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Abstract 
The comprehensive determination of mechanical properties of heterogeneous objects such as welding joint remains chal-
lenging in various scientific fields. This paper develops a Local-micro-zone-wise Time-resolved Integrated Digital Image 
Correlation (LTIDIC) method, which can self-divide different regions of the material and get the multiple elastic–plastic 
parameters of each region through parameter inversion simultaneously, including elastic modulus, yield strength, hardening 
coefficient, and hardening exponent. First, the principle and process of the LTIDIC method are demonstrated, and the method 
of automatically dividing regions is introduced. Then, the reliability of the LTIDIC is analyzed and optimized, based on 
evaluating the influence of the correlation criteria, the area size, the noise type, and the number of pictures on the results of 
parameter inversion. Finally, a uniaxial tensile test was performed on the friction stir welding joint of aluminum alloy 6061T6 
thin plate sample, and the distribution of multiple mechanical parameters was measured by the LTIDIC method. The results 
show that the modulus in the weld zone ranges between 30 and 70 GPa, with the lowest modulus in the thermo-mechanical 
affected zone and the highest modulus in the heat affected zone. The yield strength in the weld zone ranged from 75–115 MPa. 
The elastic modulus distribution shows an asymmetric W-shape, and the plastic parameters generally show a decreasing 
trend from the weld nugget to both sides. The feasibility and accuracy of the LTIDIC method were verified by comparing the 
consistency with the localized DIC method. The proposed method can obtain multiple elastic–plastic parameter distributions 
in different areas of material simultaneously through a single tensile experiment and provide important experimental data 
for the evaluation of mechanical properties of heterogeneous materials similar to welding joints.
Highlights   
1. The developed LTIDIC method can obtain multiple elastic–plastic parameter distributions including elastic modulus, 
yield strength, hardening coefficient, and hardening exponent simultaneously through a single tensile experiment.
2. Automatically identify areas of heterogeneous materials with different mechanical properties.
3. The parameter inversion error is less than 1% by analyzing the factors that affect parameter identification. It can effectively 
reduce the influence of random noise on the inversion and improve the accuracy of the results.
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Introduction

In the classic parameter inversion method, the test piece 
is usually a homogeneous material, that is, the material 
parameters of all areas of the test piece are the same, but 
in actual applications, the material properties of different 
areas of the test piece may be different, such as welding 
materials, composite materials, heterogeneous materials 
containing inclusions, etc. Taking the welding material of 
the friction stir welding process as an example, through 
microstructure observation [1], the area around the weld 
can be divided into weld nugget zone, thermo-mechanical 
affected zone, heat affected zone. The mechanical prop-
erties of the three sub-zones of the weld are different 
and significantly different from the base metal, which is 
affected by the welding process. Although hardness can be 
used as an indicator to characterize the degree of weaken-
ing of the mechanical properties of the welded joint [2], 
it is not sufficient to fully characterize the elastic–plastic 
parameters of the weld region and a hardness testing is 
required.

Digital Image Correlation (DIC) is a well-established, 
non-contact diagnostic technique that has been devel-
oped and applied in different materials and experimental 
environments [3–5]. In recent years, with the develop-
ment of the DIC method, the mechanical properties of the 
heterogenous materials such as complex rock mass [6], 
particle-type composites [7], and welded joints [8–10] 
have been extensively studied. Bai et al. [11] used the 
DIC method to calculate the stress–strain curves of dif-
ferent areas of laser-welded materials and measured the 
distribution of elastic–plastic properties of the materials. 
Li et al. [12] directly measured the distribution of the 
hardening index n with the help of the 3D-DIC method 
and used the inversion model method to obtain the distri-
bution of the strength coefficient k. The current methods 
can characterize the parameter distribution of different 
areas of the weld by uniaxially stretching the test piece 
made of the sheet containing the weld area, but these 
methods all rely on the measurement accuracy of the 
strain in the DIC subset size. For one thing, when using 
the DIC method for non-uniform strain field measure-
ment, the subjective choice of smoothing window size 
and filter size has a significant impact on the strain cal-
culation results [13]. For another, the strain measure-
ment accuracy of optical extensometers based on the DIC 
method can reach up to 2 microstrains, but this requires 
the equivalent gauge length of the material to be around 
10,000 pixels [14]. For an ordinary CCD camera, when 
the gauge length is 450 pixels, the strain error is about 50 
microstrains. [15]. When measuring welds where there 
are multiple areas to be measured locally, the gauge 

length of each area is difficult to meet this requirement, 
which will further increase the strain measurement error 
and dispersion. The processing method of Bai [11] is to 
smooth the measured local strain data in the time dimen-
sion and use the least square method for fitting. Smooth-
ing, filtering, and fitting are effective means to improve 
strain accuracy, but there are manual interventions in the 
relevant processes of these numerical calculations, which 
may affect the parameter identification results.

Through the above analysis, it is not difficult to find that 
the existing methods have the problem of uncontrollable 
accuracy in the measurement of heterogeneous material 
parameters. The main reason is the manual intervention in 
the strain calculation, that is, the secondary errors from dis-
placement to strain may lead to the accumulation of errors 
in the parameter identification process.

