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Large-area transfer of two-dimensional materials
free of cracks, contamination and wrinkles via
controllable conformal contact
Yixuan Zhao1,12, Yuqing Song1,2,12, Zhaoning Hu2,12, Wendong Wang3,12, Zhenghua Chang4,5, Yan Zhang2,

Qi Lu6,2, Haotian Wu2, Junhao Liao7,8, Wentao Zou2, Xin Gao1,7, Kaicheng Jia1, La Zhuo2, Jingyi Hu7, Qin Xie7,

Rui Zhang3, Xiaorui Wang2, Luzhao Sun 2, Fangfang Li2, Liming Zheng1, Ming Wang2, Jiawei Yang9,2,

Boyang Mao3, Tiantian Fang10, Fuyi Wang 10, Haotian Zhong2, Wenlin Liu1, Rui Yan2, Jianbo Yin 2,

Yanfeng Zhang 11, Yujie Wei 4,5✉, Hailin Peng 1,2,7✉, Li Lin 11✉ & Zhongfan Liu 1,2,7✉

The availability of graphene and other two-dimensional (2D) materials on a wide range of

substrates forms the basis for large-area applications, such as graphene integration with

silicon-based technologies, which requires graphene on silicon with outperforming carrier

mobilities. However, 2D materials were only produced on limited archetypal substrates by

chemical vapor deposition approaches. Reliable after-growth transfer techniques, that do not

produce cracks, contamination, and wrinkles, are critical for layering 2D materials onto

arbitrary substrates. Here we show that, by incorporating oxhydryl groups-containing volatile

molecules, the supporting films can be deformed under heat to achieve a controllable con-

formal contact, enabling the large-area transfer of 2D films without cracks, contamination,

and wrinkles. The resulting conformity with enhanced adhesion facilitates the direct dela-

mination of supporting films from graphene, providing ultraclean surfaces and carrier

mobilities up to 1,420,000 cm2 V−1 s−1 at 4 K.
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Many efforts have resulted in the breakthrough in the
chemical vapor deposition (CVD) fabrication of large-
area graphene1,2 and other 2D matereials3 on arche-

typal growth substrates. However, a critical challenge has
emerged in the lack of reliable after-growth transfer techniques
for layering 2D membranes onto arbitrary substrates for large-
scale technological applications4–6. Currently, the most significant
issues associated with the 2D materials transfer arise from cracks,
wrinkles, and interfacial contamination7–9 generated during the
transfer that compromises the homogeneity and electronic per-
formance, such as carrier mobility. Additionally, such difficulties
grow exponentially with increasing film size7.

The flexibility and thinness of graphene make it susceptible to
mechanical deformation and damage in conventional CVD gra-
phene film transfer processes10. The key to achieving crack-free
transfer is the continuous mechanical support for graphene
during transfer. Such support can be supplied by introducing
supporting films and the conformal contact between graphene
and the target substrate11,12. In this regard, various supporting
foils have already been introduced8,9,13. However, after the
removal of supporting foils, non-conformal adherence of gra-
phene onto the target substrate would make the graphene free-
standing in some regions; such free-standing graphene would be
torn by the interfacial forces in the subsequent removal of the
transfer medium. As a consequence, a universal approach to
realizing conformity between substrates and graphene is critically
needed to achieve crack-free transfer.

In addition, the removal of supporting polymer films, such as
poly (methyl methacrylate) (PMMA), is usually insufficient and
requires aggressive chemical treatments14. Therefore, the removal
procedure generates organic waste solvents and leaves unavoid-
able contamination on surfaces as well as metals and etchant
residues15 in etching-based delamination, which degrades gra-
phene quality9,14. Polymer-free techniques are efficient for
avoiding contamination, which, however, fails in large-area
transfer16. Hence, methods for contamination-free transfer that
do not require the use of organic solvents are in high demand for
large-area transfer.

Herein, by adding oxhydryl groups-containing volatile mole-
cules (OVM) (cedrol, alpha-terpineol, linalool, and borneol) or
low-glass-transition-temperature (Tg) polymers (polypropylene
carbonate, PPC) into PMMA, we can achieve the conformal
contact between graphene and destination substrates, and the
controllable conformal contact enables us to achieve the transfer
of 4-inch graphene single-crystal wafers on Cu wafers2,17 and A4-
sized graphene films on Cu foils1,13 (two research hotspots of
CVD graphene18) onto rigid SiO2/Si and soft polyethylene ter-
ephthalate (PET) substrates, respectively, free of cracks, wrinkles,
and contamination, which contribute to the improved electrical
performance. Furthermore, the conformal contact improves
graphene-substrate adhesion and allows for direct delamination
of supporting films without producing contamination.

Results
Structural design of supporting films. If the contact with gra-
phene is conformal, the substrate would support the graphene
films by undertaking the interfacial forces, thereby avoiding
the formation of cracks (Supplementary Fig. 1a, b). However, the
rough topography of graphene films, which inherits from the
corrugated structure of growth substrates after the delamination
(Supplementary Fig. 1c, d) as well as the rough surface of sub-
strates (Supplementary Fig. 1e, f) altogether make the formation
of conformal contact difficult11. Therefore, the key to the suc-
cessful transfer in achieving the conformal contact between gra-
phene and substrates by the structural design of supporting films.

