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Simplified analytical models for hypersonic lateral-directional stability 
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A B S T R A C T   

The balance of lateral and directional static stability plays an important role in the lateral-directional dynamics 
and vehicle design. The theory of geometric influence on the lateral and directional static stability is mature for 
conventional aircrafts. However, the distinct configuration characteristics and flow physics for hypersonic ve
hicles may lead to different design theory, which is absent now. In order to solve this problem, simplified 
analytical models of lateral-directional static derivatives are proposed based on the simplified geometry model. 
It’s found that the lateral and directional stability both increase as the deflection angle, dihedral angle, or angle 
of attack increases, whereas the influence of sweep angle can be neglected. The difference lies in that the lateral 
stability is proportional to dihedral angle while the directional stability is proportional to the square of dihedral 
angle. The reasonable accuracy is validated in comparison with the inviscid numerical solutions. Furthermore, 
the influence mechanism of viscous effects on the lateral and directional stability is investigated in detail based 
on the numerical results. It’s found that the strong viscous interaction can improve the lateral stability evidently, 
and both the strong viscous interaction and the shear stress can lead to the increase of the directional stability. In 
addition, the lateral stability is slightly reduced by the chemical nonequilibrium effects.   

1. Introduction 

Lateral and directional stability design is a critical issue for any kind 
of aircraft. For traditional aircrafts, the lateral stability can be easily 
improved by changing the wing geometric sweep and dihedral, as well 
as wing fuselage interface [1]. The directional stability is mainly 
dominated by the contribution of the vertical tail, which also influences 
the lateral stability. However, to alleviate the serious aerothermal 
heating of hypersonic vehicles, especially for long-time flight, the ver
tical tail is generally restrained in size strictly or even fully removed [2]. 
This would make the improvement of the directional stability rather 
difficult. Besides, in order to obtain high aerodynamic and structural 
efficiency, the configuration of hypersonic vehicles generally presents 
the feature that the wing and body being highly blended. The difference 
in configuration features and flow characteristics may make the stability 
design theory of hypersonic vehicles rather distinct from that of the 
conventional aircrafts. Cockrell et al. [3] have compared the 

aerodynamic performance of two waveriders with a straight and 
cranked wing, respectively, and found that the latter configuration has 
better lateral stability. Rasmussen [4] has further elaborated on the 
above results by analyzing two other configurations and found that 
waveriders with finlets or positive dihedral tend to be stable in 
rolling-sideslip modes. Pezzella [5] has compared the lateral-directional 
stability of different configurations for a small hypersonic flying test 
bed. Bykerk et al. [6] have conducted a detailed lateral-directional 
stability analysis of the HEXAFLY-INT hypersonic vehicle under sub
sonic flight conditions along with in-depth flowfield analysis. Shang 
et al. [7] have investigated the effects of elastic deformation on the 
rolling stability of the slender waverider vehicle. Aprovitola et al. [8] 
have developed a parametric model for the re-entry vehicle shape 
optimization, which can improve the lateral-directional stability by 
flexibly alter the characteristics of the winglet dihedral. Liu et al. [9] 
have conducted a parametric study on the lateral-directional stability of 
hypersonic waveriders and found that increasing the dihedral angle of 
the lower surface can improve not only the lateral static stability, but 
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also the directional static stability. However, further insight into the 
physics nature of the quantitative geometric influence on 
lateral-directional static stability still remains to be studied. 

Similar to the conventional theory of flight dynamics [1,10,11], it is 
of vital interest to seek analytical methods that can directly construct the 
relationship between the geometric features and stability for hypersonic 
vehicles. Some efforts have been made to construct such analytical 
techniques. Mason [12] has introduced the derivation of the yaw 
moment contribution from the vertical tail using both supersonic linear 
theory and hypersonic Newtonian theory. It is found that the contribu
tion to directional stability is proportional to the wedge angle at hy
personic speed, leading to the X-15 wedge vertical tail design with large 
base area. Jia et al. [13] have derived the analytical expression between 
the geometric features and the center of pressure by applying the 
Newtonian theory on a simplified streamline model, which indicates 
that the convex streamline is desirable to improve the longitudinal 
stability. 

Gaining such understanding will definitely lead to better and more 
efficient vehicle designs. Therefore, this paper tries to develop simplified 
analytical models to provide guidance for hypersonic lateral-directional 
static stability design. To this end, a simplified geometry model is first 
introduced to be representative of the typical hypersonic lifting-body 
configuration. Then the Newtonian theory is applied to derive the 
analytical models of lateral-directional static derivatives with respect to 
the geometric parameters. And the accuracy is validated in contrast to 
the inviscid Computational-Fluid-Dynamics (CFD) solutions. Finally, the 
influence mechanism of viscous effects is analyzed in detail based on the 
CFD results, including the laminar flow, turbulent flow, and chemical 
nonequilibrium effects. 

