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A B S T R A C T   

The double cantilever beam (DCB) tests are widely used to assess the interfacial delamination properties of 
laminated composites. For quasi-static loads, the DCB tests are standardized based on the beam mechanics; for 
dynamic loads, however, such as high-loading-rate impact and cyclic loads, there is no established analytical 
theory. This presents a significant obstacle preventing the research community from assessing the delamination 
behavior of composites or adhesives for their application under complex in-service loads. In this paper, the 
theory of evaluating dynamic mode-I delamination driving force for DCBs under general displacement loads is 
developed for the first time, accounting for structural vibration effects. The developed theory is demonstrated by 
two examples: high-loading-rate split Hopkinson bar impact and cyclic fatigue loads. The analytical solutions are 
validated by published experiment results and in-house tests. This work provides a fundamental analytical tool to 
study and assess the fracture behavior of fiber reinforced-polymer composite and adhesive materials under 
various loading conditions.   

1. Introduction 

Carbon-fiber-reinforced plastics (CFRPs) are widely used in the 
aerospace, automotive, civil engineering, energy and other sectors, 
where the light-weight structures are desired due to their high specific 
stiffness and strength [1,2]. Without reinforcement in the transverse 
direction, however, CFRPs are prone to delaminate along the interfaces 
between laminae [3–5]. Many studies focused on the improvement of 
fracture toughness by toughening the resins/adhesives [6,7] or by using 
additional transverse reinforcements (stitching [8,9] or z-pins [10,11]) 
to improve the delamination-resisting force. To assess the mode-I 

delamination behavior and to measure the fracture toughness or fa
tigue delamination growth rate, usually double-cantilever beams (DCBs) 
are employed according to a standardized test method in ASTM D5528 
[12], but this is performed in the quasi-static loading regime. For real 
engineering structures, however, for instance, aeronautical components, 
which are prone to impact and in-service cyclic loads, the conventional 
measurement of delamination driving force, that is, energy release rate 
(ERR), is not adequate, and further fundamental knowledge of their 
fracture behavior under dynamic loads is required [13]. It is worth 
noting that under dynamic and cyclic loads, not only the strain energy 
can be dissipated during delamination advancement but also the kinetic 
energy, and, therefore, the delamination driving force is called ERR or 
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dynamic ERR rather than strain energy release rate [14–17]. As noted by 
Freund [14], dynamic fracture addresses the fracture phenomena when 
material inertia becomes significant, and, therefore, the assessment of 
delamination driving force must consider the inertial effect and kinetic 
energy associated; this driving force is the dynamic ERR. For a DCB 
under impact load, the dynamic ERR G as the total ERR can be parti
tioned into two components, namely, the ERR component due to strain 
energy of quasi-static motion GU

st and the ERR component due to dy
namic effect Gdyn, where G = GU

st +Gdyn. For a DCB under cyclic load, the 
dynamic ERR G can be partitioned into two components, namely, the 
applied ERR component Gappl and the ERR component due to dynamic 
effect Gdyn, where G = Gappl + Gdyn. This definition is described in 
Section 2. 

The assessment of delamination behavior under impact or high 
loading rates was initially studied with using a servo-hydraulic machine 
[18] (with a limited range of high loading rates), and drop weight 
impact [19] (which suffers from the issue of mixed-mode loading due to 
unsymmetric opening), and more recently, split Hopkinson bar [20,21]. 
The last method is more efficient in generation of high-loading rates as 
well as producing symmetric opening to assess a pure mode-I delami
nation behavior. But since there is no theory to guide the experimental 
setup and to post-process the experimental data, the researchers [21–23] 
had to adopt experimental-numerical methods. Usually, the delamina
tion driving force is calculated with numerical simulations, which 
require experimental data first, such as the applied displacement or 
external force, crack length, and, then, incorporate these data into nu
merical models to derive the ERR with respective numerical methods, 
such as virtual crack-closure technique (VCCT) or cohesive-zone 
modelling (CZM). This method lacks transferability that enables one 
numerical model to be directly adopted to study other cases, since nu
merical models are mostly suitable for specific cases, so there is a 
pragmatic requirement for theoretical development to resolve this. 

DCBs under cyclic loads can be used to measure fatigue 
delamination-initiation toughness and study fatigue delamination- 
propagation behavior. The conventional method standardized in 
ASTM D6115 [24], allows the fatigue delamination behavior to be tested 
at frequencies only between 1 and 10 Hz [25,26] to avoid heating ef
fects. Also the solution for the fatigue delamination driving force, that is, 
maximum strain energy release rate (rather than maximum ERR) ac
counts only for quasi-static motion, without considering a dynamic 

effect of cyclic loads. Nevertheless, Maillet et al. [27] designed a novel 
device capable of applying a frequency of up to 100 Hz with an insig
nificant temperature rise. For even higher frequencies, heating effects 
can be mitigated by cooling [28] or intermittently interrupted cooling 
[29]. The assessment of the fatigue delamination driving force in ASTM 
D6115 [24], however, still requires measurement of the applied load, 
but under high-frequency cyclic loads, the slender DCB structure expe
riences significant vibration due to inertia. In this case, therefore, the 
external force cannot be measured accurately, resulting in an incorrect 
assessment of dynamic ERR. To address this, an analytical theory 
considering the dynamic effect of DCB but allowing no measurement of 
external force is desirable, which can be used to investigate the 
cyclic-load-induced dynamic effect as well as the frequency effect for 
fatigue delamination driving force. 

