.64)

quivalent free energy density (6.47) now can be expressed in the form of

̂ =
2𝑘𝑇0

(

1 − 𝜉𝜗
)

+
(

𝛾𝜎𝑧𝑧0 𝜀𝑧𝑧 + 2𝑘𝑇01
) (

𝜗∕𝑇0
)

𝛾𝜌0
. (6.65)

nd constitutive equations (6.49) take the following forms

𝜎𝑖𝑗 =
2𝑘𝑇0
𝛾

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2𝜉𝜗𝛿𝑖𝑗
)

+
[

2𝑘𝜗
𝛾

− (1 + 𝜉𝜗) 𝑝̂
]

𝛿𝑖𝑗

+ 𝜎𝑧𝑧0

[

𝛿𝑖𝑧
𝜕𝑢𝑗
𝜕𝑧

+ 𝛿𝑗𝑧
𝜕𝑢𝑖
𝜕𝑧

+
(

1 + 𝜗
𝑇0

− 𝜉𝜗
)

𝛿𝑖𝑧𝛿𝑗𝑧
]

,

𝑠 = 2𝑘
𝜌0𝛾

[

𝛾
(

3 − 𝛾2
)

(2 + 𝜉𝑇 ∗)
2 − 𝛾3 + 𝛾 (3 + 2𝜉𝑇 ∗)

− (1 + 𝜉𝜗)
(

1 + 𝜉𝑇0
)

−
𝛾
(

𝛾2 − 1
)

(5 + 2𝜉𝑇 ∗) + 2 (𝛾 − 1)
3 ∗

𝜕𝑢𝑧
]

−
𝜉 (1 + 𝜉𝜗)

𝑝̂.

(6.66)
23
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The influences of initially adiabatic uniaxial tensions/compressions are mainly reflected in coefficient 𝛾, 𝛾2, and 𝛾3, and the initial-
states-effected material parameter is also 𝑘′ = 𝑘∕𝛾. Here, 𝜉𝑇 ∗ = 0.15 is also employed. The relations between various coefficients
and 𝜎𝑧𝑧0 ∕𝑘𝑇0 are plotted in Fig. 5(d). It can be concluded that 𝛾, 𝛾2 and 𝛾3 increase with 𝜎0, while 𝑘′ < 𝑘 when 𝜎0 > 0, but quite the
opposite when 𝜎0 < 0. More importantly, 𝜗∗ ⩽ 0, that the initial temperature is always kept decreasing. If 𝜉 = 0, then 𝛾 = 1 and
𝑧𝑧
0 = 0, there are also no adiabatic uniaxial tensions/compressions for incompressible constraint.

Compare constitutive equations (6.55) and (6.55), corresponding to isothermal and adiabatic situations, respectively, not only
ignificant differences can be found between these formulations, but also different relationships between 𝛾 and 𝜎𝑧𝑧0 . By further
omparing Figs. 5(a) and 5(c), it also shows that the thermal coefficients are the most influenced by the thermo-mechanically
oupled deformation histories, while the mechanical coefficients behave similarly and only small quantitative differences can be
ound. It demonstrated once again that the constitutive coefficients may behave differently for the same initial stresses that are
riginated from distinct deformation histories.

To illustrate the rationality of the change of thermal response with tensile or compressive prestress, we here quote the experiment
f Joule et al. (1859) and the simulation of Lev, Faye, and Volokh (2019). We here use heat capacity as an example. According
o the natural state-based material model of Lev et al. (2019), a purely thermal term should be added to the free energy density
6.43), i.e.,

 =
2𝑘

(

𝑇0 + 𝜗
)

𝐼1
𝜌0

+ 𝑐v𝑇 ∗ ln
(

𝑇0 + 𝜗
𝑇 ∗

)

, (6.67)

here incompressible constraint is employed (𝜉 = 0 and 𝜌∗ = 𝜌0) and 𝑐v is the natural heat capacity. By substituting (6.67) into
(5.19), one obtains

