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ABSTRACT: Morphologies of evaporative deposition, which has
been widely applied in potential fields, were induced by the
competition between internal flows inside evaporating droplets.
Controlling the pattern of deposition and suppressing the coffee-
ring effect are essential issues of intense interest in the aspects of
industrial technologies and scientific applications. Here, evapo-
rative deposition of surfactant-laden nanofluid droplets over silicon
was experimentally investigated. A ring-like deposition was formed
after complete evaporation of sodium dodecyl sulfate (SDS)-laden
nanofluid droplets with an initial SDS concentration ranging from
0 to 1.5 CMC. In the case of initial SDS concentrations above 1.3 CMC, no cracks were observed in the ring-like deposition,
indicating that the deposition patterns of nanofluid droplets could be completely changed and cracks could be eliminated by
sufficient addition of SDS. With the increase of the initial concentration of hexadecyl trimethylammonium bromide (CTAB), the
width of the deposition ring gradually decreased until no ring-like structure was formed. On the contrary, with the increase of the
initial Triton X-100 (TX-100) concentration, the width of the deposition ring gradually increased until a uniform deposition was
generated. Moreover, when the initial TX-100 concentration was high, a “tree-ring-like” pattern was discovered. Besides,
morphologies of evaporative pattern due to the addition of surfacants were qualitatively analyzed.

■ INTRODUCTION
When a droplet containing nonvolatile micro/nanoparticles
completely evaporates on a solid surface, these particles will
deposit on the surface and various deposition patterns will be
formed. Evaporative deposition pattern may be strongly
influenced by internal flows such as outward capillary flow
toward the contact line caused by higher evaporation rate near
the edge of the droplet1 and Marangoni flow induced by the
gradient of surface tension caused by the gradients of
temperature2,3 or concentration3 inside the droplet. On
account of the existence of capillary flow, a universal ring-
shaped deposition pattern is generated. There is a tendency to
regulate and control the evaporative deposition pattern of a
sessile droplet containing particles for its wide application in
many fields including ink-printing,4−7 coating technology,8,9

medical diagnosis,10,11 biomedicine,12 DNA/RNA map-
ping,13,14 and nanomaterial fabrication.15−17

Indeed, a variety of strategies have been proposed for
suppressing or controlling the coffee ring effect. Three physical
strategies�(i) avoiding the contact line being pinned, (ii)
disturbing the outward capillary flow, (iii) thwarting particles
being transported to the edge of sessile droplets�were
enumerated for suppressing the coffee ring effect.18 On a
micropatterned hydrophobic or superhydrophobic surface,
droplets may be at a Cassie or Wenzel wetting state, leading
to the difference in evaporative deposition.19,20 Eral et al.21

provided a method of applying an electric field to evaporating

droplets to obtain a homogeneous deposition. Changing the
pH of evaporating droplets was found to effectively suppress
the coffee ring effect.22 Furthermore, substrate temper-
ature23,24 and evaporative environment25 were approved
factors for preventing the coffee ring effect. Moreover, adding
some amount of polymer additives26 was also found to be
effective for the strong Marangoni flow inside evaporating
droplets.
However, there is an intense interest in exploring applicable

strategies for inducing internal flows inside an evaporating
droplet. Surfactant, containing one or more hydrophobic tails
and a hydrophilic headgroup, can dramatically change the flow
of evaporating fluid which was triggered by changes in surface
properties,27 evaporation rate,28 and surface tension29 of a
droplet resulting from the adsorption of surfactant molecules at
the liquid−vapor interface. Additionally, the surface tension of
surfactant solutions would never change distinctly when the
concentrations are above the critical micelle concentration
(CMC). Therefore, an enlightenment of employing surfactants
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for controlling the final deposition was generated. In this
regard, the Marangoni vortex could be instigated by adding
anionic surfactants such as sodium dodecyl sulfate (SDS),30

resulting in the uniform deposition of colloidal particles after
complete evaporation. As demonstrated, hexadecyl trimethy-
lammonium bromide (CTAB)�a kind of a cationic
surfactant�played an important role in eliminating the coffee
ring effect, which was conducive to Marangoni flow, and
eventually had a homogeneous deposition.31 Also, there was
proof that the coffee ring effect could be altered with the
addition of Triton X-100 (TX-100), a nonionic surfactant.32

However, to our best knowledge, the combined effect of
surfactant type and surfactant concentration on evaporative
deposition has never been reported up until now.
In this paper, different categories and concentrations of

surfactants were selected, and evaporative deposition of
surfactant-laden nanofluid droplets over the silicon surface
was experimentally investigated. It was found that the types
and concentrations of the surfactant had an enormous
influence on the morphologies of evaporative deposition.
SDS concentration also has a great influence on apparent crack
(particle separation) morphologies and can even eliminate
cracks when it is just greater to some extent than 1.0 CMC;
homogeneous patterns were achieved when the initial
concentrations of CTAB and TX-100 were relatively high.

