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It is recently found that viscoelastic pipe flows can be linearly unstable, leading to the
possibility of a supercritical transition route, in contrast to Newtonian pipe flows. Such an
instability is referred to as the centre mode, which was studied numerically by Chaudhary
et al. (J. Fluid Mech., vol. 908, 2021, p. A11) based on an Oldroyd-B model. In this
paper, we are interested in expanding the parameter space investigated and exploring the
asymptotic scalings related to this centre instability in the Oldroyd-B viscoelastic pipe
flow. It is found from the asymptotic analysis that the centre mode exhibits a three-layered
asymptotic structure in the radial direction, a wall layer, a main layer and a central layer,
which are driven by pure viscosity, axial and/or radial pressure gradient, and a combined
effect of viscosity and elasticity, respectively. Depending on the relations of the control
parameters, two regimes, the long-wavelength and short-wavelength centre instabilities,
emerge, for which the central-layer thicknesses are of different orders of magnitude. Our
large-Reynolds-number asymptotic predictions are compared to the numerical solutions of
the original eigenvalue system, and favourable agreement is achieved, especially when the
parameters approach their individual limits. In addition to revealing the dominant factors
and their balances, the asymptotic analysis describes the instability system by reducing the
number of control parameters, and furthermore explaining the collapse of the numerical
results for different re-scalings.

Key words: viscoelasticity, polymers, shear-flow instability

1. Introduction

Fluid dynamics in a viscoelastic flow has been studied for a long time, but still fascinates
researchers today owing to its great potential application in skin drag reduction and its

† Email addresses for correspondence: dongming@imech.ac.cn, mpezmq@nus.edu.sg

© The Author(s), 2022. Published by Cambridge University Press 935 A28-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:dongming@imech.ac.cn
mailto:mpezmq@nus.edu.sg
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.24&domain=pdf
https://doi.org/10.1017/jfm.2022.24


M. Dong and M. Zhang

intriguing flow phenomena under different conditions (White & Mungal 2008; Graham
2014). The viscoelastic polymer solutions can exhibit Newtonian turbulence (where
polymers stabilise the flow, leading to drag reduction), elastoinertial turbulence (EIT,
where inertia and elasticity are comparable; see Samanta et al. 2013) and elastic turbulence
(where the polymers destabilise the flow, resulting in a chaotic state; see Shaqfeh 1996;
Groisman & Steinberg 2000) in a large parameter space. EIT can be considered as an
intermediate state between Newtonian turbulence and elastic turbulence, and is the theme
of study of this work.

Experimental evidence for EIT flow has been gathered in recent years. Its unique flow
features and connection to the maximum drag reduction (MDR) state (which is a flow
state where the drag reduction by polymers is maximum regardless of the polymers
used; see Virk 1975) have been characterised. Samanta et al. (2013) first studied EIT
experimentally. The flow phenomena in EIT are fundamentally different from those in
Newtonian turbulence. In EIT, the most salient features are the tilted shear layers close to
the walls elongated in the streamwise direction, and a high spatial correlation of the flow
structures in the spanwise direction, clearly demonstrated in their three-dimensional (3-D)
numerical simulations (see also later work, (Lopez, Choueiri & Hof 2019), on viscoelastic
pipe flows). In Newtonian turbulence, localised flow structures prevail and spatiotemporal
intermittency is strong. Strictly two-dimensional (2-D) EIT simulations have also been
produced successfully in channels (Sid, Terrapon & Dubief 2018; Shekar et al. 2019;
Zhu & Xi 2021). Additionally, Samanta et al. (2013) found that the friction factor of
EIT can be continued smoothly to the asymptotic MDR results when Re (the Reynolds
number) is increased, suggesting that EIT may be dynamically relevant to the flows in the
MDR regime. Later, in their experimental investigations of EIT, Choueiri, Lopez & Hof
(2018) observed that in a range of polymer concentrations, the MDR limit can in fact be
exceeded in the results of the friction factor. More specifically, with increasing polymer
concentration, the turbulent flow can be fully relaminarised (where the drag reduction is
greater than the MDR) before becoming unstable and arriving in the MDR limit. The flow
structures in MDR are similar to those of EIT, reinforcing the perspective that there is
a strong connection between the EIT and MDR regimes. In a viscoelastic channel flow,
Page, Dubief & Kerswell (2020) first showed that the arrowhead structures in EIT flows
strongly suggest a connection to the bifurcation of the centre-mode linear instability (Ram
& Tamir 1964; Garg et al. 2018) – to be discussed below – although these structures may
not be a necessary condition for the transitional EIT (Samanta et al. 2013; Sid et al. 2018);
bifurcating from a wall mode has been demonstrated in Shekar et al. (2019). Subsequent
experimental evidence for the resemblance between the EIT flow structures at the onset
and the centre mode was presented by Choueiri et al. (2021) in a viscoelastic pipe flow,
although the experimental flow exhibits a weakly chaotic and distorted nature.

Furthermore, the authors have explored smaller values of Re (prior to onset) and found
that EIT can also emerge in these subcritical conditions, showing similar chevron-shaped
structures, which obviates a supercritical route. Garg et al. (2018) and Chaudhary et al.
(2021) interpreted the bifurcation curve (with respect to Re) in the results of Samanta et al.
(2013) as an indication of a supercritical bifurcation, but Choueiri et al. (2021) stated that
the heuristic loop may be difficult to observe in such experiments because the amplitude
threshold to trigger the subcritical transition may be so low that the inherent disturbance
in the experimental facilities is enough to render the flow unstable. Similar numerical
evidence was provided by Shekar et al. (2019) in their high-Weissenberg-number (Wi)
simulation. Finally, flows far from the instability onset (in the large-Re range) can also
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exhibit a pattern of tilted streamwise streaks, which have been observed in previous
experimental and numerical works on EIT (Dubief, Terrapon & Soria 2013; Samanta
et al. 2013; Sid et al. 2018; Shekar et al. 2019, 2021). Again, in this regime (large
Re), the continuous transition from the EIT to the MDR limit has been established, but
the underlying mechanism of MDR is EIT associated to the wall mode. In particular,
for another parameter set, the work of Shekar et al. (2021) demonstrated how the
sheetlike structures emerge directly from the Newtonian nonlinear Tollmien–Schlichting
(TS) waves.

Along with the experimental explorations, direct numerical simulations (DNS) have
been conducted to study EIT and MDR. Xi & Graham (2010a,b), utilising a minimal
channel to simulate the turbulent viscoelastic flows, described MDR flows as a marginal
Newtonian turbulent state. They found intervals of hibernating turbulence in which many
flow characteristics of MDR can be observed. Later, more works started to recognise
the important role of elasticity and focused on EIT in their DNS studies, accompanying
the experimental works as reviewed above. Dubief et al. (2013) found similar turbulence
statistics and flow structures in 2-D and 3-D EIT flows, demonstrating that a 2-D instability
mechanism may be relevant in the 3-D turbulent flows. They also investigated the effect
of artificial diffusion on the generation of EIT, and found that artificial diffusion can
significantly affect EIT flow because the latter is essentially driven by small flow scales.
(The necessity to use artificial diffusion is because of the hyperbolic nature of the polymer
conformation equations (Kupferman 2005), and this technique has become popular since
the pioneering work of Sureshkumar & Beris (1995).) Terrapon, Dubief & Soria (2014)
took the divergence of the momentum equation to yield a balance of the Laplacian of the
pressure with its inertial and elastic contributions. The elastic contribution, even though
smaller, cannot be neglected especially when Wi, characterising the ratio between polymer
relaxation time and flow turnover time, is relatively large. Their results also supported the
smooth transition of EIT flow to MDR when Re increases. Lopez et al. (2019) simulated
viscoelastic pipe flows near the transitional Re. They found that when Wi and the polymer
maximum extension (in the FENE-P model, finitely extensible nonlinear elastic with the
Peterlin closer) are sufficiently large, EIT flows correspond to the MDR limit, both of
which can be considered to be disconnected from the Newtonian-type turbulence. More
recently, Zhu & Xi (2021), in their numerical simulations of EIT flows, found that even
though the drag reduction percentages of EIT flows can be similar in the MDR regime, the
detailed flow dynamics (for example, the instantaneous friction factor as discussed by the
authors) may differ from each other, indicating the complex nature of these flows despite
the asymptotic drag-reduction results (which has also been shown and discussed earlier in
Choueiri et al. 2018). They reported flows in the MDR regimes that are dissimilar to 2-D
EIT.

In addition to DNS, theoretical analyses have also been applied to understand
viscoelastic flows. Based on a resolvent analysis and DNS, Shekar et al. (2019)
demonstrated that the resolvent mode with the greatest energy amplification (exploiting
the non-normal nature of the underlying linear operator) appears to be very similar to the
phase-averaged DNS results in the parameter range of EIT (at relatively large Re), both
showing an elongated tilted pattern in the polymer fluctuation field. The most important
eigenmode in this perspective is the TS wall mode, coupled with the critical-layer
mechanism. Most of the studies mentioned above investigated EIT in subcritical routes;
Graham (2014) has envisioned a supercritical route from the laminar polymeric flow to
the MDR when the elastic effect is sufficiently strong. A linearly unstable centre mode
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in viscoelastic pipe flows was later found by Garg et al. (2018) and was characterised
further in Chaudhary et al. (2021). The unstable mode is propagating at a phase speed
close to the centreline velocity of the base flow. The scalings in the results of neutral
curves were identified, to be discussed in § 2.3. Comparisons to experiments (Samanta
et al. 2013; Chandra, Shankar & Das 2018) were discussed, including that the invariant
results in Samanta et al. (2013) to external disturbance lent support to a supercritical
route (but note the explanation by Choueiri et al. (2021) on the disturbance threshold of
subcritical transition). The critical Rec by the linear theory is also close to that in Chandra
et al. (2018), but the scaling of Rec with respect to E(1 − β) in the linear theory needs
modifications, probably due to the ignorance of the shear-thinning effect in the Oldroyd-B
model, where E is the elastic number (E = Re/Wi), and β is the ratio of the solvent
viscosity to the total viscosity. The supercritical bifurcation route originating from the
linear instability in the EIT parameter range was advertised by these authors as a new
pathway to MDR, supplementing the elastically modified Newtonian route (for which it is
notable that strong amplification of the disturbance energy exists in viscoelastic channel
and pipe flows Shekar et al. 2019; Zhang 2021). The more realistic FENE-P model has been
implemented in the linear stability analysis of viscoelastic pipe flows in Zhang (2021) to
tackle the effect of finite maximal extension of polymers (the Oldroyd-B model allows
for infinitely long polymers), and it is found that a smaller maximal extensibility has a
stabilising effect on the flow. More recently, starting numerically from this centre-mode
instability, Page et al. (2020) and Dubief et al. (2021) computed the exact coherent
structures in 2-D viscoelastic channel flows of FENE-P fluids in subcritical conditions
by using the Newton–Krylov method and arc-length continuation. The solutions take the
shape of an arrowhead structure and travel at a phase speed that is close to the centre mode.

Traditionally, the wall mode in Newtonian shear flows has been studied extensively by
asymptotic techniques. As summarised by Drazin & Reid (2004), the instability modes in
an incompressible channel flow can be described by two types of asymptotic structures:
the lower-branch and upper-branch instabilities. Both belong to the wall mode, which is
driven by pure viscosity and so is also referred to as the viscous TS mode. In the large-Re
limit, the lower-branch wall mode exhibits a double-layered structure: an inviscid main
(outer) layer and a viscous wall (inner) layer. The thickness of the latter is of O((k Re)1/3h),
where h is the half-width of the channel. Incompressible boundary layer flows also support
the lower-branch (Lin 1946; Smith 1979) and upper-branch (Smith 1981) TS instabilities.
In the large-Re framework, the lower-branch TS mode is described by the triple-deck
formalism, in which the viscous lower deck interacts with the inviscid upper deck, forming
a pressure–displacement interaction.

However, the wall mode in Newtonian pipe flows never becomes linearly unstable,
rendering a subcritical route of Newtonian pipe flow transition. Only when the polymer
effect is present can the pipe flow become unstable, and as mentioned above, the instability
nature is changed to the centre-mode instability. However, the centre-mode instability,
although it has been studied numerically in a certain parameter space, is still lacking
insightful observations from the asymptotic point of view. For example, in Chaudhary et al.
(2021), it is observed that the neutral curves and eigenfunctions for different parameters
could collapse under certain regularisation, and the neutral curves for a low-concentration
configuration show a double-lobe structure, indicating a double-unstable-mode nature.
However, we do not know the salient asymptotic structures leading to the collapse or
the reason for the emergence of the additional unstable mode. In fact, the viscoelastic
central-mode instability is more complicated due to its dependence on a greater number of
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control parameters than the Newtonian flow instability, and solving numerically the linear
eigenvalue system as in Garg et al. (2018) and Chaudhary et al. (2021) is not sufficient to
reveal its intrinsic mechanism and to draw generic conclusions. Therefore, in this work,
we will carry out an asymptotic analysis of the centre-mode instability in Oldroyd-B pipe
flows.

The paper is organised as follows. In § 2, we describe the physical problem to be studied
and introduce its governing equations. In §§ 3 and 4, respectively, we conduct asymptotic
analysis of the long- and short-wavelength centre modes. Note that the long-wavelength
instability regime is also valid when the wavelength is comparable with the pipe radius,
as will be proven in Appendix B. In § 5, the asymptotic equations in §§ 3 and 4 are
solved numerically, which is confirmed by comparing with the numerical solutions of
the original linear system and those in the literature. Finally, § 6 concludes the paper with
some discussions.