2. Model derivation 

Tarpley et al. [14] have presented an efficient and high-fidelity 
calculation method of stability derivatives for the simple caret-wing 
waveriders by using the linear piston theory. However, the expres
sions are too complex to analyze the direct relationship between the 
main geometric features and the stability. Therefore, in order to capture 
the dominant influence of geometric features, such as the results intro
duced in Ref. [12], a simplified geometry model is presented and then 
the Newtonian theory is employed to derive analytical expressions of 
lateral-directional static derivatives with simple form. 

Considering the fact that the upper surface generally has a minor 
influence on the total aerodynamic performance of typical hypersonic 
vehicles with high lift-to-drag ratio at positive angles of attack, espe
cially the waverider [9], the discussion is limited only to the lower 
surface in this paper. 

2.1. Simplified geometry model 

Simplified geometry model being ease of parametric description is 
quite favorable for analytical derivations. A lifting-body model with 
delta planform is used here for lateral-directional stability analysis, 
which can be deemed an extreme simplification of the cone-derived 
waverider. As sketched in Fig. 1, the configuration has constant sweep 
angle Λ along the leading edge, constant dihedral angle Γ in the Y-Z 
cross section, and constant deflection angle θ in the X-Z cross section. 
The upper surface is parallel to the freestream. When the length is given, 
the shape can be specified by only two independent parameters: 
deflection angle θ and dihedral angle Γ. The sweep angle can be deter
mined according to the geometric relationship as follows 

tan Λ=
tan Γ
tan θ

(1)  

2.2. Lateral static derivative Clβ 

According to the theory of traditional flight dynamics, for a swept
back wing, positive sideslip produces an increase in effective speed and a 
decrease in effective angle of attack on the right semispan (Y > 0). The 
case is just opposite for the left semispan (Y < 0). The change in effective 
speed, shown in Fig. 2, plays a dominant role, making the lift of the right 
semispan turns larger than that of the left semispan. Therefore, 
increasing the sweep angle can improve the lateral static stability. The 
effective speed can be expressed as follows 

Ve,r = V cos(Λ − β)
Ve,l = V cos(Λ + β) (2)  

where Ve,r and Ve,l is the effective speed of the right and left side, 
respectively. 

In order to reduce the wave drag, the configuration sweep angle 

Nomenclature 

b total span of the geometry model, m 
Cl, Cn, Cy roll moment coefficient, yaw moment coefficient, and side 

force coefficient 
Clβ lateral static derivative, rad− 1 

Cnβ directional static derivative, rad− 1 

Cyβ side force static derivative, rad− 1 

Cp pressure coefficient 
h total height of the geometry model, m 
L total length of the geometry model, m 
Lref reference length, b/2 for Cl and L for Cn 
M∞ freestream Mach number 
P static pressure, Pa 
q∞ freestream dynamic pressure, Pa 
Shalf surface area of half model for the lower surface, m2 

Sref reference area, m2, being equal to Shalf 
V freestream velocity, m/s 
x,y,z spatial coordinates, m 
x distance of centroid away from the nose along the X-axis, 

2/3L for the simplified geometry model 
y distance of centroid away from the nose along the Y-axis, 

1/3 b/2 = b/6 for the simplified geometry model 
z distance of centroid away from the nose along the Z-axis, 

1/3h for the simplified geometry model 
α angle of attack 
β sideslip angle 
θ deflection angle 
Γ dihedral angle 
Λ sweep angle 
ξ mass faction of each species  

Fig. 1. Simplified geometry model.  
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usually increases as the cruise speed increases. Therefore, the sweep 
angle of hypersonic vehicles is generally extremely large, typically 
larger than 60◦. Besides, the sideslip angle for hypersonic vehicles is 
generally minor due to the very high flight speed, typically smaller than 
2◦. Then a reasonable assumption can be made: Λ ± β ≈ Λ. In turn, we 
have: Ve,r ≈ Ve,l, indicating that the influence of sweep angle on the 
lateral stability can be neglected. 

In fact, pressure is basically an impact event and is little affected by 
the neighboring points at hypersonic conditions [15]. Then from this 
point of view, the influence of sweep angle may also be neglected. 