To improve the accuracy of multi-parameter measurement 
of heterogeneous materials and reduce potential manual 
intervention errors, this paper proposes a Local-micro-zone-
wise Time-resolved Integrated Digital Image Correlation 
(LTIDIC) method, which can simultaneously invert the 
parameters of the elastic–plastic model of welding joint 
through a uniaxial stretching experiment. The reliability of 
the LTIDIC method and the factors affecting the parameter 
identification results are investigated through numerical 
experiments with simulative speckle. The distribution of 
elastic–plastic parameters of aluminum alloy friction stir 
welded joints was inverted in combination with the auto-
matic partitioning method. The feasibility and correctness of 
this method are verified by comparison with the calculation 
results of the localized DIC method [9]. The results show 
that the modulus of the thermo-mechanical affected zone is 
the lowest, while the modulus of the heat affected zone is the 
highest in the weld zone, showing an asymmetric W-shaped 
distribution. The stability of the distribution of the plastic 
parameters is not as good as the modulus, and the plastic 
parameters generally show a decreasing trend from the weld 
nugget to both sides.

Principle

Principles of LTIDIC

Compared with the classic integrated digital image cor-
relation algorithm, the timing algorithm mainly uses the 
integration of the time dimension to effectively reduce the 
influence of errors such as random noise on the parameter 
inversion results [16]. In the quasi-static mechanical load-
ing process, according to the assumption of constant gray 
level, the speckle image passively follows the deformation 
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of the material and moves, and the speckle deformation 
field has continuity in space and time, so the gray level of 
the image before and after the deformation satisfies:

where f (x, t0) represents the gray distribution of the ref-
erence image (the unloaded speckle image of the speci-
men surface collected at the initial time t0 ) in the image 
coordinate x , g(x, t) represents the gray distribution of the 
deformed image at time t during the loading process, u(x, t) 
represents the material displacement field at time t , as shown 
in Fig. 1, r(x, t) represents the residual error caused by ran-
dom noise,g (x − u(x, t), t) represents the inverse affine trans-
formation of the deformed image g(x, t) back to the original 
undeformed image, t = 1, 2⋯ , n , n represents the number 
of acquired speckle images after deformation.

The material displacement field is determined by the 
loading boundary conditions and the material parameters. 
For this paper, the boundary condition is the uniaxial ten-
sion loading method, and the material parameter is the 
elastic–plastic parameters pi of different regions Ωi . In 
area Ωi:

where �xx represents the transverse strain, �yy represents the 
axial (tension direction) strain, and u0 , v0 represents the rigid 
displacement. The rigid displacement during the loading 
process can be directly solved by the DIC method.

(1)f (x, t0) = g(x − u(x, t), t) + r(x, t)

(2)x = [x, y]

(3)u = [u, v]

(4)
[
u

v

]
= [

∫ �xxdx + u0
∫ �yydy + v0

]

According to Hooke's law, the standard test piece is 
in the uniaxial tensile test, the strain in the elastic phase 
satisfies:

where �e represents the stress in the elastic phase, Ei rep-
resents Young's modulus, �e

yy
 represents axial strain in the 

elastic phase, �e
xx

 represents transverse strain in the elastic 
phase, vi represents Poisson's ratio,

According to the simplified Johnson–Cook constitutive 
model [17], the strain in the plastic phase satisfies:

where �p represents the stress in the plastic phase, Ai repre-
sents yield strength, Bi represents hardening coefficient, ni 
represents hardening exponent, �pyy represents axial strain in 
plastic phase, and �pxx represents transverse strain in plastic 
phase.

During uniaxial stretching [8]:

where F(t) represents the load at time t  , S(t) represents 
the cross-section area at time t  , and S0 represents the ini-
tial cross-sectional area. According to Eqs. (4–10), when 
the uniaxial stress �(t) is determined, the displacement 
⇀

u(
⇀

x , t) is determined by the elastic–plastic parameter 
pi = [Ei, vi,Ai,Bi, ni] of the material. Then, when pi is the 
closest to the real material parameter, its determined dis-
placement 

⇀

u(
⇀

x , pi, t) makes (equation (1)) hold. Therefore, 
the objective function C(pi) can be constructed according to 
(equation  (1)), and the parameter pi can be solved by the 
optimization algorithm:

Ignoring the influence of noise, the pi with the smallest C 
is the closest to the real material parameters. This is a multi-
parameter nonlinear optimization problem, which can be 
solved by linearizing the problem and iteratively, for exam-
ple, using the Newton–Raphson algorithm [16]. The New-
ton–Raphson algorithm is an iterative update method based on 
the gradient correction term. The correction term can improve 
the initial guess. The correction term for the kth guess is:

(5)�e=Ei�
e
yy

(6)�e
xx
= −vi ∗ �e

yy

(7)�p=Ai + Bi(�
p
yy
)ni

(8)�p
xx
= −0.5 ∗ �p

yy

(9)�(t)=F(t)∕S(t)

(10)S(t) = S0exp(−�yy)

(11)C(pi) =
∑
t

∑
Ωi

[g(
⇀

x −
⇀

u (
⇀

x , pi, t), t) − f (
⇀

x , t0)]
2

Fig. 1   Time series speckle image
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where J is the Jacobian matrix, corresponding to the first-
order partial derivative, and H is the Hessian matrix, which 
is a square matrix composed of the second-order partial 
derivatives of a multivariate function, which can be used 
to describe the local curvature of the function. For the case 
where there is a numerical analytical solution to the dis-
placement field, an explicit functional relationship can be 
established between the unknown material parameter and 
the displacement field. In this case, the partial derivative is 
directly calculated through the functional relationship:

where ∇g represents the grayscale gradient of the image, 
which refers to the rate of change of the grayscale at a cer-
tain pixel position in the image in both the x and y direc-
tions (compared with adjacent pixels), and ∇u represents the 
first-order partial derivative of the displacement field to the 
material parameters.

