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Abstract
Purpose – This paper aims to propose a new method for robust simulations of passive heat transfer in two-
fluid flowswith high volumetric heat capacity contrasts.
Design/methodology/approach – This paper implements a prediction–correction scheme to evolve the
volumetric heat capacity. In the prediction substep, the volumetric heat capacity is evolved together with the
temperature. The bounded downwind version of compressive interface capturing scheme for arbitrary
meshes and central difference scheme are used for the spatial discretization of the advection and diffusion
terms of the heat transfer equation, respectively. In the correction substep, the volumetric heat capacity is
updated in accordance with the interface captured by using a coupled level-set and volume-of-fluid method to
capture the interface dynamics precisely.
Findings – The proposed method is verified by simulating the advection of a hot droplet with high
volumetric heat capacity, a stationary air–water tank with temperature variation between top and bottom
walls and heat transfer during wave plunging at Re ¼ 108. The test results show that the proposed method is
practical and accurate for simulating two-fluid heat transfer problems, especially for those feature high
volumetric heat capacity contrasts.
Originality/value – To ensure the numerical stability, this paper solves an additional conservative form of
volumetric heat capacity equation along with the conservative form of temperature equation by using
consistent spatial-discretization and temporal-integration schemes.

Keywords Heat transfer, Two-fluid flows, Wave breaking

Paper type Research paper

1. Introduction
Heat transfer in a two-fluid flow is ubiquitous in nature and industrial applications, such
as water boiling (Yan and Li, 2006; Krause et al., 2010), spray evaporations (Ernez and
Morency, 2019), heat exchange between the ocean and atmosphere (Wan et al., 2015) and
combustion of liquid fuel (Wang et al., 2020). In numerical studies of these problems, it is
crucial to conduct robust and accurate simulations of heat transfer in two-fluid flows.
There are tremendous two-fluid flow solvers based on the volume of fluid (VOF) method
(Scardovelli and Zaleski, 1999), level-set (LS) method (Sussman et al., 1994), front-
tracking (FT) method (Unverdi and Tryggvason, 1992) and some other hybrid
methods for capturing/tracking the interface between two fluid phases (Sussman and
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Puckett, 2000; Aulisa et al., 2003; Shin and Juric, 2009). Most previous works focused on
problems with relatively low density contrast or at low to moderate Reynolds numbers
due to the challenges in terms of both numerical robustness and accuracy to simulate
two-phase flows with high density contrasts at a high Reynolds number (Scardovelli and
Zaleski, 1999; Lörstad and Fuchs, 2004; Desjardins and Moureau, 2010; Arrufat et al.,
2020; Zhu and Masud, 2021). As such, numerical studies of heat transfer in two-fluid
flows with high volumetric heat capacity contrasts are rather rarely reported in literature.

For two-fluid flows with high density contrasts (or at high Reynolds number),
solving the conservative form of momentum equation is found to be the key to ensure
the robustness of the simulation (Raessi and Pitsch, 2012). This is because the non-
conservative form of governing equations do not exactly conserve the momentum,
which induce unphysical momentum fluxes near the interface (Sussman et al., 2007;
Park et al., 2009). Furthermore, in conventional FT or front-capturing methods, the
density is determined by a marker function, which can be either the LS function, VOF
function or indicator function constructed by front marker points. The evolution
scheme of the marker function is usually different from the momentum equation.
However, because the mass and momentum transfers take place simultaneously, any
inconsistency in the numerical scheme can cause numerical errors that ultimately
induce numerical instability, especially when the density contrast is high (Rudman,
1998). To overcome the inconsistency of fluxes between mass and momentum,
Rudman (1998) proposes to calculate the momentum fluxes with the incorporation of
the interface geometry. The interface-capturing scheme of Rudman (1998) is the VOF
method. After that, by using a consistent scheme to discretize the VOF and
momentum equations, Patel and Natarajan (2017) develops a robust numerical
algorithm for simulating multiphase flows with high density contrasts. In the LS
framework, Desjardins and Moureau (2010) calculate the momentum fluxes based on
the value of the LS function and velocity to yield a tight coupling between LS and
momentum transport equations. Raessi and Pitsch (2012) couple the mass and
momentum by constructing flux densities from the LS function and used these
densities to calculate the momentum fluxes. Another effective solution for the mass–
momentum consistency problem is reported by Ghods and Herrmann (2013), where
the density convection equation is solved by using a consistent scheme with the
momentum equation. Recently, Nangia et al. (2019) develops a robust method for
dynamically refined staggered Cartesian grids base on the idea of Ghods and
Herrmann (2013). Also by solving the density convection equation, Zuzio et al. (2020)
and Yang et al. (2021) extended the interface-capturing scheme to the coupled LS and
VOF (CLSVOF) method in the framework of the consistent mass–momentum
evolution. The advantages of different interface schemes are not the focus of this
paper. We refer the readers to Tryggvason et al. (2011) and Scardovelli and Zaleski
(1999) for more details.