2. Mathematical descriptions

2.1. Physical problem and the governing equations
The physical model to be studied is a polymer-solution flow in a round pipe. The flow field
is analysed in the cylindrical coordinate system (z, r, θ), with z, r and θ denoting the axial,
radial and azimuthal directions, respectively. The pipe radius R is selected as the reference
length, and the velocity field u = (uz, ur, uθ ), time t and pressure p are normalised by
Umax, R/Umax and ρU2

max, respectively, where ρ is the density of the fluid, and Umax is the
maximum (centreline) velocity of the laminar pipe flow. The conformation tensor c and
stress τ p are normalised by kBT/H andμpUmax/R, respectively, where kB is the Boltzmann
constant, T is temperature, H is the spring constant in the elastic dumbbell model of the
polymer, and μp is the additional fluid viscosity due to the polymer (Bird et al. 1987).
The flow motions are characterised by, among others, two dimensionless parameters, a
Reynolds number and a Weissenberg number, which are defined as

Re = ρUmaxR
μ

, Wi = λUmax

R
, (2.1a,b)

where μ and λ are the total viscosity and the relaxation time of the polymer molecules
(to their equilibrium states), respectively. In particular, the total viscosity is the sum of the
solvent viscosity μs and the polymer viscosity μp, i.e. μ = μs + μp, and a viscosity ratio
β is defined as

β = μs

μ
∈ [0, 1]. (2.2)

Note that if β = 1, then the flow is Newtonian, while β = 0 corresponds to the
upper-convective-Maxwell (UCM) flow. The Oldroyd-B model is assumed (Bird et al.
1987), and the dimensionless Navier–Stokes equations and the constitutive equations are

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇p + β

Re
∇2u + 1 − β

Re
∇ · τp, (2.3a,b)

τp = c − I

Wi
,

∂c

∂t
+ u · ∇c − c · (∇u)− (∇u)T · c = −τp, (2.3c,d)

where I denotes the unity matrix. Note that the Oldroyd-B model is an idealised model that
assumes the polymer extensibility to be infinitely strong, which is sufficient to demonstrate
the instability mechanism and convenient for analysis; therefore, we do not consider
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here the more realistic FENE-P model (where the effect of finite extensibility can be
studied); see Zhang et al. (2013), Lopez et al. (2019), Page et al. (2020) and Zhang (2021).
As a systematic investigation, in the following we will visit the centre-mode instability
in a complete set of the parameter space, which may include some unattainable Wi in
experiments.

The flow field φ = (u, p, c11, c12, c22, c13, c23, c33) is decomposed into a steady mean
flow Φ = (U,P,C11,C12,C22,C13,C23,C33) and a harmonic perturbation

φ = Φ(r)+ ε̂ φ̂(r) ei(kz+2πmθ−ωt) + c.c., (2.4)

where φ̂ = (û, p̂, ĉ11, ĉ12, ĉ22, ĉ13, ĉ23, ĉ33), ε̂ � 1 denotes the amplitude, k is the axial
wavenumber, m is the number of waves in the azimuthal direction, ω is the frequency, and
c.c. denotes the complex conjugate. In a temporal stability analysis, k is taken to be real,
and ω = ωr + iωi is complex, with the imaginary part representing the temporal growth
rate. In this paper, we restrict our attention to the axisymmetric mode, for which m = 0.

The base states Φ(r) for the velocity and conformation tensor field are expressed as

U = (U, 0, 0) with U = 1 − r2, C =
⎛
⎝ 1 + 2Wi2 U′2 Wi U′ 0

Wi U′ 1 0
0 0 1

⎞
⎠ , (2.5a,b)

where throughout this paper a prime denotes the derivative with respect to its argument.
In the above formulation, the conformation tensor is analysed in the sense of Reynolds

decomposition, which has been adopted by many recent works on the centre-mode
instability, such as Garg et al. (2018), Page et al. (2020) and Chaudhary et al. (2021).
We note that Hameduddin et al. (2018) and Hameduddin, Gayme & Zaki (2019) have
recently proposed a new decomposition method based on a geometric understanding of the
differential deformation of the polymers, being able to guarantee the positive-definiteness
of the conformation tensor. For stability analyses of non-turbulent viscoelastic flows, the
results of the two decomposition methods can be consistent with each other; see the
comparisons in Zhang (2021), Wan, Sun & Zhang (2021) and Buza, Page & Kerswell
(2021).

2.2. Instability mode
After substituting (2.3c,d) into the governing equations (2.3) and retaining the O(ε̂) terms,
we arrive at a linear system of φ̂ for m = 0:

ikûz + û′
r + ûr/r = 0, (2.6a)

ik(U − c)ûz + U′ûr + ikp̂ = β

Re
(û′′

z + û′
z/r − k2ûz)+ 1 − β

Re Wi
(ikĉ11 + ĉ′

12 + ĉ12/r),

(2.6b)

ik(U−c)ûr + p̂′ = β

Re
(û′′

r + û′
r/r − k2ûr − ûr/r2)+ 1 − β

Re Wi
(ikĉ12 + ĉ′

22 + ĉ22/r − ĉ33/r),

(2.6c)

(ik(U − c)+ Wi−1)ĉ11 + C′
11ûr − 2(ikC11uz + C12û′

z + U′ĉ12) = 0, (2.6d)

(ik(U − c)+ Wi−1)ĉ12 + C′
12ûr − (ikC12uz + C22û′

z + U′ĉ22 + ikC11ûr + C12û′
r) = 0,

(2.6e)

935 A28-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.24


Asymptotic study of instability in a viscoelastic pipe

(ik(U − c)+ Wi−1)ĉ22 − 2(ikC12ur + C22û′
r) = 0, (2.6f )

(ik(U − c)+ Wi−1)ĉ33 − 2C33ûr/r = 0, (2.6g)

where c ≡ ω/k = cr + ici, with cr denoting the phase speed. This system is an extension
of the Orr–Sommerfeld equations, and so is referred to as the EOS system in this paper.
No-slip, non-penetration conditions are imposed at the wall:

ûz(1) = ûr(1) = 0. (2.7a,b)

At the centreline, the radial velocity must vanish due to the symmetric nature, and we
obtain from the continuity equation that the axial velocity must have zero gradient.
Therefore, the boundary conditions at r = 0 are

û′
z(0) = ûr(0) = 0. (2.8a,b)

2.3. Brief overview of numerical solutions of the EOS system
Using numerical code as implemented in Zhang (2021), we can obtain solutions to the
EOS system (2.6) with boundary conditions (2.7) and (2.8). The calculated eigenspectra,
including the continuous and discrete modes, are compared with those of Chaudhary et al.
(2021) in Appendix A, and favourable agreement is achieved.

The linear system (2.6) is dependent on four control parameters, Re, Wi, k and β, and
the unstable centre mode appears in a certain range of them. For a fixed β, the critical
parameters Rec, Wic and kc, depicting the onset of axisymmetric neutral instability, form
a three-dimensional curve in the Re–Wi–k space. For demonstration, we choose β = 0.9
and plot the projections of this curve onto the Re–Wi and k–Wi planes in figures 1(a) and
1(b), respectively. The unstable zone appears when Wi is greater than approximately 56,
and two critical neutral curve branches appear for each supercritical Wi. As Wi becomes
large, kc for the lower-branch neutral curve is decreasing, whereas kc for the upper-branch
neutral curve is increasing. A similar plot can be found in Buza et al. (2021) for an FENE-P
channel flow.

By visiting a large set of control parameters, Chaudhary et al. (2021) presented
interesting observations on the centre instability. (1) For fixed β and E ≡ Re/Wi, the
neutral curves in the Re–k and cr–k planes exhibit scattered behaviour without any
regular pattern; however, when they are plotted in Re E3/2–kE1/2 and (1 − cr)/E–kE1/2

planes, the curves with different E collapse perfectly. (2) In the limit as β → 1, the
neutral curves can be scaled in the Re[(1 − β)E]3/2–k[(1 − β)E]1/2 plane. (3) By use of
regular perturbation techniques, two regimes, with central-layer thicknesses O(Re−1/3R)
and O(Re−1/4R), respectively, were found, which are able to predict the numerical
eigenfunctions for a few selections of parameters. However, these observations lack
in-depth explanations, and the physical origin of the centre-mode instability remains
unclear. As the lower and upper branches of the neutral curve shown in figure 1 correspond
to low and high limits of the critical wavenumbers, respectively, it is natural to link these
two limits to the potentially distinguished long- and short-wavelength regimes in the
asymptotic framework, respectively. Analysis of these regimes could explain the numerical
observations of Chaudhary et al. (2021), and shed light on the key mechanism of the
centre-mode instability, which is to be presented in §§ 3 and 4.
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Figure 1. Projections of the critical neutral curve for β = 0.9 and m = 0 in the Wi–Re (a) and Wi–k (b)
planes.

r

z

Layer I: Wall layer

Layer II: Main layer

Layer III: Central layer
Critical layer

0

Figure 2. A sketch of the multi-layered structure for long-wavelength centre modes in a viscoelastic pipe
flow. The critical layer appears only for near-neutral low-concentration centre modes.

2.4. Summary of the overall structures of the asymptotic regimes
Before illustrating the mathematical details of the asymptotic regimes, we summarise the
salient observations from§§ 3 and 4. A schematic of the multi-layered structure for both the
long- and short-wavelength regimes is shown in figure 2. Usually, three asymptotic layers,
including a wall layer, a main layer and a central layer, appear in the radial direction, but an
additional critical layer may appear when the concentration is low (β → 1) and the mode
is near neutral. Table 1 summarises the asymptotic scalings and the thickness of each
asymptotic layer, where a few quantities are to be defined in the following two sections.
Readers can use this table as a guide to understand §§ 3 and 4.

Note that in the regular-concentration regime, as will be discussed in §§ 3.1 and 4.1,
no singularity appears in the central-layer solution, so the critical layer is not needed.
However, we do need a critical layer in the low-concentration regime, as will be shown in
§§ 3.2 and 4.2.
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§ 3: long-wavelength regime Re−1 � k ≤ O(1) § 4: short-wavelength regime k 	 1
§ 3.1 regular concentration § 3.2 low concentration § 4.1 regular concentration § 4.2 low concentration
(β, 1 − β) = O(1) 1 − β � 1 (β, 1 − β) = O(1) 1 − β � 1

Scaling Wi ∼ k−1/2Re1/2 Wi ∼ k−1/2Re1/2

1 − β
Re ∼ k3, Wi ∼ k Re ∼ k3, Wi ∼ k

1 − β
Similarity parameters W1, β W̄ R3, W3, β R3, W̄3
1 − c O(k−1/2Re−1/2) O(k−2)

Wall layer 1 − r = O(k−1/2Re−1/2) 1 − r = O(k−2)
Main layer r = O(1) r = O(1)
Central layer r = O(k−1/4Re−1/4) r = O(k−1)

Critical layer — O
(

1 − β

k1/4Re1/4

)
— O

(
1 − β

k

)

Table 1. Summary of the asymptotic regimes, including the scaling relations of the control parameters, similarity parameters and thickness of each asymptotic layer in
viscoelastic pipe flows.
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3. Long-wavelength centre mode

In the asymptotic framework, the Reynolds number is taken to be sufficiently large,

Re 	 1, (3.1)

and the centre mode is referred to as an instability mode whose eigenfunction is
concentrated near the centreline, thus its phase speed is close to, but less than unity:

0 < 1 − cr � 1. (3.2)

In the long-wavelength regime, we assume the wavenumber to be small, but still greater
than Re−1, i.e.

Re−1 � k � 1, (3.3)

such that the radial momentum equation is reduced to p̂′ ≈ 0, and ĉ33 never appears in
the leading-order hydrodynamic motions. It is noted that this instability regime is also
applicable when the wavenumber satisfies k = O(1), as is proven in Appendix B. For
convenience, this mode is referred to as the long-wavelength centre mode.

In the following two subsections, §§ 3.1 and 3.2, we will present singular perturbation
analysis to uncover the asymptotic structures of the long-wavelength centre mode for
regular-level concentration ((β, 1 − β) = O(1)) and low-level concentration (0 < 1 −
β � 1), respectively. A discussion on the instability mechanism will be presented in § 3.3.

3.1. Asymptotic analysis for a regular-level concentration
The viscosity ratio in this subsection is assumed to be O(1), but not close to unity:

β = O(1), 1 − β = O(1). (3.4a,b)

Preliminary asymptotic analysis indicates that three asymptotic layers appear in the radial
direction, as listed in table 1. In the wall layer, the viscosity appears at leading order, and
from balance of the convective and viscous terms, we obtain the thickness of the wall layer,

1 − r = O(k−1/2Re−1/2). (3.5)

The central layer may be driven by either viscosity or elasticity. From balance of the
convective term of the conformation tensor ik(U − c)ĉij with the conformation stress
Wi−1ĉij, noticing that U = 1 − r2 and the phase speed c is rather close to 1, we can
estimate the thickness of the elastic central layer as

r = O(k−1/2Wi−1/2). (3.6)

On the other hand, from balance of the convective terms in the axial momentum equation
with the viscous terms, we obtain the thickness of the viscous central layer as

r = O(k−1/4Re−1/4). (3.7)

Note that the thicknesses of the two central layers are usually of different magnitudes,
depending on the values of the control parameters, Re, Wi and k. In this paper, we will
show that an unstable centre mode could appear when the thicknesses of the two layers are
comparable, which leads to a scaling law

Wi ∼ k−1/2Re1/2, (3.8)

rendering a viscoelasticity instability nature.
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Asymptotic study of instability in a viscoelastic pipe

For convenience, we introduce

R1 = Re/β, W1 = k1/2R−1/2
1 Wi, W2 = βW1/(1 − β). (3.9a–c)

From assumptions (3.1) and (3.4a,b), we know that R1 = O(Re) and (W1,W2) = O(1). In
the central layer, from (3.6) or (3.7), balance of the axial momentum equation determines
that the correction of the phase speed is O(r2) = O(k−1/2R−1/2

1 ). Therefore, we expand
the complex phase speed in terms of an asymptotic series

c = 1 + k−1/2R−1/2
1 c1 + · · · , (3.10)

in which the first term on the right-hand side, 1, comes from the centreline velocity of the
base flow. The next task is to solve for c1 to gain a more quantitative understanding of the
instability. In the following three subsections, we will show the leading-order governing
equations and their solutions for the three asymptotic layers.