■ MATERIALS AND METHODS
Prepolished silicon wafers (Tebo Technology Co., Ltd., China) were
ultrasonically cleaned by acetone and ethanol successively for 15 min.
Three kinds of surfactants�SDS [Chemical Reagent, Aladdin,
≥99.0% (GC), China], CTAB [Bio-Reagent, Sigma-Aldrich,
≥99.0% (GC), India], and TX-100 [Chemical Reagent, Aladdin,
≥99.0% (GC), China]�were selected for preparing suspensions with
different concentrations, respectively. Surfactant-laden nanofluids
were obtained by diluting PS nanoparticle33 suspension with an
initial mass percent of 10.06 wt % (PS02N, mean diameter: 44 nm,
Bangs Laboratory, USA) with deionized water and surfactant
solutions. In the surfactant-laden nanofluid solutions containing
only one kind of surfactant, the mass fraction percent of PS
nanoparticles was fixed at 0.64 wt % and surfactant concentration was
in different ranges as follows: (i) the SDS concentration ranged from
0.1 to 1.5 CMC (1 CMC = 8.2 mM34); (ii) the CTAB concentration
ranged from 0.1 to 9.0 CMC (1 CMC = 0.92 mM35); (iii) the TX-
100 concentration ranged from 0.1 to 18 CMC (1 CMC = 0.24
mM36). All of the surfactant-laden nanofluid solutions were
ultrasonically stirred for 15 min to ensure the uniform distribution
of nanoparticles and used within 24 h.
Surfactant-laden nanofluid droplets with a nominal volume of 0.8

μL were extracted with a micropipette and gently dropped on the
silicon surface. Meanwhile, mixture droplets were observed with a
three-dimensional digital microscope (KH-8700, Hirox, Japan) from
the top view at 1 fps. The ambient temperature and relative humidity
were 25 ± 1 °C and 47 ± 5%, respectively. Each experiment was
repeated at least four times to ensure its reproductivity. It should be
noted that surfacant molecules will form micelles above 1 CMC and
the distribution of micelles in the evaporative deposition might be
analyzed using energy dispersive X-ray spectroscopy.37

■ RESULTS AND DISCUSSION
1. Morphology and Evolution of Apparent Cracks in

the Evaporation of SDS-Laden Nanofluid Droplets.
Figure 1 shows the apparent, advancing, and receding contact
angles of SDS droplets on silicon, which were represented by
θe, θa, and θr, respectively. It was found that the values of θe, θa,
and θr all decreased with increasing SDS concentration when it

was less than 1.0 CMC. However, they remained nearly
unchanged when the concentration was greater than 1.0 CMC.
Figure 2 shows the evaporative deposition of SDS-laden

nanofluid droplets with initial SDS concentrations ranging

from 0.1 to 1.5 CMC (evaporation curves of SDS-laden
nanofluid droplets are given in Figure S2, and the height profile
of some evaporative depositions is given in Figure S8). A
previous study38 demonstrated that periodic radial cracks were
developed in the evaporative deposition of nanofluid droplets
without the addition of SDS molecules. When SDS molecules
was introduced into nanofluid droplets, deposition patterns
with different morphologies of cracks were obtained. When the
initial SDS concentration ranged from 0.1 to 0.8 CMC,
complex, diverse, nonuniform, and nonperiodic morphologies
of cracks were observed. When the initial SDS concentration
was 0.9 CMC, periodic radial cracks were found. When the
initial SDS concentration was in the range from 1.0 to 1.2
CMC, only a few cracks were formed in part of the evaporative
deposition. Note that no cracks were observed when the initial
SDS concentration was 1.3 or 1.5 CMC.
The evolution of apparent cracks during the evaporation of

SDS-laden nanofluid droplets with initial SDS concentrations
ranging from 0.1 to 1.2 CMC was shown in Figure 3. It has

Figure 1. Contact angle of SDS droplets on the silicon surface.

