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ABSTRACT

In this paper, we propose a phase-field-based spectral element method by solving the Navier–Stokes/Cahn–Hilliard equations for
incompressible two-phase flows. With the use of the Newton–Raphson method for the Cahn–Hilliard equation and the time-stepping
scheme for the Navier–Stokes equation, we construct three constant (time-independent) coefficient matrixes for the solutions of velocity,
pressure, and phase variable. Moreover, we invoke the modified bulk free energy density to guarantee the boundness of the solution for the
Cahn–Hilliard equation. The above strategies enhanced computation efficiency and accurate capture of the interfacial dynamics. For the
canonical tests of diagonal motion of a circle and Zalesak’s disk rotation, the lowest relative errors for the interface profile in contrast to
the published solutions highlight the high accuracy of the proposed approach. In contrast to our previous work, the present method approxi-
mately produces only one tenth relative errors after one rotation cycle but saves 27.2% computation cost. Furthermore, we note that the
mobility parameter adopted appears to produce convergent solutions for the phase field but the distribution of the chemical potential
remains divergent, which thereby results in diverse coalescence processes in the two merging droplets example. Therefore, a criterion for the
choice of the mobility parameter is proposed based on these observations, i.e., the mobility adopted should ensure the convergence solution
for the chemical potential. Finally, the rising bubble is presented to verify the proposed method’s versatility under large density (1000) and
viscosity contrasts (100), and its advantage in efficiency over previous solver is manifested by 44.9% savings in computation cost.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103277

I. INTRODUCTION

There exists a wealth of two-phase flows in both nature and
industrial practice, such as inkjet printing, oil extraction processes, and
droplet microfluidic systems. Further advancement of these fields
necessitates in-depth studies of such flows. Numerical modeling and
simulation of immiscible multiphase flows provide easier access to the
detailed flow structure and thereby have attracted broad interest over
the past 20 years. The major challenge of simulating these problems
comes from the tight coupling between the fluid motions and the
interfacial dynamics. Currently, numerical strategies for the represen-
tation of the interface come in two flavors: the interface tracking
method and the interface capturing method. The former approach dis-
tributes Lagrangian marker points on the interface and tracks its
movements explicitly, such as the front-tracking method,1,2 the

boundary integral method,2,3 and the immersed boundary method.4

Alternatively, the interfacial dynamics can be implicitly captured in a
purely Eulerian fashion through an auxiliary scalar function such as
the volume of fluid (VOF) method,5,6 level set method,7,8 and phase
field method (PFM),9,10 which eases the solution of highly deformable
interfacial dynamics. These can be further divided into two categories:
sharp interface and diffuse interface. In the realm of the sharp inter-
face method, an interface reconstruction procedure is necessary in the
VOF method to determine the curvature of the interface tension
force,11 while the level set method suffers from the violation of the
mass conservation and a reinitialization procedure is periodically
implemented to remedy such deficiency. It is noted that the special
numerical treatments would give rise to computational overhead and
deteriorate the physical consistency.
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Another interface capturing method is the phase-field method
(PFM), which belongs to the diffuse interface approach and uses a dif-
fusive layer with fixed thickness to represent the interface. The pio-
neering idea was conceived by van der Walls in 189412 who suggested
adding weakly non-local (gradient) terms in the free energy to stabilize
the interface in-between the two phase mixture. Later, Cahn and
Hilliard (CH)13–15 extended this approach and formulated the evolu-
tion for the phase field variable by accounting for the local energy at
the interface. Notably, the phase-field model can be derived from an
energy-based variational formalism, which endows the PFM a firm
physical basis and allows it to respect the thermodynamic consistency
as well as the mass and energy conservation. The theoretical advan-
tages and the ability to describe the complex interface changes has ren-
dered the PFM a robust and growingly popular choice for simulation
of multiphase flows.16–20 Examples include thermocapillary flows,21,22

evaporation,23,24 droplet coalescence,25 and so on. Despite its success
in various applications, an efficient, high accuracy, and longtime stable
phase-field-based multiphase flow method is still a tough challenge.26

The fourth order and nonlinear diffusion term of the Cahn–Hilliard
equation poses two difficulties for the numerical simulation: (1) the
strong discontinuities in solutions and (2) the stringent time step
restriction of explicit schemes,27 which makes the long-time computa-
tions hard to converge to physical results. The situation becomes worse
for the scenarios with large density and viscosity contrast. In addition,
the sufficiently small mesh spacing is necessary to resolve the narrow
interface layer in practical computations, which leads to overwhelming
computation expense. Therefore, an efficient and accurate solution for
the Navier–Stokes/Cahn–Hilliard equations remains a long-lasting
topic of active research,28 and a high-order method has proved feasible
to resolve such an issue. Shen et al.16,29 explicitly pointed out that com-
pared with common second-order methods (such as the finite differ-
ence method), the spectral method with the exponential convergence
rate can effectively achieve computational savings with less grid points
under the same accuracy request. Furthermore, a pressure stabilization
scheme was developed by Shen and Yang30,31 for two-phase flows with
large density contrast. Shi and Li27 proposed a class of implicit–explicit
multistep local discontinuous Galerkin schemes for solving nonlinear
Cahn–Hilliard equation. Park et al.32,33 proposed a least squares spec-
tral element method with a time-stepping procedure to the isothermal
Navier–Stokes/Cahn–Hilliard system. Manzanero et al.34,35 presented
a nodal Discontinuous Galerkin spectral element method for the
Cahn–Hilliard equation and developed an entropy-stable incompress-
ible two-phase flow solver. Ma et al.36 put forth a spectral difference-
based phase field lattice Boltzmann method (LBM) for incompressible
two-phase flows.