3.1.1. Main-layer solutions
In the main layer (layer II of figure 2), we obtain from the continuity equation (2.6a) that
ûr ∼ kûz. Balance of the conformation equations determines ĉ11 ∼ k−1R1ûz, ĉ12 ∼ R1ûz

and ĉ22 ∼ k1/2R1/2
1 ûz. Therefore, the perturbation field is expanded as

(ûz, ûr, p̂) = (û0, kv̂0, p̂0)+ k−1/2R−1/2
1 (û1, kv̂1, p̂1)+ · · · , (3.11a)

(ĉ11, ĉ12, ĉ22) = (k−1R1ĉ11,0,R1ĉ12,0, k1/2R1/2
1 ĉ22,0)+ · · · . (3.11b)

In the main layer, the viscosity and polymer stress tensor play minor roles to the
momentum convection, so the leading-order governing equations for the hydrodynamic
perturbations are

iû0 + v̂′
0 + v̂0/r = 0, −ir2û0 − 2rv̂0 + ip̂0 = 0, p̂′

0 = 0, (3.12a–c)

which implies the inviscid nature to leading-order accuracy. The solutions of (3.12) are
û0 = 2iA1, v̂0 = ip̂0/(2r)+ A1r, with A1 being an arbitrary constant. These solutions do
not satisfy the no-slip condition at the wall, r = 1, which indicates that a viscous wall
layer (layer I) must be taken into account. The analysis of this layer is the same as that
of the Stokes layer in Goldstein (1985), Liu, Dong & Wu (2020) and Dong, Liu & Wu
(2020). It was shown that the radial velocity v̂r is much smaller than the axial velocity v̂z
due to its thin-layer property, which determines the boundary condition of the main layer
at the wall, v̂0(1) = 0. A direct consequence is A1 = −ip̂0/2. Therefore, the solutions of
the leading-order velocities are

û0 = p̂0, v̂0 = ip̂0

2

(
1
r

− r
)
. (3.13a,b)

The governing equations for the leading-order conformation tensor are

−ir2ĉ11,0 + 16W2
1 rv̂0 + 4rĉ12,0 − 16W2

1 ir2û0 = 0, (3.14a)

−ir2ĉ12,0 − 8ir2W2
1 v̂0 = 0, −ir2ĉ22,0 + 4irW1v̂0 = 0, (3.14b,c)

whose solutions are

ĉ11,0 = −16iW2
1 v̂

′
0, ĉ12,0 = −8W2

1 v̂0, ĉ22,0 = 4W1

r
v̂0. (3.15a–c)
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The second-order hydrodynamic perturbations are governed by

iû1 + v̂′
1 + v̂1/r = 0, (3.16a)

−ir2û1 − 2rv̂1 + ip̂1 = ic1û0 + W−1
2 (iĉ11,0 + ĉ′

12,0 + ĉ12,0/r), p̂′
1 = 0, (3.16b,c)

from which we obtain

v̂1 = ip̂1

2r
+ ip̂0

(
2W2

1 W−1
2

r3 − c1

2r

)
−
(

ip̂1

2
+ ip̂0(2W2

1 W−1
2 − c1/2)+ A2

)
r, (3.17)

where A2 is a constant. In principle, A2 can be determined by matching with the wall-layer
solution, but it is not needed in the following analysis.

Combining (3.13a,b) and (3.16a), we obtain the asymptotic behaviours of the velocity
field in the limit as r → 0:

ûr → ip̂0

2
k
(

1
r

+ · · · + 4k−1/2R−1/2
1 W2

1 W−1
2

1
r3 + · · ·

)
, (3.18a)

ûz → p̂0

(
1 + · · · + 4k−1/2R−1/2

1 W2
1 W−1

2
1
r4 + · · ·

)
. (3.18b)

Obviously, these solutions cease to be valid when the high-order terms come to the leading
order, which appears in the vicinity of the centreline. From (3.18b) we find that a sublayer
appears when r = O(k−1/8R−1/8

1 ). However, a further analysis indicates that this layer is
not a distinguished one because the leading-order impact does not change. From (3.18a)
we find that a sublayer appears when r = O(k−1/4R−1/4

1 ), which is the same as the central
layer (3.7).

3.1.2. Viscous wall layer
Since the inviscid solution in the main layer does not satisfy the no-slip condition at the
wall, a wall (Stokes) layer for which 1 − r = O(k−1/2R−1/2

1 ) needs to be considered. For
convenience, we introduce a local coordinate

ŷ = (1 − r)k1/2R1/2
1 = O(1). (3.19)

The flow field is expanded as

(ûz, ûr, p̂) = p̂0(ûw, k1/2R−1/2
1 v̂w, p̂w)+ · · · , (3.20)

and the influence of the polymer stress is of high-order impact in this layer.
The leading-order governing equations in the wall layer are

iûw + v̂′
w = 0, −iûw − ip̂w − û′′

w = 0, p̂′
w = 0. (3.21a–c)

Eliminating v̂w and p̂w, we obtain

ûw = p̂w

(
1 − exp(e3πi/4ŷ)

)
. (3.22)

Matching with the main-layer solution, we obtain that p̂w = 1.
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Asymptotic study of instability in a viscoelastic pipe

3.1.3. Central layer
Because the expansion (3.11a) breaks down in the O(k−1/4R−1/4

1 ) vicinity of the
centreline, we need to carry out an analysis in this layer. For convenience, we introduce
the local coordinate

ỹ = k1/4R1/4
1 r = O(1). (3.23)

The perturbation field is now expanded as

(v̂z, v̂r, p̂) = p̂0(k1/2R1/2
1 ũ, k5/4R1/4

1 ṽ, 1)+ · · · , (3.24a)

(ĉ11, ĉ12, ĉ22) = p̂0(k−1/2R3/2
1 c̃11, k1/4R5/4

1 c̃12, kR1c̃22)+ · · · . (3.24b)

Substitution of (3.24) into (2.6) leads to

iũ + ṽ′ + ṽ/ỹ = 0, (3.25a)

−i(ỹ2 + c1)ũ − 2ỹṽ + i = ũ′′ + ũ′/ỹ + W−1
2 (ic̃11 + c̃′

12 + c̃12/ỹ), (3.25b)

L̃c̃11 = 16iW2
1 ỹ2ũ − 4W1ỹũ′ − 4ỹc̃12 − 16W2

1 ỹṽ, (3.25c)

L̃c̃12 = ũ′ − 2iW1ỹũ − 2ỹc̃22 − 2W1ỹṽ′ + 2W1ṽ + 8iỹ2W2
1 ṽ, (3.25d)

L̃c̃22 = 2ṽ′ − 4iW1ỹṽ, (3.25e)

where L̃ ≡ −i(ỹ2 + c1)+ W−1
1 . In (3.25b), both the viscosity and the polymer stress

tensor appear at leading order, therefore this equation is not singular at any radial position.
In (3.25c–e), it is seen that there is no viscous-like term (second-order derivative with
respect to ỹ) on the right-hand sides, and a singularity is possible when L̃ = 0, which,
however, occurs only for c1,i = −W−1

1 . Since W1 > 0, such a condition implies that the
eigenmode is stable with an exponentially decaying manner, which is of little interest in our
study. Therefore, in the following analysis of the long-wavelength regular-concentration
unstable (or marginally unstable) mode, we do not need a critical layer.

Note that the equation system does not admit closed-form analytical solutions, so we
seek help from numerics. In the numerical process, the system (3.25) can be recast to a
group of first-order differential equations

dφ̃
dỹ

= L̃φ̃, (3.26)

where φ̃ = (ũ, ũ′, ũ′′, ṽ)T and the non-zero elements of L̃ are

L̃12 = 1, L̃23 = 1, L̃31 = 16W2
1 ỹ(ỹ4 − c2

1)

L̃2(1 + W2L̃)
, L̃41 = −i, L̃44 = −1/ỹ, (3.27)

L̃32 = 8ỹ4 − 8ỹ2(i + 2W1ỹ2)L̃ + (1 + 8iW1ỹ2 + 8W2
1 ỹ4)L̃2

ỹ2L̃2(1 + W2L̃)
+ W2(1 − iỹ2(ỹ2 + c1))L̃3

ỹ2L̃2(1 + W2L̃)
,

(3.28)

L̃33 = −4iỹ2 + L̃ − 4iW̃1ỹ2L̃ + W2L̃2

ỹL̃(1 + W2L̃)
, L̃34 = −32iW2

1 ỹ2(ỹ2 − c1)

L̃2(1 + W2L̃)
. (3.29)

Matching with the main-layer solutions (3.18b), we obtain the matching conditions

ũ → 4W2
1 W−1

2
ỹ4 + o(ỹ−4), ṽ → i

2ỹ
+ O(ỹ−3) as ỹ → ∞. (3.30a,b)
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M. Dong and M. Zhang

In the numerical process, this condition can be recast as

(ũ′, ũ′′) → 0 at ỹ = ỹn, (3.31)

with ỹn 	 1 being the upper boundary of the computational domain. The boundary
conditions at the centreline are

ũ′(0) = ṽ(0) = 0. (3.32)

The system (3.26) with (3.31) and (3.32) is to be solved numerically by the same
approach as in Dong & Wu (2013) and Wu & Dong (2016). It is obvious from this
system that for a given β, the eigenvalue, c1, and the eigenfunctions depend on only one
parameter, W1 = k1/2R−1/2

1 Wi, which reduces the complexity of the original eigenvalue
system remarkably. Practically, with the assumptions (3.1) and (3.9a–c), we know that Wi
has to be much greater than unity. For a given β that is not close to unity, the unstable centre
modes would appear in a certain range of W1, and the unstable region of Wi increases with
Re1/2 and decreases with k−1/2.

3.2. Asymptotic analysis for a low-level concentration
As β approaches unity, W2 in (3.9a–c) becomes much greater than 1, and the asymptotic
analysis in § 3.1 needs to be modified. For convenience, we introduce

σ = 1 − β

β
� 1. (3.33)

Balancing the leading-order terms in the central layer, we can work out that W1 ∼ σ−1.
Here we have assumed k1/2R−1/2

1 � σ � 1. For convenience, we introduce an O(1)
parameter W̄ such that

W1 = σ−1W̄, W2 = σ−2W̄. (3.34a,b)

The complex phase speed is now expanded as

c = 1 + k−1/2R−1/2
1 (c̄1 + σ c̄2)+ · · · . (3.35)

In the following, we will study the three asymptotic layers in the low-concentration
configuration. The overall process is the same as that in § 3.1, but in this regime, a critical
layer, as sketched in figure 2, appears in the central layer when the mode is neutral.

3.2.1. Main layer
Following the same procedure as in § 3.1.1, we obtain the main-layer radial velocity
perturbation in the limit as r → 0:

ûr → iP̂0

2
k
(

1
r

+ · · · + 4k−1/2R−1/2
1 W̄

1
r3 + · · ·

)
, (3.36)

where P̂0 denotes the pressure perturbation in the main layer. Note that the solutions in the
wall layer (3.20) stay unchanged.
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Asymptotic study of instability in a viscoelastic pipe

3.2.2. Central layer
The thickness of the central layer in this regime is the same as that in § 3.1.3, so ỹ in (3.23)
is still the local coordinate. The perturbation field is expanded as

(v̂z, v̂r, p̂) = p̂0[k1/2R1/2
1 (Ũ0 + σ Ũ1), k5/4R1/4

1 (Ṽ0 + σ Ṽ1), (1 + σ P̃1)] + · · · , (3.37a)

(ĉ11, ĉ12, ĉ22) = p̂0(k−1/2R3/2
1 σ−2C̃11, k1/4R5/4

1 σ−2C̃12, kR1σ
−1C̃22)+ · · · . (3.37b)

Since W1 and W2 are much greater than 1, the leading-order governing equations are
changed to

iŨ0 + Ṽ ′
0 + Ṽ0/ỹ = 0, (3.38a)

L̃1Ũ0 − 2ỹṼ0 + i = Ũ′′
0 + Ũ′

0/ỹ + W̄−1(iC̃11,0 + C̃′
12,0 + C̃12,0/ỹ), (3.38b)

L̃1C̃11,0 = 16iW̄2ỹ2Ũ0 − 4ỹC̃12,0 − 16W̄2ỹṼ0, (3.38c)

L̃1C̃12,0 = 8iỹ2W̄2Ṽ0, L̃1C̃22,0 = −4iW̄ỹṼ0, (3.38d,e)

where L̃1 = −i(ỹ2 + c̄1). Comparing with (3.25), it is found that a few terms in the
conformation tensor equations move to the high order. However, they may become the
leading-order impact if L̃1 ≈ 0 somewhere inside the central layer. This situation occurs
when the mode to leading order is neutral, i.e. c̄1 is real and negative. Therefore, for
the neutral case, a critical layer around ỹc = √−c̄1, with thickness ỹ − ỹc = O(σ ) (or
r − rc = O(σk−1/4R−1/4

1 ) with rc = k−1/4R−1/4
1 ỹc), must be taken into account; see the

red region of figure 2. A detailed analysis of the critical layer is provided in Appendix C.
Being similar to (3.26), the system (3.38) is recast to

dφ̃0

dỹ
= Lφ̃0, (3.39)

where φ̃0 = (Ũ0, Ũ′
0, Ũ′′

0 , Ṽ0)
T and

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0

16W̄ỹ(2iỹ2 + L̃1)

L̃2
1

1
ỹ2 + 8W̄ỹ2

L̃1
+ L̃1 −1

ỹ
−32W̄ỹ2(2iỹ2 + L̃1)

L̃3
1

−i 0 0 −1/ỹ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.40)

The linear system (3.39) is subject to the matching and boundary conditions (3.31) and
(3.32), with (û, v̂) being replaced by (Û0, V̂0).

In order to obtain c̄2, we need to consider the second-order perturbations, which are
governed by (

d
dỹ

− L
)
φ̃1 = b, (3.41)
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where φ̃1 = (Ũ1, Ũ′
1, Ũ′′

1 , Ṽ1)
T and b = (0, 0, b1c̄2 + b2, 0), with

b1 = 8W̄ỹ

L̃4
1

[−8ỹL̃1(ỹŨ0 + iṼ0)+ 24ỹ3Ṽ0 + iL̃2
1(2Ũ0 + ỹŨ′

0)] − iŨ′
0, (3.42)

b2 = 4i

L̃4
1

[−24ỹ2L̃1(ỹŨ0 + iṼ0)+ 48ỹ4Ṽ0 + 6iỹL̃2
1(2Ũ0 + ỹŨ′

0)+ L̃3
1(2Ũ′

0 + ỹŨ′′
0 )].