For the implicit function relationship between the 
unknown material parameters and the displacement field, 
the partial derivative can be approximated by calculating 
the finite difference gradient:

where � represents iteration parameters and its value affects 
the speed of iterative convergence to a certain extent.

At this point, all the conditions for resolving the update of 
material parameters are in place. Run the generated iterative 
process until convergence is met. The convergence criterion 
is usually used:

or

LTIDIC Algorithm Flow

During the uniaxial stretching process of the welding 
test piece, each different area satisfies the series relation-
ship. Before the test piece is necked, the axial strain is not 

(12)Δpi,k = −H−1(pi,k)J(pi,k)

(13)
J(pi,k) = �C∕�pi,k =

[
�C∕�Ei �C∕�vi �C∕�Ai �C∕�Bi �C∕�ni

]T

(14)H(pi,k) = J(pi,k)
TJ(pi,k)

(15)

J(pi,k) =
∑
t

∑
Ωi

∇g∇u(g(
⇀

x −
⇀

u (
⇀

x , pi,k, t), t) − f (
⇀

x , t0))

(16)J(pi,k) =
C((1 + �)pi,k) − C(pi,k)

�pi,k

(17)‖ΔC(pi,k)‖ ≤ 1e − 5

(18)‖Δpi,k‖ ≤ 1e − 3

greater than 0.02, and the transverse strain is less than 
0.001. It can be considered that the uniform uniaxial ten-
sile stress is satisfied in each area, when the influence of 
the lateral deformation on the uneven distribution of the 
stress field is ignored [11], the force acting on each area 
is equal to the load of the testing machine. Therefore, the 
inverse solution of the material parameters can be per-
formed separately for different areas. Here, the reason for 
not solving all regions at the same time is the complexity 
of solving the problem increases exponentially with each 
additional variable. Solving the parameters of all regions 
at the same time requires a lot of computing power and is 
difficult to converge. Therefore, when characterizing the 
elastic–plastic parameters of different areas of the weld, 
the traditional I-DIC method based on the overall image 
has great drawbacks. The LTIDIC algorithm proposed in 
this paper draws on the idea of the sub-region DIC method, 
considers the constraints of time and space continuity, 
and gradually inverts the constitutive model parameters 
of materials in different regions by automatic partition.

The algorithm flow is shown in Fig. 2, the specific steps 
are:

① Prepare uniaxial tensile test specimens containing 
weld zone, and spray speckle on the surface of test 
specimens;
② Apply a tensile load to the specimen, and take a 
speckle image of the specimen surface at the same time;
③ Use the automatic partition method developed in 
Section 2.3 to divide areas of the test piece;
④ Select the area and give the initial parameters of the 
material in the selected area;
⑤ Calculate the displacement field at different times in 
the selected area according to the initial value of the 
material and the Eqs. (4–10);
⑥ Perform inverse affine transformation on the 
deformed image according to the displacement field at 
different moments to obtain the constructed undeformed 
image;
⑦ Perform correlation operations on the undeformed 
image constructed by inverse affine transformation 
and the real shot reference image according to (equa-
tion  (11)) to obtain the correlation function value;
⑧ Determine the convergence of the correlation func-
tion value, if it converges, proceeds to step ⑩, if it does 
not converge, proceeds to step ⑨;
⑨ Update the initial value of the material according to 
(equation  (12–16)), and repeat steps ⑤-⑧
⑩ Update the selection and repeat steps ④-⑨.

The core of the LTIDIC algorithm lies in how to achieve 
the precise division of different regions accurately and 
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quickly, and the following will introduce the method of 
automatic region division.

Automatic Partition Method

The principle of the automated partition method is to iden-
tify the area boundaries of different materials on the test 
piece based on the difference in the response under specific 
loads. In the process of uniaxial stretching of a homogene-
ous material, before the specimen is necked, the displace-
ment field on the surface of the specimen within the gauge 
length changes uniformly, and the strain at each point is 
theoretically equal. But for non-homogeneous materi-
als, the displacement field on the surface of the specimen 
changes non-uniformly, and there are certain differences 
in strain in different regions. Therefore, the automatic par-
tition method needs to first obtain the displacement and 
strain responses, and then analyze the response character-
istics at the boundary, and find the appropriate response 
characteristics as the boundary judgment criterion. In this 
section, for the uniaxial tensile test of heterogeneous mate-
rials, a model of three materials stretched in series was 
developed is established to analyze the boundary judgment 
criteria of automatic partitions by numerical methods, as 
shown in Fig. 3.