Compared to the flow solver, there are less investigations on the numerical scheme for
heat transfer in two-fluid flows with high volumetric heat capacity contrasts at high
Reynolds numbers. For non-turbulent flows, the influence of bubble motion on the heat
exchange rate between the liquid and a hot wall is studied by Deen and Kuipers (2013).
The volumetric heat capacity ratio between gas and liquid is set to 1� 10�2. In Panda
et al. (2019), the influence of the gas fraction on the wall-to-liquid heat transfer is
analyzed, where the volumetric heat capacity ratio between gas and liquid ranges from
2� 10�3 to 1.7� 10�2. In the studies of Nas et al. (2006) on the thermocapillary migration
in both two-dimensional (2D) and three-dimensional (3D) flows, the volumetric heat
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capacity ratio between gas and liquid is set to 0.25. To investigate the thermocapillary
migration of drops with different fluid parameters, Yin and Li (2015) consider a low
volumetric heat capacity ratio between the drop and background liquid, ranging from 0.2
to 2.5. For turbulent flows, numerical simulations of heat transfer in turbulent bubbly
flows between two parallel walls with a constant heat flux are conducted by Dabiri and
Tryggvason (2015). In their test cases, the volumetric heat capacity ratio between gas and
liquid is set to 2� 10�2. In the numerical investigation of Tanaka (2011) on the heat
transfer of a turbulent bubbly upflow in a vertical channel, the volumetric heat capacity
ratio of gas and liquid ranges from 0.1 to 1.0.

Beyond the numerical studies of heat transfer in two-fluid flows reviewed above, many
important problems are more challenging in terms of numerical robustness for two-fluid
flows when the variation in volumetric heat capacity between the two fluids is large (e.g. the
volumetric heat capacity ratio between air and water is 3� 10�4). Inspired by the mass–
momentum consistency scheme for two-fluid flows with high density contrasts (Nangia
et al., 2019), we propose a robust scheme for numerical simulation of heat transfer in two-
fluid flows based on the Computational Air-Sea Tank (CAS-Tank) (Yang et al., 2021), in
which the mass and momentum equations are discretized consistently using the high-
resolution cubic upwind interpolation-based blending scheme (HR-CUIBS). To ensure the
numerical robustness of solving the temperature field, an additional transport equation of
volumetric heat capacity is solved along with the temperature equation. The bounded
downwind version of compressive interface capturing scheme for arbitrary meshes (BD-
CICSAM) is used to calculate the advection terms of temperature and volumetric heat
capacity equations. For time marching, all of the transport equations are evolved
consistently using the RK2 scheme. To examine the numerical robustness and accuracy, the
proposed method is first verified by two cases without interface topology change.
Specifically, the convection of a hot droplet with high volumetric heat capacity and a
stationary air–water tank with temperature variation between top and bottom walls. To
further verify the robustness of the proposed method in cases with violent interface topology
changes, the heat transfer during wave plunging is simulated. The unfeasibility of using
inconsistent schemes for both temporal and spatial discretization is emphasized through
systematical tests. The rest of this paper is organized as follows. The numerical methods are
detailed in Section 2. The numerical results are presented and discussed in Section 3. The
conclusions are summarized in Section 4.

2. Formulation and numerical method
2.1 Governing equations
In the proposed method, a single set of equations is used for both liquid and gas phases, the
continuity andmomentum equations for the whole domain are as follows:

r � u ¼ 0; (1)

@ ruð Þ
@t

þr � ruuð Þ ¼ �rpþr � 2mSþ rgþ fs; (2)

where t is time, r and m are, respectively, the fluid density and viscosity, p is the pressure, u
is the velocity vector, S is the strain-rate tensor and g is the gravitational acceleration. The
surface tension force fs acting on the interface is defined as:
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fs ¼ skrH fð Þ; (3)

where s is the surface tension coefficient, k = r·(rf) at f = 0 is the curvature of the
interface, in which f represents the LS function. The Heaviside function H(f) is defined
as:

H fð Þ ¼ 0; f# 0

1; f > 0
:

(
(4)

We use the CLSVOF method to capture the liquid–gas interface. The transport equations of
the LS functionf and VOF functionc are expressed as:

@f

@t
þr � fuð Þ ¼ 0; (5)

@c

@t
þr � cuð Þ ¼ 0: (6)