Despite several references11,12,16,19,20 that mentioned the role of
conformal contact in the crack-free transfer, surface contamina-
tion, cracks and wrinkles still existed in as-transferred graphene
films with non-comparable carrier mobility to exfoliated coun-
terparts, which indicates that the fine conformal contact over
large area remains unachievable.

By adding OVMs or PPC into PMMA, we can trigger the
deformation of supporting films under heat and achieve the
conformal contact between graphene and destination substrates
with different surface contours. The controllable conformal
contact improves graphene-substrate adhesion and allows for
direct delamination of supporting films without producing
contamination and cracks (Fig. 1a).

Owing to the roughness difference, the transfer onto SiO2/Si and
PET substrates was conducted by using OVMs- and PPC- modified
supporting films, respectively. In the OVMs-modified supporting
films, OVMs were firstly embedded into the PMMA chains by
forming the strong hydrogen bond between the oxhydryl groups in
OVMs and the carbonyl oxygen in the PMMA chains21, and steric
hindrance of OVMs would increase inter-chain spacing. By heating,
the embedded volatile molecules can be evaporated, causing the
PMMA chains to restack, and therefore the polymer deformation
pushes graphene to conformally contact the SiO2/Si substrates
(Fig. 1b). Note that, the formation of hydrogen bond between small
molecules and PMMA has already been used to modify the glass
transition temperature22 and fragility of PMMA23.

The layer-by-layer blade coating of PPC and PMMA forms a
film wherein the PMMA and PPC chains are not completely
blended together24. Upon heating over the Tg of PPC, the
adequate blending of PPC and PMMA occurs with a polymer
deformation, and the PPC/PMMA in a viscous state would
smooth out the rough surface of graphene inherited from the
rough growth substrates. Such polymer blending would also
induce an obvious height reduction of the entire polymer films by
PPC chains restacking and pushing the graphene surface to
contact the PET substrate conformally (Supplementary Fig. 2a).
However, thermal release tape (TRT) was used to assist the large-
area transfer (see Methods section), and the presence of the rigid
TRT that contact with the PPC/PMMA films would impede the
conformal contact due to the adhesion between TRT films and
polymer films. Therefore, by heating the TRT, the release of the
polymer and graphene onto the substrate would contribute to the
final conformal contact between graphene and substrate. After the
thermal release of the TRT, we used silicone tape to successfully
peel off the PPC/PMMA films from the graphene surface to
obtain a clean surface. The heat-induced deformation of modified
supporting films was confirmed by the observed height change of
films. After heating, the supporting films exhibited a height
decrease of ~30 nm and ~27 nm (~20% of the total height) for
OVMs-modified supporting films and PPC/PMMA supporting
films, respectively, in white light interference images (Supple-
mentary Fig. 2b–e). In contrast, a very small height reduction was
observed in PMMA-only films upon heating (Supplementary
Fig. 2f, g).

The crack-free transfer of graphene. The fine conformity
ensures the crack-free transfer. Transfer-induced cracks can be
roughly categorized into centimeter- and micrometer-sized
cracks, which are caused by macroscopic unsuccessful lamina-
tion and local non-conformal contact of graphene with substrates,
respectively (Supplementary Fig. 3a–f). Photographs with 12-
megapixel resolution are sufficient for characterizing centimeter-
scale cracks of graphene on SiO2/Si substrates, based on the
contrast difference (Fig. 1c and Supplementary Fig. 3h). We
instead propose using a commercial scanner (24-megapixel
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resolution) to enhance the contrast difference to visualize gra-
phene on transparent PET substrates (Fig. 1e, inset and Supple-
mentary Fig. 4). Optical microscopy (OM) images were taken at
×5 and ×50 magnifications to comprehensively characterize the
micrometer-sized cracks (Fig. 1d, inset and Supplementary
Fig. 3i). The high sampling representativeness of the character-
izing approach was confirmed by the very narrow distribution of
obtained intactness (Supplementary Fig. 5). The final intactness
of the transferred graphene (the product of the two intactness) is
~99% on both SiO2/Si and PET substrates (Fig. 1d, e).

To improve the productive capacity, we developed customized
bubbling-delamination equipment with controllable delamination
rate and force (Supplementary Fig. 6). The bubbling-based
delamination would enable the recycling of the metal substrates
for regrowth and avoid producing the waste of etching solution25.
The entire time consumed in the transfer is also clearly reduced
compared to conventional routes15,26 (Supplementary Tables 1
and 2), demonstrating the compatibility of our transfer route with
industrial batch processing.