Assuming that the horizontal widths of the three materi-
als are equal, the axial lengths are 100 pixels, 50 pixels, and 

100 pixels respectively. Under a certain fixed unidirectional 
force F , due to the different stiffness of the three materials, 
the axial strain is 0.001, 0.0012, and 0.0011 respectively. 
Ignoring the deformation in the y-direction, calculate the 
displacement in the x-direction according to Fig. 3.

Calculate the displacement, strain, first-order derivative 
of strain, and second-order derivative of the strain of each 
pixel in the x-direction. The relative values are shown in 
Fig. 4. In Fig. 4, in order to unify the coordinate axes, 
the results are translated and zoomed without affecting 
the regularity. It can be seen from the figure that at the 
boundary of the two materials in series, the displacement 

Fig. 2   LTIDIC algorithm flow 
chart

Fig. 3   Three-material series stretching model
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is the segmental inflection point, the strain is the midpoint 
of the gradual change, the first derivative of the strain is 
the extreme point, and the second derivative of the strain 
is equal to zero. Ideally, these results can be used as the 
basis for dividing the area. However, in the actual meas-
urement of the weld, the displacement field is asymptoti-
cally curved, and it is difficult to divide the different areas 
according to the displacement field. Therefore, the extreme 
point of the first derivative of strain and the zero point of 
the second derivative of strain can be used as the basis for 
partition. Numerically, the sign of the second derivative of 
strain in the same connected region is the same, and rapid 
regional differentiation can be realized by binarizing the 
second derivative of strain with 0 as the boundary.

It should be pointed out that the material parameters 
of the weld area are gradual. The material area division 
here is to divide materials with similar parameters into 
the same area, and the material parameters with large dif-
ferences are divided into different areas.

Reliability analysis and optimization 
of LTIDIC

The numerical simulation experiment refers to the 
welding parameters of aluminum alloy and selects a 
set of parameter combinations: E = 65 GPa, v = 0.3, 
A = 100 MPa, B = 300 MPa, n = 0.3. Then select the maxi-
mum load Fmax = 9.6 kN according to the experimental 
results, the gauge length of the test piece L = 100 mm, the 
plate width b = 20 mm, the plate thickness L = 3 mm, and 
the sampling frequency during the experiment is 10 fps. 
Calculate the theoretical displacement field at different 
times of uniaxial stretching. Then, the deformed speckle 
images at different moments are simulated according to 
the displacement fields at different times, and the image 
size is 801 × 801 pixels. Finally, parameter inversion is 
carried out using different correlation criteria, area size 
and the number of pictures. In each case, 50 separate 
inversions are performed. Statistical analysis of the inver-
sion results can guide algorithm optimization.

Noise Analysis and Simulation

The noise mainly involved in the experiment includes image 
noise and strain noise. Image noise refers to unnecessary or 
redundant interference information in the image data. Strain 
noise refers to the sudden change of strain caused by the 
pores and vibration of the loading system.

The camera used in the experiment is a Daheng 
Mercury series CMOS camera with a resolution of 
1944 × 2596 pixels. The mentioned camera was used to 
continuously collect 1000 pictures of white cardboard 
and collect the noise information of the images for 
analysis. Due to the influence of uneven illumination 
and camera noise, the gray information collected by the 
camera is not exactly the same. Figure 5 plots the gray 
distribution histograms (spatial distribution) of differ-
ent pixel areas on the target surface at the same time 

Fig. 4   Displacement, strain, and strain derivative of the three-mate-
rial series tensile model

Fig. 5   Gray distribution histo-
gram
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and the gray distribution histograms (time distribution) 
of the same pixel at different times. It can be seen 
that both spatially and temporally, the grayscale distri-
bution of the image satisfies the normal distribution, 
and the image noise type belongs to Gaussian noise. 
Spatially, the variance of image grayscale is 9.78, and 
temporally, the variance of image grayscale is 2.23.

The reason why the spatial variance is larger may 
be that the illumination is not completely uniform, 
while the temporal variance is almost entirely due to 
the image noise caused by the camera signal acquisi-
tion process.

Through the above analysis, this section uses Gauss-
ian noise with a mean value of 0 and a variance of 2.23 
as image noise to analyze the algorithm. Figure 6 shows 
the collected image noise and the simulated image noise. 
It can be seen that the simulated image noise is consist-
ent with the actual situation, which makes the numerical 
experiment closer to the real situation.

Even if the same target is measured twice in a row 
under very strict conditions, the strain data collected at 
the same location may be different, which is especially 
obvious in the case of small deformation. According to 
the literature [18], the formula for adding strain noise is:

where �i,j and �′

i,j
 respectively represent the strain before and 

after adding noise, � represents the random number distrib-
uted normally in the interval (0,1), and rnsr represents the 
signal-to-noise ratio. The range of rnsr for adding strain noise 
in the literature is (0.01%-0.09%) and (1%-10%). Due to lim-
ited conditions, it is hard to accurately evaluate the level of 
strain noise. This section rnsr is taken as 1%, which is the 
critical point of low noise signal ratio and high noise signal 
ratio in the literature. And in subsequent numerical experi-
ments, if there are no special instructions, only image noise 
is added.