Another challenge facing the phase-field-based method is the
variation in time of the coefficient matrices of the linear algebraic
equations for velocity, pressure, and the phase variable, which roots
in the variable density and variable viscosity with respect to the
phase variable. Therefore, an update of the coefficient matrices for
each time step is necessary for the practical computations and
heavily harms the efficiency.37 Reformulating the coefficient matrix
for the linear algebraic equations to remove its dependence on time,
an efficient time-stepping scheme was developed by Dong and
Shen37 within the spectral element method framework, and its versa-
tility for large-density-ratios problems and thermal two-phase flows
has been well proved.38

The third concern is the mobility dependent solution of the PFM,
and the evidence for such dependence is rich in the literature.
Inamuro39 found that the coalescence process of the rising bubble is
sensitive to the value of the mobility. Huang et al.40 explored the
mobility-dependent bifurcations in a capillarity-driven two-phase fluid
system by the lattice Boltzmann model. Chen et al.41 examined the
mobility influence on the two merging bubbles problem, and they
observed that the mobility could significantly affect the coalescence
process. Despite the consensus on the influence of mobility, there still
lacks deterministic criteria for a proper choice of the mobility parame-
ter, which hampers further application in practice. Several researchers
are concerned about this issue and proposed criteria for the proper
choice of mobility. Jacqmin42 found, by some theoretical and numeri-
cal analysis, that mobilityM0 should be bounded between OðCn2Þ and
OðCnÞ to ensure that the diffuse interface approximation can
approach its shape interface limit. Here, Cn ¼ e=L, is the non-
dimensional thickness of the interface, where e is the interface width
and L is the characteristic length. Khatavkar et al.43 approached the
problem on numerical grounds, proposing the scaling relation
M0 / 1=Cn. Magaletti et al.44 correlated the mobility with the charac-
teristic velocity, interface width, and surface tension r asM0 ffi e2U=L
by a formal asymptotic analysis. Recently, Sharma et al.45 extended
such correlation and proposed to determine the mobility value adap-
tively based on the local interface thickness.

In this work, we address the above concerns by proposing an alter-
native phase-field-based spectral element method. The Newton–Raphson
method is adopted to resolve the Cahn–Hilliard equation, and the time-
stepping scheme37 is used for the Navier–Stokes equations. In this way,
coefficient matrixes of the linear algebraic equations for velocity, pres-
sure, and phase variable become time-independent and can be pre-
computed during the pre-processing step. In addition, we replace the
original double well potential function with a modified bulk free energy
density to preserve the boundness of the solution of the Cahn–Hilliard
equation. Therefore, the proposed method imparted both enhanced
computation efficiency and high accuracy for interface capture. We pre-
sent canonical examples to validate the proposed method for two-phase
flows, including diagonal motion of a circular interface, Zalesak’s disk
rotation, single vortex flow, two merging droplets, and bubble rising
with large density contrast. The accuracy for interface capture is quanti-
tatively verified by the first three tests, while the last two tests are utilized
to prove the robustness and accuracy for complex changes in the inter-
facial topology under large fluid property contrast. Finally, through the
two merging droplets example, we come up with a criterion for the
appropriate choice of the mobility parameter for the present method
and manifest its validity numerically.

II. THEORY AND ALGORITHM
A. Governing equations for incompressible two-phase
flows

The phase field method uses a diffuse layer with thickness e to
represent the phase interface. The present focus is the phase field
model governed by the Cahn–Hilliard equation,46 which employs a
phase variable / to label the disparate phases, i.e., / ¼ 1, and �1 cor-
respond to fluid 1 and fluid 2, respectively. The two fluids connect by
a thin smooth transition layer of thickness e, so the interface of the
mixture can be denoted by the zero-level set of phase variable: / ¼ 0.
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The evolution of the phase variable is described by the convection dif-
fusion equation as

@/
@t

þ u � r/ ¼ r � ðM0rwÞ; (1)

where u represents the velocity field.M0 is the mobility, which charac-
terizes the diffusivity in the interfacial region. w is the chemical poten-
tial, which is determined by the variation of free energy,

w ¼ dF
d/

¼ f 0dw /ð Þ � e2r2/: (2)

The total free energy F reads as47

F /ð Þ ¼
ð
X

fdw /ð Þ þ e2

2
jr/j2

� �
dX; (3)

where X is the computational domain. The first term of the above
equation represents the bulk free energy density and commonly fol-
lows a double-well form fdwð/Þ ¼ ð/2 � 1Þ2=4. According to
Caffarelli andMuler,48 the Cahn–Hilliard equation does not satisfy the
maximum principle, which harms the bound-preserving property of
its solution. There are two approaches to handle this non-convex
term: one is convex splitting method49 and other is the stabilization
method.29,50,51 Here, we choose the latter one and its unconditional
stability requires that the second derivative of fdwð/Þ to be bounded,
which cannot be admitted by fdwð/Þ in its original form. Thus, Shen
and Yang29 and Condette et al.52 propose to modify the fdwð/Þ to have
a quadratic growth rate for j/j > 1 as follows:

fdw /ð Þ ¼

/� 1ð Þ2; / > 1;

/2 � 1
� �2

4
; / 2 �1; 1½ �;

/þ 1ð Þ2; / < 1:

8>>>><
>>>>:

(4)

Then, max/2< jf 00 dwð/Þj � 2 holds theoretically, as proved by Caffarelli
and Muler,48 the maximum norm of the solution for the Cahn–Hilliard
equation is bounded, which can thereby guarantee the boundness of the
solution for the Cahn–Hilliard equation, and constitutes the important
difference between the present method and previous work.53 In addi-
tion, the second term in Eq. (3) stands for the excess free energy in the
interfacial region. At the equilibrium state, the analytical profile along
the x-axis for a one-dimensional planar interface gives