As discussed above, the previous literature was focused more on 
experimental analysis using experiments at high-loading-rate, impact 
and cyclic loads. To the authors’ best knowledge, no analytical model 
was developed to study the dynamic effect explicitly; therefore, re
searchers have to resort to experimental-numerical methods. Accord
ingly, in this paper, the theory of dynamic mode-I delamination in a DCB 
test is developed for general displacement loads including high-loading- 
rate and cyclic ones to provide an analytical solution that can be 
employed to study the dynamic effect and to post-process the experi
mental data for delamination initiation. The theoretical solutions for the 
delamination driving force in presence of structural vibration would 
allow measurements of the dynamic fracture toughness at initiation 
under arbitrary dynamic loads as well as investigations of fatigue 
delamination behavior. Note that the delamination propagation under 
dynamic loads, as a dynamic moving boundary problem, is beyond the 
scope of this paper, since it requires consideration of crack-propagating 
speeds, the dispersive nature of the beam as 1D waveguide to supply the 
energy flux to the crack tip, and the Doppler effect due to the fast- 
moving crack tip. The interested readers can consider [16]. In this 
paper, the theory is derived in Section 2 and applied to delamination 
problems under split Hopkinson bar impact and cyclic loads. Validation 
by experiments and verification against numerical models are presented 
in Section 3. Conclusions are given in Section 4. 

2. Theory 

In this section, a theoretical solution for the dynamic ERR of a DCB 

Nomenclature 

a Delamination length 
cn Coefficient of nth polynomial displacement component 
dm Amplitude of mth cyclic displacement component 
E Young’s modulus 
f Frequency of applied cyclic displacement 
fdyn Dynamic factor 
Fn(x) Shifting function for nth polynomial displacement 

component 
G Dynamic energy release rate (ERR) as the total ERR 
Gappl, Gdyn Applied ERR component, ERR component due to dynamic 

effect 
GU

st ERR component due to the strain energy of quasi-static 
motion 

Hm(x) Shifting function for mth cyclic displacement component 
P(x) Shifting function for initial time-independent displacement 

component 
Q(t) Induced displacement 
R Ratio of minimum to maximum applied displacement in 

cyclic load 

Ti(t), Ṫi(t) Modal displacement and velocity of ith normal mode 
t Time 
w0(t) Applied general displacement 
w1 Applied initial time-independent displacement component 
w(x, t),wfv(x, t) Deflections for total and free vibration responses 
Wi(x) ith normal mode 
βi ith vibration mode’s wavenumber 
δij Kronecker delta 
δmax, δmin Applied maximum and minimum cyclic displacement 
θm Angular frequency of mth applied cyclic displacement 

component 
ν Poisson’s ratio 
ξrange, ξmean Contribution of applied range and mean of cyclic 

displacement 
ξi ith induced vibration contribution 
ρ Density 
φi(x) ith mode shape 
χi Ratio of ξi and ξrange 

ωi Angular frequency of ith vibration mode  
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specimen under general displacement loads (as the loading conditions) 
is derived analytically in the context of structural vibration based on 
beam dynamics. The configuration of the symmetric DCB specimen is 
shown in Fig. 1a: the delamination length is a, the thickness and width 
for one DCB arm are h and b, and, therefore, the cross-sectional area is A 
= bh and the second moment of area is I = bh3/12. Following the con
ventional analytical method of analyzing a DCB, the delaminated region 
of the beam is isolated and assigned the coordinates as shown in Fig. 1b, 
where the crack tip is assumed to be built-in at x = 0, with the deflection 
of beam section in x-z plane, denoted w(x,t). Note that in reality the 
crack tip can rotate, and so the built-in boundary-condition assumption 
does not predict the ERR accurately. This is addressed by introducing the 
effective delamination length aeff = (a + Δ), as in ASTM D5528 [12] 
originating in Ref. [30], or by analytical solution [31]. It is also assumed 
that h ≪ a, so that the Euler-Bernoulli beam theory applies. 

The general applied time-dependent displacement at the free end is 
assumed to be of the form 

w0(t) =w1 +
∑N

n=1
cntn +

∑M

m=1
dm sin(θmt) , (1)  

where w1 is the initial time-independent displacement component, 
∑N

n=1cntn is the time-dependent polynomial component, and 
∑M

m=1dm sin(θmt) is the harmonic component, representing quasi-static, 
dynamic and cyclic applied displacements, respectively. 

Generally, the ERR of a stationary delamination in a DCB under 
dynamic loads can be determined by the crack-tip bending moments, 
using a crack-tip energy flux integral [14,16], and the dynamic ERR is 

G= 2
1

2bE

[
EIw(2)(0, t)

]2

I
, (2)  

where EIw(2)(0, t) is the internal bending moment of one DCB arm at 
crack tip x = 0, with w(x,t) being the displacement of this DCB arm 
(Fig. 1b), and the coefficient of 2 in Eq. (2) indicates that the total ERR is 
for DCB specimen with two DCB arms. Eq. (2) is for the plane-stress 
condition. For the plane-strain condition, E in Eq. (2) and throughout 
this paper should be replaced with E/(1 − ν2). 

The deflection of the DCB arm shown in Fig. 1b is derived in Section 
2.1, which is then employed to determine the dynamic ERR in Section 
2.2 with two important applications for a split Hopkinson bar impact in 
Section 2.2.1 and for a cyclic fatigue load in Section 2.2.2. 

2.1. Dynamic transverse response of DCB arm under general displacement 

2.1.1. Deflection assumptions 
Under the applied general displacement w0(t) given in Eq. (1), the 

dynamic transverse deflections of the DCB arm w(x,t) can be assumed of 
the following form by introducing shifting functions [32]: 

w(x, t)=P(x)w1 +wfv(x, t) +F0(x)+
∑N

n=1
Fn(x)cntn +

∑M

m=1
Hm(x)dm sin(θmt) ,

(3)  

where P(x) is the shifting function for the time-independent initial 
displacement of w1, wfv(x, t) is the free-vibration component, and Fn(x)
and Hm(x) are the corresponding shifting functions for applied 
polynomial-displacement and harmonic-displacement components, 
respectively. The physical understanding of shifting functions is the 
distribution of the respective applied displacement components along 
the DCB arm. Particularly for the quasi-static component w1, it is not 
time-dependent and, therefore, its contribution can be solved within the 
quasi-static beam mechanics giving P(x) = − x3 /(2a3)+ 3x2 /(2a2). 
The 0th-order shifting function F0(x) is time-independent but induced 
by the time-dependent polynomial displacement component according 
to Grant [32], indicating the nonlinear effects of the applied 
polynomial-displacement component. 