Figure 2. Deposition patterns of PS nanofluid droplets laden with
different concentrations of SDS. Scale bars: 100 μm.
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been widely accepted that crack formation is induced by
capillary force.39−43 With the loss of a lot of solvent, there
would a thin liquid film covering the clustered nanoparticles.
Capillary force between nanoparticles increases greatly with
the film becoming thinner and thinner, leading to the increase
in stress.39 Under the action of the capillary force, adjacent
particles would be more likely pulled apart, resulting in the
formation of cracks. From the viewpoint of energy, the thin
liquid film covering the surface of the sediments at the final
stage of evaporation tries to expand,44 thus more and more
energy could be accumulated by reducing the stress in the

process. However, silicon is a hard substrate and the bottom of
the thin film expanded to the substrate until it adhered
completely, avoiding the production of stress relaxation.44

While on the top of the thin film, the stress could be released
in the surface of the sediments by producing cracks.
A theoretical model was developed here to elucidate the

formation of evaporative deposition, as shown in Figure 4.
During the process of crack formation, two types of capillary
forces existed, viz., the lateral capillary force FLC and the
normal capillary force FNC. The lateral capillary force tends to
attract nanoparticles and bring them together, while the
normal capillary force tends to adhere nanoparticles to the
solid surface, as shown in Figure 4a. FLC was expressed as

45,46

F r L( sin ) /LC lv 1
2= (1)

where r1 is the radial distance of the liquid film covering the
particle surface, ϕ is the meniscus slope angle, and L is the
center-to-center spacing, as shown in Figure 4a.47 It should be
noted that eq 1 is valid when the ratio of the center-to-center
spacing to capillary length lC (l gC

lv= , where ρ and g are the

density of the liquid and the gravitational acceleration,
respectively) is far less than 1.47

FNC was given as
45,47

F r sinNC 1 lv= (2)

Besides, the particles were also under the action of friction
from the substrate which was expressed as48

F nfFf a= (3)

where n̅ is the equivalent number of particles arrayed as a line, f
is the friction coefficient taking into account the influence of
the liquid layer between nanoparticles and the substrate based
on the lubrication theory,49,50 and Fa is the total adhesive force
including gravity, electrostatic force, van der Waals force, and
the normal capillary force.51 Compared with the normal
capillary force, the other three forces could be neglected;48

thus, Fa was approximately equal to FNC. When Ff ≥ FLC, the
movement of particles inside the droplet would be prevented.
When r1 and ϕ reached the corresponding extreme values, viz.,
r1 = R and ϕ = 90°, the liquid film would disappear. Hence, the
number of particles to keep particles pinned in the fluid could
be derived from eqs 1−3

n R
Lf (4)

where R is the radius of a nanoparticle. Equation 4 indicated
that there was a negative correlation between n̅ and L. As the
circumferential crack width decreased, the center-to-center
spacing in the circumferential direction Lc became shorter with
increasing initial SDS concentration, as shown in Figure 2.

Figure 3. Evolution of apparent cracks during the evaporation of SDS-
laden nanofluid droplets. Parts a−j represent the initial SDS
concentration of 0.1−1.2 CMC, respectively. The time t0 denotes
the instant just before the formation of the first apparent crack. Scale
bars: 100 μm.

Figure 4. Schematics of the mechanism for particles in different regions: (a) particles inside the droplet; (b) particles adjacent to the contact line.
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Thus, n̅ would get larger and the number of nanoparticles
gathered in the circumferential direction would increase,
implying there would be fewer cracks (0.1−0.8 CMC) until
no crack (0.9−1.5 CMC) along the circumferential direction as
the initial SDS concentration increased.
Particles adjacent to the contact line also experience the

surface tension force Fs exerted by the liquid−air interface at

the edge of the liquid film, as shown in Figure 4b. Fs could be
expressed as52

F R2 coss lv r= (5)

When Ff ≥ Fs, the movement of nanoparticles toward the
contact line would be suppressed. Thus, the number of
particles for the pinning of nanoparticles could be derived by
combining eqs 2 and 3 with eq 5 and expressed as

Figure 5. Deposition patterns of CTAB-laden PS nanoparticle droplets with different concentrations. Scale bars: 100 μm.