Without loss of generality, we use “water” and “air” to represent two fluid phases in the
following descriptions of this paper. The signed distance from grid points to the interface is
described by the LS function f, which is positively and negatively valued in water and air
phases, respectively. The volume fraction of water in each grid cell is represented by the
VOF function c, of which the value ranges from 0 to 1. An arbitrary fluid property h, which
can be either the density r, kinematic viscosity m, thermal conductivity coefficient k, or
specific heat capacity cp, is determined by the LS function as:

h ¼ ha þ hw � hað ÞH fð Þ; (7)

where the subscripts “a” and “w” represent air and water, respectively.
According to Patel and Natarajan (2017), Nangia et al. (2019) and Yang et al. (2021), the

simulation is unstable with high density contrasts if the density is solely determined by
equation (7). To construct a stable time-advancement scheme, the transport equation of
density is given as:

@r

@t
þr � ru ¼ 0: (8)

The interface is precisely captured by equation (7) at the start of each time step, and
meanwhile, the simulation is stable by evolving equation (8) to provide the density for the
momentum equation within each time step.

To simulate the heat transfer in two-fluid flows, the following advection–diffusion
equation is solved:

@rcpu
@t

þr � rcpuu ¼ r � kru; (9)

where u represents the temperature. In the present study, we only consider the neutrally
stratified condition, under which the physical properties remain constant in each fluid
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phase. The phase change is not included. In other words, the temperature is treated as a
passive scalar.

Similar to the flow solver, the solution of temperature is also unstable with high
volumetric heat capacity contrasts, if rcp is determined solely using equation (7) (see the test
results in Section 3.1). We follow the philosophy of mass–momentum consistent approach to
develop a consistent numerical scheme for the transports of both temperature and
volumetric heat capacity. For this purpose, the following convection equation of the
volumetric heat capacity rcp is solved:

@rcp
@t

þr � rcpu ¼ 0: (10)

In each time step, equations (9) and (10) are evolved together. The evolution of equation (10)
is called a prediction substep of the volumetric heat capacity, which ensures the simulation
robustness by using consistent time-advancement and spatial-discretization schemes (see
Sections 2.2 and 2.3) for the transport equations of temperature and volumetric heat
capacity. However, rcp is not coupled to the interface geometry in the prediction substep.
After the full-step evolution of equations (9) and (10), rcp is corrected using equation (7) to
give an initial value for the next time step. The correction substep provides a more accurate
representation of the interface geometry by incorporating the LS function.

The momentum equation is solved using the CAS-Tank developed by Yang et al. (2021),
in which the mass–momentum consistency scheme was adopted to calculate the velocity
field. Specifically, the RK2 scheme is used to advance the transport equations of mass and
momentum with their advection terms being discretized by HR-CUIBS. We refer the readers
to Yang et al. (2021) for more details of the momentum solver. Below, we focus on the
temporal advancement and spatial discretization of the temperature field.

2.2 Time advancement
For notational simplicity, the volumetric heat capacity rcp is replaced by j hereinafter. At
the start of time step n, the volumetric heat capacity jn is computed by equation (7). Then,
the volumetric heat capacity and temperature are advanced as:

j 1ð Þ ¼ j 0ð Þ � r � j 0ð Þu 0ð Þ
� �h i

Dt; (11)

j 2ð Þ ¼ j 1ð Þ � 1
2

r � j 1ð Þu 1ð Þ
� �

�r � j 0ð Þu 0ð Þ
� �� �

Dt; (12)

j 1ð Þu 1ð Þ ¼ j 0ð Þu 0ð Þ � r � j 0ð Þu 0ð Þu 0ð Þ
� �

�r � kru 0ð Þ� �h i
Dt; (13)

j 2ð Þu 2ð Þ ¼ j 1ð Þu 1ð Þ � 1
2

r � j 1ð Þu 1ð Þu 1ð Þ
� �

�r � kru 1ð Þ� �h i
� r � j 0ð Þu 0ð Þu 0ð Þ

� �
�r � kru 0ð Þ� �h i� 	

Dt:

(14)

Here, the substeps of the RK2 method are denoted by superscripts “(1)” and “(2)”, while
superscripts “(0)” and “(2)” also represent variables at steps n and (n þ 1), respectively. The
Courant–Friedrichs–Lewy (CFL) number is used to adjust the time stepDt dynamically as:
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Dt ¼ CFL �min
Dx

u
;
Dy

v
;
Dz

w
;
rD2

6m
;
rCpD

2

6k
;

ffiffiffiffi
D
g

s
;

ffiffiffiffiffiffiffiffiffi
rD3

2ps

s8<
:

9=
;; (15)

where Dx, Dy and Dz are the distances between two grid points in x-, y- and z-directions,
respectively, and the characteristic distance is defended asD = (DxDyDz)

1/3.
We note that the RK2 scheme can be replaced by any time advancement scheme. The key

point is that the time advancement schemes for equations (9) and (10) are consistent. On the
opposite, if equations (9) and (10) are advanced using different time schemes, the solver is
unstable. We show this point in Section 3.1.