Next, let’s concentrate on the effect of dihedral angle. As sketched in 
Fig. 3, for a body with positive dihedral, due to the difference in the 
direction of the speed component VsinβsinΓ, sideslip produces an in
crease in angle of attack on the right semispan and a decrease in angle of 
attack on the left semispan. The increment on each side can be expressed 
as follows 

Δαr ≈ sinΔαr ≈ tanΔαr =
V sin β sin Γ

V cos β
≈ β sin Γ

Δαl ≈ − β sin Γ
(3) 

According to the Newtonian theory, the pressure coefficient incre
ment on the right semispan is 

ΔCp,r =2sin 2(θα +Δα) − 2sin 2θα
=2[sin(θα +Δα) − sinθα]⋅[sin(θα +Δα)+sinθα]

=2[sinθα cos Δα+sinΔαcos θα − sinθα]⋅[sinθα cosΔα+sinΔαcos θα +sinθα]

≈2[sinθα +sinΔαcosθα − sinθα]⋅[sinθα +sinΔαcosθα +sinθα]

=2sinΔα⋅cosθα⋅(2sinθα +sinΔα⋅cosθα)

(4)  

where θα = θ+ α. And the pressure coefficient increment on the left 
semispan is 

ΔCp, l = 2sin 2(θα − Δα) − 2sin 2θα
= − 2 sin Δα⋅cos θα⋅(2 sin θα − sin Δα⋅cos θα)

(5) 

Then the pressure coefficient increment on the lower surface can be 
calculated as 

ΔCp = ΔCp,r − ΔCp, l = 2 sinΔα⋅cos θα⋅4 sin θα
= 4 sinΔα⋅sin 2θα
≈ 4β sin Γ⋅sin 2θα

(6) 

The pressure increment can lead to the variation of both the normal 
force and side force, which can be calculated as 

ΔCz = − ΔCp ⋅cos Γ⋅q∞⋅Shalf
/(

q∞⋅Sref
)

≈ − 4β sin Γ⋅sin 2θα⋅cos Γ⋅Shalf
/

Sref
(7)  

ΔCy = − ΔCp⋅sin Γ⋅q∞⋅Shalf
/(

q∞⋅Sref
)

≈ − 4β sin Γ⋅sin 2θα⋅sin Γ⋅Shalf
/

Sref
(8) 

Further assuming that the deflection angle θ, angle of attack α, and 
dihedral angle Γ are small, the above expressions can be simplified as 

ΔCz ≈ − 8β⋅Γ⋅θα⋅Shalf
/

Sref (9)  

ΔCy ≈ − 8β⋅Γ2⋅θα⋅Shalf
/

Sref (10) 

Note that both the normal force and side force can contribute to the 
roll moment. The corresponding roll moment coefficient produced by 
the normal force is 

Cl,1 = ΔCz⋅y
/

Lref
≈ − 8β⋅Γ⋅θα⋅Shalf

/
Sref ⋅y

/
Lref

(11) 

With the reference location being chosen to be the nose, the roll 
moment coefficient produced by the side force is 

Cl,2 = − ΔCy⋅z
/

Lref
≈ 8β⋅Γ2⋅θα⋅Shalf

/
Sref ⋅z

/
Lref

(12) 

Note that the above result is based on the constant pressure distri
bution assumption, which naturally holds for the simplified geometry 
model calculated by the Newtonian theory. In such case, the center of 
pressure should coincide with the centroid of the lower surface on each 
side, as shown in Fig. 4. The distance of centroid away from the nose can 
be expressed as 

x=
2
3

L; y =
1
3
⋅
1
2

b =
1
6

b; z =
1
3

h (13) 

Assume that the reference length for roll moment is equal to b/2, and 
according to the geometric relationship, we can obtain 

y
Lref

=
b/6
b/2

=
1
3

(14)  

Fig. 2. Influence of sweep angle on the effective speed for each side.  

Fig. 3. Influence of dihedral angle on the effective angle of attack for each side.  
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z
Lref

=
1
3
⋅

h
b/2

=
1
3

⋅tan Γ ≈
1
3

Γ (15) 

Further assuming that the reference area is equal to Shalf, Eqns. (11- 
12) can be reduced to 

Cl,1 ≈ −
8
3

β⋅Γ⋅θα (16)  

Cl,2 ≈
8
3

β⋅Γ3⋅θα (17) 

Finally, the resultant roll moment becomes 

Cl = Cl,1 + Cl,2

≈ −
8
3

β⋅Γ⋅θα +
8
3

β⋅Γ3⋅θα

≈ −
8
3

β⋅Γ⋅θα
(
1 − Γ2)

(18) 

For small dihedral angle, we have Γ2≪1. Then Eqn. (18) can be 
finally simplified as 

Cl ≈ −
8
3

β⋅Γ⋅θα (19) 

The above result implies that for the roll moment, the influence of 
side force can almost be neglected. In fact, when the reference location 
moves downward along the Z-axis, the contribution of side force to the 
roll moment would become smaller in that the moment of the upper and 
lower part can be counteracted mutually. 