𝐾1 =
2𝑘𝑇0
𝜌0

, 𝐾4 =
𝑘1
𝜌0

+
𝑐v𝑇 ∗

𝑇0
, 𝐾8 =

2𝑘
𝜌0
, 𝐾14 = −

𝑐v𝑇 ∗

𝑇 2
0

. (6.68)

hen by substituting (6.68) into (5.22), (3.4) and (5.23), the initial and the reference entropies can be derived as

𝑠0 = −
𝑘1
𝜌0

−
𝑐v𝑇 ∗

𝑇0
, 𝑠∗ = −𝑐v. (6.69)

ere, the initial states are assumed to be originated from initially adiabatic uniaxial tensions along the 𝑧 direction, where 𝑠0 = 𝑠∗,
hile 𝜎𝑧𝑧0 is the only nonzero initial stress. By introducing coefficient 𝛾 =

√

1 + 𝑧𝑧, one obtains

𝜎𝑧𝑧0
2𝑘𝑇0

= 𝛾2 − 1
𝛾
, 𝜗∗

𝑇 ∗ =
𝑘̄
(

𝛾3 − 3𝛾 + 2
)

𝛾 − 𝑘̄
(

𝛾3 − 3𝛾 + 2
) , (6.70)

here 𝑘̄ = 𝑘∕
(

𝜌0𝑐v
)

is a dimensionless material constant. According to the Lev et al. (2019), the reference heat capacity can be
xpressed in the form 𝑐′v = 𝑐v

(

𝑇 ∗∕𝑇0
)

. Then, according to (6.70), the following formula can be derived

𝑐′v
𝑐v

= 1 −
𝑘̄
(

𝛾3 − 3𝛾 + 2
)

𝛾
. (6.71)

ompared with the experimental data of Joule et al. (1859), we find the best fit curve corresponds to a small material constant
̄ = 3.9 × 10−4. Fig. 6a illustrates that our prediction of the initial temperature increment is close to the experiment results of Joule
t al. (1859) and also the simulation of Lev et al. (2019). It can be concluded that initial temperature increases with initial stretch.
hen, according to the expression 𝑐′v = 𝑐v

(

𝑇 ∗∕𝑇0
)

, reference heat capacity is the function of the initial temperature. Thus, the
resence of initially adiabatic tensions can indeed affect the reference heat capacity (Fig. 6b). However, for some real materials,
̄ is very small, and hence the relative variation of heat capacity is slight. Consequently, thermal responses are often regarded as
ndependent of the initial stress.

Finally, by substituting 𝜎0 = 𝜎𝑧𝑧0 = 0 and 𝛾 = 1 into (6.52), (6.55), (6.60), (6.63) and (6.66), all these constitutive equations
egenerate to

𝜎𝑖𝑗 = 2𝑘𝑇0

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2𝜉𝜗𝛿𝑖𝑗
)

+ [2𝑘𝜗 − (1 + 𝜉𝜗) 𝑝̂] 𝛿𝑖𝑗 ,

𝑠 = 2𝑘
𝜌0

[

1 −
(

1 + 𝜉𝑇0
)

(1 + 𝜉𝜗)
]

−
𝜉 (1 + 𝜉𝜗)

𝜌0
𝑝̂.

(6.72)

Further assume that 𝜉 = 0, (6.72) reduce to the following classical forms

𝜎𝑖𝑗 = 2𝑘𝑇0

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

+ (2𝑘𝜗 − 𝑝̂) 𝛿𝑖𝑗 , 𝑠 = 0. (6.73)