/ xð Þ ¼ tanh
xffiffiffi
2

p
e

� �
: (5)

In this work, we assume that the contact angle is 90�. Thus, the bound-
ary conditions for the Cahn–Hilliard equation is given as37

nw � r/ ¼ 0 nw � rw ¼ 0: (6)

The interfacial force formula proposed by Liu et al.46,54 as follows:

fr ¼ 3
ffiffiffi
2

p

4
r
e
wr/; (7)

where r represents the surface tension between two fluids. Then, we
can obtain the whole governing equations for the incompressible two-
phase flow as follows:

q
@u
@t

þ u � ru

� �
¼�rpþr � l ruþ ðruÞT

� �h i
þ fr þ qg; (8)

r � u ¼ 0; (9)

@/
@t

þ u � r/ ¼ r � ðMrwÞ;
w ¼ f 0dw /ð Þ � e2r2/;

8><
>: (10)

where g is the gravity acceleration. The fluid properties, including den-
sity q and dynamic viscosity l, are determined by the phase variable
as follows:

q ¼ q1 þ q2
2

þ q1 � q2
2

�/; l ¼ l1 þ l2
2

þ l1 � l2
2

�/; (11)

where the auxiliary �/ is introduced for large density ratios as follows:

�/ ¼ / if j/j � 1;

sign /ð Þ if j/j > 1;

(
(12)

B. Phase-field-based spectral element method
for two-phase flows

In this section, we propose a spectral element method for two-
phase flow by solving Eqs. (9)–(12). The Newton–Raphson method55 is
first employed for the solution of the Cahn–Hilliard equation with one
constant coefficient stiffness matrix. Moreover, we use the time-stepping
scheme37,38 to decouple Navier–Stokes equation into two Poisson-type
equations and to reformulate another two constant coefficient stiffness
matrices for the Navier–Stokes equation. The reformulated constant
coefficient stiffness matrices for the phase variable, velocity, and pressure
solutions bring considerable savings in computation expense, by cir-
cumventing the coefficient matrix update for each iteration within every
time step, which lays the difference between the present method and the
previous approach in algorithm design.53 Let /n, un, and pn denote the
phase, velocity, and pressure field at tn, respectively. To obtain the flow
variables at time tnþ1, we solve for phase parameter, pressure, and veloc-
ity sequentially as follows:

For phase field /nþ1,

c0/
nþ1

Dt
�r � ðMrwnþ1Þ ¼ /̂

Dt
� u�;nþ1 � r/�;nþ1;

e2r2/nþ1 þ wnþ1 ¼ 2f 0dw /nð Þ � f 0dw /n�1
� �

;

8>><
>>: (13)

where the coefficient c0 determines the order of the time discretization
as Eq. (22).

For pressure pnþ1,

c0~u
nþ1 � û

D
t þ 1

q0
rpnþ1

¼ �ðu�;nþ1 � rÞu�;nþ1 þ 1
q0

� 1
qnþ1

� �
rp�;nþ1

� lnþ1

qnþ1
r	r	 u�;nþ1 þ 1

qnþ1
rlnþ1

	 ru�;nþ1 þ ðru�;nþ1ÞT
h i

þ 1
qnþ1

fr þ g; (14)

r � ~unþ1 ¼ 0; (15)
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n � ~unþ1jC ¼ n � wnþ1: (16)

For velocity unþ1,

c0u
nþ1

Dt
� vmr2unþ1 ¼ c0~u

nþ1

Dt
þ vmr	r	 u�;nþ1; (17)

where c0~u
nþ1

Dt is calculated by Eq. (14) as follows:

c0~u
nþ1

Dt
¼ û

D
t � 1

q0
rpnþ1 � ðu�;nþ1 � rÞu�;nþ1

þ 1
q0

� 1
qnþ1

� �
rp�;nþ1 � lnþ1

qnþ1
r	r	 u�;nþ1

þ 1
qnþ1

rlnþ1 � ru�;nþ1 þ ðru�;nþ1ÞT
h i

þ 1
qnþ1

fr þ g;

(18)

u�;nþ1 ¼ 2un � un�1; (19)

unþ1jC ¼ wnþ1; (20)

where Dt is the time step. For stability reasons, the constant parame-
ters �m, q0 are chosen by satisfying

�m 
 1
2

max l1; l2ð Þ
min q1; q2ð Þ ; q0 ¼ min q1;q2ð Þ:

The present scheme features the formulation of the time-independent
constant coefficient matrix by augmenting its correction term

1
q0
� 1

qnþ1

� �
rp�;nþ1 in Eq. (14) and by bringing vmr2unþ1 and its cor-

rection term vmr	r	 u�;nþ1 in Eq. (17).37,56,57 We use v a generic
variable to represents u and /. v�;nþ1 represents a Jth order explicit
approximation of vnþ1 as follows:

v�;nþ1 ¼ vn if J ¼ 1;

2vn � vn�1 if J ¼ 2:

(
(21)

where J denotes the order of temporal accuracy. The expression
ðc0~vnþ1 � v̂Þ=Dt represents a discretization of @v

@t at time step (nþ 1)
with the Jth order backward differentiation formula with

c0 ¼
1 if J ¼ 1;

3
2

if J ¼ 2:
v̂ ¼

vn if J ¼ 1;

2vn � 1
2
vn�1 if J ¼ 2:

8><
>:

8><
>: (22)