The governing equations for the free-vibration component wfv(x, t), 
and the shifting functions Fn(x) and Hm(x), are now derived (boundary 
conditions detailed in Appendix A). It is worth noting that the boundary 
conditions for the 0th shifting function are F0(a) = 0, different from the 
other order shifting functions, for which Fn(a) = 1 (n ≥ 1). The free- 
vibration solution for wfv(x, t) is given in Section 2.1.2 and the solu
tions for the shifting functions Fn(x) and Hm(x) are in Sections 2.1.3 and 
2.1.4, respectively. 

The equation of motion for the Euler-Bernoulli beam [33] in free 
vibration is 

EIw(4)(x, t)+ ρAẅ(x, t) = 0 . (4) 

By combining Eqs. (3) and (4), and forcing homogeneous conditions, 
the governing equations for the free-vibration component and the 
shifting functions are derived as 

EIw(4)
fv (x, t)+ ρAẅfv(x, t)= 0 , (5)  

EI
∑N

n=1
F(4)

n (x)cntn + ρA
∑N

n=2
n(n − 1)Fn(x)cntn− 2 = 0 , (6)  

EI
∑M

m=1
H(4)

m (x) − ρA
∑M

m=1
θ2

mHm(x) = 0 . (7)  

2.1.2. Solution for free-vibration component 
By the method of separation of variables, the free-vibration compo

nent wfv(x, t) can be expressed as a summation of products of normal 
mode Wi(x) and modal displacement Ti(t): 

Fig. 1. (a) Schematic of DCB specimen; (b) prescribed coordinate system and boundary assumption.  
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wfv(x, t) =
∑∞

i=1
Wi(x)Ti(t) . (8) 

The solution for the normal mode [15,34] is 

Wi(x)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/(ρAa)

√
φi(x) , (9)  

where φi(x) is the mode shape given as 

φi(x)= cosh(βix) − cos(βix) − σi[sinh(βix) − sin(βix)] . (10) 

In Eq. (10), βi is the wavenumber, obtained by tan(λi)− tanh(λi) = 0 
(frequency equation) with λi = βia; and σi = [cosh(λi) −

cos(λi)] /[sinh(λi) − sin(λi)]. The solution for the frequency equation λi 

and the value for σi are given in Appendix B. 
As for the modal displacement Ti(t), its governing equation is ob

tained by combining Eqs. (4) and (8) and introducing the ith mode’s 
natural frequency ωi = β2

i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
EI/(ρA)

√
as 

Ti(t) =Ti(0)cos(ωit) +
Ṫ i(0)

ωi
sin(ωit) , (11)  

where Ti(0) and Ṫi(0) are the initial modal displacement and velocity, 
respectively. According to Ref. [33], they can be determined from the 
initial displacement wfv(x,0) and the velocity ẇfv(x,0) of the 
free-vibration component, respectively, as 

Ti(0)=
∫ a

0
ρAWi(x)wfv(x, 0)dx , (12)  

Ṫ i(0)=
∫ a

0
ρAWi(x)ẇfv(x, 0)dx . (13) 

In Eq. (1), by setting t = 0 with w(x, 0) = w1P(x) and ẇ(x,0) = 0, the 
initial displacement and velocity of free vibration are found to be 

wfv(x, 0)= − F0(x) , (14)  

ẇfv(x, 0)= − c1F1(x) −
∑M

m=1
dmθmHm(x) . (15) 

Note that determination of Ti(0) and Ṫi(0) via Eqs. (12)–(15) requires 
the solutions for shifting functions Fn(x) and Hm(x) (given in Sections 
2.1.3 and 2.1.4). 

2.1.3. Solutions for shifting functions for polynomials 
The shifting functions for Fn(x) by solving the ordinary differential 

equation Eq. (6) together with the available boundary conditions 
(Appendix A). Examination of Eq. (6) reveals F(4)

N (x) = 0, F(4)
N− 1(x) = 0, 

and EIF(4)
n− 2(x)cn− 2 + ρAn(n − 1)Fn(x)cn = 0 for 2 ≤ n ≤ N − 2 (c0 = 1). 

Therefore, the solutions for F(4)
N− 1(x) and F(4)

N (x) are 

FN(x)= −
1

2a3x3 +
3

2a2x2 , (16)  

FN− 1(x)= −
1

2a3x3 +
3

2a2x2 . (17) 

And for Fn(x) (2 ≤ n ≤ N − 2) can be obtained by solving Eq. (6) 
iteratively. 

For the case of N = 3, for instance, the solutions of the shifting 
functions for the applied polynomial-displacement component are 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F3(x)=F2(x)=−
1

2a3x3+
3

2a2x2 ,

F1(x)=−
1

1680a3

[
k1x7 − 7k1ax6+

(
39k1a4+840

)
x3 −

(
33k1a5+2520a

)
x2] ,

F0(x)=−
k0

1680a3

(
x7 − 7ax6+39a4x3 − 33a5x2) ,

(18)  

where k1 = − 6c3ρA /(c1EI) and k0 = − 2c2ρA /(c0EI). The solutions for 
N = 1, N = 2 and N = 4 are given in Supplementary file. 

2.1.4. Solutions for shifting functions for harmonics 
The shifting functions for Hm(x) are obtained by solving the differ

ential equation Eq. (7) together with the boundary conditions 
(Appendix A). 