.5. The Gent elastomer and the exponential form elastomer

In the last example, we aim to derive constitutive equations for residually stressed thin-wall tube made of Gent elastomer and
xponential form elastomer, where cylindrical material coordinates 𝑥1 = 𝑟, 𝑥2 = 𝜑, 𝑥3 = 𝑧 are employed. Thus 𝑔𝑟𝑟 = 𝑔𝑟𝑟 = 1, 𝑔𝜑𝜑 =
2, 𝑔𝜑𝜑 = 𝑟−2, 𝑔𝑧𝑧 = 𝑔𝑧𝑧 = 1, 𝑔𝑟𝜑 = 𝑔𝑟𝑧 = 𝑔𝜑𝑧 = 𝑔𝑟𝜑 = 𝑔𝑟𝑧 = 𝑔𝜑𝑧 = 0 and

√

𝑔 = 𝑟. The tube has internal and external radii 𝑟i and
𝑟o, while wall thickness 𝑟o − 𝑟i is much smaller than 𝑟i. The residual stresses are assumed to be originated from initially isothermal
24

deformations.
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Fig. 6. (a) Initial temperature increment versus stretch for 𝑘̄ = 3.9 × 10−4. (b) The change of heat capacity with tensile prestress (which originated from initial
adiabatic stretch).

The natural strain energy density of Gent elastomer is often expressed as

𝜌∗ = −
𝜇𝜆
2

ln
(

1 −
1 − 3
𝜆

)

, (6.74)

where 𝜇, 𝜆 are material parameters. Suppose 𝜉 = 0, then one obtains

 = −
𝜇𝜆
2𝜌0

ln
(

1 −
2𝐼1
𝜆

)

. (6.75)

By substituting (6.75) into (5.19), the only two nonzero coefficients are

𝐾1 =
𝜇𝜆

𝜌0
(

𝜆 − 1
) , 𝐾11 =

2𝜇𝜆

𝜌0
(

𝜆 − 1
)2
. (6.76)

Then according to (5.22), the algebraic equations can be expressed as

𝜎𝑖𝑗0 + 𝑟𝑝0𝑔𝑖𝑗 =
𝜇𝜆

𝜆 − 1

(

𝑔𝑖𝑗 +  𝑖𝑗) . (6.77)

Similar to (6.49)3, the Gent version of the determining equation of 𝑝0 is
[

(𝜆 + 3)3 − 27
] (

𝑟𝑝0
)3 +

[

(𝜆 + 3)3 1 − 27
(

1 + 𝜇𝜆
)] (

𝑟𝑝0
)2

+
[

(𝜆 + 3)3 2 − 9
(

1 + 𝜇𝜆
)2
]

(

𝑟𝑝0
)

=
(

1 + 𝜇𝜆
)3 − (𝜆 + 3)3 3.

(6.78)

Once 1,2,3 are given, one can solve cube Eq. (6.78) to derive 𝑝0 = 𝑝0(1,2,3), then by substituting it into (6.77),  𝑖𝑗 =
 𝑖𝑗 (1,2,3) can be accordingly obtained. When 𝜆 → ∞, Gent elastomer degenerates to Neo-Hookean elastomer, and (6.78) reduces
to

(

𝑟𝑝0
)3 + 1

(

𝑟𝑝0
)2 + 2

(

𝑟𝑝0
)

+ 3 = 1.
Similarly, the natural strain energy density of exponential form elastomer is

𝜌∗ =
𝜇𝜆
2

(

e
1−3
𝜆 − 1

)

, (6.79)

where 𝜇, 𝜆 are still material parameters. Thus the free energy density becomes

 =
𝜇𝜆
2𝜌0

e
2𝐼1
𝜆 . (6.80)

By substituting (6.79) into (5.19), the only two nonzero coefficients are

𝐾1 =
𝜇
𝜌0

e
1
𝜆 , 𝐾11 =

2𝜇
𝜌0𝜆

e
1
𝜆 . (6.81)

Then according to (5.22), the algebraic equations can be expressed as

𝜎𝑖𝑗0 + 𝑟𝑝0𝑔𝑖𝑗 = 𝜇e
1
𝜆
(

𝑔𝑖𝑗 +  𝑖𝑗) . (6.82)