(3.43)

The adjoint vector ψ† = (ψ
†
1,ψ

†
2,ψ

†
3,ψ

†
4)

T of the differential equation (3.39) satisfies(
d
dỹ

+ LT
)
ψ† = 0, (3.44)

with the matching and boundary conditions

ψ
†
2,3(ỹ) → 0 as ỹ → ∞, ψ

†
1(0) = ψ

†
3(0) = 0. (3.45a,b)

After multiplying both sides of (3.41) by (ψ†)T and integrating from ỹ = 0 to ∞, we
obtain the second-order correction of the phase speed:

c̄2 = −

∫ ỹ

0
ψ

†
3 b2 dỹ∫ ỹ

0
ψ

†
3 b1 dỹ

. (3.46)

3.3. Discussion of the instability mechanism
From the analysis of the three-layered structure of the long-wavelength central mode, we
can summarise the instability mechanism in this subsection. The most distinguished layer
is the central layer, since the perturbation damps algebraically approaching the main layer.
Also, the viscous wall layer is passive and the perturbations there are at most comparable
with those in the main layer.

In the central layer, where r � 1, the polymer stress in the momentum equation is
usually less significant than the viscous term, because the viscous term has a second-order
derivative with respect to r but the polymer stress has only a first-order derivative.
However, the magnitude of the polymer stress increases drastically with Wi, which can
be explained as follows. In this thin layer, the mean conformation tensors C11 and
C12 are large for Wi 	 1, while the mean velocity U is not affected by Wi, with the
magnitudes of U′ and 1 − U becoming small as r reduces. Thus it is seen from balance of
the conformation tensor equations that the conformation perturbations are much greater
than the velocity perturbations, which leads to a possible balance of the viscous and
polymer stress terms in the momentum equation. This is true when a careful choice
of Wi, namely, Wi ∼ k−1/2Re1/2 for regular concentration and Wi ∼ σ−1k−1/2Re1/2 for
low concentration, is implemented. Under these parameter scalings, all the terms – the
inertia, pressure gradient, viscosity and polymer stress – are retained in the leading-order
momentum equations in the central layer, implying a rather complicated process. Such an
instability mechanism is also true for the short-wavelength regimes, as will be shown in
the next section.
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Asymptotic study of instability in a viscoelastic pipe

As will be shown in § 5, there would be an additional unstable branch when β is
sufficiently close to unity, in which the unstable region of the parameter W1 would be
extended to infinity. The high-W1 limit of the long-wavelength centre mode is analysed
in Appendix D. It is found that for W1 	 1, the dominant factors in the central layer are
redistributed in three sublayers. The bulk central layer where ỹ = O(1) is dominated only
by balance of the inertia and pressure gradient; the outer central layer where ỹ = O(W1/2

1 )

is dominated by balance of the inertia and polymer stress; the core central layer where
ỹ = O(W−1/2

1 ) is dominated by balance of the viscosity and polymer stress. These results
regarding the dominant factors in the centre-mode instability have not been discussed in
the literature.

4. Short-wavelength centre mode

In § 4.2 of Chaudhary et al. (2021), it was found that the neutral curves may be extended
to the region where the axial wavenumber k is high, which leads to another type of
instability, the short-wavelength centre mode. We will perform an asymptotic analysis
for this regime in the regular-concentration and low-concentration configurations in §§ 4.1
and 4.2, respectively. For brevity, the duplicated illustrations are removed.

4.1. Asymptotic analysis for a regular-level concentration
In this regime, the leading-order balance of the central layer is the same as that in the
long-wavelength regime, so the relation (3.8) is also valid. However, because in this regime
k 	 1, we obtain from balance of the leading-order terms of the linearised system (2.6) in
each layer that the instability appears when

Re = O(k3), Wi = O(k), β = O(1), (4.1a–c)

therefore a group of O(1) parameters is introduced:

R3 = k−3Re/β, W3 = k−1R−1/2
3 Wi, W4 = βW3/(1 − β). (4.2a–c)

By scaling analysis as in the previous section, we expand the complex phase speed as

c = 1 + k−2R−1/2
3 ĉ1 + · · · . (4.3)

The asymptotic structure of the instability is the same as in figure 2, which is to be analysed
in the following subsections.

4.1.1. Main-layer solution
Being similar to the long-wavelength mode, the governing equations in the main layer are
inviscid to leading-order accuracy. The short-wavelength perturbation usually oscillates
rapidly in the transverse direction, leading to a multiple-scale manner in the r-direction,
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so the Wentzel–Kramers–Brillouin (WKB) form perturbations are assumed:

(ûz, ûr, p̂) ∼ (C−
u ,C−

v ,C−
p ) e−kΘ0(r)+Θ1(r)+··· + (C+

u ,C+
v ,C+

p ) ekΘ0(r)+Θ1(r)+···, (4.4)

where C±
u ,C±

v ,C±
p are coefficients, and Θ0 and Θ1 are functions of r. Upon substituting

the solution form into the governing equations (2.6) and eliminating ûz and p̂, we obtain

û′′
r + 1

r
û′

r − k2ûr = O(1). (4.5)

Substituting (4.4) into (4.5) and retaining the O(k2) and O(k) terms, we obtain Θ ′2
0 = 1

and Θ ′′
0 + 2Θ ′

0Θ
′
1 +Θ ′

0/r = 0, respectively. Without loss of generality, we choose

Θ0 = r, Θ1 = −1
2 ln r. (4.6a,b)

From the continuity and axial-momentum equations, we obtain

C±
u = ±iC±

v , C±
p = ±ir2C±

v . (4.7a,b)

Being similar to that in the long-wavelength regime, the non-penetration condition,
ûr(1) = 0, is introduced, which leads to

C−
v = −e2kC+

v . (4.8)

As r → 0, both ûz and ûr grow like r−1/2, and by use of the singular perturbation
approach, we must consider a thin layer around the centreline. Obviously, the expansion
(4.4) ceases to be valid when kΘ ′

0 ∼ Θ ′
1, which appears when r ∼ k−1, and this is indeed

the thickness of the central layer.

4.1.2. Central-layer solution
In the central layer, we introduce a local coordinate

Ỹ = kR1/4
3 r = O(1), (4.9)

and the perturbation field is expanded as

(v̂z, v̂r, p̂) = k1/2(Ŭ,R−1/4
3 V̆, k−2P̆)+ · · · , (4.10a)

(ĉ11, ĉ12, ĉ22, ĉ33) = k5/2(R3C̆11,R3/4
3 C̆12,R1/2

3 C̆22,R1/2
3 C̆33)+ · · · . (4.10b)

Note that in the above expansions, R3 is of O(1), which is introduced only for convenience
of analysis.
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By substituting (4.10a) into (2.6) and eliminating the conformation tensor perturbation,
we obtain a fourth-order linear homogenous system

dΦ̆

dỸ
= L̄Φ̆, (4.11)

where Φ̆ = (Ŭ, Ŭ′, Ŭ′′, V̆)T , and the non-zero elements of L̄ are

L̄12 = 1, L̄23 = 1, L̄41 = −i, L̄44 = −1/Ỹ, (4.12)

L̄31 = 16W2
3 Ỹ(Ỹ4 − ĉ1)− 4W3L̄Ỹ(Ỹ2 + ĉ1)R

−1/2
3

L̄2(1 + W4L̄)
, (4.13)

L̄32 = 8Ỹ4 − 8Ỹ2(i + 2W3Ỹ2)L̄ + L̄2[1 + 8iW3Ỹ2 + 8W2
3 Ỹ4]

Ỹ2L̄2(1 + W4L̄)

+W4[1 − iỸ2(ĉ1 + iỸ2)]L̄3

Ỹ2L̄2(1 + W4L̄)
+ 2R−1/2

3 , (4.14)

L̄33 = −4iỸ2 + L̄(1 − 4iW3Ỹ2)+ W4L̄2

ỸL̄(1 + W4L̄)
, (4.15)

L̄34 = −32iW2
3 Ỹ2(Ỹ2 − ĉ1)

L̄2(1 + W4L̄)
− 8iỸ2(1 + W2

3 L̄2)+ W4(ĉ1 + Ỹ2)L̄3

L̄2(1 + W4L̄)
R−1/2

3 − iR−1
3 ,

(4.16)

with L̄ = −i(Ỹ2 + ĉ1)+ W−1
3 . In this system, R3 always appears with a negative power,

−1/2 or −1, implying that in the limit as R3 → ∞, the impact of R3 becomes negligible.
Again, the coefficient L̃ could be zero only when ĉ1,i = −W−1

3 , indicating a temporal
decaying mode that is not of interest to us. The matching and boundary conditions are
the same as (3.31) and (3.32). The eigenvalues and eigenfunctions of this system are to be
solved by the same approaches as in § 3.1.3.

4.2. Asymptotic analysis for a low-level concentration
Now let us move on to the low-concentration regime. Being similar to the long-wavelength
regime, we assumed that as σ = (1 − β)/β → 0, the control parameters become

R3 = O(1), W3 = O(σ−1), W4 = O(σ−2). (4.17a–c)

Thus we introduce an O(1) parameter W̄3 such that

W3 = σ−1W̄3, W4 = σ−2W̄3, (4.18a,b)

and the re-scaled complex phase-speed correction is expanded as

ĉ1 = ĉ11 + σ ĉ12 + O(σ 2). (4.19)

For brevity, in this subsection we skip the analysis in the main layer, and consider the
leading-order governing equations only in the central layer, which can be expressed in
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W1

c1,r c1,i
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W1
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–0.10

–0.05

0

0.05

0.10(a) (b)

Figure 3. Dependence of the real (a) and imaginary (b) parts of c1 on W1 for β = 0.65, 0.8 and 0.9.
Continuous curves, asymptotic predictions from § 3.1; open squares, EOS solutions for (k,Re) = (0.5, 2000);
filled circles, EOS solutions for (k,Re) = (0.5, 20000). The thin horizontal line in (b) represents c1,i = 0.

terms of a linear homogeneous system

dΦ̆0

dỸ
= L̂Φ̆0, (4.20)

where Φ̆0 = (Ŭ, Ŭ′, Ŭ′′, V̆), and the non-zero elements of L̂ are

L̂12 = 1, L̂23 = 1, L̂41 = −i, L̂44 = −1/Ỹ, (4.21)

L̂31 = 16W̄3Ỹ(2iỸ2 + L̂)

L̂2
, L̂32 = −i(Ỹ2 + ĉ11)+ 1

Ỹ2
+ 8W̄3Ỹ2

L̂
+ 2R−1/2

3 , (4.22)

L̂33 = − 1

Ỹ
, L̂34 = 32iW̄3Ỹ2(ĉ11 − Ỹ2)

L̂3
− 8iW̄3Ỹ2 + (ĉ11 + Ỹ2)L̂

L̂
R−1/2

3 − iR−1
3 ,

(4.23)

with L̂ = −i(Ỹ2 + ĉ11). This system is subject to the same boundary conditions as in § 4.1,
and can be solved by the same numerical approach. Again, a critical layer appears in
the region Ỹ −

√
−ĉ11 = O(σ ) (or r − k−1

√
−ĉ11 = O(σk−1)) when the mode is neutral,

namely, ĉ11,i = 0. The solvability condition as for (3.46) is applied to solve ĉ12.

5. Numerical results

After the theoretical development for the long- and short-wavelength instability modes,
in this section we will solve numerically the asymptotic equations derived in previous
sections and compare them to the numerical results of the EOS solutions and those in the
literature.

5.1. Solutions for long-wavelength centre modes
For β = O(1), 1 − β = O(1) and k ≤ O(1), the dispersion relation of the long-wavelength
centre mode can be obtained by solving the eigenvalue system (3.25) with boundary
conditions (3.31) and (3.32). The continuous curves in figures 3(a) and 3(b) respectively
display this relation in the W1–c1,r and W1–c1,i planes for three representative β values.
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W1

c1,i
c̄1,i

(a) (b)
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0

0.02

0.04

0.06

0.08

β = 0.65

β = 0.85
β = 0.90

β = 0.80
β = 0.65

β = 0.90

β = 0.99

β = 0.80

0 1 2 3 4 5

W̄ ≡ σW1

Figure 4. Dependence of c1,i on W1 (a) and W̄ (b) for different β values, where the thin horizontal line
represents c1,i = 0, and the dots in (a) mark the second peaks of c1,i. In (b), the black curve with circles
denotes the low-concentration asymptotic prediction from § 3.2.

W(0)
1 W(1)

1 W(2)
1 W(3)

1 c(1)1,r c(3)1,r c1,i,max

β = 0.65 3.0 1.56 2.10 2.87 −0.460 −0.0650 0.0810
β = 0.8 5.80 2.86 4.14 6.09 −0.356 −0.0425 0.0790
β = 0.9 12.3 5.89 8.75 — −0.270 — 0.077

Table 2. Key parameters characterising the instability property.

