Downloaded from https://www.cambridge.org/core. University of Toledo, on 12 Aug 2021 at 13:17:12, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.521

J. Fluid Mech. (2021), vol. 921, A9, doi:10.1017/jfm.2021.521

A local model for the limiting configuration of
interfacial solitary waves

X. Guan'-2, J.-M. Vanden-Broeck?, Z. Wang1’7L and F. Dias?

nstitute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
2Department of Mathematics, University College London, London WCIE 6BT, UK
3School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

(Received 9 January 2021; revised 11 April 2021; accepted 7 June 2021)

The limiting configuration of interfacial solitary waves between two homogeneous fluids
consisting of a sharp 120° angle with an enclosed bubble of stagnant heavier fluid on
top is investigated numerically. We use a boundary integral equation method to compute
the almost limiting profiles which are nearly self-intersecting and thus extend the work
of Pullin & Grimshaw (Phys. Fluids, vol. 31, 1988, pp. 3550-3559) by obtaining the
overhanging solutions for very small density ratios. To further study the local configuration
of the limiting profile, we propose a reduced model that replaces the 120° angle with two
straight solid walls intersecting at the bottom of the bubble. Using a series truncation
method, a one-parameter family of solutions depending on the angle between the two
solid walls (denoted by y) is found. When y = 2m/3, it is shown that the simplified
model agrees well with the near-limiting wave profile if the density ratio is small, and thus
provides a good local approximation to the assumed limiting configuration. Interesting
solutions for other values of y are also explored.
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1. Introduction

It was conjectured by Stokes that for two-dimensional deep-surface gravity waves, there
exists a family of periodic travelling waves that terminates at an ‘extreme wave’ as it
reaches the maximum amplitude. Such limiting configuration, termed the Stokes highest
wave, can be characterised by a stagnation point at the crest and an enclosed angle of
120°. The existence of the Stokes highest wave has been extensively studied by a variety
of authors from asymptotic and numerical perspectives (Havelock 1918; Yamada 1957a;
Longuet-Higgins 1973; Schwartz 1974; Vanden-Broeck & Schwartz 1979), and ultimately
proved rigorously by Amick, Fraenkel & Toland (1982). It was also pointed out by Amick
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et al. (1982) that the Stokes conjecture holds regardless of wavelength and water depth,
and in particular, in the limit of infinite wavelength, the extreme solitary wave on water
of finite depth features the same limiting crest angle. Yamada (1957b) is the first known
author to have solved for the limiting solitary wave numerically (see the book by Okamoto
& Shoji (2001) for a detailed description of Yamada’s method). Lenau (1966) used a series
truncation method to compute the same wave. Hunter & Vanden-Broeck (1983) improved
Lenau’s results.

For waves between two homogeneous fluids, the sharp crest of 120° cannot serve as
the limiting configuration of the interface because it would result in an infinite velocity
in the upper fluid (Meiron & Saffman 1983). Attempts to understand the limiting profile
of interfacial periodic waves were made by Saffman & Yuen (1982), Meiron & Saffman
(1983) and Turner & Vanden-Broeck (1986), who numerically discovered the overhanging
structure (i.e. multivalued wave profiles). Meiron & Saffman (1983) further asserted
that the related limiting profile would become self-intersecting. Grimshaw & Pullin
(1986) obtained the (almost) self-intersecting solutions when the upper fluid is of infinite
depth. They conjectured that a possible extreme profile features a stagnant fluid bubble
on top of a 120° angle. Recently, Maklakov & Sharipov (2018) conducted a thorough
numerical study on the almost limiting configuration between semi-infinite fluid layers.
They obtained highly accurate solutions, which provided reliable evidence for the extreme
profile predicted by Grimshaw & Pullin (1986). Maklakov (2020) discussed the transition
from interfacial waves to surface waves when the density ratio tends to zero. For interfacial
solitary waves, Amick & Turner (1986) proved that a possible extreme configuration
is an internal front developed from flattening and unlimited broadening of the solitary
pulse as the wave speed approaches a limiting value. This theoretical result was verified
later by several numerical computations (see, e.g. Funakoshi & Oikawa 1986; Turner &
Vanden-Broeck 1988; Rusas & Grue 2002). However, Amick & Turner (1986) also showed
that the interface could develop a vertical tangent indicating the existence of multi-valued
solutions, thus provided another possibility. Pullin & Grimshaw (1988) computed the
interfacial solitary waves with an overhanging structure and suggested the existence of
a self-intersecting profile. However, they could not obtain overhanging waves when the
density ratio was smaller than 0.0256, which was explained by a rapid shrinking of
the overhanging structure when the density ratio is small and is further decreased, and
therefore more grid points are required to capture it.