Next, we provide the details for the algorithmic development in the
context of the spectral element method. First of all, we solve the phase
field equation with the Newton–Raphson method.55,58 Take the L2-
inner product of Eq. (13) with test functions h and f for / and w,
respectively, in the computational domain X. We obtain the weak
form of Eq. (13),

ð
X

c0/
nþ1

Dt
þ u�;nþ1 � r/nþ1

� �
hdXþ

ð
X

Mrwnþ1 � rhdX

¼
ð
X

/̂
Dt

hdX�
ð
X

u�;nþ1 � r/nþ1
� �

hdX;

ð
X

e2r/nþ1 � rfdX�
ð
X

wnþ1fdX

¼ �
ð
X

2f 0dw /nð ÞfdXþ
ð
X

f 0dw /n�1
� �

fdX:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(23)

The residual vector of the above equation in Newton–Raphson
method can be expressed as

R1 ¼
ð
X

c0/
nþ1

Dt
þ u�;nþ1 � r/nþ1

� �
hdX

þ
ð
X

Mrwnþ1 � rhdX�
ð
X

/̂
Dt

hdX

þ
ð
X

u�;nþ1 � r/nþ1
� �

hdX; (24)

R2 ¼
ð
X

e2r/nþ1 � rfdX�
ð
X

wnþ1fdXþ
ð
X

2f 0dw /nð ÞfdX

�
ð
X

f 0dw /n�1
� �

fdX; (25)

and the Jacobian matrix becomes a constant matrix and is defined as

J ¼
@R1

@/nþ1

@R1

@wnþ1

@R2

@/nþ1

@R2

@wnþ1

0
BBB@

1
CCCA; (26)

where

@R1

@/nþ1 ¼
ð
X

c0/
nþ1

Dt
hdX; (27)

@R1

@wnþ1 ¼
ð
X

Mrwnþ1 � rhdX; (28)

@R2

@/nþ1 ¼
ð
X

e2r/nþ1 � rfdX; (29)

@R2

@wnþ1 ¼ �
ð
X

wnþ1fdX: (30)

After formulating the residuals and Jacobian matrix, we obtain a set of
nonlinear equations as follows:

J½ � ddf g ¼ RGf g; (31)

where RG ¼ ðR1;R2ÞT and dd ¼ ðd/1; d/2;…; d/N ; dw1; dw2;…
dwNÞT and N is the total number of mesh nodes. As the left-hand
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Jacobian matrix J is a constant matrix, it forms only once before the
computation and remains unchanged thereafter. For the remaining
iterations, the residual vector RG is reevaluated and Eq. (31) is then
solved again to update the phase variable as dnþ1 ¼ dn þ dd. This
Newton–Raphson iteration procedure continues until the norm-2 of
/n and /nþ1 reach the convergence criteria (error¼ 1 	 10�6) or a
number of iterations reach the maximum.

With the determined phase field /nþ1 and chemical potential
wnþ1, we can update q, l by Eq. (11). With the aim of solving the pres-
sure and velocity, we set

Gp ¼ û
D
t � ðu�;nþ1 � rÞu�;nþ1 þ 1

q0
� 1
qnþ1

� �
rp�;nþ1

þ 1
qnþ1

rlnþ1 � ru�;nþ1 þ ðru�;nþ1ÞT
h i

þ 1
qnþ1

fr þ g:

(32)

Let us define vorticity as x ¼ r	 u. Taking the L2-inner product of
Eq. (14) withrh produces the Poisson equation for the weak form of
pressure pnþ1,ð

X

rpnþ1 � rhdX¼ q0

ð
X

Gþr lnþ1

qnþ1

� �
	x�;nþ1

	 


	rhdX� q0

ð
C

lnþ1

qnþ1
n	x�;nþ1 � rhdC

� c0q0
Dt

ð
C
n �wnþ1hdC; 8q 2 H1 Xð Þ; (33)

where

lnþ1

qnþ1
r	 x � rh ¼ r � l

q
x	rh

� �
�r l

q

� �
	 x�;nþ1 � rh:

(34)

Referring to Eqs. (17)–(20), we set

Gu ¼ gþ û
D
t þ 1

qnþ1
fr þ 1

qnþ1
rlnþ1 � ru�;nþ1 þ ðru�;nþ1ÞT

h i

þ 1
q0

� 1
qnþ1

� �
rp�;nþ1 � ðu�;nþ1 � rÞu�;nþ1

þr lnþ1

qnþ1

� �
	 x�;nþ1 (35)

and obtain the weak form of the velocity equation,

c0
�mDt

ð
X

unþ1hdXþ
ð
X

rh � runþ1dX

¼ 1
�m

ð
X

h G� 1
q0

rpnþ1
� �

dX� 1
�m

ð
X

lnþ1

qnþ1
� �m

� �
x�;nþ1

	rhdX� 1
�m

ð
C

lnþ1

qnþ1
� �m

� �
n	x�;nþ1hdC; 8h 2 H1

0 Xð Þ:

(36)

The overall solution procedure can be summarized from the above
derivations as follows:

(1) Given ðun; pn;/nÞ, solve Eq. (31) for phase variable /nþ1 and
potential chemical wnþ1 after the norm-2 of /n and /nþ1 reach
the convergence criteria (1 	 10�6) or a number of iterations
reach the maximum.

(2) Compute the density qnþ1 and dynamic viscosity lnþ1 by Eqs.
(11) and (12).

(3) Obtain the surface tension fr by Eq. (7) with /nþ1 and wnþ1.
(4) Solve Eq. (33) for pressure pnþ1 with qnþ1, lnþ1 and fr.
(5) Solve Eq. (36) for velocity unþ1 with qnþ1, lnþ1, fr and rpnþ1.