The contamination-free transfer of graphene. In the conven-
tional transfer process, the difficulty in completely removing
supporting films, inevitably causes surface contamination8,9,14

(Fig. 2a). While recently, there has been the development of new

supporting films with high dissolvability in acetone, the basic idea
behind eliminating residues should still be based on directly
peeling supporting films off from graphene, such peeling process
requires stronger adhesion between graphene and substrates than
that between graphene and polymer, which was achieved by
forming conformal contact of graphene with underlying sub-
strates. Relying on the modified supporting film, we successfully
improved conformity and adhesion. Therefore, we obtained clean
graphene surfaces on SiO2/Si substrates by mechanically peeling
off the supporting films, as evidenced by atomic force microscopy
(AFM) images (Fig. 2b and Supplementary Fig. 7a–h). The cor-
responding height distribution of resulted clean surface is similar
to that of bare substrates (Supplementary Fig. 8a)27. In contrast,
owing to the presence of few-layer contamination, a broader peak
in height distribution was observed for the unclean surface
(conventional PMMA-based method), along with a side peak
arising from the higher residue particles (Supplementary Fig. 8b).
In addition, by using a white light interferometer, a compre-
hensive investigation of the roughness over the entire 4-inch sized
wafer was conducted, and the as-obtained roughness is
0.25 ± 0.03 nm, which is similar with bare substrates (Supple-
mentary Fig. 7i).

The contamination concentration and spatial distribution over
wafer-scale were evaluated by using deuterium-labeled PMMA,
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Fig. 1 The crack-free transfer of large-area graphene films onto SiO2/Si wafers and polyethylene terephthalate (PET) substrates. a Illustration of
techniques for transferring graphene onto destination substrates free of cracks and contamination. Before the bubbling-based separation, the lamination of
the rigid thermal release tape (TRT) onto the supporting films is essential for large-scale operability. b Mechanism illustration of the heat-induced
deformation and resulted conformal contact. Heat treatment would enable the evaporation of oxhydryl groups-containing volatile molecules (OVMs) and
the height change (from h1 to h2) of the supporting films. c Photograph of 4-inch graphene single-crystal transferred onto SiO2/Si wafers. The region below
the black dash line is not covered by graphene, because this region was not coated by supporting films for being connected with electrodes during bubbling
delamination. d, e Statistics of Macro-intactness (orange) and Micro-intactness (blue) of as-transferred graphene on 4-inch SiO2/Si (d) and A4-sized PET
(e). d Optical microscopy (OM) image of graphene on SiO2/Si substrates at 5× magnification. e A4-sized scanned image of graphene on PET. Note that
graphene in c, d was transferred by cedrol (10 wt%)/PMMA.
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which can be identified through time-of-flight secondary ion
mass spectroscopy (ToF-SIMS) (Fig. 2c)28. Wafer-scale mapping
of the deuterium peak intensity can reflect the spatial distribution
of PMMA residues. Clearly, over the entire transferred single-
crystal graphene wafer, the concentration of PMMA residues
decreased by approximately four orders of magnitude when the
supporting films were directly peeled off (Fig. 2d, e and
Supplementary Fig. 8c). In addition, the as-transferred graphene
exhibited no-residue-related C–O and O–C=O peak in X-ray
photoelectron spectroscopy (XPS) results9, and exhibited similar
peak with that of bare substrates, confirming the improved
cleanness (Supplementary Fig. 8d–i). The conformal state also
avoids the formation of new wrinkles; thus, we obtained 4-inch
wrinkle-free graphene single crystals on SiO2/Si substrates relying
on the suppression of wrinkle formation during both growth and
transfer (Supplementary Fig. 8j–l).

Conformity of transferred graphene with target substrates.
Even if graphene is contacted with substrates in a dry environ-
ment, incomplete conformity can produce air gaps full of oxygen
and water molecules, which is responsible for the widely observed
p-doping transport behavior of graphene26. The presence of air
gaps was confirmed by the large difference in height between
graphene and the substrate in AFM images (Fig. 3a, b and Sup-
plementary Fig. 9a, b, h). In contrast, when graphene conformally
replicates the surface contours of the underlying substrate using
OVMs-modified supporting films, such gaps are invisible with
smaller height differences across the edge (Fig. 3c, d and Sup-
plementary Fig. 9c, d). The observed fine conformity is similar to
the case of exfoliated graphene (Supplementary Fig. 9e–g). In
addition, the lamination of graphene onto destination substrates

was also conducted in a dry environment; trapped water mole-
cules could be further avoided26.

According to the stress-separation relationship in contact
mechanics, the resulted conformity with the reduced separation
distance between graphene and substrates would engineer the
adhesion, enabling the mechanical delamination of supporting
films. In the case of graphene on SiO2/Si substrates, graphene can
be roughened by both thermal undulations and substrate
interaction. The roughness of graphene (zC) can be approximated
as follows:

zC ¼ ∑Amn sin
2πm
Lx

x sin
2πn
Ly

y ð1Þ

where m and n are both positive integers and Amnis the amplitude
of the corresponding displacement. Lx and Ly are the lengths of
the graphene sheet. The roughness of SiO2/Si substrates can be
depicted by a sinusoidal function:

zSiO2
¼ Δþ ASiO2

sin
2π
λ
x sin

2π
λ
y ð2Þ

where Δ is the average separation distance between the graphene
and SiO2/Si layer. ASiO2

and λ are the amplitude and wavelength
of the surface corrugations, respectively. Hence, the separation
distance between SiO2 and graphene at position (x, y) is
Δz ¼ zSiO2

� zC. Statistically, adhesion stress ( σ 4ð Þ� �
, adhesion

force per unit area) can be described by29:

σ 4ð Þ� � ¼ �
Z

ρðΔzÞ
∂E Δz

� �
∂Δz

dΔz ð3Þ

where ρðΔzÞ represents the spatial distribution of Δz at the atomic
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Fig. 2 The contamination-free transfer of large-area graphene films. a, b atomic force microscopy (AFM) images of as-transferred graphene on SiO2/Si
substrates by conventional PMMA-based techniques (a) and OVM-modified PMMA (b). Ra: average roughness. c time-of-flight secondary ion mass
spectroscopy (ToF-SIMS) spectra of as-transferred graphene on SiO2/Si substrates by conventional poly (methyl methacrylate) (PMMA)-based
techniques (blue line), OVM-modified PMMA (red line), and bare substrate for reference (green line). Inset: structural formula of 2H-PMMA. d, e 4-inch
mapping of 2H− peak intensities of as-transferred graphene on SiO2/Si substrates by conventional PMMA-based techniques (d) and OVM-modified
PMMA (e). Note that graphene in (b) was transferred by cedrol (10 wt%)/PMMA and in (c, e) was transferred by alpha-terpineol (10 wt%)/PMMA.
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scale, � ∂E Δzð Þ
∂Δz

is the corresponding van der Waals force.
Therefore, the change of adhesion stress as a function of the
separation distance would be similar to that of van der Waals
force, in which after the peak at 3.2 Å, the stress would sharply
reduce with increasing 4. Such relationship was also confirmed
by a series of molecular dynamics (MD) simulations (Fig. 3e, f
and Supplementary Fig. 9i). Therefore, the reduced separation
distance in our case would contribute to a stronger adhesion.

Properties of transferred graphene. The crack-free transfer can
be reflected by the noise-level D band intensity of the as-
transferred graphene in the Raman results29 (Supplementary
Fig. 10a). Moreover, the removal of contamination, wrinkles, and
air gaps ensures a low full width at half maximum (FWHM) of
the 2D band (~24 cm−1), which is an indicator of strain and
doping level (Supplementary Fig. 10b)30. To evaluate its electro-
nic quality, we encapsulated graphene by hexagonal boron nitride
(hBN) to exclude substrate interference31, and the obtained car-
rier mobilities range from 70,000 to 120,000 cm2 V−1 s−1 at room
temperature and from 800,000 to 1,420,000 cm2 V−1 s−1 at 4 K
(Fig. 4a, b). These results are higher than previously reported
values for CVD-graphene devices32–34 and among the best results
of exfoliated and suspended graphene35–37. In addition, well-
defined Shubnikov-de Haas oscillations of Rxx with full breaking
of the fourfold degeneracy were observed at low temperatures
(Fig. 4c)38. The enhanced carrier mobilities can also be reflected
by low FWHM of 2D band (~17 cm−1) and high-intensity ratio
of 2D band to G band (~8) in encapsulated graphene (Fig. 4d and
Supplementary Fig. 10b, c). The determination of the field effect
transistor carrier mobility values of graphene on SiO2/Si was
conducted by fabricating Hall bar devices with 1.2 cm interval
over the entire 4-inch wafer (inset, Supplementary Fig. 11b). It
was found that the average value of 18 devices is 8800 cm2 V-1 s−1

at the room temperature (Supplementary Fig. 11a, b), which is
relatively higher than the previous reports11,12,16,19,20.

The improved carrier mobility is caused by the reduced density
of crack/contamination/wrinkle, suppressed water- and oxygen-

related doping, and the releasing of the compressive strain by
forming conformal contact between graphene and substrates
(Supplementary Fig. 10d). Admittedly, the conformal contact
would still introduce tensile strain in comparison with free-
standing graphene39, which might be further optimized by
interfacial design40,41.

The conformity of nanoscale films on flexible substrates is
essential for reliable flexible electronics42. Additionally, conduc-
tivity and optical transmittance are two other performance
parameters in this field43. The improved intactness and cleanness
of graphene in our method ensure the reduced sheet resistance
compared to the conventional PMMA-based transfer method
(Supplementary Fig. 12a, b). In addition, after the transfer, the
blade coating of poly(3,4-ethylenedioxythiophene) (PEDOT):
polystyrene sulfonate (PSS) enabled the uniform reduction of
the sheet resistance over a large area to 87 ± 13Ω/sq. with an
optical transmittance of 92.3% (Fig. 4e, f and Supplementary
Fig. 12c).

General transfer of nanoscale films. Reliable transfer techniques
that ensure intact and clean interfaces are crucial for the fabri-
cation of van der Waals heterostructures with new functions and
unprecedented performance44. To demonstrate the capability of
our transfer method in van der Waals integration, we fabricated a
graphene/monolayer molybdenum disulfide (MoS2) vertical
heterostructure via layer-by-layer transfer (Fig. 5a, inset). In the
Raman spectra, a uniform distribution of the A1g (out-of-plane
vibration) and E12g (in-plane vibration) intensities confirmed the
successful transfer of MoS2 onto graphene45,46 (Fig. 5a, inset and
Supplementary Fig. 13a). Additionally, no D band was observed
over the imaging region, indicating that no new wrinkles or
cracks were formed in graphene during MoS2 transfer (Supple-
mentary Fig. 13b)29. A clean interface and fine conformity in the
van der Waals heterostructure cause a strong electronic inter-
action between layers, such as photoinduced electron
transfer45–48. In our case, uniform blueshift of the G band and
redshift of the 2D band were observed, consistent with the results
of the high-temperature epitaxially grown MoS2 on graphene
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(Supplementary Fig. 13c–e)45. This confirms the strong interlayer
coupling in as-fabricated heterostructure. In addition, strong
compressive strain incurred by the conformal contact as evi-
denced by the broadening of the graphene 2D band (Supple-
mentary Fig. 13f)30,48.