Hence, based on the expression of Cl,1, the roll stability derivative Clβ 
becomes 

Clβ ≈ − 8Γ⋅θα⋅
y

Lref
⋅
Shalf

Sref

≈ −
8
3

Γ⋅θα

(20) 

The above equation can clearly reveal the dominant influence of 
geometric parameters and angle of attack on the roll stability derivative. 
It can be found that the lateral static stability increases linearly as the 
deflection angle, dihedral angle, or angle of attack increases at hyper
sonic conditions. 

2.3. Directional static derivative Cnβ 

According to Eqn. (10), the side force static derivative can be 

expressed as 

Cyβ ≈ − 8Γ2⋅θα⋅Shalf
/

Sref
≈ − 8Γ2⋅θα

(21) 

The yaw moment is mainly produced by the side force. Again we 
assume that the pressure distribution is constant and the reference 
location is chosen to be the nose of the model, the directional stability 
derivative Cnβ can be expressed as 

Cnβ = − Cyβ⋅x
/

Lref

≈ − 8Γ2⋅θα⋅
Shalf

Sref
⋅

x
Lref

(22) 

Assuming that the reference length for the yaw moment is equal to L, 
the equation can be further reduced to 

Cnβ ≈ −
16
3

Γ2⋅θα (23) 

The above equation can clearly reveal the dominant influence of 
geometric parameters and angle of attack on the yaw stability deriva
tive. By comparing Eqn. (20) and Eqn. (23), we can find that the for
mulas of the two static derivatives are quite close. The main difference 
lies in that Cnβ is proportional to Γ2 while Clβ is proportional to Γ, 
indicating that the increase of dihedral angle has a more prominent 
influence on the improvement of directional static stability. 

3. Computational-Fluid-Dynamics solver 

The CFD results will be used to validate the accuracy of the simplified 
models and analyze the influence of viscous effects. Thus, the numerical 
methods are described in this section, along with the validation of 
chemical nonequilibrium models and the grid independence. 

3.1. Numerical methods 

The steady-state inviscid, laminar, and turbulent flow numerical 
simulations are performed in this paper. A cell-centered finite volume 
method is employed to solve the three-dimensional compressible Euler, 
Navier-Stokes, or Reynolds-Averaged Navier-Stokes equations. The 
AUSM + spatial discretization scheme is adopted, with an implicit 
lower-upper symmetric Gauss-Seidel scheme for the temporal integra
tion to accelerate convergence. For the laminar flow simulations, both 
the calorically perfect gas model and non-equilibrium reacting gas 
model are adopted and compared to examine the influence of the real 
gas effects. For the turbulent flow simulations, the 3-equation k-ε-Rt 
model is adopted [16]. For the chemical nonequilibrium simulations, a 
modified Fick’s model is applied to calculate the species mass diffusion 
fluxes, ensuring that the sum of individual species’ diffusion fluxes is 
zero [17]. The transport properties of mixture species are calculated 
according to Gupta’s mixing rule [18], and the viscosity and thermal 
conductivity of species are calculated using collision cross-section data 
compiled by Wright [19]. More details about the CFD solver and its 
validation for hypersonic laminar and turbulent flows with the calori
cally perfect gas model can be found in Refs. [9,20,21]. 

For the nonequilibrium reacting gas model, the hypersonic cylinder 
flow experiment by Hannemann et al. [22] in DLR is selected as the 
validation case. The radius of the cylinder is 0.045 m. The freestream 
condition in the experiment, along with the gas species, is listed in 
Table 1. The freestream Reynolds number and Knudsen number based 

Fig. 4. Centroid of the lower surface.  

Table 1 
Freestream condition for the DLR cylinder experiment [22].  