For each β, the real part c1,r increases with W1 when the latter is small. After peaking at
a certain value W(0)

1 , c1,r starts to decrease with W1 mildly. A valley appears at a slightly
higher W1, then c1,r increases with W1 monotonically and approaches zero in the limit
as W1 → ∞. The growth rate c1,i increases with W1 from a negative value, and crosses
the zero line at a certain W1, which is referred to as the lower-branch neutral point W(1)

1 .
(Actually, the growth rate is defined as the imaginary part of the frequency ω1,i, but in
this paper, we also call c1,i the growth rate for simplicity because they are related by
c1,i = ω1,i/k.) After peaking at W(2)

1 , the growth rate starts to decrease with W1. The
greatest growth rate is denoted as c1,i,max, For β = 0.65 and 0.8, as W1 further increases,
c1,i crosses the zero line again at an upper-branch neutral point W(3)

1 , which is quite close
to W(0)

1 . However, the curve for β = 0.9 does not have an upper-branch neutral point
W(3)

1 , and its large-W1 asymptotic behaviour is demonstrated in figure 4. The phase-speed
corrections for the lower-branch (W(1)

1 ) and upper-branch (W(3)
1 ) neutral points are denoted

as c(1)1,r and c(3)1,r, respectively. The values of W(0)
1 , W(1)

1 , W(2)
1 , W(3)

1 , c(1)1,r and c(3)1,r are all
increasing with β, and those for c1,i,max are decreasing, which is demonstrated in table 2.
Choosing k = 0.5, and Re = 2000 and 20 000, we also obtain the dispersion relation by
solving the EOS system (2.6) using the spectral collocation method as in Zhang (2021),
and the results are shown by the open and filled symbols in figure 3, respectively. As
expected, the EOS solutions agree with the asymptotic predictions quite well, and the
agreement is better for a higher Reynolds number.
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Figure 4(a) plots the c1,i–W1 relations for a wider range of W1, with an additional curve
for β = 0.85 added. Overall, the growth rate for each β shows two peaks, and the second
peak is unstable only when β is sufficiently close to unity, i.e. β > 0.8. The implication
is that when the concentration of the polymer is low, two unstable groups of centre modes
appear, which are referred to as mode I and mode II. As β → 1, the unstable region,
including both modes, shifts towards the higher-W1 direction. Such a phenomenon agrees
with the analysis in § 3.2, namely, W1 ∼ σ−1 as β → 1 or σ → 0 according to (3.34a,b).
Therefore, we regularise the horizontal axis to W̄ ≡ σW1 and plot the growth rates in
figure 4(b). In this panel, we also plot the low-concentration asymptotic prediction c̄1,i
from § 3.2. It is seen that as β → 1, the solutions c1,i of the linear system (3.25) approach
the asymptotic prediction c̄1,i consistently.

The emergence of the second unstable region (mode II) for β close to unity has already
been reported in figures 21 and 22 of Chaudhary et al. (2021); however, our result is still a
bit surprising because mode II for a moderate W1 is found to satisfy the same asymptotic
scaling as that of mode I (they are solved by the same scaled governing equations, but
mode II may show a new scaling in the large-W1 limit). A clearer demonstration of
mode II is shown in figure 5. Actually, the double-peak nature of the c1,i–W1 curve, as
shown in figure 4(a), determines the emergence of the two instability modes. Even for
a lower β, e.g. β = 0.65, there are still overall two branches of modes separated by the
local minimum value of c1,i, but the second branch becomes unstable only when β is
sufficiently close to unity. It is also seen that as β → 1, W1 of the upper neutral point
of mode II approaches infinity, so mode II is linked directly to the large-W1 behaviour of
the long-wavelength instability. A salient nature of the unstable mode II for β sufficiently
close to unity is that the growth rate is positive even when W1 → ∞, which leads to a
high-W1 (high-Wi) regime as analysed in Appendix D. It is shown that for a fixed β or σ ,
the growth rate c1,i decays like W−1

1 c†
1,i as W1 → ∞ (c†

1 is defined in (D1)), whereas c†
1,i

scales as σ−1 as σ → 0, leading to a scaling c1,i ∼ (σW1)
−1 in the limit as σW1 → ∞.

This is also inferred by the curves for β = 0.99 (light blue dot-dot-dashed line) and the
low-concentration asymptote (black line with circles) in figure 4(b). It is also seen from
figure 20 that when β is greater than 0.93, the upper-branch neutral W1 moves to infinity.
Therefore, in figure 4(b), the unstable region of mode II extends to W̄ → ∞ for β = 0.99,
but the curve for β = 0.9 will cross the zero line at somewhere out of the domain, W̄ > 5.

As shown by the pink line in figure 4(a), the growth rate c1,i for β = 0.85 crosses the
zero line three times, and there is an additional neutral point above W1 = 30. Mode I is
located in the interval between the first two neutral points, while mode II appears when W1
is above the third neutral point. For a smaller β, e.g. β = 0.8, mode II is stable, whereas for
a greater β, e.g. β = 0.9, the upper-branch neutral point of mode I and the lower-branch
neutral point of mode II merge, and the upper-branch neutral point of mode II starts to
approach infinity. Figure 5 plots the û- and v̂-eigenfunctions of the four neutral points for
β = 0.85. Their shapes are similar overall, but their local peaks and valleys move toward
the high-ỹ direction as W1 increases.

A neutral curve delimits the marginally unstable relation for a certain set of control
parameters, including Wi, Re, β and k. From the asymptotic analysis in § 3.1 we know
that the control parameters can be reduced to W1 and β, whose relation is shown by the
red curves in figure 6(a). Here we show only the range of β from 0.3 to 1. Two unstable
modes are clearly exhibited. The re-scaled Weissenberg number W1 of the lower-branch
neutral point of mode I increases with β like 0.6σ−1 (or 0.6β/(1 − β)), agreeing with
the asymptotic prediction of § 3.2 (the lowest pink dashed line). For the upper-branch
neutral point of mode I, W1 increases with β up to a point (β,W1) = (0.87, 11.2), which
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ũ,ṽ
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Figure 5. Transverse distribution of the eigenfunctions for β = 0.85. (a) Lower-branch neutral point of mode
I, where W1 = 3.87 and c1 = −0.316; (b) upper-branch neutral pint of mode I, where W1 = 8.85 and c1 =
−0.0373; (c) lower-branch neutral point of mode II , where W1 = 10.57 and c1 = −0.0392; (d) upper-branch
neutral point of mode II, where W1 = 34.3 and c1 = −0.00848.

connects the neutral curves of the two modes. Mode II first appears at β ≈ 0.805, and
its upper neutral curve approaches W1 = ∞ as β increases. The solution for β > 0.88
is rather difficult to obtain, because as is illustrated in Appendix D, the central layer
splits into three asymptotic sublayers when W1 	 1, which requires rather dense grid
points near the core central region, and a sufficiently large computational domain to cover
the outer central region. This information given by the asymptotic analysis may help in
finite-Re calculations, which is another example of the value of asymptotic analysis. The
phase-speed correction −c1,r of the two neutral modes is shown in figure 6(b); it decreases
with β overall, and the decrease for the upper-branch neutral curve of mode II is extremely
drastic.

The blue curves in figures 6(a–c) demonstrate the dispersion relation of the most
unstable modes obtained by solving the eigenvalue system (3.25). It is obtained from the
curves with circles in figure 4(b) that in the limit as β → 1, the re-scaled Weissenberg
numbers for the two peaks of the growth rates are W̄ = σW1 = 0.92 and 1.96, respectively.
The implication is that W1 for the most unstable instabilities of the two modes in
the low-concentration limit are 0.92σ−1 and 1.96σ−1, respectively, which are plotted
by the pink dashed lines in figure 6(a). The agreement between the blue and pink
curves as β → 1 is quite good. Taking into account the leading- and second-order
expansions in § 3.2, we find that as σ → 0, the phase-speed corrections for the two
modes decay like 0.069 + 0.58σ and 0.0123 + 0.163σ , respectively. They are shown by
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Figure 6. Dispersion relations of the neutral (red curves) and most unstable (blue curves) modes in the W1–β
(a), c1,r–β (b) and c1,i–β (c) spaces. The pink dashed lines are the low-concentration asymptotic predictions.

the pink dashed curves in figure 6(b), agreeing with the blue curves when β approaches
unity. In figure 6(c), the growth rate c1,i of mode I peaks at β ≈ 0.67, and decays like
0.0624 + 0.18σ as β → 1, agreeing with the low-concentration asymptotic prediction
(pink dashed curves); the growth rate of mode II peaks at β ≈ 0.98, and decays like
0.0063 + 0.039σ (low-concentration asymptotic prediction) as β → 1.

Figures 7(a) and 7(b) compare the neutral curves obtained from the EOS solutions for
different Re and k with the asymptotic predictions in figure 6. The agreement for mode I
is quite satisfactory, but the EOS solutions for mode II scatter in a wide region. Overall,
the EOS solutions approach the asymptotic prediction as Re increases, and for the same
Re, the best agreement appears when k = 0.5 among the three k values considered here.
It is noticed that the long-wavelength regime also works when k = 1.0, as is explained
in Appendix B. Figure 7(c) displays the dependence of W1 on β for the most unstable
modes. The EOS solutions for the given parameters and the asymptotic predictions agree
perfectly. Comparisons of the real and imaginary parts of c1 of the most unstable modes
are shown in figures 7(d) and 7(e). The greatest discrepancy appears for mode I, and again,
the asymptotic predictions are more accurate to describe a higher-Re case.

5.2. Instability for short-wavelength modes
For β = O(1), 1 − β = O(1) and k 	 1, the short-wavelength mode is governed by the
linear system (4.11), which is controlled by three independent parameters, β, R3 and W3.
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Figure 7. Comparison of the dispersion relations between the asymptotic predictions (continuous curves) and
EOS solutions (symbols). (a, b) Neutral modes in the W1–β and c1,r–β spaces, respectively. (c,d,e) The most
unstable modes in the W1–β, c1,r–β and c1,i–β spaces, respectively.

Note that W4 is determined by W3 and β. Figure 8 plots the dependence of ĉ1 on W3 for
R3 = 25 and three representative β values. Being similar to the long-wavelength regime,
as shown in figure 3, the phase-speed correction ĉ1,r increases overall with W3, while
ĉ1,i exhibits a local peak, with its maximum value increasing with β. When β ≥ 0.8, an
unstable region where ĉ1,i > 0 is observed, which shifts to a higher W3 as β increases.

As β → 1, the instability approaches the low-concentration short-wavelength regime
illustrated in § 4.2. Figure 9 changes the horizontal axis to W̄3 = σW3, and adds a case
for β = 0.99. An asymptotic prediction given by the low-concentration short-wavelength
regime, obtained by solving the linear system (4.20), is also plotted, where only the results
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Figure 8. Dependence of the real (a) and imaginary (b) parts of ĉ1 on W3 for β = 0.65, 0.8 and 0.9 in the
short-wavelength regime, where R3 = 25.
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Figure 9. Dependence of the real (a) and imaginary (b) parts of ĉ1 on W̄3 for β = 0.65, 0.8, 0.9 and 0.99 in
the short-wavelength regime, where R3 = 25.

in the unstable region are shown. Only one unstable mode is observed in this figure, but it
should be noted that a mode II instability may also appear if R3 is sufficiently large. It is
seen that as β → 1, the results predicted by (4.11) converge to those predicted by (4.20)
consistently.

Figure 10 shows the dependence of the phase-speed correction on R3 for a fixed W̄3,
but different β values. Both ĉ1,r and ĉ1,i approach constants as R3 → ∞, agreeing with
the argument below (4.11). As β → 1, ĉ1 approaches the low-concentration asymptotic
prediction illustrated in § 4.2 (the black circles). In the large-R3 limit, the latter also
approaches a constant, ĉ1 = −0.0269 + 0.0518i. It is seen from figure 10(b) that ĉ1,i for
each β crosses the zero line at a critical R3, below and above which the perturbation is
stable and unstable, respectively. The critical R3 increases with decrease of β.

The neutral curve in the W3–β plane for R3 = 25 is shown by the red lines in
figure 11(a). As is illustrated in figure 9(b), for fixed R3 and β, ĉ1,i may cross the zero line
twice, provided that β is not too small. Consequently, the neutral curve exhibits a ’banana’
shape, i.e. above a critical β, lower- and upper-branch neutral curves are observed. Inside
the unstable zone, a blue line is plotted, which denotes the dispersion relation of the most
unstable mode. These asymptotic predictions are compared favourably with the numerical
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Figure 10. Dependence of the real (a) and imaginary (b) parts of ĉ1 on R3 in the short-wavelength regime,
where W̄3 = σW3 = 1.071. The thin dashed lines represent the low-concentration prediction for R3 = ∞. The
inset in (a) shows a zoom-in plot for −0.05 < ĉ1,r < 0.

β
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Figure 11. (a) The neutral (red) and the most unstable (blue) curves in the W3–β plane for R3 = 25; (b) the
neutral curve (red) in the R3–β plane for W̄3 = 1.071. The pink dashed lines represent the predictions in the
low-concentration regime. The symbols in (a) are the EOS results for k = 3.

solutions of EOS for k = 3, shown by the red and blue circles in figure 11(a). As the
wavenumber k decreases, the agreement becomes worse; however, this is not shown.
As indicated by the black circles in figure 9, for R3 = 25, the lower- and upper-branch
neutral W̄3 appear at 0.71 and 1.35 (or W3 = 0.71β/(1 − β) and W3 = 1.35β/(1 − β)),
respectively, and the most unstable mode appears at W̄3 = 0.91 (or W3 = 0.91β/(1 − β)).
These values are shown by the dashed pink lines in figure 11(a). It is obvious that the red
and blue solid lines approach the dashed pink lines consistently in the limit as β → 1.
In figure 11(b), we plot the neutral curve in the β–R3 plane for a given W̄3 = 1.071. The
stable and unstable zones are separated by the neutral curve, which approaches R3 = 5.9,
the low-concentration prediction.

For the low-concentration regime, the neutral curve can be plotted in the R3–W̄3 plane,
which is shown in figure 12. As R3 → ∞, the neutral curve approaches a horizontal
line, W̄3 = 0.631, which is predicted by the linear system (4.20) with R3 being set to be
∞. Above W̄3 = 1.5, there is another unstable zone, mode II, which will be shown in
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R3 ∞ limit

Stable

Unstable

Figure 12. Neutral curve in the R3–W̄3 plane in the low-concentration short-wavelength regime, where the
dashed line represents the prediction in the limit as R3 → ∞, and the filled circle indicates a representative
neutral case, (R3, W̄3) = (5.9, 1.071).

figure 14. The filled circle denotes a representative case, (R3, W̄3) = (5.9, 1.071), which
is also plotted by the pink dashed line in figure 11(b).

5.3. Comparison with the numerical solutions of Chaudhary et al. (2021)
In figure 21 of Chaudhary et al. (2021), the neutral curves in the Re–k plane were shown for
small elasticity numbers, E = Wi/Re. Two representative β values, β = 0.65 and 0.9, were
selected for demonstration. For each fixed β, all the neutral curves collapse when Re, 1 − c
and k are re-scaled by Re E3/2, (1 − c)/E and kE1/2, respectively. In this subsection, we
reproduce the collapsed neutral curves by the aforementioned asymptotic theories, explore
more general scalings, and explain the reason behind these results.