A universal transfer technique requires its compatibility with
various subject materials and target substrates, especially for the
substrates that cannot survive in organic solvents, such as Nafion
foils. The proposed organic solvent-free transfer enabled us to
transfer graphene onto Nafion foils without damaging graphene
and substrates, as confirmed by the OM images and the clear 2D
and G bands in the Raman analysis (Fig. 5b, c). The graphene/
Nafion foil structure is promising for future hydrogen isotope
separation49,50. Furthermore, based on the artificial design of
supporting films and the use of Cu as a sacrificial layer, we were
able to transfer gold electrodes with a thickness of tens of
nanometers onto various substrates without chemical reactions to
release electrodes (Fig. 5d–f).

Discussion
In summary, our work demonstrates a method for forming
conformal contact, and interfacial adhesion engineering in 2D
regime. Controllable conformity between graphene and target
substrates was readily realized by the structural design of sup-
porting films, and fine conformity allows us to remove the sup-
porting films mechanically without producing new cracks or
contamination over a large area. In addition, the as-transferred
graphene exhibited improved carrier mobility comparable to
exfoliated one. Because both organic solvent waste disposal and
the etching of the growth substrates were avoided in our method,
it can be easily modified for future industrial production.

Methods
Preparation of single-crystal Cu (111) wafer on sapphire. Single-crystal sapphire
wafers (4-inch, c plane, 500 μm thickness and 6-inch, c plane, 1000 μm thickness)
were utilized as the epitaxy substrates for the preparation of single-crystal Cu.
Before the deposition, sapphire wafer was annealed in a pure oxygen atmosphere
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for 6 h at 1020 °C in atmosphere pressure to achieve an oxygen-terminated surface
to reduce the density of in-plane twin boundaries in Cu films. Subsequently, a 500-
nm-thick Cu film was deposited on sapphire wafer by radio frequency (RF)
sputtering equipment (200W RF power, and 0.5 nm/s deposition rate). Then, to
prepare single-crystal Cu (111), Cu/sapphire wafer was annealed at 1020 °C for 2 h
in atmosphere pressure with 1000 sccm Ar and 100 sccm H2.

Growth of single-crystal graphene wafers. The Cu (111) wafer was first heated
to 1020 °C in an atmosphere-pressure CVD system with 1000 sccm Ar and
100 sccm H2. Subsequently, 100 sccm CH4 (0.1% diluted in Ar) was introduced to
initiate the graphene growth, and graphene wafer with full coverage could be
obtained after 2 h. After graphene growth, the system was cooled down to room
temperature under the same gas flow.

Growth of graphene on Cu-Ni wafers. The Cu90Ni10 (111) wafer was first heated
to 1020 °C in atmosphere-pressure CVD system with 1000 sccm Ar and 400 sccm
H2. Subsequently, 2 sccm CH4 was introduced to initiate the graphene growth, and
graphene wafer with full coverage could be obtained after 2 h growth. After the
graphene growth, the system was cooled down to room temperature under the
same gas flow.

Growth of large-area graphene films on Cu foil. The large-area graphene films
were grown using the low-pressure CVD system. The Cu foil (50 μm thick, Kun-
shan Luzhifa Electronic Technology Co., Ltd) was loaded into the tube furnace as
the growth substrate. The sample was first heated to 1020 °C with 500 sccm Ar,
followed by annealing with 500 sccm H2 for 30 mins. Then, the growth of graphene
film was initiated by the introduction of 1 sccm CH4. After 1 hour growth, the
system was cooled down to room temperature under the same flow.

Transfer of graphene wafers onto SiO2/Si substrates. First, OVMs including
cedrol (98% purity, Konoscience), alpha-terpineol (98% purity, Ark Pharm),