Hm(x) =
[sin(γma) + sinh(γma)]

2[cos(γma)sinh(γma) − cosh(γma)sin(γma)]
{

− cosh(γmx) + cos(γmx) +
cos(γma) + cosh(γma)
sin(γma) + sinh(γma)

[sinh(γmx) − sin(γmx)]
}

,

(19)  

where γ4
m = θ2

mρA /(EI). 
The combined results from Sections 2.1.1 to 2.1.4 give the deflection 

of the DCB arm (shown in Fig. 1b) in Eq. (3) as  

where Λi = [(− 1)i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
i + 1

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
i − 1

√

] (values given in Appendix B). 

The derivation of the integral 
∫ a

0 φi(x)Hm(x)dx, 
∫ a

0 φi(x)F0(x)dx and 
∫ a

0 
φi(x)F1(x)dx are by partial integration (details in Supplementary file). 

As shown in Eq. (20), the total deflection is a combination of the free- 
vibration component and extrapolations of the other general applied 
displacement components. For the applied polynomial-displacement 
component, the 0th-order shifting function F0(x) affects the initial 
modal displacement of the free-vibration, while the first-order shifting 
function F1(x) affects the modal velocity; still, the other remaining 
shifting functions do not affect the free-vibration component. For the 
applied harmonic-displacement component, its associated shifting 
functions Hm(x) do not affect the modal displacement but affect the 
modal velocity. 

2.2. Energy release rate 

By combining Eqs. (2) and (20), the total dynamic ERR for the DCB 
specimen shown in Fig. 1 is obtained as 

w(x, t)=
1
a

∑∞

i=1
φi(x)

⎧
⎪⎪⎨

⎪⎪⎩

−

∫ a

0
φi(x)F0(x)dx cos(ωit)

+
1
ωi

[

− c1

∫ a

0
φi(x)F1(x)dx + β3

i Λi

∑M

m=1

θmdm
(
β4

i − γ4
m

)

]

sin(ωit)

⎫
⎪⎪⎬

⎪⎪⎭

+P(x)w1 +F0(x)+
∑N

n=1
Fn(x)cntn +

∑M

m=1
Hm(x)dm sin(θmt) ,

(20)   
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Note that Eq. (21) is for the general applied displacement with a 
combination of quasi-static, polynomial and harmonic components; 
pragmatically, for a specific DCB test, the applied displacement might be 
a component of w0(t) in Eq. (1). For instance, under impact loads, the 
displacement can be only polynomials. Under cyclic loads (conventional 
fatigue test) can only be a combination of quasi-static displacement 
component determining the mean stress level and one harmonic 
component determining the stress amplitude. Therefore, these two im
mediate applications are investigated in detail in Section 2.2.1 for 
impact and in Section 2.2.2 for fatigue. 

2.2.1. ERR solution for DCB under impact loads 
Generally, the displacement at the free end of one DCB arm under 

impact loads, such as drop weight or split Hopkinson bar, can be ob
tained with a high-speed camera or by measuring of the incident and 
reflected strain waves [21]. Once this displacement is obtained, it can be 
fitted into polynomials, and by resorting to Eq. (21), the ERR can be 
determined. 

Assuming that the impact loads are applied to the undeformed DCB 
with a zero initial displacement, that is, w1 = 0 in Eq. (1), and free-end 
displacement of one DCB arm can be fitted into the 3rd order- 
polynomial, i.e. N = 3 as a case of Eq. (1): 

w0(t) = c1t + c2t2 + c3t3 . (22) 

Then, by substituting Eqs. (18) and (22) into the general solution (Eq. 
(21)), and by regrouping the relevant terms, the dynamic ERR is then 

G=
9EI
ba4 [w0(t) + Q(t)]2 , (23)  

where Q(t) is induced displacement by the structural dynamic response: 

Q(t)= −
4
3

c2a4ρA
EI

∑∞

i=1

Λi

λ3
i

cos(ωit)+
2
3
c1a2

̅̅̅̅̅̅
ρA
EI

√
∑∞

i=1

Λi

λi
sin(ωit)

− 4c3a6ρA
EI

̅̅̅̅̅̅
ρA
EI

√
∑∞

i=1

Λi

λ5
i

sin(ωit) −
11
420

c2a4ρA
EI

−
11
140

c3a4ρA
EI

t .
(24) 

Note that when determining the dynamic ERR in Eq. (23), the total 
response of one DCB arm is considered, which includes the applied 
displacement w0(t) and induced displacement Q(t) due to structural vi
bration caused by the inertial effect. Also note that the total ERR in Eq. 
(23) includes the ERR components from the applied displacement w0(t)
and the induced displacement Q(t) as well as their coupling. The quasi- 
static component of the ERR (or strain ERR) can be determined by using 
the applied displacement w0(t) directly in the quasi-static solution for 
the DCB, which gives the ERR component of quasi-static motion as 

GU
st =

9EIw2
0(t)

ba4 . (25) 

Therefore, the total ERR in Eq. (23) can be written as a sum of quasi- 
static ERR GU

stand dynamic ERR components Gdyn as 

G=GU
st + Gdyn , (26)  

where 

Gdyn =
9EI
ba4

[
2w0(t)Q(t)+Q2(t)

]
, (27)  

and, therefore, the dynamic factor can be defined as 

fdyn =
Gdyn

GU
st
= 2

Q(t)
w0(t)

+

[
Q(t)
w0(t)

]2

. (28) 

Note that Eq. (27) represents all the dynamic effects, that is, the 
induced displacement and its coupling with the applied displacement. 
Specifically, these dynamic effects are: (1) inertia-induced local vibra
tion, represented by terms with sin(ωit), and (2) coupling between the 
local vibration and applied displacement, represented by terms with the 
product of w0(t)sin(ωit). However, in Eq. (24), interestingly, there are 
two terms of − 11ρAc2a4/(420EI) and − 11c3a4ρAt /(140EI) not related 
to the above two sources, and the close examination shows that they 
come from the shifting function F1(x), which is solved by Eq. (6) that the 
solution of F1(x) depends on the solution of F3(x). This shows a nonlinear 
relationship between shifting Fn(x) and the solutions for Fn(x) causes the 
motion coupling of the applied displacement when the ERR is deter
mined. And, therefore, this identifies the third dynamic-effect source, 
which is the motion coupling of the applied polynomial displacement 
itself. 