According to (3.9a–c), the neutral curves of the lower and upper branches, in the limits
Re 	 1 and k ≤ O(1), can be described by

Re = β

(W(1,3)
1 )2

k Wi2. (5.1)

Meanwhile, the phase-speed corrections of the two neutral modes, according to (3.10), are
given by

c − 1 = β1/2c(1,3)1,r k−1/2Re−1/2. (5.2)

In order to reproduce figure 21 of Chaudhary et al. (2021), we re-express (5.1) and (5.2) as

Re E3/2 = A1(kE1/2)−1 and (1 − c)/E = A2, (5.3a,b)

where constants A1 and A2 are functions of only β, namely,

A1 = (W(1,3)
1 )2

β
, A2 = βc(1,3)1,r

W(1,3)
1

. (5.4a,b)

It is interesting to notice that (1 − c)/E is independent of kE1/2, so the phase-speed
correction (1 − c)/E approaches a constant if assumptions (3.1) and (3.3) are satisfied.
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Figure 13. Comparisons between the asymptotic predictions and numerical results given by Chaudhary et al.
(2021) (solid lines), where the red and green circles are the asymptotic predictions (5.3a,b) of the lower- and
upper-branch neutral curves, respectively, and the blue squares are the asymptotic predictions from § 4.1. (a,b)
β = 0.65, (c,d) β = 0.9.

For β = 0.65, only one group of unstable modes is observed from figures 6(a,b).
It is obtained from table 2 that (W(1)

1 ,−c(1)1,r) ≈ (1.56, 0.460) and (W(3)
1 ,−c(3)1,r) ≈

(2.87, 0.0650). Therefore, for the two branches of neutral curves, (A1,A2) ≈
(3.75, 0.192) and (12.7, 0.0147), respectively. For β = 0.9, two unstable modes appear,
as shown in figures 6(c,d), and in the small wavenumber limit, only the instability
mode includes the lower-branch neutral point, where (W(0)

1 ,−c(0)1,r) ≈ (5.89, 0.270).
Accordingly, the coefficients in (5.3a,b) are (A1,A2) ≈ (38.5, 0.041). The comparisons
between the asymptotic predictions in the long-wavelength regime (filled circles) and
the numerical solutions given by figures 21(a–d) of Chaudhary et al. (2021) are shown
in figures 13(a–d). Perfect agreement is achieved in the limit kE1/2 � 1. It has to be
mentioned that the choices of kE1/2 and Re E3/2 or (1 − c)/E for collapse plotting are
not unique, and more generic expressions for the dependence of control parameters for the
neutral curves are (5.1) and (5.2), which are revealed by our analysis using the singular
perturbation technique.

The long-wavelength asymptotic theory fails to predict the numerical results when
kE1/2 = O(1), for which k is large since a small E is assumed. Therefore, we apply the
asymptotic theory for the short-wavelength regime. It is seen from § 4.1 that for a given β
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Figure 14. Neutral curves in the k[(1 − β)E]1/2–Re[(1 − β)E]3/2 plane. Solid lines, numerical results given
by Chaudhary et al. (2021); red circles, asymptotic prediction from (5.6); blue squares, low-concentration
asymptotic prediction.

that is of O(1) but not close to unity, the instability is determined by R3 and W3. They can
be translated to kE1/2, Re E3/2 and (1 − c)/E via

kE1/2 = W1/2
3c R−1/4

3c β−1/2, Re E3/2 = W3/2
3c R1/4

3c β
−1/2, (1 − c)/E = βW−1

3c ĉ1rc,

(5.5a–c)

where the subscript c denotes the neutral value. For a given β, the neutral curve is uniquely
determined in the W3c–R3c plane. The values in (5.5a–c) are shown by the blue open
squares in figure 13, which again agree well with the numerical solutions of Chaudhary
et al. (2021). In the limit as kE1/2 → 0, the short-wavelength predictions approach the
long-wavelength predictions.

Figure 22 of Chaudhary et al. (2021) shows that the lower-branch neutral curves can
also collapse in the low-concentration limit when plotting in the Re[(1 − β)E]3/2–k[(1 −
β)E]1/2 plane. In the long-wavelength regime, it is readily seen from the lower pink dashed
line in figure 6(a) that in the limit as β → 1 or σ → 0, the re-scaled Weissenberg number
is inversely proportional to σ , namely, W1 = 0.6σ−1. Thus we obtain the relation

Re[(1 − β)E]3/2 = 0.36
k[(1 − β)E]1/2 . (5.6)

This relation is plotted by the red circles in figure 14, which shows good agreement with
the lower-branch neutral modes given by figure 22 of Chaudhary et al. (2021) for k[(1 −
β)E]1/2 � 1. On the other hand, when k[(1 − β)E]1/2 = O(1), the short-wavelength
regime is reached. The blue squares are re-scaled results of those in figure 12, with
the mode II neutral curve added. The agreement between the numerical solutions of
Chaudhary et al. (2021) as β → 1 and the asymptotic prediction is again perfect.

Figures 24 and 25 of Chaudhary et al. (2021) show two different scalings for the
collapse of the eigenfunctions. By looking at these figures, one may question why the
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β Re k E ≡ Wi/Re Wi cr − 1 R1 W1 c1

0.5 5000 1 0.0212 106 −0.00516 + 0.000112i 1000 1.06 −0.516 + 0.0112i
0.5 10000 1 0.0150 150 −0.00368 + 0.000103i 2000 1.06 −0.520 + 0.0146i
0.5 15000 1 0.0122 184 −0.00302 + 0.000093i 3000 1.06 −0.522 + 0.0161i
0.5 20000 1 0.0106 212 −0.00262 + 0.000085i 4000 1.06 −0.523 + 0.0170i

Table 3. Re-scale of the control parameters in figure 15.
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Figure 15. Eigenfunctions for a representative long-wavelength configuration, where the coloured lines are
from figure 25 of Chaudhary et al. (2021), and the circles denote the asymptotic prediction given by § 3.1 with
W1 = 1.06.

eigenfunctions could agree with each other for a group of control parameters, but exhibit
a different distribution for another group of control parameters. In the following, we will
show an explanation by use of the asymptotic theories developed in this paper.

Let us first observe the parameters chosen for the plots. For figure 25 of Chaudhary
et al. (2021), k is set to be 1, which satisfies the long-wavelength regime. Therefore, we
calculate the re-scaled Reynolds number R1, Weissenberg number W1, and phase speed
c1 = k1/2R1/2

1 (c − 1) according to (3.9a–c) and (3.10), as shown in table 3. It is obvious
that for β = 0.5, the linear system (3.25) is controlled only by W1, which is the same for
all the selected cases. This is why their eigenfunctions collapse. In figure 15 we show the
results of Chaudhary et al. (2021) by continuous curves, and also plot the eigenfunctions
of the long-wavelength asymptotic mode with the same W1 by the red circles, where the
horizontal axis r Re1/4 is translated to k−1/4β1/4ỹ. As expected, the asymptotic predictions
show good agreement with the numerical solutions, especially in the near-centre region.
A slight discrepancy of the re-scaled v̂r in the region where r Re1/4 ∈ (4, 12) is attributed
to the finite-Re effect. Of course, if we choose another group of control parameters for
which W1 is different, then the eigenfunctions must be different from those in figure 15,
but as long as k ≤ O(1), the central-layer scaling r ∼ Re−1/4 still works. These can be
understood only by the asymptotic analysis. Also, the asymptotic analysis suggests that the
re-scaled phase-speed correction for (β,W1) = (0.5, 1.06) is −0.522 + 0.0289i, which is
the large-Re asymptote of the numerical solutions.
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β Re k E ≡ Wi/Re Wi cr − 1 R3 W3 ĉ1

0.4 1962 2.713 0.020 39.2 −0.00329 245 0.923 −0.380
0.4 1410 2.423 0.025 35.3 −0.00409 248 0.924 −0.378
0.4 1078 2.207 0.030 32.3 −0.00487 251 0.926 −0.376
0.4 861 2.037 0.035 30.1 −0.00563 255 0.927 −0.373
0.4 710 1.898 0.040 28.4 −0.00638 260 0.929 −0.370

Table 4. Re-scale of the control parameters in figure 16.
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Figure 16. Eigenfunctions for a representative short-wavelength configuration, where the coloured lines are
from figure 24 of Chaudhary et al. (2021), and the circles denote the asymptotic prediction given by § 4.1 with
W3 = 0.925 and R3 = 245.

Figure 24 of Chaudhary et al. (2021) shows an alternative scaling for which the
eigenfunctions for another group of control parameters collapse. Since the selected k
for each case is greater than unity, we compare the results with the short-wavelength
predictions. For a fixed β, the control parameters in the short-wavelength regime are R3
and W3, which are converted from Re, E and k via (4.2a–c). As shown in table 4, R3 and
W3 for all the selected cases are almost the same, leading to agreements of the eigenvalue
ĉ1 and the eigenfunctions between the numerical solutions and the asymptotic predictions;
see figure 16.

6. Concluding remarks

The transition to turbulence in a Newtonian pipe flow can happen only in subcritical
conditions; however, a supercritical route is possible when the pipe flow is viscoelastic,
as was found first by Garg et al. (2018) based on the Oldroyd-B model. A systematic
numerical study of linear viscoelastic instability was provided subsequently by Chaudhary
et al. (2021). Because viscoelastic instability depends on more control parameters (Re, Wi,
β and k for the axisymmetric mode) than the Newtonian instability does, the numerical
results of the former appear to be quite complicated and are difficult to present in a
well-organised manner. Therefore, in this paper we revisit the Oldroyd-B viscoelastic
instability problem by employing the singular perturbation (asymptotic) technique, to
reveal the intrinsic mechanism and the relevant controlling ‘similarity parameters’
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(combination of Re, Wi, β and k) of the centre instability emerging in the viscoelastic
pipe flow.

Taking Re to be asymptotically large, two regimes relating to the viscoelastic instability
emerge, both of which have phase speeds rather close to the centreline velocity, and so are
referred to as the centre modes. For each regime, the instability exhibits a three-layered
structure in the radial direction from the wall to the centreline – a passive wall (Stokes)
layer, a main layer and a central layer – but the thicknesses of the central layers for the two
regimes are of different scalings depending on the parameters.

(i) The first regime is the long-wavelength centre instability, for which the wavenumber
k � 1. It must be noted that this instability is also applicable to that for k = O(1), but
for convenience we still call this mode ‘long wavelength’. For a regular β that is not
close to unity, the thickness of the central layer for this regime is r ∼ k−1/4Re−1/4,
and its scaled phase-speed correction k1/2R1/2

1 (cr − 1) and growth rate k1/2R1/2
1 ci

for a given β depend only on a combined parameter W1 = k1/2R1/2
1 Wi, where

R1 = Re/β. Such an observation reduces the complexity of the original instability
system remarkably. In the most distinguished layer (central), the instability is driven
by balance of the inertia, pressure gradient, viscosity and polymer stress, all of which
play a dominant role. A single unstable zone (mode I) is observed when β < 0.8,
but an additional one (mode II) emerges for higher β values. The two unstable zones
merge when β ≈ 0.88, and the upper-branch neutral curve of mode II approaches
infinity as β → 0.88. A salient nature of the mode II instability is its connection
to the high-W1 behaviour. For W1 	 1, the dominant factors in the central layer
are redistributed in three sublayers: the balance of the inertia and pressure gradient
dominates the bulk central layer, that of the inertia and polymer stress dominates
the outer central layer, and that of the viscosity and polymer stress dominates the
core central layer. W1 of the unstable zones increases with β monotonically. In the
low-concentration limit, as β → 1, W1 becomes inversely proportional to 1 − β, as
shown analytically and numerically in § 3.2 and figure 6, respectively.

(ii) The second regime is the short-wavelength centre instability, with k 	 1. The
main-layer solution for this regime is of the WKB form, which is in contrast to
the algebraic form for k � 1 and the Bessel-function form for k = O(1). More
importantly, the central-layer thickness is changed to r ∼ k−1 ∼ Re−1/3, leading to a
scaling law different from regime (i). The instability mechanism is also the balance
of the inertia, pressure gradient, viscosity and polymer stress terms in the central
layer. The dispersion relation of the short-wavelength mode for a given regular
β is dependent on two parameters, R3 and W3, and when R3 → ∞, this regime
approaches regime(i). For a relatively small R3, there exists only one unstable zone,
and again, as β → 1, W3 of the unstable modes increases inversely with 1 − β,
which is demonstrated analytically in § 4.2 and numerically in figure 11.

Additionally, in the limit as β → 1, a critical layer, with thickness O(σk−1/4Re−1/4) for
the long-wavelength regime or O(σk−1) for the short-wavelength regime, may emerge in
the central layer when the centre mode is neutral to leading-order accuracy, as sketched
in figure 2. As the outer solutions approach the critical layer, v̂r remains regular, but its
derivative with respect to r and ûz is associated with logarithmic singularities. The latter is
removed when the viscosity is taken into account in the thin critical layer; see Appendix C.

The asymptotic predictions are verified by solving directly the complete linearised
equations using a spectral collocation method, and good agreement is achieved especially
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when the Reynolds number is sufficiently large and the wavenumber satisfies k ≤ O(1)
for regime(i), and k is sufficiently large (the Reynolds number is also large as Re ∝ k3)
for regime(ii). Also, we have compared our asymptotic predictions with the numerical
results of the neutral curves and eigenfunctions given by Chaudhary et al. (2021). In the
latter paper, the neutral curves for a given β that is not close to unity collapse when Re,
1 − c and k are re-scaled by certain powers of E, and those in the limit as β → 1 collapse
when Re and k are re-scaled by the same powers of (1 − β)E. Such observations are quite
empirical, but lack a priori analysis to shed light on the instability mechanism. From our
asymptotic analysis, it is found that for a fixed β, the neutral curves of the long-wavelength
centre modes depend only on a single combined parameter W1, whereas those of the
short-wavelength modes depend on R3 and W3. The collapse by the re-scaling of the
control parameters is a reflection of the asymptotic findings. Moreover, the asymptotic
analysis implies that there could be more re-scaling strategies that lead to neutral curve
collapse. Additionally, the eigenfunctions can collapse in two different radial scalings,
r Re1/4 and r Re1/3, but it was not clear from Chaudhary et al. (2021) which scaling should
be used for an arbitrarily chosen parameter group. Such a phenomenon can be explained
readily by our asymptotic analysis: namely, the two scalings correspond to the central-layer
thicknesses of the long- and short-wavelength regimes, respectively.