(19)�
�

i,j
= �i,j ⋅ (1 + rnsr�)

Analysis and Discussion of Numerical Simulation 
Experiment Results

The noise is random, and the parameter inversion results are 
discrete. Therefore, in order to more accurately evaluate the 
influence of correlation criteria, area size, noise type, and 
the number of pictures on parameter errors, each combina-
tion of variables mentioned above requires multiple numeri-
cal simulations. Statistical methods are used to analyze the 
influence of variables on the accuracy and dispersion of 
parameter inversion.

(1)	 Error analysis of LTIDIC method for different param-
eter identification

Under the same noise level, the parameter inversion 
method has different recognition errors and dispersion 
degrees for different parameters. In this section, 50 numeri-
cal simulation experiments will be performed on different 
parameters respectively, and the error distribution of param-
eter inversion under the same correlation criteria, the same 
sub-region size, different noise types, and different number 
of pictures will be counted.

The inversion results of the numerical simulation experi-
ments for different parameters at the same level of image 
noise are shown in Fig. 7. It can be seen that for the plastic-
ity parameter A/B/n of the material, the inversion errors are 
all within 1%, even with a small number of pictures. As for 
the modulus and Poisson's ratio, the error and dispersion 
decrease as the number of pictures increases. The dispersion 
of Poisson's ratio is greater than the dispersion of modulus 
in the case of the same number of pictures. It can be inferred 
that under the same level of image noise, the greater the 
influence of material parameters on deformation, the smaller 
the error and dispersion of the parameter inversion results.

Under the same level of strain noise, the inversion results 
of numerical simulation experiments with different param-
eters are shown in Fig. 8. It can be seen that for the plas-
tic parameter A/B/n of the material, even if the number of 

Fig. 6   Histogram of image 
noise distribution
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pictures is small, the inversion error is all within 1%. As for 
the modulus and Poisson's ratio, the error and dispersion 
decrease as the number of pictures increases, and the overall 
rule is similar to image noise. The difference is that the dis-
persion of B and n under strain noise is lower than that under 
image noise, while the dispersion of E and v under strain 
noise is higher than that under image noise. Especially for v, 
in the presence of strain noise, the dispersion is very large. 
Strain noise has greater interference with elastic parameters, 
but less interference with plastic parameters. Combining the 
degree of influence of elastic–plastic parameters on defor-
mation, it can be inferred that in the case of small deforma-
tion, the effect of strain noise on the parameter inversion 

accuracy is greater than image noise, and in the case of large 
deformation, the effect of image noise is greater than strain 
noise.

(2)	 Error analysis of LTIDIC method for different correla-
tion criteria

In the sub-area DIC method, different correlation func-
tions are similar [19], which is also applicable to the LTIDIC 
algorithm. However, for specific problems, the anti-interfer-
ence performance of different correlation functions is not 
the same. For the sub-area DIC method, most of the cur-
rent zero-normalized sum-of-squared difference (ZNSSD) 

Fig. 7   The relationship between 
the relative errors of different 
parameters and the number of 
pictures under image noise: (a) 
Young's modulus; (b) Pois-
son's ratio; (c) yield strength; 
(d) hardening coefficient; (e) 
hardening exponent

Fig. 8   The relationship between 
the relative error of different 
parameters and the number of 
pictures under strain noise: (a) 
Young's modulus; (b) Pois-
son's ratio; (c) yield strength; 
(d) hardening coefficient; (e) 
hardening exponent



Experimental Techniques	

1 3

correlation criteria is used, and for the I-DIC method, the 
least sum-of-squared difference (SSD) correlation criteria 
is commonly used. Here, the correlation criteria of SSD 
and ZNSSD will be selected as the objective function for 
parameter inversion. The specific formulas are Eq. (20) and 
Eq. (21).

Since the error of the parameter A/B/n is small, the error 
of parameter E is selected to compare different related cri-
teria. In this section, 50 numerical simulation experiments 
are conducted for parameter E respectively, and the error 
distribution of parameter inversions with different correla-
tion criteria, different region sizes, and the number of images 
is counted. Figure 9 and Fig. 10 compare the mean value 
and dispersion of the parameter inversion errors of the two 
related criteria respectively. In the legend, A represents SSD, 
B represents ZNSSD, and the number represents the size of 
the sub-area (unit: pixels). The x-axis represents the number 
of pictures used to calculate the correlation function. For 
example, B50 means that the area is 50 × 50 pixels, using 
SSD criteria for parameter inversion. Overall, the average 
error of SSD is smaller, while the error dispersion of ZNSSD 
is smaller. The reason why the average error of ZNSSD is 
large may be that it is not sensitive to the linear change of 

(20)SSD ∶ C(pi) =
∑
t

∑
Ωi

[f (�⃗x, t0) − f (�⃗x + �⃗u(�⃗x, pi, t), t)]
2

(21)

ZNSSD ∶ C(pi) =
�
t

�
Ωi

⎛⎜⎜⎜⎝

(f i(�⃗x, t0))�∑
f
2

i
(�⃗x, t0)

−
(f i(�⃗x + �⃗u(�⃗x, pi, t), t))�∑

f
2

i
(�⃗x + �⃗u(�⃗x, pi, t), t)

⎞⎟⎟⎟⎠

2

(22)f i = fi −
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gray level. This paper mainly reflects on the uniaxial stretch-
ing experiment. According to the material parameters, the 
gray change of the surface of the specimen is a linear change.