It is also worth noting that for the applied displacement of form 
w0(t) = vt (setting c1 = v being the constant opening rate), that is, the 
DCB under constant high loading rate, the ERR is 

G=
9EIv2t2

ba4 +
12

̅̅̅̅̅̅̅̅̅̅̅
ρAEI

√
v2t

ba2

∑∞

i=1

Λi

λi
sin(ωit) +

4ρAv2

b

[
∑∞

i=1

Λi

λi
sin(ωit)

]2

,

(29)  

which coincides with [16]. 

2.2.2. ERR solution for DCB under cyclic loads 
The general solution for the ERR in Eq. (21) can also be applied to 

investigate the fatigue delamination under cyclic loads. Following the 
conventional method in ASTM D6115 [24], that is, applying a cyclic 
displacement with the maximum value δmax and the minimum value δmin, 
the applied displacement is 

w0(t) = w1 + d sin(θt) , (30)  

where w1 = (δmax +δmin) /2 is the half mean applied amplitude, 
d = (δmax − δmin) /2 is the half range or amplitude, θ = 2πf is the angular 
frequency with f being the applied frequency. Note that δmax and δmin are 
for one DCB arm measured from the symmetry line. Taking these into 
Eq. (21), the ERR for this fatigue cyclic displacement load is 

G=
EI
b

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
a
∑∞

i=1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− β2
i

∫ a

0
φi(x)F0(x)dx cos(ωit)

−
c1β2

i

ωi

∫ a

0
φi(x)F1(x)dx sin(ωit)

+
β5

i Λi

ωi

∑M

m=1

θmdm
(
β4

i − γ4
m

)sin(ωit)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
3
a2w1

+F(2)
0 (0) +

∑N

n=1
F(2)

n (0)cntn −
∑M

m=1

γ2
mdm[sinh(γma) + sin(γma)]

[sinh(γma)cos(γma) − cosh(γma)sin(γma)]
sin(θmt)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2

. (21)   
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G=
9EIδ2

max

ba4

[

ξmean + ξrange sin(θt) +
∑∞

i=1
ξi sin(ωit)

]2

, (31)  

where 

ξmean =
1
2
(1+R) , (32)  

ξrange = −
1
6
(1 − R)

γ2a2[sinh(γa) + sin(γa)]
[sinh(γa)cos(γa) − cosh(γa)sin(γa)]

, (33)  

ξi =
1
3
(1 − R)

λ3
i Λiγ2a2

(
λ4

i − γ4a4
) , (34)  

are the contributions to the total ERR from the mean load, the load range 
and the ith induced vibration, respectively, with R = δmin/δmax being the 
cyclic load ratio. 

Note that the advantages of Eq. (31) allow to determine the fatigue 
delamination driving force, i.e. Gmax under the maximum load, without 

the need of measuring the applied loads as required by ASTM D6115. 
This is especially significant for high-frequency cyclic displacements, 
where the applied loads oscillate considerably and are very hard to 
measure. 

A close examination of ξrange/(1 − R) and ξi/(1 − R) reveals that they 
are both dimensionless and functions only of dimensionless parameter 
γa (note that γ represents the applied frequency and structural property 
for γ4 = 4π2f2ρA /(EI)). They are plotted versus γa in Figs. 2 and 3 to 
illustrate their properties. 

It is seen that the values of ξrange/(1 − R) and ξi/(1 − R) remain rela
tively small when γa is not in the vicinity of the eigenvalues λi; other
wise, the beam system would go resonant giving an infinite value for 
ERR as the material fails immediately. 

Note that the induced vibration contributions ξi are from the applied 
cyclic displacement range ξrange, and, therefore, it is important to 
investigate the ratio between them to demonstrate the contribution from 
the applied cyclic displacement to the induced vibration as the relative 
dynamic effect. χi is defined as 

χi =
ξi

ξrange

= −
2λ3

i Λi[sinh(γa)cos(γa) − cosh(γa)sin(γa) ]
(
λ4

i − γ4a4
)
[sinh(γa) + sin(γa) ]

.

(35) 

Fig. 4 shows the relationship between ξi and ξrange for a range of γa 
values. For the first vibration mode, χ1 increases with γa to a peak value 
of approximate 1.4, demonstrating the maximum dynamic response is 
ξ1 = 1.4ξrange; then χ1 drops steadily to zero. However, the interpretation 
of this should be based on the real composite material, considering a less 
stiff CFRP with the longitudinal modulus of 10 GPa, density of 1000 kg 
m− 3, and DCB with h = 1.5 mm and a = 125 mm (limiting geometry in 
ASTM D5528), the applied frequency of 100 Hz, which gives γa =

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4π2f2ρA/(EI)4

√
= 2.67; to increase the applied frequency further 

seems impossible due to the limitation of available experimental systems 
[27]. Therefore, in a realistic case, the value of γa might be well below 5, 
where the relative dynamic factor χi decreases with increasing 
vibration-mode number, and the first vibration mode makes the largest 

Fig. 2. Contribution to total ERR from applied cyclic loads.  