Figure 6. Evolution of deposition patterns during the evaporation of CTAB-laden nanoparticle droplets. The time t1 denoted the instant just before
the formation of the deposition patterns. Scale bars: 100 μm.
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n
f

cos r

(6)

From eq 6, there was a positive correlation between n̅ and
cos θr. As shown in Figure 1, θr got smaller with the increase of
SDS concentration until it was kept unchanged above 1 CMC.
Thus, n̅ would get larger and the number of particles gathered
in the contact line would increase, indicating that there were
fewer cracks (0.1−0.4 CMC) until no crack (0.5−1.5 CMC)
around the region of the contact line.
Because θr was more sensitive to SDS concentration than L,

according to eqs 5 and 6, the equivalent particles accumulated
earlier near the contact line than inside the droplet,
contributing to the disappearance of cracks on the edge of
the deposition. From Figure 2, it was easily found that the
circumferential cracks disappeared, and only periodic radial
cracks were formed on the surface of the deposition when the
initial SDS concentration was in the range from 0.9 to 1.2
CMC. It was worth noting that the number of radial cracks
increased (0.1−0.8 CMC) as the center-to-center spacing in
the radial direction Lr decreased. In order to eliminate the
marginal and circumferential cracks, more particles were
required to congregate there, resulting in fewer particles
accumulating along the radial direction. In that way, it was
difficult for the particles to be arrayed along the radial direction
to reach the equilibrium state; thus, more radial cracks were
generated. At a relatively high SDS concentration (1.0−1.2
CMC), the average center-to-center spacing Lr in the radial
direction decreased, resulting in the decrease of the number of
radial cracks. Hence, only radial cracks were discovered in part
of the circular sediments. When the initial SDS concentration
was high (1.3−1.5 CMC), there was much stronger Marangoni
flow30,53 and SDS molecules would be transported to the
interior, leading to the reduction in the local liquid−vapor
interfacial tension. Thus, the capillary stress would be much
less and could not induce enough tensile stress54 for the
cracking of the thin film.
2. Morphology and Evolution of Apparent Cracks in

the Evaporation of CTAB-Laden Nanofluid Droplets.
Figure 5 shows the deposition pattern of CTAB-laden PS
nanofluid droplets with different concentrations (evaporation
curves of CTAB-laden nanofluid droplets are given in Figure
S4, and the height profile of some evaporative depositions is
given in Figure S9). When the initial CTAB concentration was
in the range from 0.1 to 4.0 CMC, periodic radial cracks were
formed on the deposition pattern. With the increase of the
initial CTAB concentration, the number of cracks generally
decreased, and more nanoparticles were deposited on the
interior. More importantly, the width of the deposition ring
gradually decreased. When the initial CTAB concentration
ranged from 5.0 to 9.0 CMC, the deposition ring disappeared
and a uniform deposition was obviously formed with cracks
near the edge of the deposition.
The evolution of deposition patterns during the evaporation

of CTAB-laden nanofluid droplets with initial CTAB
concentrations ranging from 0.1 to 9.0 CMC was shown in
Figure 6. Assuming that a droplet has a spherical cap and the
contact angle is less than 90°, a scaling law related to the width
of the coffee ring was proposed as follows55

w R/ d (7)

where w is the width of the coffee ring, Rd is the radius of the
deposition, and ψ is the initial volume fraction of the particles;

in our experiment, ψ is a constant. Hence, there is a negative
correlation between the width of the coffee ring and the radius
of the deposition.
Generally speaking, the competition between flows inside

the droplet would determine the morphology of deposition.
Inside an evaporating sessile droplet, there are usually two
kinds of flows, viz., the capillary compensatory flow caused by
contact-line pinning1 and the Marangoni flow induced by the
gradient of surface tension,30,53 as shown in Figure 7. When

the initial CTAB concentration was in the range from 5.0 to
9.0 CMC, particles would be pulled from the edge to the
interior of the droplet due to the dominant Marangoni flow,
the ring-shaped structure would disappear, and the homoge-
neous deposition pattern would be generated.
3. Morphology and Evolution of Apparent Cracks in