(3)	 Error analysis of the LTIDIC method for different local 
area size

Section 2.3 introduces the method of automatic partition, 
but for the weld, the parameter distribution is gradual, and 
the divided area can only roughly divide the area with large 
parameter differences, and there are still parameter differences 
in each large area. It is necessary to discuss the inversion 
results of parameters with limited resolution in a limited area 

Fig. 9   Mean error comparison of parameter inversion results for SSD 
and ZNSSD correlation criteria

Fig. 10   Standard deviation comparison of parametric inversion 
results for SSD and ZNSSD correlation criteria

Fig. 11   Error comparison of different image sub-region sizes, the 
number in the legend indicates the number of pictures
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to accurately characterize the distribution of parameters. Fig-
ure 11 is the error bar graph of the parameter inversion of E 
under different sub-region sizes given by the numerical simu-
lation experiment. As the size of the sub-region increases, the 
average relative error gradually decreases and tends to con-
verge. When the image sub-region is larger than 50 pixels × 50 
pixels, the average error is less than 5%, and when the image 
sub-area is larger than 60 pixels × 60 pixels, the mean error 
converges. It can be seen from the partially enlarged view 
that the error is the smallest when the image sub-region is 70 
pixels × 70 pixels, which shows that under the interference of 
image noise, oversampling may cause the error to increase.

(4)	 Error analysis of LTIDIC method for different numbers 
of pictures

In the time series parameter inversion method, the number 
of pictures depends on the loading speed and the frame rate of 
the camera. The number of pictures not only affects the calcu-
lation efficiency but also affects the accuracy of the parameter 
inversion. It can be seen from Fig. 9 that, as the number of 
pictures increases, the mean error gradually decreases, and 
when the number of pictures is greater than 50, it tends to 
converge. It can be seen from Fig. 10 that, as the number of 
pictures increases, the dispersion of the mean error gradually 
decreases. In order to more clearly and directly compare the 
influence of the number of pictures on the parameter inversion 
error, the data of the SSD-related criteria is selected, and the 
error bar graph (Fig. 12) is drawn. It can be seen from Fig. 12 
that the mean value of the parameter inversion error gradually 
converges as the number of pictures increases. The distribu-
tion range of the error gradually decreases as the number of 

pictures increases, and the degree of convergence is related to 
the size of the sub-region.

Through the above numerical experimental results, the 
following relevant conclusions can be drawn: in the case of 
small deformation, the influence of strain noise is greater 
than image noise; LTIDIC method to achieve accurate 
parameter inversion (error less than 5%) needs to ensure 
that the image sub-area is greater than 50 × 50 pixels, and 
the number of pictures is greater than 30; oversampling can 
reduce the dispersion, but it does not significantly improve 
the accuracy of parameter inversion, and it may increase the 
error. The diameter of speckles (in pixels) is about 4 and 
the step size is 5, based on the research on improving the 
accuracy of DIC method [20, 21]. When the size of the sub-
region is limited, the method to further improve the accu-
racy (with an error of less than 1%) of the LTIDIC method 
is to collect an appropriate number of pictures, and then 
combine 50 groups of samples (In this case, 50 groups were 
used) through random sampling, the number of pictures in 
each group is 60, and then the SSD criterion is applied to 
elastic parameters inversion, and the average value of the 50 
groups of samples is calculated. It is recommended to use 
the ZNSSD related criteria when the number of pictures is 
limited, because in the case that the calculation of the aver-
age error cannot be achieved, the dispersion of ZNSSD is 
smaller, which can ensure the accuracy and stability of the 
parameter measurement results.

Uniaxial Tensile Test of the Weld Joint

Specimen Preparation

The size of the sample with a friction stir welding area 
in this paper is shown in Fig. 13. The base material is 
aluminum alloy 6061T6, the modulus is 60GPa, and the 
yield strength is 250 MPa. The sample was cut from stir 
friction welded thin plate of aluminum alloy 6061T6 and 
the plate thickness is 3 mm. The processing parameters 
are shown in Table 1.

The direction and zone division of friction stir weld-
ing are shown in Fig. 14. Normal direction indicates the 
normal direction of the sheet and Longitudinal direction 

Fig. 12   Error comparison of different numbers of pictures, the num-
ber in the legend indicates the size of the sub-area Fig. 13   Friction stir welding specimen
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indicates the direction perpendicular to the weld in the 
plane of the sheet. AS represents the advancing side when 
the friction stir welding shaft shoulder rotates, and RS 
represents the retreating side. Generally, the vicinity of 
friction stir welding joints can be divided into WN (Weld 
Nugget), TMAZ (Thermo-Mechanical Affected Zone), and 
HAZ (Heat Affected Zone) according to the microscopic 
results [18]. The TMAZ is located near the shaft shoul-
der, and its microstructure has obvious rotating textures. 
However, some studies have carried out a more detailed 
division of the welding area. The macro observation of the 
joints revealed a ‘bowl’ shaped weld nugget without any 
discontinuity and defects. According to different micro-
structures of the lap welded cross-section with respect to 
the shoulder and pin positions, Ghosh divides the solder 
nugget into three areas, including a mixed zone consisting 
of characteristics of adjacent areas [22]. The mechanical 
properties of WN, TMAZ, and HAZ are different, but the 
mechanical properties of the welding zone change con-
tinuously, so this paper divides the area according to the 
changes in mechanical properties.