Fig. 3. Contribution to total ERR from ith induced free vibration.  
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contribution compared with those of other vibration modes. 
Another approach to study the induced dynamic contribution to the 

total ERR is by investigating the absolute values, that is, the applied ERR 
component Gappl and vibration induced ERR component Gdyn by 
expanding the Eq. (31) to have 

G=Gappl + Gdyn , (36)  

where 

Gappl =
9EIδ2

max

ba4

[
ξmean + ξrange sin(θt)

]2
, (37)  

Gdyn=
9EIδ2

max

ba4

{

2
[
ξmean+ξrange sin(θt)

]∑∞

i=1
ξi sin(ωit)+

[
∑∞

i=1
ξi sin(ωit)

]2}

,

(38)  

and, therefore, the dynamic factor can be defined as 

fdyn =
Gdyn

Gappl
=

2
[
ξmean + ξrange sin(θt)

]∑∞

i=1
ξi sin(ωit) +

[
∑∞

i=1
ξi sin(ωit)

]2

[
ξmean + ξrange sin(θt)

]2 .

(39) 

Note that Eqs. (31)–(39) are for the ERR time response: for its 
application to study fatigue delamination initiation and propagation, the 
range or the maximum value of the ERR should be used, and they are 
denoted Gmax, Gappl,max and Gdyn,max, respectively, for the maximum value 
of Eqs. (36)–(38). 

3. Applications and verifications 

3.1. DCB under split Hopkinson bar impact 

To demonstrate and to verify the applications of the developed 
theory for impact, the experimental data of the DCB of unidirectional 

Fig. 4. (a) Vibration-induced dynamic factors; (b) absolute value of vibration-induced dynamic factors.  

Fig. 5. Dynamic ERR versus time results from developed theory with first (a), first two (b), first three (c), and first four (d) vibration modes together with dynamic 
ERR data from experimental-numerical results for CFRP specimens of unidirectional stacking sequence. 
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CFRP specimens manufactured from the T700/MTM28-1 prepreg in the 
split Hopkinson bar impact test from Ref. [21] is used. The displacement 
curve was adopted from Ref. [21] and fitted into a third-order 
displacement curve: 

w0(t) = 2.625 × 1010(t − t0)
3
+ 4.065 × 107(t − t0)

2
− 7.885 × 102(t − t0)

R2 = 0.999 ,

(40)  

where t0 = 9.8 × 10− 5 s is the estimated time for the DCB arm to start to 
deflect at the arrival of incident wave as shown in Fig. 5a in Ref. [21]. 

Then it was substituted in Eq. (23) to determine the dynamic ERR G that 
is compared with experimental-numerical solution from Ref. [21] in 
Fig. 5 for a number of different vibration modes. 

Fig. 5 shows an excellent agreement between the analytical solution 
and the experimental-numerical results until crack-initiation time 
determined experimentally in Ref. [21] and the analytical solution 
captures the oscillating nature of the ERR. The analytical solution with 
the first vibration mode gives a mean value of the total ERR as shown in 
Fig. 5a. By adding the second vibration mode (Fig. 5b), the analytical 
solution approaches the experimental-numerical results. With addition 
of the third (Fig. 5c) and fourth (Fig. 5d) vibration modes, the analytical 
solution becomes more oscillatory around the mean value of the first 
vibration mode. This may be due to different formations: the analytical 
solution is based on the 1D plane-strain condition using a longitudinal 
modulus, whereas the experimental-numerical result was derived from a 
2D finite-element-method (FEM) simulation with an orthotropic mate
rial properties [21]. Still, the difference between the analytical solution 
and the experimental-numerical result is insignificant. Note that the 
value of the dynamic ERR G is very small at the initial stage at the arrival 
of incident wave, and before 0.00018 s, the G value approaches to zero 
while the quasi-static component GU

st increases with time. This is due to 
the negative effect of ERR component due to dynamic effect Gdyn, which 
is further examined in Fig. 7. 

The agreement between the prediction of the developed theory and 
experimental-numerical results can also be demonstrated with the Fast 
Fourier Transform (FFT) that provides a quantitative assessment 
(Fig. 6). According to this, the contribution of the first vibration mode in 
experimental-numerical results is 132.68 N m− 1, while the respective 
theoretical result is 127.01 N m− 1, with the error of − 4.27%; for the 
second vibration mode, this error is − 14.33%. 

Fig. 6. Comparison of FFT results for experimental-numerical method and 
developed theory for first two vibration modes. 

Fig. 7. Time response of dynamic ERR components and corresponding dynamic factors for first (a), first two (b), first three (c) and first four (d) vibration modes.  
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It is worth noting that the quasi-static solution is also plotted in Fig. 7 
for comparison, and it seems that the dynamic effect lowered the total 
ERR and postponed the crack initiation. To further investigate the pro
cess, the ERR’s quasi-static component GU

st (Eq. (25)), dynamic compo
nent Gdyn (Eq. (26)) and dynamic factor fdyn (Eq. (27)) were plotted 
(Fig. 7). Note that the ERR component due to quasi-static motion GU

st is 
also referred as the strain energy release rate that can be calculated with 
a conventional data-reduction method when dynamic effect is not 
considered. The comparison between GU

st and dynamic ERR G presented 
in this study (Figs. 5 and 7) also demonstrates the significance of the 
dynamic effect. 

It is seen in Fig. 7 that the Gdyn actually increases initially and then 
decreases with time; and this is due to the crack-tip motion that after the 
immediate impact the deflection around the crack tip experiences an 
additional opening tendency giving positive Gdyn and fdyn. After that, due 
to the structural vibration and the associated reciprocating motion, the 
crack tip undergoes closing and reduces the total ERR, resulting in 
negative Gdyn and fdyn. 