P∞(Pa) T∞(K) u∞(m/s) ρ∞(kg/m3) M∞ 

687 694 4776 0.00326 8.78 
ξN2 

ξO2 ξNO ξN ξO 

0.73555 0.134 0.0509 1.0e-9 0.07955  
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on the radius is 2.11 × 10− 4 and 5.44 × 10− 4, respectively (the viscosity 
coefficient is 3.31 × 10− 5kg/(m⋅s) and the mean free path is 2.45 ×
10− 4 m). Therefore, the fully laminar model is adopted without 
considering the slip effects. In addition, the chemical reaction model in 
numerical simulations is the 5-species gas and 6-reaction model devel
oped by Gupta et al. [18], as given in Table 2. The above calculate 
methods are the same as those used in Ref. [22]. The three-dimensional 
computation is performed and the grid is shown in Fig. 5. 

Note that the streaming cylinder is very often unstable causing the 
formation and separation of vortexes periodically from the opposite 
edges and the presence of chemical reactions contributes to the arising 
instability [23,24]. Therefore, the unsteady simulation is performed 
based on the steady result with the time step being 1 × 10− 6s. The 
pressure and Mach contours at the symmetry plane at different time 
steps around the cylinder are given in Fig. 6. It can be found that at such 
condition, the vortexes around the opposite edge have no influence on 
the flow around the windward side. Furthermore, the pressure distri
bution along the wall and the density distribution along the stagnation 
streamline at the symmetry plane from the current solver are compared 
with those from the experiment and the DLR CEVCATS-N code, which 
are plotted in Fig. 7. It is shown that the pressure distribution from the 
chemical nonequilibrium model agrees very well with the experiment 
data, with the deviation of the stagnation pressure being only 2.22%. 
And the deviation of the shock stand-off distance from the experiment 
(0.265R) is only 0.75% for the current result (0.263R). The distribution 
is rather identical for the two numerical results. Note that the difference 
of the density distribution near the shock wave between CFD and 
experiment is mainly due to the expansion of the freestream caused by 
the conical nozzle [22]. The above results demonstrate that the current 
solver is reliable for hypersonic flow simulations with chemical 
reactions. 

3.2. Grid independence validation 

The geometry model defined by the parameter combination θ = 5◦

and Γ = 15◦ is taken here to conduct the grid independence validation. 
The number of the coarse and refined grid is about 6,000,000 (Fig. 8) 
and 12, 000, 000 cells, respectively. The latter one is refined on the 
surface for about two times based on the coarse grid. The first grid 
spacing normal to the wall is 1 × 10− 5 m, being small enough to satisfy 
y+≤1. And the near field domain around the lower surface is specially 
refined to better capture the shock wave. The calculate condition is: M∞ 
= 20, H = 60 km, α = 0◦, and β = 2◦. The corresponding freestream 
Reynolds number is 1.2 × 105, and thus the fully laminar model with an 
isothermal wall condition Tw = 1000 K is adopted. For the chemical 
nonequilibrium simulations, the 5-species air and 6-reaction model 
(Table 2) are employed, along with the fully catalytic wall. 

The comparison of aerodynamic forces is given in Table 3, including 
the inviscid and laminar simulations with different gas models. We can 

find that the results from the two grids are extremely coincident, with 
the largest relative difference being only 0.94% (Laminar-RG, Cl). 
Therefore, the coarse grid is used herein to save the computational costs. 

In addition, the temperature contours at the symmetry plane and 
temperature distribution at different cross sections for different gas 
models are shown in Figs. 9 and 10. We can find that the temperature is 
reduced by the chemical reactions, but the maximum temperature in the 
flowfield is no more than 5000K for the two models. Therefore, the 
current reaction models without ionization are sufficient to capture the 
chemical nonequilibrium effects. 

3.3. Accumulation of error 

Because the governing equations are discretized and solved on finite 
grid size, a definite error occurs in integration at each step and the 
accumulation of error is proportional to the number of integration steps 
[25]. The integration steps should not exceed the maximal allowable 
steps that accumulated error exceeds the acceptable value. The maximal 
allowable number of integration steps is determined by [25]. 

nmax =(Smax/Serr)
2 (24)  

where Smax is total error and it is presumed to be between 1% and 5%. 
Serr ≈

∑3
i=1Si and Si is the relative error of integration in one dimen

sional case and defined as 

Si ≈ (ΔL/Li)
k+1 (25)  

where △L is the mean cell size and Li is the domain size in the “i” di
rection, k is the order of accuracy of numerical scheme. The ratio of 
maximal allowable and actual number of integration steps is defined as 
follow, which tends to unit when the accumulate error tends to the 
maximal allowable value. 

Rs =
nmax

n
(26) 

Table 2 
Chemical reactions and reaction rate coefficients of the Gupta model [18].  