Finally, we mention that our asymptotic work can be extended readily to further
investigations. A recent weakly nonlinear analysis of a viscoelastic pipe flow (Wan et al.
2021) shows that for Wi 	 1, the Landau coefficient (in the Ginzburg–Landau equation)
satisfies a certain scaling law when plotting against β. Actually, such a scaling law can be
explained using the long-wavelength asymptotic system (3.26), which will be reported in
a future work.
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Appendix A. Numerical method for the linear stability code and its verification

A linear stability code solving the 3-D linearised equations (2.3) has been implemented
by use of the Petrov–Galerkin (PG) method (Meseguer & Trefethen 2003). In this
method, pressure is eliminated because a solenoidal base (which automatically satisfies
the continuity equation) is used for the velocity field. At the wall where r = 1, the no-slip,
non-penetration boundary conditions are applied for the velocity field, but we do not need
to impose a boundary condition for the conformation tensor. At the centreline, r = 0, we
avoid placing a grid point there following Mohseni & Colonius (2000), and the derivative
matrices are constructed following Trefethen (2000), exploiting the odd/even property of
each variable. In this implementation, there is no need to consider regularity conditions
around r = 0 according to Mohseni & Colonius (2000).

The eigenspectrum for a Newtonian pipe flow (β = 1, and the viscoelastic equations
are discarded) with Re = 5000 is shown by the red dots in figure 17(a). There exist only
discrete modes for which the eigenvalues appear as discrete points, and the spectrum
exhibits a ‘Y’ shape. Following the study for plane Poiseuille flows (Mack 1976), these
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Figure 17. (a) Comparison of the eigenspectra between a viscoelastic pipe flow (Re = 5000, Wi = 106.1,
β = 0.5, k = 1) and a Newtonian pipe flow (Re = 5000, β = 1, k = 1). (b) Comparison of the viscoelastic
eigenspectra between our results and those in Garg et al. (2018), where the parameters are the same as the blue
triangles in (a). The unstable centre viscoelastic modes are marked in both panels.
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Figure 18. Contours of the perturbations ûz (a,b) and ĉ11 (c,d) of the centre (a,c) and wall (b,d) modes for
Re = 5000, Wi = 106.1, β = 0.5, k = 1. The complex eigenvalues for the centre and wall modes are ω =
0.9948 + 0.0001116i and 0.4024 − 0.06671i, respectively.

discrete modes can be classified by three branches: A (cr → 0), P (cr → 1) and S
(cr ≈ 2/3). The former two are also referred to as the wall mode and centre mode,
respectively. In plane Poiseuille flows, the wall mode can become unstable when the
Reynolds number is sufficiently high, whereas for Newtonian pipe flows, all these modes
are stable for all Reynolds numbers. However, Newtonian pipe flows at this Re can become
turbulent, indicating a subcritical transition scenario. On the other hand, as reviewed in
§ 1, the centre mode can become unstable in viscoelastic pipe flows, as exemplified by the
blue triangles in figure 17(a). The complex eigenvalue ω = 0.9948 + 0.0001116i of the
only unstable centre mode in this panel is marked in the inset figure. The contours of the
perturbation eigenfunctions, ûz and ĉ11, for a typical wall mode (ω = 0.4024 − 0.06671i)
and the unstable centre mode are compared in figure 18. The perturbations of the centre
mode are concentrated around the centreline, showing a chevron-shaped structure similar
to the experimental observation of the onset of elastoinertial instability in viscoelastic pipe
flows (Choueiri et al. 2021). This structure is in contrast to that of the wall mode, in which
the perturbations peak in a thin layer close to the wall.
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A detailed comparison of the eigenspectra obtained by our code with those of Garg
et al. (2018) is shown in figure 17(b). Because our code is 3-D, in contrast to the 2-D
(axisymmetric) code of Garg et al. (2018), we have obtained more modes than theirs, but
the overall agreement between the two families of eigenspectra is good. A more detailed
validation step can be found in Zhang (2021).

Appendix B. Centre modes for k = O(1)

Although the analysis in § 3 is based on k � 1, we will show that the regime also applies
when the wavelength is comparable to the pipe radius, k = O(1). Here we show only
the asymptotic analysis for a regular-level concentration (β, 1 − β) = O(1); that for a
low-level concentration, 0 < 1 − β � 1, follows the same procedure.

The centre mode for k = O(1) exhibits the same asymptotic structure as in figure 2.
Following the same procedure as in § 3, we introduce a group of O(1) parameters

W̃1 = R−1/2
1 Wi, W̃2 = βW̃1/(1 − β), (B1a,b)

and expand the complex phase speed as

c = 1 + R−1/2
1 c̃1 + O(R−1

1 ). (B2)

B.1. Main-layer solution
The perturbation field in this regime is expressed in terms of asymptotic series

(ûz, ûr, p̂) = (ū0, v̄0, p̄0)+ R−1/2
1 (ū1, v̄1, p̄1)+ · · · , (B3a)

(ĉ11, ĉ12, ĉ22) = (R1c̄11,0,R1c̄12,0,R1/2
1 c̄22,0)+ · · · . (B3b)

Substituting (B3) into (2.6) and retaining the leading-order terms, we obtain

r2
(

d2

dr2 − d
r dr

− k2
)
(rv̄0) = 0, (B4)

whose general solution is

v̄0 = A3 I1(kr)+ A4 K1(kr), (B5)

where I1 and K1 are the modified Bessel functions of the first and second kinds,
respectively, and A3 and A4 are constants to be determined. Being similar to § 3.1.1, the
boundary condition at the wall, v̄0(1) = 0, has to be imposed, and therefore we obtain
A4/A3 = −I1(k)/K1(k). Substituting into the continuity and axial-momentum equations,
we obtain

ū0 = i
k

(
v̄′

0 + v̄0

r

)
, p̄0 = ir

k
(−v̄0 + rv̄′

0). (B6a,b)

Near the centreline, the hydrodynamic perturbations behave as

(ū0, v̄0, p̄0) → A4

(
i ln(kr),

1
kr
,− 2i

k2

)
+ · · · as r → 0. (B7)
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Asymptotic study of instability in a viscoelastic pipe

For normalisation, we take p̄0(0) = 1, and therefore

(A3,A4) =
(

− ik2 K1(k)
2I1(k)

,
ik2

2

)
. (B8)

The leading-order conformation tensor perturbations are governed by equations similar
to (3.14), but with a prefactor k appearing in the first and fourth terms of (3.14a). The
solutions are

c̄11,0 = −16iW̃2
1

k
v̄′

0, c̄12,0 = −8W̃2
1 v̄0, c̄22,0 = 4W̃1

r
v̄0. (B9a–c)

The solution for the second-order perturbation v̄1 is

v̄1 = 16W̃2
1 W̃−1

2

∫
1

r[I1(kr)K1(kt)− I1(kt)K1(kr)]
[
v̄0(t)

t3
− v̄′

0(t)
t2

]
dt

+ A5 I1(kr)+ A6 K1(kr), (B10)

where the constants A5 and A6 are related by A6 = −I1(k)/K1(k)A5 from the
non-penetration boundary condition. Therefore, in the limit as r → 0, the radial velocity
behaves like

ûr → A4

[
1
kr

+ · · · + R−1/2
1

(
4W̃2

1 W̃−1
2

kr3 + · · ·
)]

. (B11)

Obviously, this asymptotic expression ceases to be valid when r ∼ R−1/4
1 , and again, a

central layer needs to be taken into account.

B.2. Central-layer solution
For convenience, we introduce an O(1) coordinate

Y = R1/4
1 r, (B12)

and the perturbation field is expanded as

(v̂z, v̂r, p̂, ĉ11, ĉ12, ĉ22) = (R1/2
1 ŭ,R1/4

1 v̆, p̆,R3/2
1 c̆11,R5/4

1 c̆12,R1c̆22)+ · · · . (B13)

The governing equations are obtained by substituting (B13) into (2.6), to give

dφ̆
dY

= L̆φ̆, (B14)

where φ̆ = (ŭ, ŭ′, ŭ′′, v̆)T and the non-zero elements of L̆ are

L̆12 = 1, L̆23 = 1, L̆31 = 16k4W̃2
1 Y(Y4 − c̃2

1)

L̆2(1 + W̃2L̆)
, L̆41 = −ik, L̆44 = −1/Y, (B15)

L̆32 = 8k2Y4 − 8kY2(i + 2kW̃1Y2)L̆ + (1 + 8ikW̃1Y2 + 8k2W̃2
1 Y4)L̆2

Y2L̆2(1 + W̃2L̆)

+W̃2(1 − ikY2(Y2 + c̃1))L̆3

Y2L̆2(1 + W̃2L̆)
, (B16)

L̆33 = −−4ikY2 + L̆ − 4ikW̆1Y2L̆ + W̆2L̆2

YL̆(1 + W̃2L̆)
, L̆34 = −32ik3W̃2

1 Y2(Y2 − c̃1)

L̆2(1 + W̃2L̆)
, (B17a,b)

935 A28-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.24


M. Dong and M. Zhang

with L̆ = ik(−Y2 − c̃1)+ W̃−1
1 . The boundary conditions (3.31) and (3.32) are still valid.

Comparing with the linear system (3.26), we find that they are exactly the same
if (W̃1, W̃2, L̆, k) in (3.26) is replaced by (W1,W2, L̃, 1). The implication is that the
long-wavelength instability regime analysed in § 3 is also valid for k = O(1), but in this
paper, this mode is referred to as the long-wavelength centre mode for brevity.

Appendix C. Critical-layer analysis for the long-wavelength neutral instability in the
low-concentration limit

The linear system (3.38), governing the low-concentration long-wavelength instability
introduced in § 3.2, may become singular when c̄1,i = 0, so a critical layer appearing at

ỹc =
√

−c̄1 (C1)

must be taken into account. For the phase-speed expansion (3.35), c̄2 is taken to be of
O(1).

According to (3.38) and (3.41), the central-layer perturbation field in the limit as ỹ → ỹc
behaves like

Ũ0 → iC1 ln(ỹ − ỹc)+ iC1 + iC0

ỹc
+ iC1(ỹ − ỹc) ln(ỹ − ỹc)

ỹc
+ · · · , (C2a)

Ṽ0 → C0 + C1(ỹ − ỹc) ln(ỹ − ỹc)+ · · · , (C2b)

Ũ1 → −2(i + W̄c̄2)C0

(ỹ − ỹc)
+ · · · , Ṽ1 → 2(iW̄c̄2 − 1)C0 ln(ỹ − ỹc)+ · · · , (C2c,d)

where C0 and C1 are constants, and C1 = 4iW̄ỹcC0. The second-order terms become
comparable to the leading-order ones when ỹ − ỹc ∼ σ , and therefore the thickness of
the critical layer is found to be of O(σ ). For convenience, we introduce a local coordinate

η = σ−1(ỹ − ỹc). (C3)

The leading-order perturbations in the critical layer are expanded as

(v̂z, v̂r, p̂) = p̂0[k1/2R1/2
1 Ū, k5/4R1/4

1 (C0 + σ V̄), 1] + · · · , (C4a)

(ĉ11, ĉ12, ĉ22) = p̂0(k−1/2R3/2
1 σ−4C̄11, k1/4R5/4

1 σ−3C̄12, kR1σ
−2C̄22)+ · · · . (C4b)

They are governed by

iŪ + V̄ ′ + C0/ỹc = 0, Ū′′ + W̄−1(iC̄11 + C̄′
12) = 0, (C5a,b)

L̃2C̄11 = −4ỹcC̄12, L̃2C̄12 = 8iỹ2
cW̄2C0 − 2ỹcC̄22, L̃2C̄22 = −4iW̄ỹcC0, (C5c–e)

where L̃2 = −2iỹcη − ic̄2 + W̄−1. The solutions to the above system are

Ū = −4W̄ỹcC0 ln(iW̄L̃2)+ C4 + 2C5η, (C6a)

V̄ = 4iW̄ỹcC0

[
−(−W̄−1 + ic̄2) tan−1[W̄(2ỹcη + c̄2)]

2ỹc
+ η ln(iW̄L̃2)

]

+(ic̄2W̄ − 1) ln[1 + W̄2(2ỹcη + c̄2)
2]C0 + C3

+
(

−iC4 − C0

ỹc
− 4iW̄ỹcC0

)
η − iC5η

2. (C6b)
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Figure 19. Eigenfunctions of û and v̂ for a near-neutral low-concentration mode. (a) Solution from § 3.1 with
β = 0.99, W1 = 63 and c̄1 = −0.183 + 0.004i; (b) solution from § 3.2 with W̄ = 0.64 and c̄1 = −0.172 +
0.004i.

As η → ±∞,

Ū → −4W̄ỹcC0 ln(2W̄ỹcη)− 2C0(i + W̄c̄2)

η
+ C4 + 2C5η + · · · , (C7a)

V̄ → 4iW̄ỹcC0η ln(2W̄ỹcη)+ 2(W̄c̄2i − 1) ln ηC0 +
(

−iC4 − C0

ỹc
− 4iW̄ỹcC0

)
η − iC5η

2.

(C7b)

Apparently, there is a phase jump from η = −∞ to η = ∞ due to the logarithmic term
ln η, similar to the classical critical-layer analysis in Drazin & Reid (2004). Matching with
the central-layer solution, we obtain

C5 = 0, C4 =
(

i
ỹc

− 4W̄ỹc + 4W̄ỹc ln(2W̄ỹc)

)
C0. (C8a,b)

Figure 19 plots the eigenfunctions of the quasi- lower-branch neutral mode in the
low-concentration limit. The solutions from § 3.1 with β = 0.99 and from § 3.2 agree with
each other well. An enlargement of û at around ỹ = 0.44 is observed, which agrees with
the critical-layer analysis, and the location of the critical layer is ỹc = √−c1 ≈ 0.43. The
v̂-eigenfunction stays finite at the critical position, but the derivative of v̂ with respect to ỹ
is large due to its logarithmic asymptote; see (C2d).