Uniaxial Tension Testing

The uniaxial tensile test is used to obtain the mechanical 
properties of the aluminum alloy friction stir welding joints, 
the stretching direction is the same as the longitudinal direc-
tion in Fig. 14, and there are speckles on the surface of the 
specimen. The camera was used to take pictures during the 
stretching experiment, and the 2D-DIC method is used to 
obtain the deformation and strain information at the joints, 

the optical axis of the camera is parallel to the normal 
direction in Fig. 15. In this experiment, the loading speed 
is 1 mm/min, the image acquisition is 1fps, and the image 
resolution is 2448 × 1942 pixels.

Results and analysis

The area around the weld is selected as the area of interest, 
and the strain field in the y-direction corresponding to a load 
of 5kN (the load at which the weld material has yielded) 
is calculated by the Ncorr [23] (an open-source 2D digital 
image correlation MATLAB), which is used as the basis for 
the division of the weld zone. When the DIC method calcu-
lates the strain, the selected parameters are as follows: the 
size of the sub-region is 45 × 45 pixels, the distance between 
the center points of the sub-region is 5 pixels, and the size 
of the strain smoothing window is 15 × 15 pixels. The strain 
calculation result is shown in Fig. 16a, the white dashed line 
indicates the stretching direction. The gradient change of 
the strain field is not completely perpendicular to the tensile 
direction due to the non-parallelism of the weld itself. Tak-
ing the average value of the strain field along the vertical 
direction of the stretching direction, the weld area can be 
divided into 5 different areas through the automatic zoning 
method developed in Section 2.3, as shown in Fig. 16b. It 
can be seen from the strain field that there are obviously 
2 high-strain regions and 3 low-strain regions, a total of 5 
regions. The calculation area includes the WN, TMAZ, and 
a part of HAZ. By calculating the second derivative of the 
strain, the changes in its mechanical properties can be identi-
fied to achieve a more accurate regional division.

In order to show the change of the material parameters 
along the vertical weld direction, 14 points on the white 
dashed line are selected as the center of the area for param-
eter inversion. According to the results of the automatic 
region division, each region is about 100 pixels long in 
the stretching direction, therefore, the image sub-region 
is selected as 50 × 50 pixels. According to the analysis in 
Section 3, the number of images needs to be greater than 
30 to ensure that the average error is less than 5%. In the 
middle part of the loading process, 130 pictures with stress 
in the range of 50–160 MPa are input into the LTIDIC algo-
rithm program to invert the parameters. When the stress is 
low, the testing machine used uses a long connecting rod as 
shown in Fig. 15a, so there is a larger pore, which causes 
the rigid body of the test piece to rotate larger, which has a 
great impact on the parameter inversion. Under high stress, 
the specimen necks down and no longer meets the assump-
tion of a uniform stress field. Therefore, the pictures with 
the stress in the range of 50–160 MPa are selected, and the 
elastic–plastic parameter distribution of the weld zone is 
identified by the LTIDIC algorithm. Because the lateral 

Table 1   Friction stir welding parameters

Welding 
speed

Rotational 
speed

Shaft 
shoulder

stirring 
pin

plunge 
depth

Tilt angle

300 mm/
min

1200 rpm 10 mm 2.8 mm 2.8 mm 2.5°

Fig. 14   Friction stir welded joint
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deformation in the experiment is too small and is seriously 
affected by noise, it is hard to accurately obtain the Poisson's 
ratio distribution of the material, so the Poisson's ratio of 
the material is assumed to be 0.3 in the inversion process.

The inversion parameter distribution results are shown in 
Fig. 17, in which Fig. 17a marks the approximate areas of 
the WN, TMAZ, and HAZ. The height of the color repre-
sents the average parameter value of the zone. From the test 
results, the modulus of the weld area is between 30–70 GPa, 
the modulus of the TMAZ is the lowest, and the modulus 
of the HAZ is the highest. The distribution trend of elastic 
modulus is consistent with the result of the instrumented 
indentation testing [24]. The correlation between the distri-
bution of plastic parameters and the region is not as good as 
the modulus of elasticity, and the plastic parameters gener-
ally show a decreasing trend from the weld nugget to both 

sides. The distribution of yield strength and modulus in this 
paper are consistent with the distribution of microhard-
ness in the literature [25]. The yield strength of the weld 
zone is between 75–115 MPa, and the difference in yield 
strength may be related to the distribution of residual stress. 
The parameter distribution presents an asymmetric W or 
M shape. The reason for the asymmetry is that there are 
forward and backward sides when the friction stir welding 
shoulder rotates. The asymmetry of the stirring action during 
the welding process causes the forward side to generate more 
heat than the backward side [22], which leads to differences 
in the properties of materials. It can be seen from Fig. 17 
that the method developed in this paper obtains the material 
parameters of multiple micro-zones of the aluminum alloy 
friction stir welding material along the tensile direction, and 
then gives the average value of each zone. The reason for 