linalool (95% purity, Leyan) and (-)-borneol (>97% purity, Alfa Aesar) were dis-
solved in n-heptane (Tianjin Concord Technology) (10 wt%), and the solutions
were subsequently spin-coated on 4-inch graphene films grown on single-crystal
Cu wafers. Thereafter, PMMA (950 K A4, Microchem Corp.) was spin-coated onto
as-deposited OVMs layers to form a composite film by evaporation of the anisole
(The thickness of PMMA is measured to be approximately 96.5 nm after the spin
coating of PMMA on OVMs; The thickness of OVM is around 290 nm after spin-
coating, and 215 nm after the drying. Note that the OVMs would be dissolved into
the PMMA films that were spin-coated subsequently. Therefore, the final thickness
would be less than 215 nm). Note that the anisole can also readily dissolve OVMs.
Second, TRT (No.3198MS, Nitto Denko company. Note that other TRT tapes,
including No.3195MS, No.319Y-4M, and No.3195 V are also applicable) is lami-
nated onto the supporting films with a commercial laminator at room temperature
(GMP A3 Laminator Machine 320, LSI) with a laminating rate of 2 cm per second.
Subsequently, bubbling-based delamination of graphene from Cu is conducted by
the customized bubbling-delamination equipment (see Supplementary Fig. 6). Note
that the oxidation of the Cu substrates is not required in the bubbling-based
delamination. After rinsing graphene with deionized water to remove residual
electrolyte, the films would be dried in an oven at a temperature of 40 °C. Graphene
was subsequently laminated on SiO2/Si substrates by the commercial laminator at
the temperature of 100 °C. Heat treatment of graphene films at a temperature of
120 °C was conducted in oven to initiate the deformation of supporting films and
the conformal contact. Note the heat treatment temperature can be reduced with
longer heating time. Subsequently, supporting films/TRT was mechanically peeled
off from graphene to obtain a clean graphene surface. The time consumed in the
transfer is listed in Supplementary Table 2.

Transfer of graphene films onto PET substrates. First, the A4-sized graphene
film on Cu foil was blade coated with PPC (Mw= 30w, 0.05 g/ml, Aladdin Corp.)
and PMMA (950 K A4, Microchem Corp.) layer-by-layer as the supporting films
(15 mm/s) by a commercial blade coater (1811 BEVS). Subsequently, TRT was
laminated onto the supporting films by a commercial laminator (GMP A3 Lami-
nator Machine 320, LSI) at room temperature with a laminating rate of 2 cm

Fig. 5 General transfer of nanoscale films. a Raman spectra of MoS2/graphene heterostructure (red) and bare graphene (navy blue) on SiO2/Si
substrates. Inset: OM image of CVD-grown monolayer MoS2 islands transferred onto graphene and corresponding Raman mapping of A1g band intensity.
b OM image of graphene transferred onto Nafion foils. Bilayer islands would enable the visualization of monolayer graphene region. Inset: photography of
the graphene transferred onto Nafion foils. c Raman spectra of graphene transferred onto Nafion foils and bare Nafion foils (gray). Inset: AFM image of
transferred graphene on Nafion foils. d Illustration of the fabrication of the transferable Cr/Au electrodes and transfer of the electrodes onto other
substrates using the OVMs-modified supporting films. e Photograph of transferred Cr/Au electrodes on PET substrate. Inset: OM image of transferred Cr/
Au electrodes. f OM image of transferred Cr/Au electrodes on SiO2/Si substrates. Inset: photograph of transferred Cr/Au electrodes on SiO2/Si
substrates. Note that graphene in (a) was transferred by cedrol (10 wt%)/PMMA; graphene in (b, c) was transferred by borneol (10 wt%)/PMMA;
graphene in (d) was transferred by alpha-terpineol (10 wt%)/PMMA.
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per second. Subsequently, bubbling-based delamination of graphene from Cu was
conducted by the customized bubbling-delamination equipment (see Supplemen-
tary Fig. 6). After rinsing graphene with deionized water to remove residual
electrolyte and drying films in the oven at the temperature of 40 °C, the graphene
film was laminated onto PET substrates by the commercial laminator at room
temperature with the laminating rate of 2 cm per second.

Heating the films at temperature of 140 °C within one minute would result in
the release of TRT. After the lamination of silicone tape onto the supporting films,
we can peel off the silicone tape along with the supporting films and leave the clean
graphene on PET. The time consumed in the transfer is listed in Supplementary
Table 1.

Coating of PEDOT:PSS onto graphene/PET. PEDOT:PSS (PH1000, 1-1.3 wt%,
Heraeus) was sonicated (28 kHz) for 30 mins and filtered through a commercial
filter to avoid large particles. Subsequently, 4.5 wt% of Dimethyl sulfoxide (DMSO)
(99.9%, Sigma-Aldrich) and Zonyl FS-300 (0.5 wt%, Fluka) were added into
PEDOT:PSS solution, and mixed overnight at room temperature. The DMSO was
used to improve the electrical conductivity of PEDOT:PSS solutions and the Zonyl
was used as a surfactant in mixed solution. The mixed solution was spin-coated
onto graphene on PET at 1000 rpm for 60 s, followed by heating at 80 °C for 5 mins
for the membrane formation.

Growth and transfer of Monolayer MoS2 on Au Foil. Commercially available
polycrystalline gold foil (99.99%, 30 μm thick) was cleaned by ultrasonication in
hydrochloric acid (20 wt%) and acetone, respectively. Then the cleaned Au foil was
annealed at 950 °C for 5 h. The annealed Au foil was faced downward to the MoO3

powder (~99.9%, ∼2 mg) in the heating center of the furnace (Lindberg/Blue M
HTF55347c). The sulfur powder (~99.5%, 80 mg) was placed in a quartz boat at the
upper stream, 30 cm away from the substrate. Monolayer MoS2 was grown at
750 °C for 8 min by ambient pressure CVD, and 80 sccm Ar was used as carrier gas.
The same procedures (OVMs-modified supporting films) were used in the transfer
of MoS2 onto pre-transferred graphene to fabricate the vertical heteostructure.