In the current paper, we consider interfacial solitary waves between two fluids of finite
depths. A boundary integral equation method is used to calculate overhanging solutions
and the results of Pullin & Grimshaw (1988) are extended to very small density ratios.
Based on numerical results and local analysis, we suggest a possible limiting configuration
featuring a 120° angle—bubble structure, akin to the periodic case (see figure 1). A reduced
model, which replaces the curved angle with two straight rigid walls intersecting at the
bottom of the fluid bubble, is proposed and numerically solved using a series truncation
method. It turns out that the simplified model provides a good local approximation for the
cases of a small density ratio when the upper layer is deep enough. The reduced model can
also be applied to periodic interfacial waves owing to its local nature.

2. Mathematical formulation

We consider a two-dimensional solitary wave travelling at speed c¢ between two
incompressible and inviscid fluids, bounded above and below by horizontal solid walls. We
take a frame of reference moving with the wave. The x-axis is parallel to the rigid walls.
The level y = 0 is chosen as the undisturbed level of the interface and gravity is assumed
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Figure 1. A possible limiting configuration for overhanging interfacial solitary waves: a sharp 120° angle
with a closed fluid bubble on top of it.

to act in the negative y-direction. We denote by /; and p; (i = 1, 2) the depth and density
in each fluid layer, where subscripts 1 and 2 refer to fluid properties associated with the
lower and upper fluid layers, respectively. Velocities are measured in units of ¢ and lengths
in units of ~;. The motion of each fluid is assumed to be irrotational, thus we introduce
velocity potentials ¢; and ¢;, which satisfy the Laplace equation in the corresponding
fluid layers

Pixx +Giyy =0, i=12. (2.1)
At the interface, the kinematic and dynamic boundary conditions can be expressed as
Giy — Gixne =0, =12, (2.2)

2R—1)

RVl = Vi I* + =

n=R—1, 2.3)

where R = p»/p; < 1 for a density-stable configuration, F = c¢//gh; is the Froude
number and g is the acceleration arising from gravity. The boundary conditions at the
solid walls read

¢1,=0, aty=—I, 2.4)
¢2,y = 09 aty = h7 (25)

where h = hy/h; stands for the dimensionless depth of the upper layer. To describe a
solitary wave in the comoving frame we require n — 0 and ¢; , — —1 as [x| — oo and,
additionally, we confine our attention to symmetric waves with the crest at x = 0.

3. Numerical results via a boundary integral method

Following Sha & Vanden-Broeck (1993), we reformulate the problem by using the Cauchy
integral formula:

1 2)+1

e+l =—¢ L9 g @)

it Je z2—20
where z =x+1iy is the complex coordinate, { = ¢, —i¢py = u —iv is the complex
velocity and C stands for the boundary of the considered domain. We parametrise the
interface by the arc length s € (—o00, 00) and let s = 0 at x = 0. By applying the Cauchy
integral formula to the lower and upper fluid layers respectively and taking the real parts,
one obtains

m[uy (o) + 1]

:/“TWK®+JMKQ+UK@W®HD+HQY+MGH—W@HKQ—XWHds
0 [x(s) = x(0)]* + [2 + n(s) + n(0)]?
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+_/ [(u1(s) + DX () + v1()n' ()2 + n(s) + n(o)] — n'()[x(s) +X(0’)]

0 [x(s) +x(0)]? + [2 4+ n(s) + n(o)]?

+f [(u1(s) + DX/ () + v1()n'()][n(s) — n(0)] — ' (9)[x(s) — X(O’)]
0 [x(s) — x(0)]1? + [1(s) — n(0)]?

N foo [(u1(s) + DX () + v1()n'()][n(s) — n(@)] — 1’ (9)[x(s) + x(0)]
0 [x(s) + x(0)1? + [1(s) — n(0)]?

ds, (3.2)

mt[uz(0) + 1]
B [(ua(s) + DX (s) + v2($)n'()1[2h — n(s) — n(o)] + n'()[x(s) — X(U))]
_A [x(s) — x(0)]? 4 [2h — n(s) — n(0)]?

n / [(ua(s) + DX (s) + v2($)n'()1[2h — n(s) — n(o)] + n'(s)[x(s) +X(0))]
0 [x(s) + x(0)]? + [2h — n(s) — n(0)]?
[(u2(s) + DX’ () + v2()n' ()]0 (s) — n(o)] — n'($)[x(s) — X(G)]
_A [x(s) — x(0) 12 + [1(s) — n(0)2
* [(ua(s) + DX'(s) + v2()n' ()]0 (s) — n(a)] — ' (s)[x(s) + x(0)]
_A [x(5) + x(0) 12 + [1(s) — n(0)2

where the Schwarz reflection principle and the symmetry of the interface with respect
to the y-axis are used. For the computations, (3.2) and (3.3) are calculated over a finite
interval [0, L] with L large. Two sets of mesh grids

ds, (3.3)

(i-DL
S| = N1 i=1,2,...,N,
e (3.4)
m=%, i=1,2,...,N—1,

are introduced. Then 2N — 2 algebraic equations can be obtained by evaluating the
integrals at o; by the trapezoid rule. The boundary conditions at the interface, (2.2) and
(2.3), as well as the arc length equation