the Evaporation of TX-100-Laden Nanofluid Droplets.
Figure 8 shows the deposition pattern of TX-100-laden
nanofluid droplets with different initial TX-100 concentrations
(evaporation curves of TX-100-laden nanofluid droplets are
given in Figure S6, and the height profile of some evaporative
depositions is given in Figure S10). The circular width
gradually increased with the increase of initial TX-100
concentration, which indicated the internal deposition was
significantly formed. Furthermore, the number of cracks
increased and the width of the cracks decreased distinctly.
The cracks gradually expanded inward when the initial TX-100
concentration ranged from 0.1 to 12.0 CMC. Interestingly,
when the initial TX-100 concentration was relatively high
(14.0−18.0 CMC), a “tree-ring-like” structure was discovered
on the deposition. The evolution of deposition patterns during
the evaporation of TX-100-laden nanofluid droplets with initial
CTAB concentrations ranging from 0.7 to 14.0 CMC was
shown in Figure 9.
Actually, cracks are formed as a result of competition

between the capillary force and the friction force. From Figure
9, it was found that the average width of cracks decreased with
increasing initial TX-100 concentration when the concen-
tration ranged from 0.1 to 12.0 CMC, which demonstrated
more equivalent nanoparticles were required to reach the
equilibrium state from eq 4, while nanoparticles in the whole
zone were lacking to keep them pinned along with extended
inward deposition. Thus, denser cracks were generated with
increasing initial TX-100 concentration.
When the contact line was initially pinned, the nanoparticles

and TX-100 molecules were transported to the edge of the
droplet due to the outward capillary flow. TX-100 molecules
aggregated at the liquid−vapor interface near the contact line

Figure 7. Diagram of internal flows inside evaporating CTAB-laden
nanoparticle droplets.
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Figure 8. Deposition patterns of TX-100 containing PS nanoparticle droplets with different concentrations. Scale bars: 100 μm.

Figure 9. Evolution of deposition patterns during the evaporation of TX-100-laden nanoparticle droplets. The time t2 denotes the instant just
before the formation of the deposition patterns. Scale bars: 100 μm.
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locally reduced the liquid−vapor interfacial tension. Thus,
Marangoni flow was induced by the gradient of surface tension.
When Marangoni flow was strong enough to carry a large
number of nanoparticles and TX-100 molecules toward the
center of the droplet, the contact line was depinned. However,
when the local concentration of TX-100 was high, the induced
Marangoni flow was weaker; thus, nanoparticles were pulled
from the droplet center to the contact line due to the dominant
capillary flow because of the pinning of the contact line.
Subsequently, Marangoni flow restarted, and the process was
repeated, as shown in Figure 10. As a result, a “tree-ring-like”

structure of nanoparticles was formed during the recurrent
transition between the pinning and the depinning of the
contact line. Therefore, when the contact line was ultimately
depinned, the remaining nanoparticles were deposited in the
center as the contact line moved, resulting in a nearly uniform
evaporative deposition.
Besides, it should be noted that, though different surfactants

and different surfactant concentrations were chosen to study
their combined effect on the evaporative deposition of
nanoparticles, all surfactants influence the morphology in the
same way, as shown in Figure 7.

■ CONCLUSIONS
Evaporative deposition of surfactant-laden nanofluid droplets
over a silicon surface was experimentally studied. The
following was found: (i) The addition of SDS molecules into
nanofluid droplets was found to have an obvious influence on
the formation of cracks. Moreover, cracks could be completely
eliminated at an initial SDS concentration above a critical
value. Moreover, a theoretical model taking capillary force,
friction between nanoparticles and the substrate in a fluid, as
well as the surface tension force into account was developed to
elucidate the formation of cracks. (ii) The width of the
deposition ring gradually decreased until it disappeared with
the increase of initial CTAB concentration. In the case of high
initial CTAB concentrations, a relatively homogeneous
deposition was formed. (iii) With the increase of the initial
TX-100 concentration, the width of the deposition ring
gradually increased until the deposition was completely
uniform, and the number of cracks gradually increased.
Moreover, a “tree-ring-like” pattern was discovered for the
case of high initial TX-100 concentrations (14.0−18.0 CMC).

In summary, morphologies of deposition could be influenced
by adding surfactant into droplets. Hence, this work provides a
useful and reliable method to fulfill regulation of the particle
deposition pattern, which may open up deeper application
prospects for particle self-assembly, coating, and nanomaterial
technology.
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