2.3 Discretization of advection terms
A finite difference scheme is used for spatial discretization. A staggered Cartesian grid is
used to define the flow quantities. The velocity vector components are discretized at cell
faces, while other scalar quantities are defined at cell centers, i.e. the density r, viscosity m,
pressure p, temperature u, volumetric heat capacity j, thermal conductivity k, LS function f
and VOF function c. We set xi, yj, and zk as the discretized coordinates with i = 1, 2,. . .,Nx,
j = 1,2,3,. . ., Ny, and k = 1,2,3,. . ., Nz being the quantities defined at cell centers. Here, Nx, Ny,
andNz are the number of grid points in x-, y- and z-direction, respectively.

At the start of each time step, the volumetric heat capacity jn and thermal conductivity
coefficient kn are calculated using equation (7). To obtain j(1) and j(2) in equations (11) and
(12), respectively, the advection term is discretized as:

� r � juð Þ½ �i;j;k ¼ � j~iþ1=2;j;kuiþ1=2;j;k � j~i�1=2;j;kui�1=2;j;k

Dx

� j~i;jþ1=2;kvi;jþ1=2;k � j~i;j�1=2;kvi;j�1=2;k

Dy

� j~i;j;kþ1=2wi;j;kþ1=2 � j~i;j;k�1=2wi;j;k�1=2

Dz
;

(16)

where j~ at cell face is calculated using the third-order total variation diminishing scheme.
Taking the calculation of j~i�1=2;j;k as an example, the stencil points needed in the scheme are
selected according to the sign of the velocity at cell face ui–1/2,j,k, as:

ju; jc; jdð Þ ¼
ji�2;j;k; ji�1;j;k; ji;j;k
� �

; ui�1=2;j;k � 0

jiþ1;j;k; ji;j;k; ji�1;j;k
� �

; ui�1=2;j;k < 0
;

(
(17)

where subscripts “u”, “c”, and “d” denote the grid points positioned far upwind, upwind and
downwind, respectively. The volumetric heat capacity at an arbitrary cell face is expressed
as:

j~¼ jc þ
jc � juð Þ

2
g rð Þ; (18)

where g(r) represents the flux limiter, which is determined by BD-CICSAM scheme as:
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g rð Þ ¼ max 0;min 2r; 2 Co�1 � 1ð Þ� �
 �
; (19)

where Co is the Courant number, and the ratio of centered to upwind gradient r is defined as:

r ¼ jd � jc
jc � ju

: (20)

More details about the interpolation scheme can be found in Ubbink and Issa (1999). We note
here that in Yang et al. (2021), the advection terms in the momentum equation are discretized
using the HR-CUIBS. We choose a different scheme, namely the BD-CICSAM scheme, to
discretize the advection term of the heat transfer equation because it is less diffusive,
resulting in a smaller numerical error. This point is further shown in Section 3.1.

The spatial discretization ofr·(juu) in equations (13) and (14) is written as:

� r � juuð Þ½ �i;j;k¼ � j~iþ1=2;j;ku
~
iþ1=2;j;kuiþ1=2;j;k � j~i�1=2;j;ku

~
i�1=2;j;kui�1=2;j;k

Dx

� j~i;jþ1=2;ku
~
i;jþ1=2;kvi;jþ1=2;k � j~i;j�1=2;ku

~
i;j�1=2;kvi;j�1=2;k

Dy

� j~i;j;kþ1=2u
~
i;j;kþ1=2wi;j;kþ1=2 � j~i;j;k�1=2u

~
i;j;k�1=2wi;j;k�1=2

Dz
:

(21)

A second-order central difference scheme is used to discretize the diffusion terms in
equations (13) and (14), namely:

r � kruð Þ½ �i;j;k ¼
kiþ1=2;j;k

@u

@x

� �
iþ1=2;j;k

�ki�1=2;j;k
@u

@x

� �
i�1=2;j;k

Dx

þ
ki;jþ1=2;k

@u

@y

� �
i;jþ1=2;k

�ki;j�1=2;k
@u

@y

� �
i;j�1=2;k

Dy

þ
ki;j;kþ1=2

@u

@z

� �
i;j;kþ1=2

�ki;j;k�1=2
@u

@z

� �
i;j;k�1=2

Dz
:

(22)