In general, the developed theory and the associated analytical solu
tion for the split Hopkinson bar impact provides an accurate prediction 
of the delamination driving force compared with experimental- 
numerical methods, making it a powerful analytical tool to further 
study the dynamic effect accompanied by the structural vibration, which 
the experimental-numerical methods cannot achieve. 

3.2. DCB under cyclic loads 

3.2.1. Experimental verification 
To confirm the applicability of the developed theory for fatigue 

delamination, in-house fatigue experiments were conducted in accor
dance with ASTM D6115 (Fig. 8a) for specimens with a width of 20 mm. 
Each cantilever beam was made of 16 plies of Hexply 8552/AS7 (den
sity: 1790 kg m− 3) CFRP in a quasi-isotropic layup of [0/45/90/-45]2s, 

giving a thickness h = 2.2 mm. Two beams were bonded with FM94 
adhesive. The elastic properties of the laminate and the adhesive are 
given in Table 1. To monitor the delamination length, one side of the 
specimen was painted with white spray and marked with a vernier 
height gauge at 1 mm interval (Fig. 8b). 

An Instron 8841 fatigue test machine (Fig. 8c) was used to provide 
displacement control with the maximum displacement δmax = 2.3 mm, R 
= 0.1 and f = 5 Hz. The applied loads were measured and the maximum 
value Pmax for each delamination length is recorded. The delamination 
length was measured when the test was paused at the maximum 
displacement. According to ASTM D6115, the maximum ERR can be 
calculated via expression Gmax = (3Pmaxδmax) /[b(a+Δ)] (where δmax is for 
one DCB arm). This experimentally determined maximum ERR value, 
Gmax, is then compared with the theoretical solution (Eq. (31)) for 
various delamination lengths in Fig. 9. 

Fig. 9 shows that the analytical solution and experimental result are 
in excellent agreement, but the analytical solution does not require the 
measurement of the applied load. To study the influence of the 
vibration-induced dynamic effect, terms ξrange/(1 − R) in Eq. (33) and 
ξi/(1 − R) in Eq. (34) were also plotted against the delamination length 
in Fig. 10. 

3.2.2. Numerical verification 
The influence of vibration-induced dynamic effect is very small 

(Fig. 10) and can be neglected for the test frequency of 5 Hz. Still, the 
developed theory (Section 2.2.2) shows that the dynamic effect in
creases with increasing applied frequency, and that the dynamic effect 

Fig. 8. (a) DCB specimen (units: mm); (b) specimen with end tabs and markings; (c) applied cyclic displacement; (d) setup for fatigue test.  

Table 1 
Elastic properties of laminate and adhesives used in DCB specimens.  

Material E1 (GPa) E2 (GPa) G12 (GPa) ν12 

8552/AS7 laminate 56.42 56.42 21.64 0.30 
FM94 adhesive 3 3 1.15 0.35  

T. Chen et al.                                                                                                                                                                                                                                    

astm:D6115
astm:D6115


Composites Science and Technology 228 (2022) 109632

10

can become significant. Note that, to apply higher frequencies, Maillet 
et al. [27] designed a mechanical device capable of applying cyclic 
frequency up to 100 Hz. To demonstrate the applicability of the theory 
in Section 2.2.2 and to investigate the induced dynamic effect, the FEM 
was employed using a 2D model in Abaqus/Explicit with plane-strain 
elements (CPE4R). Mechanical properties of 8552/AS7 laminate were 
employed in the finite-element model according to an orthotropic elastic 
constitutive formulation in terms of engineering constants: E1 = E2 =

56.42 GPa, E3 = 10 GPa, G13 = G23 = 10 GPa, G12 = 21.64 GPa, ν12 = ν23 
= ν13 = 0.30. Due to the symmetry, one DCB arm was modelled with the 
boundary conditions and applied displacement shown in Fig. 11. Small 
displacements were assumed. The mesh-convergence study was con
ducted for uniform meshes of 1×1 mm2, 0.5×0.5 mm2, 0.25×0.25 mm2 

and 0.125×0.125 mm2, as shown in Fig. C1 in Appendix C, and the mesh 
of 0.25 × 0.25 mm2 was chosen. 

For a uniform mesh of 0.25×0.25 mm2, the ERR was determined 
with the virtual crack-closure technique (VCCT). For test frequency of 
100 Hz and delamination length 60 mm, a comparison of the analytical 
solution (Eq. (31)) and FEM are shown in Fig. 12a in terms of ERR-time 
response. 

An excellent agreement between the analytical solution and FEM is 
obvious in Fig. 12a, confirming that the induced vibration-related dy
namic effect is significant for the frequency of 100 Hz. A further ex
amination of the ERR components in Fig. 12b using Eqs. (36)–(38) 
demonstrates the absolute value of dynamic component with the 
maximum value of 47.25 N m− 1 and the applied ERR component of 

156.21 N m− 1, giving a dynamic factor fdyn = 30.24% according to Eq. 
(39). Therefore, the dynamic effect cannot be neglected. 

In addition, the agreement between the developed theory and FEM 
simulation can be demonstrated by FFT analysis (Fig. 13). It is seen that 
first vibration mode makes the highest contribution to the total ERR. For 
the first three vibration modes, the frequencies are predicted accurately 
with the developed theory; quantitative comparison is given in Table 2. 

It is seen that the error (relative difference) for amplitude of first 
vibration mode predicted with the analytical solution and FEM result is 
− 2.53%, although the respective values for the second and third vi
bration modes are larger. 

To further study the test frequency effect, Gmax for the above case was 
calculated across a frequency range between 1 Hz and 100 Hz (Fig. 14). 
Evidently, the maximum applied ERR Gappl,max (Eq. (37)) does not in
crease with the test frequency (Fig. 14a), but the maximum induced 
dynamic component Gdyn,max increases steadily with growing frequency. 