No. Reaction Afr Bfr Cfr Abr Bbr Cbr 

1 O2 + I1 ⇔ 
2O+ I1 

3.61e18 59400 − 1 3.01e15 0 − 0.5 

2 N2 + I2 ⇔ 
2N+ I2 

1.92e17 113100 − 0.5 1.09e16 0 − 0.5 

3 N2 + N ⇔ 
2N+ N 

4.15e22 113100 − 1.5 2.32e21 0 − 1.5 

4 NO+ I3 ⇔ 
O+ N+ I3 

3.97e20 75600 − 1.5 1.01e20 0 − 1.5 

5 NO+ O ⇔ 
O2 + N 

3.18e9 19700 1 9.63e11 3600 0.5 

6 N2 + O ⇔ 
NO+ N 

6.75e13 37500 − 1 1.50e13 0 0 

I1: O, N, O2, N2, NO; I2: O, O2, N2, NO; I3: O, N, O2, N2, NO.  

Fig. 5. Three-dimensional grid around the cylinder.  
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Fig. 6. Flow contour at the symmetry plane at different time steps.  

Fig. 7. Comparison of flow characteristics at the symmetry plane.  
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For the coarse grid, the number of grid points along the streamwise, 
spanwise, and normal direction is 191, 188, and 192, respectively. And 
the aerodynamic forces for the coarse grid can be converged by nearly 
20,000 steps. The corresponding accumulate error is listed in Table 4. 
It’s clear that the present simulations have high reliability in terms of 
accumulate error. 

4. Model validation 

Three different configurations are chosen to validate the accuracy of 
the simplified analytical models. As sketched in Fig. 11, the parameter 
combinations are (θ, Γ) are (5◦, 15◦), (5◦, 20◦), and (10◦, 20◦), 

respectively. Note that all the configurations are 1 m long without 
special instructions. 

The accuracy of Newtonian theory improves as the Mach number 
increases. Therefore, the influence of Mach number on the static de
rivatives is first studied based on the inviscid CFD solutions of the 
configuration θ = 5◦ and Γ = 15◦, shown in Fig. 12. Note that the static 
derivatives from CFD are calculated by the linear interpolation of the 
forces or moments at β = 2◦. It can be found that both the lateral and 
directional static stability decreases as the Mach number increases. The 
difference of results between Mach 5 and Mach 10 is significant, but all 
the derivatives are almost kept unchanged above Mach 15. 

Based on the above influence of Mach number, the comparison of 
derivatives for the three typical configurations at M∞ = 20 is given in 
Fig. 13. Note that the results of the model correspond to those calculated 

Fig. 8. Coarse grid used in numerical simulations (about 6,000,000 cells).  

Table 3 
Comparison of aerodynamic forces between different grids.   

Cy × 10− 3 Cl × 10− 3 Cn × 10− 3 

Coarse Refined Coarse Refined Coarse Refined 

Euler − 1.879 − 1.877 − 2.235 − 2.235 1.324 1.323 
Laminar-PG − 2.792 − 2.811 − 2.833 − 2.860 2.150 2.167 
Laminar-RG − 2.697 − 2.704 − 2.669 − 2.682 2.083 2.090  

Fig. 9. Temperature contours at the symmetry plane for different gas models, α = 8◦.  

Fig. 10. Comparison of temperature distribution around the lower surface at different cross sections, α = 8◦.  

Table 4 
Accumulate error.  

S1 S2 S3 Serr Smax n nmax Rs 

1.44 ×
10− 7 

1.51 ×
10− 7 

1.41 ×
10− 7 

4.36 ×
10− 7 

0.05 20,000 1.32 ×
1010 

6.6 ×
105  
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by Eqns. (20), (21) and (23). It can be found that good agreement be
tween the analytical models and CFD is obtained. And as shown in 
Fig. 14, most relative errors are no more than 15%. Especially, the slope 
of curve is well predicted for different configurations. Such results 
demonstrate that the derivation is reasonable, and the analytical models 
can be considered quite acceptable to capture and analyze the dominant 

geometric influence on the lateral-directional static stability. 
According to the derivation process, the errors of analytical models 

mainly result from the application of Newtonian theory, the sweep in
dependence approximation, and the constant pressure distribution 
assumption on each side. As for the last factor, the inviscid pressure 
contour is illustrated in Fig. 15. It shows that the pressure near the 

Fig. 11. Configurations with different parameter combinations.  

Fig. 12. Comparison of derivatives at different Mach numbers from inviscid CFD solutions.  

Fig. 13. Comparison of derivatives for different configurations, M∞ = 20.  