Here, we used the interpolation scheme reported by Liu et al. (2000) to calculate the thermal
conductivity k of cell faces in the vicinity of the interface. Assuming that the interface lies
between nodes i and i þ 1 in the x-direction, the value of k at the cell face i þ 1/2 can be
estimatedmore accurately by using a height function w, defined as:

w ¼ jfij
jfij þ jfiþ1j

; (23)

where f is the LS function. The thermal conductivity kjþ1/2 at the cell face is given as a
weighted harmonic averaging of the values of k at two neighboring cell centers, namely:
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kiþ1=2;j;k ¼
ki;j;kkiþ1;j;k

wkiþ1;j;k þ 1� wð Þki;j;k : (24)

Through the use of the thermal conductivity kiþ1/2,j,k at cell faces determined by equations (23)
and (24), the numerical solution converges to the analytical solution in a second-order accuracy
(see Section 3.2). The temperature gradientru in equation (22), taking @u/@x as an example, is
calculated as:

@u

@x

� �
iþ1=2;j;k

¼ uiþ1;j;k � ui;j;k
Dx

: (25)

2.4 Temperature boundary conditions
The boundary condition for the temperature field can be either prescribed value of
temperature gradient, prescribed value of temperature or periodic. The boundary condition
in the x-direction is used to demonstrate the implementation. To construct the BD-CICSAM
interpolation scheme on boundaries, two ghost cells are needed along each domain
boundary. In other words, the implementation of temperature boundary condition is to
calculate the values of temperature u for i = 0 and –1. If the temperature gradient is
prescribed as B at the boundary, the temperature in the ghost cell is given as:

u0;j;k ¼ u1;j;k � B x1;j;k � x0;j;kð Þ; u�1;j;k ¼ u2;j;k � B x2;j;k � x�1;j;kð Þ
uNxþ1;j;k ¼ uNx;j;k þ B xNxþ1;j;k � xNx;j;kð Þ; uNxþ2;j;k ¼ uNx�1;j;k þ B xNxþ2;j;k � xNx�1;j;kð Þ

:

(

(26)

If the temperature is prescribed as C, the boundary condition is expressed as:

u0;j;k ¼ 2C � u1;j;k; u�1;j;k ¼ 2C � u2;j;k

uNxþ1;j;k ¼ 2C � uNx;j;k; uNxþ2;j;k ¼ 2C � uNx�1;j;k
:

(
(27)

Here, C is wall temperature. The periodic boundary condition is defined as:

u�1;j;k ¼ uNx�1;j;k; u0;j;k ¼ uNx;j;k

uNxþ1;j;k ¼ u1;j;k; uNxþ2;j;k ¼ u2;j;k
:

(
(28)

The implementation of temperature boundary condition in other directions can be deduced
accordingly.

3. Result
3.1 Convection of a hot droplet with high volumetric capacity
In this section, we present the test results of the convection of a hot droplet with high
volumetric heat capacity. The computational domain and initial condition of this test case is
depicted in Figure 1. A 2D high-volumetric-heat-capacity droplet with higher temperature
u = 1 is surrounded by low-density ambient fluid with lower temperature u = 0. The
volumetric heat capacities of the droplet and ambient fluid are 4� 106 and 1, respectively.
The thermal conductivity k, viscosity m, gravitational acceleration g, and surface tension
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fs are neglected in this test case. Initially, the droplet has a constant vertical velocityV, while
the ambient fluid remains still. The hot droplet is expected to move steadily without any
heat exchange with the ambient fluid. This canonical case was used to test the numerical
robustness and accuracy of the flow solver (Nangia et al., 2019; Yang et al., 2021), and the
performance of the flow solver for the present test case is detailed in Yang et al. (2021). In
this paper, we focus on the verification of the temperature solver described in Section 2. The
computational domain is 5D � 5D in both x- and y-directions with D being the droplet
diameter. The origin of the coordinates is in the lower left corner of the computational
domain. The droplet center is initially located at (x, y) = (2.5D, 1.5D). The boundary
conditions in the x-direction for velocity and temperature are no-slip and adiabatic,
respectively. Periodic boundary conditions are set in the y-direction for both velocity and
temperature fields. The number of grid points is fixed to Nx � Ny = 128� 128, which is
sufficient to make an accurate simulation of the droplet motion according to Yang et al.
(2021).