Summarily, the present two-phase flow solver is built by resolving
the Cahn–Hilliard equation with Newton–Raphson iteration and then
computing the flow field through the solution of the pressure Poisson in
Eq. (33) and the velocity Helmholtz Eq. (36). The Legendre spectral ele-
ment method53,59 is adopted for the spatial discretization in this work.

III. BENCHMARK TESTS

In this section, several canonical two-phase flow examples,
including diagonal motion of a circular interface,60–62 Zalesak’s disk
rotation,63 and single vortex flow,61 are presented. In our simulations,
unless otherwise stated, the fourth element order is prescribed for all
the elements hereinafter, and see Ref. 53 for detailed analysis of the ele-
ment order effects. The code is completed by the FORTRAN language
without parallelization. The hardware conditions for the present com-
putation are provided as follows:

(1) CPU: Intel(R) Core(TM) i9-9900K CPU at 3.60 GHz
(2) Memory: 64 GB
(3) Disk: KINGSTON SA400S37240G

For quantitative validation, the relative error for the interface
profile is defined as

E/ ¼
X

X
j/ x;Tn

f

� �� / x; 0ð ÞjX
X
j/ x; 0ð Þj

; (37)

where /ðx; 0Þ is its initial value and /ðx;TnÞ is the phase variable dis-
tribution after n periodic times Tn

f ¼ L=U0. L and U0 are the charac-
teristic length and velocity. The dimensionless Peclet number (Pe) is
defined as Pe ¼ U0e=M0.

60 In the following three tests, the periodic
boundary conditions are applied at all boundaries.

A. Diagonal motion of a circular interface

The diagonal motion of a circular interface under a constant
background velocity field u ¼ ðU0;U0Þ is first considered. Initially, a
circle with a radius of R is placed at the center of the computation
domain X ¼ ½0; L� 	 ½0; L� as sketched in Fig. 1(a), which is resolved
by 625 quadrilateral elements (25 elements in both x- and y-direc-
tions). The parameters for this test include L¼ 100 m,U0¼ 0.02m/s, e
¼ 3.0m, and Pe¼ 600, which is the same as the setup in Ref. 60. The
relative error between the numerical results and the analytical solution
admits the following formula:

kd/k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x
/ x;Tn

f

� �� / x; 0ð Þ� �2X
x
/ x; 0ð Þ2

vuut ; (38)

where /ðx;Tn
f Þ is the phase variable distribution after n periods and

/ðx; 0Þ is the initial value. Figure 2 shows the interface evolution for
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FIG. 1. Initial setup for three benchmark tests: (a) diagonal motion of a circular interface, (b) Zalesak’s disk rotation, and (c) single vortex flow.

FIG. 2. The phase interface (/ ¼ 0) evolution for the tenth cycle at Pe¼ 600 (the red dashed line is the initial value, and the black solid line is the numerical solution): (a)
t¼ 9.25 Tf , (b) t¼ 9.5 Tf , (c) t¼ 9.75 Tf , and (d) t¼ 10 Tf .
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the tenth cycle. The red dashed line and the black solid line, respec-
tively, represent the initial and the numerical interface profile at differ-
ent times. After ten cycles (10Tf ), the interface profile from the
present method matches well with the theoretical value as demon-
strated in Fig. 2(d). We compare the present results with the published
work by Zu and He,62 Liang et al.61 and conservative Allen–Cahn
(AC) description by Geier et al.60 in Table I. The relative errors kd/k2
of the present method are apparently much smaller than the reference
results.60–62

B. Zalesak’s disk rotation

Zalesak’s disk is widely used for testing the diffusion errors of
interface capturing methods.36,60–62,64–66 It is first introduced by
Zalesak63 to study the accuracy of advection algorithms. Theoretically,
the rotating disk will return to its preliminary position after an integer
multiple of periods Tf ¼ 2L=U0. A grooved disk with radius R at the
start placed in the core of a square with side length L as depicted in Fig.
1(b). The computational domain X ¼ ½0; L� 	 ½0; L� is covered by 2500
quadrilateral elements (50 elements in both x- and y-directions). The
parameter setup for the present test is given as L¼ 200 m, e ¼ 2.0m, Dt
¼ 2 s, U0 ¼ 0.04m/s, R¼ 80 m,M0 ¼ 1 	 10�4, the Courant number
Co ¼ uDt=Dx � 0:1, and the width of the slot is 16. According to the
above parameter, the dimensionless number Pe is 800. The background
velocity field for the present test is defined as

u ¼ �U0p
y
L
� 0:5

� �
; v ¼ U0p

x
L
� 0:5

� �
: (39)

Table II tabulates the relative errors E/ from the present method
in contrast to other solvers36,61,65 at different Pe numbers. Generally,
E/ decreases with the reduction of mobility M0 from 0.01 to 0.0001.
Obviously, the relative error of the present method is smaller than the
reference results from the lattice Boltzmann method (LBM) based on
both the Cahn–Hilliard (CH) equation61 and the Allen–Cahn (AC)
equation under the same mesh resolution. In addition, the present
method also exhibits higher accuracy than the hybrid spectral-
difference LBM, which uses higher element order five and higher
mesh resolution (6400 quadrilateral elements).36 To further prove the

high accuracy of the proposed method, we present the numerical error
after a long time (ten cycles). Figure 3 shows the interface profile from
the present method after one, two, four, eight, and ten cycles in com-
parison with the initial solution. By preserving the boundness of the
phase variable solution through the more proper chemical potential,
the proposed method achieves progress in both accuracy and stability,
and the obtained results match well with the theoretical value at vari-
ous times. From Table III, we can see the relative error E/ from the
present method and the approach in our recent publication53 both
grows with the increase in the number of cycles, but the value of E/ is
effectively reduced by more than 85% by the present method. In addi-
tion, as displayed in Fig. 3, the interface profile of the present method
preserves the interface profile well in line with the analytical solution,
and the relative error remains less than 1% even after ten rounds of
rotation. Such an accuracy level for long-term computation has not
been reported in the literature to the best of our knowledge. Moreover,
the time consumption of present computation is also compared to our
previous attempt,53 and the present method saves 27.2% computation
expense. Furthermore, we note that the proposed method can robustly
provide convergent results for computations with large Pe numbers,
while the model in Ref. 61 become unstable at Pe¼ 800 under same
mesh resolution.