Appendix D. Large-W1 analysis of mode II in the long-wavelength regime

As shown in figure 6(a), W1 of the upper-branch neutral point of mode II approaches
infinity for β close to unity, and the asymptotic behaviour of the mode II instability in the
limit as W1 → ∞ is analysed in this appendix. In such a limit, the complex phase speed
c1 becomes small with a scaling c1 ∼ W−1

1 , so we introduce

c†
1 = W1c1. (D1)

Additionally, the central layer in this limit splits into three asymptotic sublayers: the core
central layer where ỹ = O(W−1/2

1 ), the bulk central layer where ỹ = O(1), and the outer
central layer where ỹ = O(W1/2

1 ), respectively.
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D.1. Bulk central layer
In this layer, we expand the solution in terms of an asymptotic series (ũ, ṽ) = (ũ0, ṽ0)+
W−1

1 (ũ1, ṽ1)+ O(W−2
1 ). Substituting this expansion into the governing equation system

(3.26) and collecting the terms up to the first two orders, we obtain the solutions (the
mathematical details are omitted for brevity)

ũ = 2iC̃1 + iC̃2(1 + 2 ln ỹ)+ W−1
1

iC̃2ỹ2

4
+ · · · , (D2a)

ṽ = C̃1ỹ + C̃2ỹ ln ỹ + W−1
1

C̃2ỹ2

16
+ · · · , (D2b)

where C̃1 and C̃2 are constants. It is found that the leading-order balance in this layer is
between inertia and pressure gradient, rendering an inviscid nature.

However, in the limit as ỹ → ∞, the O(W−1
1 ) term may be comparable with the

leading-order solution, leading to the emergence of the outer central layer.

D.2. Outer central layer

In this layer, we introduce a local coordinate ỹ1 = W−1/2
1 ỹ = O(1), and the radial velocity

ṽ is of O(W−1/2
1 ũ) to leading order. The leading-order balance is between inertia and

polymer stress. Solving the leading-order equations with the matching conditions of the
core central layer being considered, we obtain

ũ = i[16C̃1 − 2C̃2 ln ỹ1 + C̃2 ln(ỹ2
1 − 8)]

8
+ iC̃2

ỹ2
1 − 8

+ · · · , (D3a)

ṽ = W−1/2
1

ỹ[16C̃1 − 2C̃2 ln ỹ1 + C̃2 ln(ỹ2
1 − 8)]

16
+ · · · . (D3b)

It is easy to see that (ũ′, ũ′′) → 0 as ỹ1 → ∞, satisfying the boundary conditions (3.31).

D.3. Core central layer
Taking the lower limit of (D2), we find that the no-slip condition is not satisfied,
although the non-penetration condition is satisfied. Therefore, a core central layer must
be considered. By balance of the inertia terms, we can estimate that the thickness of the
core central layer is of O(W−1/2

1 ). Thus the local coordinate

ỹ2 = W1/2
1 ỹ (D4)

is introduced.
The leading-order balance of the momentum equation is between only viscosity and

polymer stress, and the governing equation can be expressed in the same form as (3.26), but
with (ỹ,W1,W2, L̃) being replaced by (ỹ2, 1, σ−1 ≡ β/(1 − β), L̃† ≡ −i(ỹ2

2 + c†
1)+ 1),

935 A28-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.24


Asymptotic study of instability in a viscoelastic pipe

c†
1,i

0.7 0.8 0.9 1.0
–0.05

0

0.05

0.10

0.15

0.20

0.25

β

Figure 20. Dependence of the growth rate on β for the large-W1 mode II instability.

and L̃32 being replaced by

8ỹ4
2 − 8ỹ2

2(i + 2ỹ2
2)L̃

† + (1 + 8iỹ2
2 + 8ỹ4

2)(L̃
†)2 + σ−1(L̃†)3

ỹ2
2(L̃

†)2(1 + σ−1L̃†)
. (D5)

The boundary conditions at the centreline are also (3.32), whereas matching with the bulk
central layer, we obtain (ũ′, ũ′′) → 0 as ỹ2 → ∞. Such a system can be solved by the same
numerical approach as in §§ 3 and 4.

D.4. Numerical results for the large-W1 mode II instability
The system in § D.3 is so simple that there is only one control parameter, β. The
dependence of the growth rate c†

1 on β is shown in figure 20. The curve crosses the zero
line at β ≈ 0.93, implying that the upper-branch neutral point of the mode II instability
is infinity for β > 0.93. In the supercritical region, the scaled growth rate c†

1,i increases
with β like σ−1, which can be predicted by asymptotic analysis of the low-concentration
regime by taking W1 → ∞. (The mathematical description is the same as that of the
regular-concentration regime, so is omitted here.)

REFERENCES

BIRD, R., CURTISS, C., ARMSTRONG, R. & HASSAGER, O. 1987 Dynamics of Polymeric Liquids, Volume
2: Kinetic Theory. Wiley.

BUZA, G., PAGE, J. & KERSWELL, R.R. 2021 Weakly nonlinear analysis of the viscoelastic instability in
channel flow for finite and vanishing Reynolds numbers. arXiv:2017.06191v1.

CHANDRA, B., SHANKAR, V. & DAS, D. 2018 Onset of transition in the flow of polymer solutions through
microtubes. J. Fluid Mech. 844, 1052–1083.

CHAUDHARY, I., GARG, P., SUBRAMANIAN, G. & SHANKAR, V. 2021 Linear instability of viscoelastic pipe
flow. J. Fluid Mech. 908, A11.

CHOUEIRI, G.H., LOPEZ, J.M. & HOF, B. 2018 Exceeding the asymptotic limit of polymer drag reduction.
Phys. Rev. Lett. 120, 124501.

CHOUEIRI, G.H., LOPEZ, J.M., VARSHNEY, A., SANKAR, S. & HOF, B. 2021 Experimental observation of
the origin and structure of elasto-inertial turbulence. Proc. Natl Acad. Sci. USA 118, 1–5.

DONG, M., LIU, Y. & WU, X. 2020 Receptivity of inviscid modes in supersonic boundary layers due to
scattering of freestream sound by wall roughness. J. Fluid Mech. 896, A23.

DONG, M. & WU, X. 2013 On continuous spectra of the Orr–Sommerfeld/Squire equations and entrainment
of free-stream vortical disturbances. J. Fluid Mech. 732, 616–659.

935 A28-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.24


M. Dong and M. Zhang

DRAZIN, P.G. & REID, W.H. 2004 Hydrodynamic Stability (Cambridge Mathematical Library). Cambridge
University Press.

DUBIEF, Y., PAGE, J., KERSWELL, R.R., TERRAPON, V.E. & STEINBERG, V. 2021 A first coherent structure
in elasto-inertial turbulence. arXiv:2006.06770v2.

DUBIEF, Y., TERRAPON, V.E. & SORIA, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids
25 (11), 110817–110817.

GARG, P., CHAUDHARY, I., KHALID, M., SHANKAR, V. & SUBRAMANIAN, G. 2018 Viscoelastic pipe flow
is linearly unstable. Phys. Rev. Lett. 121, 024502.

GOLDSTEIN, M.E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise
variations in surface geometry. J. Fluid Mech. 154, 509–530.

GRAHAM, M.D. 2014 Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys.
Fluids 26 (10), 101301.

GROISMAN, A. & STEINBERG, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405 (6782),
53–55.

HAMEDUDDIN, I., GAYME, D.F. & ZAKI, T.A. 2019 Perturbative expansions of the conformation tensor in
viscoelastic flows. J. Fluid Mech. 858, 377–406.

HAMEDUDDIN, I., MENEVEAU, C., ZAKI, T.A. & GAYME, D.F. 2018 Geometric decomposition of the
conformation tensor in viscoelastic turbulence. J. Fluid Mech. 842, 395–427.

KUPFERMAN, R. 2005 On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical
approximation. J. Non-Newtonian Fluid Mech. 127 (2), 169–190.

LIN, C.C. 1946 On the stability of two-dimensional parallel flows. Part III. Stability in a viscous fluid. Q. Appl.
Maths 3, 277–301.

LIU, Y., DONG, M. & WU, X. 2020 Generation of first Mack modes in supersonic boundary layers by slow
acoustic waves interacting with streamwise isolated wall roughness. J. Fluid Mech. 888, A10.

LOPEZ, J.M., CHOUEIRI, G.H. & HOF, B. 2019 Dynamics of viscoelastic pipe flow at low Reynolds numbers
in the maximum drag reduction limit. J. Fluid Mech. 874, 699–719.

MACK, L.M. 1976 A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer.
J. Fluid Mech. 73, 497–520.

MESEGUER, Á. & TREFETHEN, L.N. 2003 Linearized pipe flow to Reynolds number 107. J. Comput. Phys.
186 (1), 178–197.

MOHSENI, K. & COLONIUS, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys.
157 (2), 787–795.

PAGE, J., DUBIEF, Y. & KERSWELL, R.R. 2020 Exact traveling wave solutions in viscoelastic channel flow.
Phys. Rev. Lett. 125, 154501.

RAM, A. & TAMIR, A. 1964 Structural turbulence in polymer solutions. J. Appl. Polym. Sci. 8 (6), 2751–2762.
SAMANTA, D., DUBIEF, Y., HOLZNER, M., SCHÄFER, C., MOROZOV, A.N., WAGNER, C. & HOF, B. 2013

Elasto-inertial turbulence. Proc. Natl Acad. Sci. USA 110 (26), 10557–10562.
SHAQFEH, E.S.G. 1996 Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28 (1),

129–185.
SHEKAR, A., MCMULLEN, R.M., MCKEON, B.J. & GRAHAM, M.D. 2021 Tollmien–Schlichting route to

elastoinertial turbulence in channel flow. Phys. Rev. Fluids 6, 093301.
SHEKAR, A., MCMULLEN, R.M., WANG, S.N., MCKEON, B.J. & GRAHAM, M.D. 2019 Critical-layer

structures and mechanisms in elastoinertial turbulence. Phys. Rev. Lett. 122, 124503.
SID, S., TERRAPON, V.E. & DUBIEF, Y. 2018 Two-dimensional dynamics of elasto-inertial turbulence and

its role in polymer drag reduction. Phys. Rev. Fluids 3, 011301.
SMITH, S. 1979 On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc. Lond. A 366,

91–109.
SMITH, F. 1981 The upper branch stability of the Blasius boundary layer, including non-parallel flow effects.

Proc. R. Soc. Lond. A 375, 65–92.
SURESHKUMAR, R. & BERIS, A.N. 1995 Effect of artificial stress diffusivity on the stability of numerical

calculations and the flow dynamics of time-dependent viscoelastic flows. J. Non-Newtonian Fluid Mech.
60 (1), 53–80.

TERRAPON, V.E., DUBIEF, Y. & SORIA, J. 2014 On the role of pressure in elasto-inertial turbulence.
J. Turbul. 16, 26–43.

TREFETHEN, L. 2000 Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics.
VIRK, P.S. 1975 Drag reduction fundamentals. AIChE J. 21 (4), 625–656.
WAN, D., SUN, G. & ZHANG, M. 2021 Subcritical and supercritical bifurcations in axisymmetric viscoelastic

pipe flows. J. Fluid Mech. 929, A16.

935 A28-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.24


Asymptotic study of instability in a viscoelastic pipe

WHITE, C.M. & MUNGAL, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer
additives. Annu. Rev. Fluid Mech. 40 (1), 235–256.

WU, X. & DONG, M. 2016 Entrainment of short-wavelength free-stream vortical disturbances in compressible
and incompressible boundary layers. J. Fluid Mech. 797, 683–782.

XI, L. & GRAHAM, M.D. 2010a Active and hibernating turbulence in minimal channel flow of Newtonian
and polymeric fluids. Phys. Rev. Lett. 104, 218301.

XI, L. & GRAHAM, M.D. 2010b Turbulent drag reduction and multistage transitions in viscoelastic minimal
flow units. J. Fluid Mech. 647, 421–452.

ZHANG, M. 2021 Energy growth in viscoelastic pipe flows. J. Non-Newtonian Fluid Mech. 294, 104581.
ZHANG, M., LASHGARI, I., ZAKI, T. & BRANDT, L. 2013 Linear stability analysis of channel flow of

viscoelastic Oldroyd-B and FENE-P fluids. J. Fluid Mech. 737, 279–279.
ZHU, L. & XI, L. 2021 Nonasymptotic elastoinertial turbulence for asymptotic drag reduction. Phys. Rev.

Fluids 6, 014601.

935 A28-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.24

	1 Introduction
	2 Mathematical descriptions
	2.1 Physical problem and the governing equations
	2.2 Instability mode
	2.3 Brief overview of numerical solutions of the EOS system
	2.4 Summary of the overall structures of the asymptotic regimes

	3 Long-wavelength centre mode
	3.1 Asymptotic analysis for a regular-level concentration
	3.1.1 Main-layer solutions
	3.1.2 Viscous wall layer
	3.1.3 Central layer

	3.2 Asymptotic analysis for a low-level concentration
	3.2.1 Main layer
	3.2.2 Central layer

	3.3 Discussion of the instability mechanism

	4 Short-wavelength centre mode
	4.1 Asymptotic analysis for a regular-level concentration
	4.1.1 Main-layer solution
	4.1.2 Central-layer solution

	4.2 Asymptotic analysis for a low-level concentration

	5 Numerical results
	5.1 Solutions for long-wavelength centre modes
	5.2 Instability for short-wavelength modes
	5.3 Comparison with the numerical solutions of Chaudhary et al. (2021)

	6 Concluding remarks
	Appendix A. Numerical method for the linear stability code and its verification
	Appendix B. Centre modes for k=O(1)
	B.1 Main-layer solution
	B.2 Central-layer solution

	Appendix C. Critical-layer analysis for the long-wavelength neutral instability in the low-concentration limit
	Appendix D. Large-W1 analysis of mode II in the long-wavelength regime
	D.1 Bulk central layer
	D.2 Outer central layer
	D.3 Core central layer
	D.4 Numerical results for the large-W1 mode II instability

	References