Figure 2 shows the contours of temperature and droplet positions at t = 0.1T, 0.4T, 0.7T
and 1.0T, where T = 5D/V is the period for the droplet to return to its original position. The
droplet interface is shown using the black solid line, whereas the color contours represent
the temperature distribution. As is noted in Section 2.3, we have tested two different spatial
discretization schemes for the advection term of the heat transfer equation, namely, the BD-
CICSAM scheme and the HR-CUIBS scheme. The HR-CUIBS scheme is also used to
discretize the advection term of the momentum equation. It is seen that the temperature
inside the droplet remains almost unchanged based on both spatial discretization schemes.
This observation is desired. The air in the wake of the droplet is slightly heated. This is
caused by the numerical diffusion of the spatial discretization scheme, which is not
completely avoidable, but can be reasonably reduced by choosing an appropriate spatial
discretization scheme for the advection term. From the comparison between Figures 2(d) and
2(h), it is evident that the BD-CICSAM scheme is numerically less diffusive, and as such the

Figure 1.
Schematic of the
computational

domain and initial
setup for the

numerical simulation
of the convection of a
hot droplet with high

volumetric heat
capacity
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artificial heat flux across the droplet interface shown in Figure 2(d) is less significant than
that in Figure 2(h). To quantify the numerical accuracy, we define the error in the
temperature field as:

E ¼ 1
LxLy

XNx

i¼1

XNy

j¼1

j u� u0ð Þi;jjDxDy; (29)

where u0 denotes the theoretical solution of temperature, which is 1 and 0 inside and outside
the droplet, respectively. The evolution of the bulk error E in temperature from different
cases with various advection schemes are shown in Figure 3. It is seen that although the
error accumulates in both cases, the performance of BD-CICSAM scheme is more
satisfactory. We note that the advection term of the momentum and mass equation is
discretized consistently by HR-CUIBS scheme. This is because the BD-CICSAM scheme
causes numerical instability in the momentum solver (not shown), though the numerical
diffusion is less than the HR-CUIBS. The satisfactory results shown in Figures 2(a)–(d) also
indicates that the advection scheme for the transport equations of momentum and mass is
not required to be strictly consistent with those of temperature and volumetric heat capacity.
The investigation of different finite differential scheme is not the focus of this paper. In
general, a differential scheme with less numerical diffusion is usually more unstable, and the
choice of the differential scheme should be case dependent. In the present study, we choose
the BD-CICSAM scheme because they are stable in all cases.

The above test shows that the temperature solver introduced in Section 2 is robust for the
simulation of the convection of a hot droplet with high volumetric heat capacity, whereas the
numerical diffusion is associated with the discretization scheme. Solving a non-conservative

Figure 2.
Contours of
temperature and
interface positions for
numerical
simulations of the
convection of a hot
droplet with high
volumetric heat
capacity at (a,e) t=
0.1T, (b,f) t= 0.4T,
(c,g) t= 0.7T and (d,h)
t= 1.0T
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form of the temperature equation can possibly reduce the numerical error. As such, we have
run the same case by solving the non-conservative form of temperature equation, which is
given as:

rcp
@u

@t
þ u � ru

� �
¼ 0; (30)

and discretized as:
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(31)

The temperature contours at early stage of the simulation (t = 0.1T) is shown in Figure 4(a).
It is seen that the temperature at the wake of the droplet is negative, which is physically
incorrect. Evidently, this unphysical temperature is associated with the non-conservative
form of equation. The time evolutions of the integral error of temperature E is depicted in
Figure 4(b). The time evolution of E obtained from solving conservative form of temperature
equation is also superimposed for comparison. It is evident that the integral error of
temperature for the non-conservative equation is greater than that for the conservative
equation at the end of the simulation, and the oscillation in the error indicates the numerical
instability. This issue of the non-conservative scheme leads to the divergence of the
simulation for problems with complex interface geometries as shown in Sec. 3.3. To further
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show the difference between the calculation of temperature field using the numerical
algorithm introduced in Section 2 and equation (31), the discretized form of equation (9) is
given for comparison as:
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where ~j
nþ1
i;j;k is calculated by solving the discretized form of equation (10) as:
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It is evident from equation (32) that the calculation of the temperature equation at n þ 1
should consider the values of volumetric heat capacity at the cell faces when the governing
equation is employed in conservative form. As such, although equations (9) and (30) are
equivalent, their discretized form, i.e. equations (32) and (31) are inequivalent for the
following reasons. First, the divergence-free condition is not satisfied strictly, due to the
residual in the Poisson equation. Second, the discretized form of equations (32) and (31) are
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also inequivalent due to the different values of volumetric heat capacity in different phases.
Under an overall consideration of the accuracy and numerical robustness, we choose to solve
the conservative form of governing equation considering that in a two-fluid flow, heat (ju) is
a conservative variable, but temperature (u) is not.