Different from (6.78), here 1 but not 𝑝0, is taken as the unknown variable, i.e.,

𝜇3
(

27 + 91 + 2
1
)

1e
31
𝜆 + 3𝜇

(

32 − 2
1
) (

3 + 1
)

e
1
𝜆

3
= 1. (6.83)
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Transcendental equation (6.83) is the exponential version of the determining equation of 𝑝0. Once 1,2,3 are given, one can
solve (6.83) to derive 1 = 1(1,2,3), then 𝑝0 = 𝑝0(1,2,3) can be correspondingly determined by substituting it into
3𝑟𝑝0 = 𝜇

(

3 + 1
)

e
1
𝜆 −1. After that,  𝑖𝑗 =  𝑖𝑗 (1,2,3) can be derived from (6.82). When 𝜆 → ∞, exponential form elastomer also

egenerates to Neo-Hookean elastomer, and (6.83) reduces to 𝜇3
(

27 + 91 + 2
1
)

1 + 3𝜇
(

32 − 2
1
) (

3 + 1
)

= 912 − 273 − 23
1 ,

which is the same as classical form
(

𝑟𝑝0
)3 + 1

(

𝑟𝑝0
)2 + 2

(

𝑟𝑝0
)

+ 3 = 1 when the 𝑟𝑝0 is substituted by 𝜇
(

1 + 1
3

)

− 1
3 . In this

respect, the two types of elastomers can be regarded as the generalizations of Neo-Hookean elastomers.
In Merodio and Ogden (2016), 𝜎𝑖𝑗0 are specified in quadratic forms

𝜎𝑟𝑟0 =
𝜅𝜇
𝑟2i

[

𝑟2 −
(

𝑟o + 𝑟i
)

𝑟 + 𝑟o𝑟i
]

, 𝜎𝑧𝑧0 = 0,

𝑟2𝜎𝜑𝜑0 =
𝜅𝜇
𝑟2i

[

3𝑟2 − 2
(

𝑟o + 𝑟i
)

𝑟 + 𝑟o𝑟i
]

,
(6.84)

hile in Du et al. (2018), 𝜎𝑖𝑗0 are specified in logarithmic forms

𝜎𝑟𝑟0 = 𝜅𝜇 ln
(

𝑟
𝑟i

)

ln
(

𝑟
𝑟o

)

, 𝜎𝑧𝑧0 = 0,

𝑟2𝜎𝜑𝜑0 = 𝜅𝜇
[

ln
(

𝑟
𝑟i

)

+ ln
(

𝑟
𝑟o

)

+ ln
(

𝑟
𝑟i

)

ln
(

𝑟
𝑟o

)]

,
(6.85)

here 𝜅 is the parameter concerning the intensity of the given residual stresses. We here introduce the following dimensionless
ariable ℎ and parameter 𝐻

ℎ = 𝑟
𝑟i

− 1, 𝐻 =
𝑟o
𝑟i

− 1, 0 ⩽ ℎ ⩽ 𝐻 ≪ 1. (6.86)

y substituting (6.86) into (6.84) and (6.85), one concludes that both Gent elastomer and exponential form elastomer correspond
o the same linearization

𝜎𝑟𝑟0 = 0, 𝑟2𝜎𝜑𝜑0 = 𝜅𝜇 (2ℎ −𝐻) . (6.87)

hen according to (6.83), the same linearized solutions can also be obtained

𝑟𝑝0 = 𝜇
[

1 +
𝜅 (𝐻 − 2ℎ)

3

]

, 1 = 0,

𝑟𝑟 = 𝑧𝑧 =
𝜅 (𝐻 − 2ℎ)

3
, 𝑟2𝜑𝜑 =

2𝜅 (2ℎ −𝐻)
3

.
(6.88)

y this means, the two types of elastomers have the same constitutive equations. The subsequent deformations are specified in the
ollowing forms

𝑢𝑟 = 𝑎
𝑟i (1 + ℎ)