Fig. 15   Experimental setup and 
speckle image: (a) Experimental 
device; (b) Speckle image

Fig. 16   Regional division results: (a) Division of strain field, (b) Relative values of strain, the first derivative of strain, and second derivative of 
strain
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giving the average value of each zone is that the existing 
research divides the friction stir welding material into cer-
tain zones. In engineering applications, the areas with obvi-
ous differences in mechanical properties can be regarded as 
the same material parameters to simplify the calculation. 
The method proposed in this paper can obtain the mate-
rial parameters of different local micro-zones selected in 
the speckle image, that is, this method can be applied to 
heterogeneous materials whose material parameters vary 

continuously along the longitudinal direction, regardless of 
whether there are obvious boundaries.

In order to further verify the effectiveness of the method, 
the stress–strain curves of different regions were drawn 
according to the material elastic–plastic parameters identi-
fied by the LTIDIC algorithm and compared with the calcu-
lation results of the localized DIC method [11] which is a 
recognized method. The errors are within a small range, so 
the results are validated. When calculating the strain using 

Fig. 17   The distribution of 
elastic–plastic parameters in 
the weld zone: (a) E; (b) A; (c) 
B; (d) n

Fig. 18   Comparison of stress–
strain curves of LTIDIC method 
and localized DIC method
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the DIC method, the Ncorr software is used, the sub-region 
size is 45 × 45 pixels, the distance between the center points 
of the sub-region is 1 pixel, and the strain smoothing win-
dow size is 75 × 75 pixels. The comparison result is shown 
in Fig. 18. The 14 stress–strain curves respectively represent 
the stress–strain curves of the area centered on the 14 points 
in Fig. 17. The scattered data calculated by DIC fluctuates 
up and down around the inversion curve. The two have a 
good consistency. The average relative error between the two 
is 6.3929e-04, and the root mean square error is 1.1771e- 
04, proving the effectiveness and accuracy of the LTIDIC 
method. It can be seen from the enlarged images of the 13th 
and 14th subgraphs in the figure that the strain range in the 
stress–strain curve at the last two points is small (the maxi-
mum strain is less than 0.005) and the dispersion is relatively 
large, this is the reason for the abnormal points in the identi-
fication of the plastic parameter distribution (marked by the 
red dot in Fig. 18).

Conclusion

In order to improve the accuracy of multi-parameter measure-
ment of heterogeneous materials and reduce potential manual 
intervention errors, this paper proposes a Local-micro-zone-
wise Time-resolved Integrated Digital Image Correlation 
(LTIDIC) method, which can simultaneously inverse the elas-
tic–plastic parameters of each characteristic region of weld-
ing joint through a uniaxial tensile experiment. The LTIDIC 
method is analyzed through numerical experiments, and the 
effects of the size of the localized subregion, the number of 
pictures, and the type of noise on the inversion results of the 
algorithm parameters are investigated. LTIDIC method to 
achieve accurate parameter inversion (error less than 5%) needs 
to ensure that the image sub-area is greater than 50 pixels * 50 
pixels, the number of images is greater than 30, and the method 
to further improve the accuracy (error less than 1%) is random 
sampling and calculate the sample mean. The proposed LTI-
DIC method is used to automatically partition and inverse the 
parameters of the aluminum alloy friction stir welding weld 
area and obtain the distribution of the elastic–plastic param-
eters of the material in different areas of the weld. The elastic 
modulus distribution presents an asymmetric W-shape and the 
and the plastic parameters generally show a decreasing trend 
from the weld nugget to both sides. The LTIDIC method does 
not need to draw a stress–strain curve, but directly identifies the 
elastoplastic parameters of the material from the image. After 
getting the material parameters by the inversion according to 
the LTIDIC method, the stress–strain curve of each area drawn 
by the LTIDIC method is in good agreement with the result of 
the localized DIC method, which proves the effectiveness of 
the method. Due to the use of time series images, the LTIDIC 
method developed in this paper can obtain parameters such as 

hardening coefficient and hardening exponent which are rarely 
obtained by I-DIC method [26–31]. For Young's modulus that 
can be obtained by both I-DIC and LTIDIC methods, the LTI-
DIC measurement accuracy can reach 1% due to the reliability 
analysis and optimization of LTIDIC, which is more accurate 
than the multi-parameter inversion I-DIC [30]. The method 
developed in this paper has the following advantages:

1)	 It can automatically identify areas of heterogeneous materi-
als with different mechanical properties in the tensile load-
ing test, without manual division through fiber structure 
observation [31] or hardness test [32] before the tensile 
loading test, simplifying the process of measuring the elas-
tic–plastic parameters of heterogeneous materials.

2)	 The LTIDIC method realizes that the parameter inver-
sion error is less than 1% by analyzing the factors that 
affect parameter identification. It can effectively reduce 
the influence of random noise on the inversion of elas-
tic–plastic parameters of heterogeneous materials and 
improve the accuracy of the results.

3)	 It can obtain multiple elastic–plastic parameter distributions 
including elastic modulus, yield strength, hardening coef-
ficient, and hardening exponent simultaneously through a 
single tensile experiment.
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