As noted in Section 2.1, the consistency in the spatial discretization schemes for the
advection terms of the transport equations of the temperature and volumetric heat
capacity is crucial for sustaining the numerical stability. To show this point, we use
BD-CICSAM and upwind schemes to discretize the advection terms of the temperature
and volumetric heat transport equations, respectively. The simulation is found to
be unstable, and Figure 5(a) shows the contours of temperature at t = 0.75T before the
simulation diverges. It is observed that a very high temperature region occurs at the
edge of droplet, which is physically incorrect. Furthermore, it is a natural choice to use
the position of the interface at time step (n þ 1) to determine the values of j nþ1 through
equation (7). After conducting a test, we find that this choice of j nþ1 also leads to an
unstable simulation for the present case with high volumetric heat capacity contrast.
The temperature contours at t = 0.2T for this test are shown in Figure 5(b). It is seen
that unphysically high temperature also occurs near the droplet interface. However, we
also note here that using interface position to obtain the j nþ1 can deal with problems
with low volumetric heat capacity contrast of O(1) (Lu et al., 2019). This point can be
shown using a test with a volumetric heat capacity ratio of 1.1. The temperature
contours for this test are shown in Figure 5(c). It is seen that the result of temperature is
reasonable.

Next, we show the importance of the consistency in time advancement scheme when
evolving the temperature and volumetric heat capacity transport equations. To this
end, we have conducted three test cases with different time advancement strategies. In
the first and second cases, consistent time advancement schemes are used. Specifically,
the RK2 scheme is used in the first case and the forward Euler scheme is used in the
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second one to evolve the transport equations of both temperature and volumetric heat
capacity. In the third case, the transport equations of temperature and volumetric heat
capacity are evolved using inconsistent schemes, i.e. RK2 and forward Euler schemes
for the transport equations of temperature and volumetric heat capacity, respectively.
The results of these three test cases are compared in Figure 6. It is seen that the
temperature solver is stable if the temperature and volumetric heat capacity transport
equations are advanced using consistent schemes, either RK2 or first-order forward
Euler scheme. However, as shown in Figure 6(c), if inconsistent schemes are used to
evolve the temperature and volumetric heat capacity, the solution of temperature field
diverges.

3.2 Stationary air–water tank with temperature variation between top and bottom walls
This test case is conducted to examine the accuracy of the diffusion term in the temperature
transport equation. Below is the description of the numerical setup. The size of the
computational domain is Lx� Ly= L�L. As shown in Figure 7, the lower half of the domain is
filled with water, while the remainder of the domain is air. The velocity is prescribed to be zero.
The thermal conductivity ratio between air and water is 3.85� 10�2. The temperature is fixed
at 1 and 0 at the top and bottom walls, respectively, and a homogenous heat source q = – 1 is
added in the entire domain. In the horizontal (x �) direction, a periodic boundary condition is
applied. Because the fluid remains still, and the temperature is fixed at the top and bottom
walls, the solution of temperature ultimately converges to a steady state. The analytical
solution can be written as:

u ¼ 0:5000y2 � 0:6573y 0# y#L=2

12:9870y2�17:0727yþ 5:0857 L=2 < y#L
;

(
(34)

which is a quadratic function of y. Figure 8 compares the numerical results of this test case
obtained from different number of grid points with the analytical solution. Figure 8(a) shows
that the numerical error mainly occurs near the interface and the numerical result also
converges to the analytical solution as the number of grid points increases. To quantify the
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accuracy, the error in the temperature E as a function of the grid points in the y-direction (Ny)
is depicted in Figure 8(b). Here, the definition of the error is also given by equation (30) with
u0 being the analytical solution. It is evident from Figure 8(b) that the accuracy of the
numerical solution reaches the second order.
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3.3 Temperature transfer during wave plunging
Thus far, the temperature solver is tested using 2D cases without interface topology change.
To further verify the numerical robustness of the proposed method in the problems with
violent interface topology changes, we simulate the temperature transfer during wave
plunging. The independent non-dimensional parameters include the Reynolds number Re =
l3/2 g1/2/�w = 2.46� 108, Bond number Bo = rwgl

2/s = 5.4� 107, and Prandtl number
Pr ¼ cpwmw=kw ¼ 7:01, where l is the wave length. The volumetric heat capacity ratio and
thermal conductivity coefficient ratio between air and water are 3� 10�4 and 3.85� 10�2,
respectively. Figure 9 shows the computational domain. The wave geometry is initially
prescribed as a third-order Stokes wave. The wave travels in the þx-direction, and the
vertical direction is denoted by y. The mean elevation of water is located at y = 0. To
generate a plunging breaker, we set the initial wave steepness to «0 = ka0 = 0.55, where a0 is
the amplitude of the initial wave and k = 2 p/l is the wavenumber. The mean water depth is
h = l/2, and the dispersion parameter kh = p corresponds to a deep-water condition (Mei,
1989). The size of computational domain is Lx � Ly = l � l, discretized using Nx � Ny =
512� 512 grid points. The periodic boundary condition is set in the horizontal direction for
both velocity and temperature fields, while the free-slip and prescribed temperature
conditions are applied at top and bottom walls. We note that this test case has been
validated in an isothermal environment, and the numerical robustness of the momentum
solver is detailed in Yang et al. (2021). In present study, we focus on the numerical
robustness of the proposed temperature solver.