Transfer of Cr/Au electrodes. The Cu wafer was used as the sacrificial layer for
transferring the Cr/Au electrodes. Wafer-scale patterning on Cu wafers was con-
ducted by laser direct writing (Heidelberg MLA-150) (photoresist, AR-P5350).
Subsequently, the 5 nm Cr layer was deposited on Cu wafers, followed by the
deposition of 50 nm Au using the e-beam evaporator (Angstrom Engineering
nexdep). After the lifting off, coating of OVMs and PMMA was conducted to form
supporting films. Subsequently, Cu wafer was etched away, leaving the Cr/Au
electrodes on supporting films. After the rinsing and drying of the films, the films
were laminated onto substrates such as PET and SiO2/Si substrates, followed by the
direct peeling of supporting films off the substrates.

PMMA-based transfer assisted by TRT. First, the PMMA solution (PMMA,
950 K A4, MicroChem Corp) was spin-coated onto one side of the graphene/Cu
sample with spin-coating rate of 1000 rpm for 60 s and dried for 3 mins on a hot
plate at the temperature of 80 °C. Oxygen plasma was used to etch graphene on the
back side of the sample. Subsequently, we laminated the TRT onto PMMA film
after the curing of PMMA. Then, electrochemical bubbling-based delamination of
graphene from Cu was conducted, followed by rinsing and drying of the TRT/
PMMA/graphene. Then we laminated graphene onto target substrates in a dry
environment. After the lamination, heat treatment of the TRT would significantly
reduce the adhesion energy between TRT and PMMA, which would leave the
PMMA/graphene onto the target substrates. Finally, the PMMA was removed by
soaking the sample in the acetone bath, and graphene was dried with compressed
nitrogen gas.

Transfer of graphene by conventional PMMA-based method. First, the PMMA
solution (PMMA, 950 K A4, MicroChem Corp) was spin-coated onto one side of
the graphene/Cu sample with a spin-coating rate of 1000 rpm for 60 s and dried for
3 mins on a hot plate at the temperature of 80 °C. Oxygen plasma was used to etch
the graphene on the back side of sample. Subsequently, sodium persulfate (1 mol/L,
Sigma-Aldrich) solution was used to etch Cu foil, and the PMMA/graphene film
was floated on the surface of the solution. The PMMA/graphene film was washed
with distilled water several times to remove the etchant residue. After the rinsing of
the PMMA/graphene film with distilled water, the PMMA/graphene film was
scooped out by a SiO2/Si substrate at room temperature and then was dried
overnight to reduce the water trapped between graphene and substrates. Finally,
the PMMA was removed by soaking the sample in the acetone bath and dried with
compressed nitrogen gas.

ToF-SIMS measurement. The 2H-PMMA is purchased from Polymer source
company (production number #P100226-d5 PMMA) with Mn= 820,000 and
Mw= 1,500,100. Annealing experiments were performed in the chamber of the
ToF-SIMS spectrometer (ToF-SIMS V, ION-ToF GmbH, Munster, Germany)
before characterization. The samples were analyzed at 25 °C after annealing at
100 °C for 1 h. ToF-SIMS spectra were acquired at the annealing temperature using

a Bi3+ beam operating at 25 keV. The scanning area was 200 μm× 200 μm with an
acquisition time of 40 s. Negative ion spectra were collected for each sample. The
software used for peak analysis was SurfaceLab 6.0 from ION-ToF.

Optical measurement. Optical microscopy images were obtained with a Nikon
Olympus LV100ND. Raman spectra were obtained with LabRAM HR-800 with
532 nm laser. Optical transmittance spectra were collected by a Perkin-Elmer
Lambda 950 UV-vis spectrophotometer. AFM characterization of graphene was
carried out on Bruker dimension icon microscopy using the Scanasyst mode. The
sheet resistance was measured using a four-probe system (CDE ResMap 178) based
on the four-point probe method to eliminate contact resistance. Four metal probes
were aligned in a line at intervals of 1 mm. White Light Interference images were
conducted using a Nikon White Light Interferometry (BW-S501).

Intactness characterization. Macro-intactness of graphene on SiO2/Si wafer was
probed by taking the photographs of entire graphene wafer, while a commercial
scanner was used to enhance the contrast difference to visualize graphene on trans-
parent PET substrates for probing Macro-intactness. After taking the photos, the ratio
of pixels was counted with different contrast to obtain the macro-intactness. OM
images with 5× and 50× magnifications were taken to probe the micro-intactness: the
twenty-five OM images with 5× magnifications were taken over transferred graphene
(top, bottom, middle, right, and left) and we can obtain an average value. Subse-
quently, the OM images with 50× magnification were taken by randomly zooming in.
After obtaining the values of macro-intactness and the micro-intactness using 5× and
50× magnification OM images, the three values were multiplied to obtain the final
intactness.