C. Single vortex flow

The single vortex flow64,66–68 widely adopted to prove the conver-
gence and interface capture accuracy of multiphase flows solvers.
Driven by the time-dependent velocity field, the circular disk deforms
to a slender filament in the first half of a period T, which spirals
around the domain’s center and exhibits strong nonlinear features in
numerical simulation. At the second half of a period T, the circular
disk will return to its initial position with shape unchanged in theory.
Note that a longer period T give rise to more deformable interface,
which renders the finial interface shape obtained hard to coincide
with the initial interface shape. Figure 1(c) is a schematic diagram of
the computational domain X ¼ ½0; L� 	 ½0; L�. Mesh resolution of
161	 161 (40 elements in both x- and y-directions) is used in this
simulation. Initially, a circular disk with radius R is located at ðx0; y0Þ,
and the unsteady velocity field is given as

u ¼ �U0 sin
2 px
L
sin

py
L
cos

py
L
cos

pt
Tf

;

v ¼ U0 sin
px
L

sin2
py
L
cos

px
L
cos

pt
Tf

:
(40)

where t is the time, U0 ¼ 0.04m/s, L¼ 200 m, R¼ L/5 m, x0 ¼ 0:5L,
y0 ¼ 0:75L, e ¼ 2.0m, the time step Dt ¼ 2 s, Tf ¼ 6 s which follows
the case setup in Ref. 68.

Figure 4 shows the interface evolution during one cycle at
Pe¼ 800. We observe that the disk is gradually drawn into a filament
and spirals around the center of the vortex under the action of the
underlying velocity field, and reach its maximum deformability at T/2.
Later, it slowly returns to the initial state in the second half of the cycle.
We can find that the numerical result based on present model accu-
rately restore to the initial situation after one entire cycle as displayed
in Fig. 4(f). For quantitative comparison with the reference solution,68

the relative errors E/ following Eq. (37) are listed in Table IV for dif-
ferent mobility parametersM0. Again, the relative error of the present

TABLE I. The relative errors kd/k2 of the present model and literatures60–62 for the
problem of the diagonal motion of a circular interface after ten cycles.

Liang et al.61 and Zu and He62 Present Geier et al.60

Relative error 0.1176 0.0377 0.0874

TABLE II. The relative errors E/ of the present model and different models36,61,65

for the problem of Zalesak’s disk after one circle at Pe¼ 800.

M0

U0 ¼ 0.04 m/s

Present Wang et al.65 Liang et al.61 Ma et al.36

0.01 0.0126 0.0266 0.0485 /
0.001 0.0038 0.0409 0.0696 /
0.0001 0.0018 0.0491 / 0.0216
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method is much smaller than the result in the literature based on the
CH equation68 and also lower than results from the higher-order
method in Ref. 53. Similar with the example above, comparison in the
computation efficiency indicates that the present method saves 28.5%
computation cost than our previous attempt in Ref. 53.

IV. TESTSWITH COMPLEX CHANGE OF INTERFACE
TOPOLOGY

In this section, we present two more numerical examples to
assess the proposed method for more complex change of interface
topology, its mobility parameter dependence, and versatility for prob-
lems with large fluid property contrast.

A. Twomerging droplets

At first, the merging of two droplets is accounted. As displayed in
Fig. 5, two droplets (density q1 ¼ 10 kg=m3 and viscosity
l1 ¼ 0:1 Pa s) with radius R0 are initially placed at (�22.5m, 0) and
(22.5m, 0) and dispersed in the second fluid (density q2 ¼ 1 kg=m3

and viscosity l2 ¼ 0:1 Pa s), and the computational domain X ¼ ½0; L�
	 ½0; L� is covered by 2500 quadrilateral elements (50 elements in
both x- and y-directions). When the initial gap d between two drop-
lets is less than 2e, coalescence of the two droplets occurs under the
interfacial surface force.69 The radii of the merged bubble RT and the
initial bubble R0 follow the correlation RT ¼ ffiffiffi

2
p

R0. The remaining
parameters for the present test are e ¼ 2.6m, d¼ 2.5 m, r ¼ 0.01
N=m, M0¼ 0.0001, Dt ¼ 1 s, L¼ 120 m, and R0 ¼ 20m. Figure 6
demonstrates the coalescence process of the two droplets, and the
two droplets slowly come in contact at the beginning, then oscillate,

FIG. 3. The phase interface (/ ¼ 0) at different times when Pe¼ 800 (the black solid line is the initial value, and the red dashed line is the numerical solution): (a) t ¼ Tf , (b)
t¼ 5 Tf , (c) t¼ 10 Tf ,(d) t¼ 6 Tf , (e) t¼ 8 Tf , and (f) t¼ 10 Tf .

TABLE III. The relative errors E/ of the present model and previous approach53 for
the problem of Zalesak’s disk after multiple periods at Pe¼ 800.