We have conducted both 2D and 3D cases. The 2D case is conducted to examine the
performance the conservative and non-conservative form of temperature equations. The
successive snapshots of the interface geometries and contours of temperature field of 2D
results obtained from solving the conservative form of temperature equation are depicted in
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Figure 10. It is seen that both the interface and the temperature field are reasonably
resolved. However, the numerical results diverge at the early stage of the simulation when
the non-conservative form of temperature equation is employed. This is shown in Figure 11,
in which the evolution of bulk mean temperature is depicted. This test case shows that
solving the non-conservative form of the temperature equation is unstable for problems with
complex interface geometries and violent wave breaking events.

In the 3D case, the spanwise domain size is set to Lz = 0.25l, discretized using Nz = 128
homogeneously distributed grid points. A periodic condition is applied in the spanwise
direction. Other parameters remain the same as the 2D case. Figure 12 shows the successive
snapshots of the air-water interface and the contours of temperature in a cross-sectional
plane at z = 0. As shown, the wave front is steepened at t = 0.5T [Figure 12(a)] and the
temperature isopleths become distorted over the wave crest. At t = 1.0T [Figure 12(b)], an
overturning jet is observed and the temperature on the back of the jet is further mixed due to
the vortex generated there. After the overturning jet impinges onto the water surface at t =
2.0T, the temperature mixing is further enhanced on the air side [Figure 12(c)]. As the wave
continues to break, the heat transfer on the water side is also enhanced [Figure 12(d)]. After
that, the wave breaking calms down but continues to propagate with the temperature being
further mixed as shown in Figures 12(e) and (f).

The time evolution of the bulk mean temperature of air obtained from 2D and 3D
simulations are compared in Figure 13. It is observed that the bulk mean temperature of air
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remains approximately constant before the overturning jet hits the water surface at t = 2.0T.
After that, the temperature of air drops drastically because of the strong mixing between air
and cold water. It is also seen that the decreasing rate of temperature is faster in the 2D case
than in the 3D case. This observation can be attributed to the slower decaying rate of the
kinetic energy in the 2D case than in the 3D case (Nas and Tryggvason, 2003). In other words,
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the mixing effects induced by the wave breaking is stronger in the 2D simulation, which tends
to enhance the heat exchange between air and water. The results shown in Figures 11 and 12
indicate that the proposed scheme is robust for numerical simulation of heat transfer in 3D two-
fluid flowswith high volumetric heat capacity contrasts and complex interface geometries.

4. Conclusion
In summary of this paper, we have developed a new scheme for numerical simulations of
heat transfer in two-phase flows with large volumetric heat capacity variations between
liquid and gas. The proposed scheme adopts the basic idea underlying the consistent
transport of momentum and density (Ghods and Herrmann, 2013; Nangia et al., 2019).
Specifically, we solve an additional transport equation of the volumetric heat capacity along
with the temperature using consistent spatial-discretization and temporal-integration
schemes. The proposed scheme is first tested by isolating the advection and diffusion terms
in the temperature transport equation. The advection term is tested through the case of the
convection of a hot droplet with high volumetric heat capacity and the results show that a
consistent discretization scheme in both time and space is crucial for a robust simulation of
the heat transfer. The diffusion term is tested by conducting the case of a stationary air–
water tank with temperature variation between top and bottom walls. A homogenous heat
source is added in the whole computation domain. It is seen that the numerical solution
converges to the analytical solution in a second-order accuracy.

To further validate the solver in problems with violent interface topology changes, we have
conducted numerical simulations of heat transfer during wave plunging at high Reynolds
number of Re = 108. The 2D simulation results indicate that conservative form of temperature
equation are more robust than the non-conservative ones. The test of the 3D case shows that
the simulation is stable and reasonably accurate when the proposedmethod is employed.

Finally, we note that we are not able to provide more comparison of our results with other
numerical results, because released numerical simulation data at present are limited in the literature.
Despite that, the accuracy of both advection and diffusion terms are verified separately against the
analytical solutions and the results show that the numerical errors are acceptable for two-fluid heat
transfer problemwith high volumetric heat capacity contrasts at highReynolds numbers.
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