Fig. 14. Relative errors of analytical models for different configurations, M∞ = 20.  
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symmetry plane is lower (the region of pressure dip, called later) than 
that of the other region on each side, which is mainly attributed to the 
three-dimensional flow effects. 

5. Influence of viscous effects 

The influence of viscous effects on the aerodynamic performance is 
of vital importance especially at hypersonic conditions. For example, the 
comparison of the inviscid and laminar lift-to-drag ratio (L/D) is given in 
Fig. 16(a) at the condition of M∞ = 20, H = 60 km. It is clear that the L/D 
is greatly reduced when the viscous effects are taken into account, which 
is mainly attributed to the drag increase as shown in Fig. 16(b). 

In order to analyze the influence of viscous effects on stability de
rivatives, which cannot be directly captured by the above simplified 
models, the inviscid and viscous CFD results for different configurations 

are compared in Figs. 17–19 at the condition of M∞ = 20, H = 60 km. 
Note that Laminar-inv and Laminar-total denotes the inviscid components 
and the total components (including the force integral of shear stress) 
from the laminar perfect gas model, respectively. It can be observed that 
both the lateral and directional stability are improved evidently by the 
viscous effects. 

It’s well known that for hypersonic flight, the high altitude and large 
Mach number may lead to a thick hypersonic boundary layer, which 
displaces the outer inviscid flow and changes its nature. In turn, the 
substantial changes on the outer inviscid flow may feedback to the 
boundary layer, affecting its growth and properties. Such mutual 
interaction process is called the strong viscous interaction [26]. There
fore, the influence of viscous effects at hypersonic conditions can be 
decomposed into two aspects, including the induced pressure caused by 
the strong viscous interaction and the shear stress. 

Fig. 15. Inviscid pressure contour at the condition: M∞ = 20, α = 0◦ (θ = 5◦, Γ = 15◦).  

Fig. 16. Comparison of L/D and drag coefficient at different calculate conditions (θ = 5◦, Γ = 15◦).  
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First, by comparing the derivatives from Euler and Laminar-inv, both 
the lateral and directional stability are improved, while the improve
ment of the lateral stability is evidently larger than that of the direc
tional stability. In order to explain this phenomenon, the comparison of 
pressure distribution at the base plane is given in Figs. 20 and 21. It can 
be found that at the same flight condition, the laminar pressure is 
apparently larger than the inviscid pressure, which results from the 
hypersonic strong viscous interaction effects. In fact, in terms of the 
pressure variation, the influence of viscous interaction is somewhat 
equivalent to the increase of angle of attack, especially near the leading 
edge where the viscous interaction is stronger. Then according to Eqn. 
(6), the pressure increment caused by sideslip should increase when the 
viscous effects are considered. However, only the distribution near the 
leading edge (region I and IV) is consistent with the above analysis, 
while the distribution near the symmetry plane (region II and III) is just 

opposite. 
Such results can be mainly attributed to the three-dimensional flow 

effects. From the inviscid pressure distribution shown in Fig. 22, an 
evident boundary exists between the pressure dip near the symmetry 
plane and the region where the pressure is almost uniform. The 
boundary moves left for positive sideslip, leading to the local increase of 
pressure increment. And as the angle of attack increases, the pressure 
dip turns larger, making the region of the local increase move outward. 
The result is that the pressure increment caused by the strong viscous 
interaction is partly counteracted by the three-dimensional flow effects. 
However, for the roll moment, the arm of force near the symmetry plane 
(region II and III) is shorter than that near the leading edge (region I and 
IV), weakening the influence of three-dimensional flow effects on the 
lateral stability. Therefore, for the inviscid components, the improve
ment of the lateral stability is evidently larger than that of the 

Fig. 17. Comparison of derivatives at different calculate conditions (θ = 5◦, Γ = 15◦).  

Fig. 18. Comparison of derivatives at different calculate conditions (θ = 5◦, Γ = 20◦).  

Fig. 19. Comparison of derivatives at different calculate conditions (θ = 10◦, Γ = 20◦).  
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directional stability. 
The influence of the shear stress can be analyzed by comparing the 

derivatives from Laminar-inv and Laminar-total. As shown in Fig. 22(b), 
the positive sideslip changes the distribution of transverse pressure 
gradient, making the shear stress component τy increase at the right side 
and decrease at the left side, which is shown in Fig. 23. However, the 
variation of the normal component τz is very minor. Therefore, the shear 
stress mainly affects the side force and leads to an evident improvement 
of the directional stability. 