The maximum dynamic factor calculated using Eq. (39) reaches the 
maximum value up to 34.5% in the studied frequency range (Fig. 14b), 
suggesting that the induced vibration-related dynamic effect must be 
taken into consideration when conducting high-frequency fatigue tests. 

The verification with the FEM demonstrates the accuracy of the 
developed theory; hence, it can be used in both low- and high-frequency 
fatigue delamination. Additionally, the developed theory does not 
require measurement of the applied loads as the conventional method 
(ASTM D6115) requests; this is particularly attractive for higher- 
frequency tests, where the applied force cannot be measured 

Fig. 9. Dynamic mode-I ERR versus delamination length under maximum 
displacement δmax = 2.3 mm (R = 0.1, f = 5 Hz). 

Fig. 10. (a) Contribution to total ERR from applied cyclic loads; (b) contribution to total ERR for induced vibration.  

Fig. 11. Schematic of finite-element model and boundary conditions.  
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accurately because of the significant structural vibration. 

4. Conclusion 

The total dynamic energy release rate (ERR) in the double cantilever 
beam (DCB) test under general applied displacement was derived 
analytically for the first time based on the structural vibration theory, 
allowing determination of the total ERR without measurement of the 
external force for arbitrary applied displacements. Two useful solutions 
are derived for two experimental techniques broadly used in analysis of 
composites: the split Hopkinson bar impact for assessment of the 
loading-rate effect on the delamination behavior and the cyclic loads for 
studying the fatigue delamination behavior. 

For the DCB under Hopkinson bar impact, the total dynamic ERR can 
be derived and decomposed into the quasi-static and induced vibration- 
related components accounting for the total dynamic effect. A dynamic 
factor is defined for quantitative evaluation of the dynamic effect. The 
analytical solution was validated with the published experimental data 
showing an excellent agreement. The study also demonstrated the 
oscillating nature of the ERR caused by the opening and closing of the 
crack tip due to structural vibration. 

For the DCB under cyclic loads, the total dynamic ERR can be 
decomposed into the applied ERR and vibration-induced components, 
and the relative dynamic effect and the total dynamic effects were 
defined. The analytical solution was validated by in-house fatigue 
delamination experiment with an excellent agreement until the crack 
initiation. The applicability for high-frequency cyclic loads was verified 
with the finite element method. It was found the that dynamic effect 
increased with applied load frequency, and for a particular case of 100 
Hz, the dynamic effect contributed up to 34.5% of the applied ERR, 
showing the significance of structural vibration. 

Fig. 12. (a) Comparison between developed theory and FEM; (b) partition of total ERR into applied and vibration-induced ERR components (test frequency 100 Hz).  

Fig. 13. Comparison of FFT results for FEM method and develop theory for first 
five vibration modes. 

Table 2 
Comparison of modal amplitudes and frequencies for FEM and developed 
theory.   

Amplitude (N m− 1) Frequency (rad s− 1) 

FEM Analytical Error 
(%) 

FEM Analytical Error 
(%) 

Mode 
1 

11.06 11.34 − 2.53 15064.58 14436.89 4.17 

Mode 
2 

6.86 5.01 26.97 47704.50 47076.81 1.32 

Mode 
3 

3.73 4.35 − 16.62 97292.08 99175.15 − 1.94 

Mode 
4 

2.70 3.14 − 16.30 162571.93 169476.53 − 4.25 

Mode 
5 

2.53 2.60 − 2.77 239777.90 257980.94 − 7.59  

Fig. 14. (a) Total ERR and its two components obtained at maximum applied displacement; (b) dynamic factor at maximum applied displacement.  
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The derived theory is readily applicable to various problems for 
evaluation of the dynamic mode-I delamination driving force with two 
immediate applications for measuring the dynamic fracture toughness 
and determining the fatigue-delamination-deriving force as demon
strated in this study. 
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Appendices. 

Appendix A. Boundary conditions 

The boundary conditions for the free-vibration component wfv(x,t) and the shifting functions Fn(x) and Hm(x) are presented in Table A1.  

Table A.1 
Boundary conditions for w(x,t) and its components  

Boundary Total deflection w(x, t) Free-vibration component wfv(x, t) Mode shape 
φi(x)

Shifting functions 
Fn(x)

Shifting functions Hm(x)

n = 0 n ≥ 1 

x = 0 w(0, t) = 0 wfv(0, t) = 0 φi(0) = 0 F0(0) = 0 Fn(0) = 0 Hm(0) = 0 
w(1)(0, t) = 0 w(1)

fv (0, t) = 0 φ(1)
i (0) = 0 F(1)

0 (0) = 0 F(1)
n (0) = 0 H(1)

m (0) = 0 
x = a w(a, t) = w0(t) wfv(a, t) = 0 φi(a) = 0 F0(a) = 0 Fn(a) = 1 Hm(a) = 1 

w(2)(a, t) = 0 w(2)
fv (a, t) = 0 φ(2)

i (a) = 0 F(2)
0 (a) = 0 F(2)

n (a) = 0 H(2)
m (a) = 0  

Appendix B. Solution for frequency equation and relevant modal parameters  

Table B.1 
Solution of frequency equation and relevant modal parameters  

Mode number λi σi Λi 

1 3.92660231 1.000777304 − 1.375327127 
2 7.06858275 1.000001445 1.415914585 
3 10.21017612 1.000000000 −

̅̅̅
2

√

4 13.35176878 1.000000000 ̅̅̅
2

√

5 16.49336143 1.000000000 −
̅̅̅
2

√

i > 5 (4i + 1)π/4 1.0 (− 1)i ̅̅̅
2

√

T. Chen et al.                                                                                                                                                                                                                                    



Composites Science and Technology 228 (2022) 109632

13

Appendix C. Results of mesh-size convergence study

Fig. C1. Mesh-size convergence results  

Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compscitech.2022.109632. 
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