Number of periods Present method Previous method53

1 0.0018 0.0141
2 0.0027 0.0220
3 0.0034 0.0278
4 0.0041 0.0324
5 0.0046 0.0362
6 0.0052 0.0394
7 0.0057 0.0422
8 0.0061 0.0447
9 0.0066 0.0469
10 0.0071 0.0489
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and finally form a larger stationary droplet. As in Fig. 6(f), the merged
droplet become stable and its radius RT accords well with the theoreti-
cal prediction, and there is not visual deviation between the initial
value and numerical solution. Quantitatively, the relative error E/
is 0.2% in the present work and 8.42% in Refs. 36 and 70, 3.81% in
Refs. 71 and 72, and 1.39% in Ref. 41.

It is noted that the mobility dependence of the solution for the
phase field model has hindered its further applications, and the choice
of an appropriate mobility parameter remain an open question.
Particularly, rich evidence has demonstrated that the coalescence pro-
cess of the two droplets apparently depends on the mobility adopted.
To provide deep insight on such issues, comparative studies are carried

out based on five diverse mobility parameters, namely, M0 ¼ 1
	 10�4, 1 	 10�3, 1 	 10�2, 1 	 10�1, and 1. The interface positions
at t¼ 1000 steps computation are compared in Fig. 7. It is observed
that the mobility will directly affect the merging speed of two droplets,
and a larger mobility parameter aids in the coalescence significantly.

FIG. 4. The phase interface (/ ¼ 0) at different times at Pe¼ 800 (the black solid line is the numerical solution, and the red dashed line is the initial value): (a) t ¼ Tf =6, (b) t
¼ Tf =3, (c) t ¼ Tf =2, (d) t ¼ 2Tf =3, (e) t ¼ 5Tf =6, and (f ) t ¼ Tf .

TABLE IV. The relative errors E/ of the present model and literature68 for the prob-
lem of single vortex flow.

M0

U0 ¼ 0.04 m/s

Present Xiao et al.53 Wang68

0.01 0.0301 0.0330 0.0447
0.001 0.0333 0.0409 0.0604
0.0001 0.0412 0.0468 0.1030

FIG. 5. Schematic diagram of two merging droplets.
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For M0 ¼ 1, the two droplets merge most rapidly, while no obvious
difference is found between the cases of M0 ¼ 1 	 10�4 and M0 ¼ 1
	 10�3, and the corresponding merging speed is the slowest.

To gain deeper insight on the mobility’s influence, we use the single
stationary bubble to explore the dependence of motilities on the chemi-
cal potential. We place a single droplet in the center of the computa-
tional domainX ¼ ½0; L� 	 ½0; L�, whose parameter setup is in line with
above two merging droplets test. Here, we mainly concern the distribu-
tion of phase variable and chemical potential, as well as their relevance
on the mobility parameter. Figure 8 presents the phase variable distribu-
tion at different mobilities (M0 ¼ 1 	 10�4, 1 	 10�3, 1 	 10�2, 1
	 10�1, and 1). We observe that different mobilities have negligible
impact on the distribution of phase variable, which is similar to the con-
clusion in Refs. 61 and 62. Moreover, Fig. 9 depicts the distribution of
chemical potential for different mobilities considered and the distribu-
tion of phase variable atM0 ¼ 1	 10�4 is also present for comparison.
In contrast to the convergent distribution of phase variable, the solution
for the chemical potential differs distinctly from each other for the cases
with larger mobility parameters, i.e., M0 ¼ 1 	 10�2, 1	 10�1, and 1,
while the convergent chemical potential profile is produced for the
remaining two cases. In theory, the chemical potential takes effect in the
vicinity of the interface, and w becomes to 0 in the place away from
the interface. A larger mobility parameter (M0 ¼ 1 	 10�1 and 1)

FIG. 6. The interface changes of bubble shape at different time steps (a) step ¼2000, (b) step¼ 3000, (c) step¼ 5000, (d) step¼ 10 000, (e) step¼ 20 000, and (f)
step¼ 30 000, (red dotted line is the theoretical value; the black solid line is the numerical solution).

FIG. 7. The interface profile of droplets at t¼ 1000 steps with various mobilities
(black solid line represents M0 ¼ 1 	 10�4; red solid line represents M0 ¼ 1
	 10�3; orange solid line represents M0 ¼ 1 	 10�2; green solid line represents
M0 ¼ 1 	 10�1; and blue solid line represents M0 ¼ 1).
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lead to much wider regions for the variation of the chemical potential
than the interface area, which definitely favors the coalescence as in
Fig. 7. In addition, in the case ofM0 ¼ 1	 10�2, the maximum value of
the chemical potential does not reach the convergent results, thereby also
gives rise to rapid merging procedure. While for the remaining cases
with M0 ¼ 1 	 10�4 and 1 	 10�3, the convergent chemical potential
distribution corresponds the deterministic coalescence process as
observed from Figs. 7 and 9. Therefore, we propose a fresh criterion for
the choice of the mobility parameter based on the above observations
thatM0 should be smaller than 1	 10�3 to ensure a convergent solution
for the chemical potential distribution, while its lower limit is referred to
the scaling relation that the mobility should not be far smaller than
OðCn2Þ,42 which gives the complete criterion of the proposed phase-
field-based method OðCn2Þ�M0�1	10�3. In practical computations,

we cannot obtain convergent results for the cases with mobility param-
eter lower than this bound. We note that the validity of the proposed
criterion can be supported by all the tests adopted in this work.