Furthermore, the comparison of derivatives between the laminar 
perfect gas model and chemical nonequilibrium model is plotted in 
Fig. 24. It can be found that the chemical nonequilibrium effects have a 

more prominent influence on the lateral stability, with the maximum 
relative variation being 7.95% (α = 8◦). The reason can be explained 
according to Figs. 25 and 26, where the comparison of the pressure and 
shear stress distribution is plotted, respectively. At the same flight 
condition, the chemical reactions can decrease the wall pressure. Be
sides, the pressure increment caused by sideslip is also reduced near the 
leading edge, implying that the influence of strong viscous interaction 
can be weakened by the chemical nonequilibrium effects. However, the 
shear stress component τy and △τy caused by sideslip is little affected. 
Therefore, the lateral stability is slightly reduced and the directional 
stability is almost unchanged by the chemical reactions. 

Finally, the fully laminar and turbulent results with perfect gas 

Fig. 20. Comparison of dimensionless pressure distribution at the base plane, α = 0◦ (θ = 5◦, Γ = 15◦).  

Fig. 21. Comparison of dimensionless pressure distribution at the base plane, α = 8◦ (θ = 5◦, Γ = 15◦).  

Fig. 22. Comparison of pressure distribution at the base plane (θ = 5◦, Γ = 15◦).  
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model are compared in Fig. 27 at the condition of M∞ = 20, H = 40 km 
for the configuration with L = 10 m. In such condition, the Reynolds 
number is 1.58 × 107 and the turbulent effects should be considered. 
Compared with the laminar results, the turbulent flow mainly improves 
the directional stability, with the maximum relative variation being 
9.51% (α = 0◦). This phenomenon can be explained according to Figs. 28 
and 29. It is observed that at the same flight condition, the turbulent 
flow makes the wall pressure higher, but the pressure increment caused 
by sideslip is only slightly altered. As a result, the lateral stability is only 
improved by 3.32% at α = 8◦. As expected, the main difference lies in the 
shear stress τy and the increment caused by sideslip is higher for the 
turbulent flow, leading to the more evident improvement of the direc
tional stability. 

6. Conclusions 

Analytical models of lateral-directional static derivatives are pro
posed based on the simplified geometry model, which can directly reveal 
the relationship between the geometric features and the stability. It’s 
found that the lateral and directional stability both increase as the 
deflection angle, dihedral angle, or angle of attack increases, whereas 
the influence of sweep angle can be neglected. The difference lies in that 
the directional stability is proportional to the square of dihedral angle 
while the lateral stability is proportional to dihedral angle, indicating 
that the dihedral angle has a more prominent influence on the direc
tional static stability. In addition, the influence of side force on the 
lateral stability can be neglected. The reasonable accuracy of the models 
is validated in comparison with the inviscid numerical solutions. 
Furthermore, based on the numerical results, it’s found that both the 

Fig. 23. Comparison of shear stress distribution at the base plane, α = 8◦ (θ = 5◦, Γ = 15◦).  

Fig. 24. Comparison of derivatives with different gas models (θ = 5◦, Γ = 15◦).  

Fig. 25. Comparison of dimensionless pressure distribution at the base plane, α = 8◦.  
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Fig. 26. Comparison of dimensionless shear stress distribution at the base plane, α = 8◦.  

Fig. 27. Comparison of derivatives with different viscous models (θ = 5◦, Γ = 15◦).  

Fig. 28. Comparison of dimensionless pressure distribution at the base plane, α = 8◦.  

Fig. 29. Comparison of dimensionless shear stress distribution at the base plane, α = 8◦.  

S.-Q. Guo et al.                                                                                                                                                                                                                                  



Acta Astronautica 198 (2022) 431–444

444

lateral and directional stability are improved by the viscous effects. 
Specifically, the variation of lateral stability is mainly affected by the 
strong viscous interaction, and the variation of directional stability is 
affected by both the strong viscous interaction and the shear stress. In 
addition, the lateral stability is slightly reduced and the directional 
stability is almost unchanged by the chemical nonequilibrium effects. 

In summary, according to the analytical models proposed in this 
paper, there are fundamental differences in the hypersonic lateral- 
directional static stability compared with the conventional theory of 
flight dynamics. And the deflection angle and dihedral angle should be 
especially concerned to achieve excellent lateral-directional stability 
design and optimization for hypersonic vehicles. In the future, the 
simplified models can be combined with data-driven methods, such as 
the machine learning symbolic regression, to construct the stability 
models for more complex hypersonic configurations, such as the 
waverider. 
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