Device fabrication and electrical measurements. To probe electronic quality
and exclude the interference from substrates, monolayer graphene after the transfer
was encapsulated by two flakes of around 50 nm-thick hBN crystals. In detail, an
hBN flake was picked up at 52 °C by a PPC/polydimethylsiloxane (PDMS) stack on
a glass slide, which was attached to a micromanipulator. The as-formed hBN/PPC/
PDMS stack was then used to pick up the graphene from the SiO2/Si at 52 °C. The
“pick up” is possible because the van der Waals forces between hBN and the
graphene are relatively stronger than that between SiO2/Si and the graphene.
Subsequently, the graphene/hBN/PPC/PDMS stack was brought into contact with
another hBN flake by releasing graphene/hBN at 70 °C from PPC surfaces,
resulting the formation of the final hBN/graphene/hBN heterostructure. Electron-
beam lithography and reactive ion etching (RIE) were employed to pattern the
stack into a Hall bar geometry. After the RIE etching, Cr/Au (3/50 nm) electrodes
were deposited by electron-beam evaporation for forming one-dimensional
contacts.

The electrical properties of the fabricated devices were characterized by the
conventional lock-in technique. An AC current Ids with a root mean square
amplitude of 1 μA at 23.33 Hz was applied between the source and drain terminals.
Meanwhile, the four-point longitude voltage drop Vxx and transverse voltage drop
Vxy were measured with lock-in amplifiers. The charge density tuning in the
graphene channel is achieved by applying different back gate voltage (Vbg). The
device was tested in Argon inertial environment (glovebox at the temperature of
300 K) and vacuum environment (cryostat at a temperature lower than 100 K). Rxx

is the longitude resistance, which can be obtained according to the equation:
Rxx= Vxx/Ids, and Rxy is the Hall resistance which can be obtained by Rxy= Vxy/Ids.
The longitude resistivity (ρxx) can be calculated from ρxx= Rxx ×W/L, where W is
the width of the conducting channel, L is the length of the channel between the
probed contacts. The longitude conductivity (σxx) can be obtained via σxx= 1/ρxx,
while the Hall carrier density (n) can be determined by equation: n = B/(eRxy),
where e is the elementary charge. Based on the Drude model, mobility (µ) can be
estimated from the linear regions in the transfer curve (Fig. 4a) according to the
equation: µ= σxx/(ne).

Hall bar devices were fabricated on the graphene/SiO2/Si with marks for
alignment. each graphene sample was etched into a Hall bar geometry using a
PMMA etching mask (PMMA 950 K A4 @ 4000 rpm) designed by electron-beam
lithography (EBL) (Raith 150 2nd) and plasma etching with air (Diener Pico). After
using EBL to design a PMMA mask, Cr/Au (10/40 nm) electrodes were deposited
on the samples using an electron-beam evaporator (Angstrom Engineering nexdep)
and then a standard metal lift-off technique. The arrays of Hall bar devices on
4-inch transferred graphene were fabricated by maskless laser lithography system
(Heidelberg MLA-150) with a photoresist (AR-P5350, Allresist EN). Electrical
characterization at room temperature was performed in a vacuum probe station
(Lakeshore CRX-VF) with a semiconductor characterization system (B1500A,
KeySight).

Graphene characterization. Raman spectra were obtained with Horiba LabRAM
HR-800 with 532 nm and 633 nm laser. AFM (Bruker dimension icon) was used to
characterize the morphology of the graphene samples. The element analysis was
performed by XPS (Kratos Analytical AXIS-Ultra with monochromatic Al Kα X-
ray). The roughness of as-transferred graphene and the thickness of OVMs and
Polymer films were measured by using the white light interferometer (BW-S501).
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The optical transmittance of graphene was measured using a UV-VIS-NIR Spet-
rometer (Perkin-Elmer Lambda 950)

Theoretical calculation. A series of MD simulations were performed to calculate the
adhesion force through LAMMPS package. The schematic diagram is shown in
Fig. 3c, in which a coarse-grained SiO2/Si layer contacts with SiO2-supported gra-
phene. The top SiO2 layer approaches the supported graphene, and the adhesion
stress could be obtained at different separation distances. The coarse-grained model of
the SiO2 layers and the SiO2/Si substrates was used according to the literature. The
interaction between the carbon atoms and the coarse-grained SiO2 particles was

presented by Lennard-Jones potential U rð Þ ¼ 4ε r0
r

� �12 � r0
r

� �6h i
, with ε ¼ 4:148meV

and r0 ¼ 2:79A. The AIREBO potential was employed to describe carbon-carbon
interaction. During the simulation, SiO2 particles of the substrate were constrained to
maintain its surface corrugations. The geometrical parameters of the substrates and
the graphene sheets were obtained from the AFM images of bare substrates and
supported graphene on substrates. In the case of graphene on PET, there is no reliable
potential for calculating the van der Waals interaction. Therefore, we approximated
the van der Waals interaction by adding a multiplier α to ε in the above Lennard-
Jones potential. We have simulated the situations of α ¼ 0.5, 1, 2, and 3.

Data availability
The data that support the findings of this study are available within the article and its
Supplementary Information files. The source data underlying Figs.1d, e, 2c, 3b, d, 4a–f,
5a, c, and Supplementary Figs. 2c, e, g, 7i, 8a–i, 9f, 10a–d, 11a, b, 12a–c, and 13d–f are
provided as “Source Data File”. All raw data generated during the current study are
available from the corresponding authors upon request. Source data are provided with
this paper.
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