B. Bubble rising with large density contrast

In this subsection, we will further investigate the present method’s
robustness by simulating a rising bubble in water with the large density
ratio (1000) and viscosity ratio (100). The domain X ¼ L2 	 L1
¼ ½0; 1� 	 ½0; 2� is filled with fluid 2 except for a dispersed circular bubble
(fluid 1) as shown in Fig. 10. The initial bubble has a diameter of 0.5 with
its center at (0.5, 0.5), which follows the problem setup in Ref. 73. The
computational domain is covered by 4050 quadrilateral elements (45 ele-
ments in the x-direction and 90 elements in the y-direction). The no-slip
boundary is imposed on the upper and lower boundaries, whereas the
free slip boundary is applied on the left and right sides. The diameter of
the bubble D¼ 2R is chosen as the characteristic length of the problem,
the dimensionless parameter Reynolds number Re and Eotvos number
Eo are, respectively, defined as Re¼q2g

0:5D1:5=l2
73 and Eo¼q2gD

2= r,
where the Eotvos number compares the gravity against the surface
tension. The density and viscosity of fluids are denoted by q1, q2, l1, l2,
respectively, and given in Table V. The interface thickness is set to be e
¼ 0.01m. To quantitatively evaluate the results obtained, we use the
followingmeasured quantities same as in Refs. 53 and 73:

Center of mass:

yc ¼

ð
/>0

ydxð
/>0

1dx
; (41)

where y is the vertical coordinate value.
Rise velocity:

Vc ¼

ð
/>0

vdxð
/>0

1dx
; (42)

where v is the y-component of the velocity u.

FIG. 8. The distribution of phase variable with different mobilities.

FIG. 9. The chemical potential distribution with different mobilities. Note that the
distribution of phase variable at M0 ¼ 1 	 10�4 is included for comparison. FIG. 10. Initial setup for the bubble rising problem.
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The results from the present method match well with the
reported data53,74 as in Figs. 11–13. Figure 11 exhibits the comparison
of rising velocity Vc between benchmark solutions and present results.
In case A, the bubble rising velocity reaches the maximum at t¼ 0.96
and then gradually falls to a stable value; while in case B after reaching
the maximum velocity, the velocity continues to decrease. This is due

to the greater drag at the tail of the bubble during the rising, as shown
in Fig. 14. Differing from the former Zalesak’s disk rotation and single
vortex flow examples, wherein only the CH equation is solved, the pre-
sent test involves coupling between the N–S equations and the phase
field equation; thus, the present method produces more pronounced
savings in computation expense by 44.9%. Because the Jacobian matrix

FIG. 11. Comparison of rising velocity Vc between benchmark solutions and numerical results of (a) case A and (b) case B.

TABLE V. The physical parameters and dimensionless values in the bubble rising test.

Case Eo Re D (m) G (m=s2Þ r(N/m) q1ðkg=m3Þ l1ðPa sÞ q2=q1 l2=l1

A 10 35 0.5 0.98 24.5 100 1 10 10
B 125 35 0.5 0.98 1.96 1 0.1 1000 100

FIG. 12. Comparison of the mass center position yc between benchmark solutions and numerical results of (a) case A and (b) case B.
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for the CH equation has the dimension of [2N	 2N], while the
dimension of the coefficient matrix is [N	N] for the solution of pres-
sure and each velocity component. Therefore, the constant coefficient
matrix based discretization lead to nearly 27.2% savings of the compu-
tation expense for the phase field solution as in Sec. III B. While for
the complete solutions for the two-phase flow as the example consid-
ered here, involving the velocity, pressure, and the phase field variable,
the computation efficiency improvement is about 44.9%.

V. CONCLUSION

In this work, a phase-field-based spectral element approach is
proposed for two-phase flows with large fluid property contrast. We

propose to use the Newton–Raphson method to for the Cahn–Hilliard
equation and adopt the time-stepping scheme for the Navier–Stokes
equation. Accordingly, we construct three constant (time-indepen-
dent) coefficient matrices for Cahn–Hilliard and Navier–Stokes equa-
tions. Such improvement in algorithm design avoids the coefficient
matrix update for each iteration within every time step and, thus, gives
rise to significant enhancement in computation efficiency over our
previous high-accuracy attempt.53 In addition, modification to the
bulk free energy density is implemented to grant that the phase field
solution is bounded, which benefits the interface capture accuracy
greatly. After the spatial discretization within the spectral element
method, we validate its robustness and versatility by numerical tests,

FIG. 13. Comparison the shape of bubble at time t¼ 3 between benchmark solutions and numerical results of (a) case A and (b) case B.

FIG. 14. The shape of bubbles for case B at different times: (a) t¼ 1, (b) t¼ 2, (c) t¼ 3, and (d) t¼ 4.
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including diagonal motion of a circular interface, Zalesak’s disk rota-
tion, single vortex flow, two merging droplets, and bubbles merging.
The proposed method enjoys high accuracy and stability in the tests of
diagonal motion of a circular interface and Zalesak’s disk rotation
even for long-term computation, which outperforms the published
efforts in the literature by far. From two merging droplets problem, we
explore the mobility influence on the solution of the phase field model.
We observe that the phase variable distribution for a single stationary
droplet may be independent of the mobility adopted, but the chemical
potential apparently diverges for various mobility parameters.
Divergent chemical potential distribution definitely renders the droplet
merging process dependent on mobility. Therefore, we propose a fresh
criterion that an appropriate choice of the mobility parameter should
ensure the convergence of the chemical potential. All the tests in this
work support the validity of the proposed criterion. Moreover, the last
test further proves the robustness of the proposed method for realistic
two-phase flows with more complex interfacial dynamics and high
fluid property contrast.
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