, 𝑢𝜑 = 𝑢𝑧 = 0, ∇𝑟𝑢𝑟 = −∇𝜑𝑢𝜑 = − 𝑎
𝑟2i (1 + ℎ)

2
, (6.89)

here 𝑎 is an undetermined coefficient. Then by substituting (6.76)2 and (6.84) into (5.24), as well as taking the equilibrium
quations and boundary conditions 𝜎𝑟𝑟|ℎ=0 = −𝑃 , 𝜎𝑟𝑟|ℎ=𝐻 = 0 into account, the Cauchy stresses can be derived as

𝜎𝑟𝑟 = ℎ −𝐻
𝐻

𝑃 , 𝜎𝑧𝑧 = 2 −𝐻
4𝐻

𝑃 +
𝜅 (𝐻 − 2ℎ)𝑃

6𝐻
,

𝑟2𝜎𝜑𝜑 = 2 − 2ℎ +𝐻
2𝐻

𝑃 + 𝜅 (2ℎ −𝐻)
(

𝜇 + 𝑃
6𝐻

)

,
(6.90)

n which 𝑃 is the internal pressure of the thin-wall tube. In comparison with the existing results of the implicit constitutive theory
f Bustamante and Rajagopal (2018), we specify 𝐻 = 0.1, 𝜇∕𝑃 = 500 and 𝜅 = 0, 0.04, 0.08, 0.12, 0.16, 0.2 for different intensities of

the residual stresses. The distributions of principal stresses for different intensities of the residual stresses are plotted in Fig. 7. Our
linearized solutions show a good qualitative agreement with the implicit constitutive theory, especially in the center of the tube.
When 𝜅 = 0, both results reduce to the classical solutions of linear elasticity.

7. Conclusions

This work establishes a general framework for deriving constitutive equations for soft elastomers with arbitrary initial states.
nstead of using the virtual stress-free configuration, we define the natural state by imposing the stress-free condition and the natural
emperature condition. The derivations are based on the new proposed intrinsic embedding method of initial states, in which an additive
ecomposition of material strains is employed while the influences of different thermo-mechanically coupled deformation histories
re taken into account. In this way can the material coordinates be properly defined. Once the natural-state-based free energy density
nd internal constraint are specified, the required constitutive equations can be accordingly obtained.

Despite its inherently greater complexity, the intrinsic embedding method of initial states is appropriate for describing initially-
tressed elastomers in multiple coupled fields. The full incorporation of thermal effects is the example. Here, what matters is the
dditive decomposition of strain. If the initial stain is supposed to be originated from previous elastic–plastic, electromagnetic–
lastic, or strain-gradient-elasticity-based deformations, new models concerning various effects can be conveniently established
26
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Fig. 7. Distributions of principal stresses for different intensities of the residual stresses. (a) Radial and axial stresses (b) Circumferential stress.

based on the proposed embedding method. Moreover, as a modular approach, we have provided many readily available formulae for
isotropic elastomers. Engineers can use them directly according to the actual situations. Further investigations of the generalization
of this theory to anisotropic situations are underway.

The explicit formulations of the Cauchy stress and the entropy are derived from the linearizations of the obtained constitutive
equations. Then we embed the initial states in hyperelastic models of Saint Venant–Kirchhoff, Blatz–Ko, Mooney–Rivlin, Neo-
Hookean, Gent, and exponential form. The influences brought by the initial stresses that originated from various isothermal or
adiabatic deformations, the initial temperature produced by uniformly thermal expansions, and the temperature-controlled internal
constraint on the elastic coefficients are analyzed, respectively. Compared with the classical and the implicit constitutive theories,
the new proposed constitutive equations not only show quantitative agreement with the above two under isothermal circumstances
but also present some novel properties concerning different thermo-mechanically coupled conditions. These results perfect the
constitutive theory of soft materials and can be further developed by applying them to engineering practices.
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