X2(s) + () = 1, (3.5)

are evaluated at s;, which results in 4N algebraic equations. Because there are 6N + 1
unknowns, namely x'(s;), 7' (s;), u1(s;), v1(s;), u2(s;), v2(s;) and F (for a given wave height
H), three additional equations are needed to close the system:

uy(Ly=-1, 7n'(0)=0, and n(0)=H. (3.6a—c)

The unknowns at o; can be obtained by means of a four-point interpolation formula. For
fixed values of R and &, we calculate solitary waves via Newton’s method with an initial
guess being a small-amplitude Gaussian profile. The iteration process is repeated until the
maximum residual error is less than 10~8. We slowly change the value of H (or F) and
use the known solutions as the initial guess, thus solution branches can be systematically
explored.

Numerical results indicate that unlimited broadening of the central core of solitary
waves that ultimately turn into conjugate flows is likely to occur for small % (see Turner
& Vanden-Broeck 1988). To obtain overhanging solutions, we choose large values for &
(h = 80 say) in the subsequent computations. Three speed—amplitude bifurcation curves
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Figure 2. (a) Speed—amplitude bifurcation curves for # = 80 and R = 0.1 (blue), R = 0.2 (red), R = 0.3
(dark). (b—d) Typical overhanging profiles for R = 0.1, 0.2, 0.3, respectively.

are shown in figure 2(a) for the density ratios R = 0.1, 0.2, 0.3. Accordingly, the numerical
calculations are performed with L = 40, 50, 100 and N = 1200, 800, 500. Some typical
wave profiles are plotted in figure 2(b—d). In general, it is found that along the bifurcation
curve solitary waves gradually steepen, reach the maximum speed corresponding to the
first turning point and ultimately form a mushroom-shaped solitary pulse. It is observed
that multiple turning points may exist on the same branch where the overhanging structure
oscillates between closing and opening before it reaches the limiting configuration.
The wave profile in the bottom graph of 2(c) is the closest to the proposed limiting
configuration shown in figure 1 among all the numerical solutions that we obtained.
Our numerical results agree well with those found by Pullin & Grimshaw (1988) who
conjectured that all solitary waves for small density ratios would develop an overhanging
structure. Solitary waves with an overhanging structure can also be found for other values
of R, and for instance, figure 3 shows the numerical results obtained based on two sets
of parameters: (R, L, N) = (0.01, 8, 2000) and (0.6, 200, 290). It is noted that solutions
for R = 0.01 extend the result of Pullin & Grimshaw (1988) because they could not get
overhanging profiles for R < 0.0256 owing to numerical difficulties.

Based on the aforementioned numerical evidence, it is reasonable to conjecture that
the limiting configuration is a self-intersecting interface consisting of a sharp angle and
a closed fluid bubble as shown in figure 1. To verify this assertion, we plot the velocity
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Figure 3. Overhanging waves for 4 = 80 and (a) R = 0.01, (b) R = 0.6.
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Figure 4. (a) Interfacial velocity magnitude of the upper fluid (red) and lower fluid (blue) for R = 0.15
and i = 80. The segment on which "‘%,z + vfz < 0.005 is labelled by the black thick line. (b) Wave profile
associated with (a), and the black part of the interface corresponds to “%,2 + U%,z < 0.005. (¢) Numerical
relations between y;, and F for R = 0.08 (blue), R = 0.1 (red), R = 0.15 (yellow) and R = 0.2 (purple), together

with the theoretical prediction yg = F2/2 (dashed line). Here, y;, denotes the vertical coordinate of the bubble
bottom and yy is the theoretical vertical coordinate of the stagnation point.

magnitude distributions (i.e. “%,2 + U%,z) at the interface in figure 4(a) for R = 0.15 and
h = 80. Itis clear that there are two segments where Velocities above or below the interface
are almost zero. The common segment on which u1 )+ v1 » < 0.005 is labelled by a thick
black line in figure 4(a) and correspondingly highlighted on the wave profile in figure 4(b).
Consequently, for the limiting configuration shown in figure 1, if it exists, the fluid inside
the bubble should be stationary because closed streamlines are not allowed for irrotational
flows. Based on a similar argument of the Stokes highest wave, the sharp corner attached
to the fluid bubble should be of an interior angle of 120° with the vertex being a stagnation
point. On the other hand, Bernoulli’s equation at the stagnation point implies yo = F2/2
for all density ratios, where yq is the vertical coordinate of the vertex. The theoretical
prediction yo = F?/2 is plotted as the dashed line in figure 4(c). Typical numerical values
for y,(F) are shown in the same figure as solid lines, where yj, is the vertical coordinate
of the flat bottom of the fluid bubble, namely the part labelled as black in figure 4(b). The
four curves correspond to R = 0.08, 0.1, 0.15, 0.2.

921 A9-6


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.521

Downloaded from https://www.cambridge.org/core. University of Toledo, on 12 Aug 2021 at 13:17:12, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.521

Limiting configuration of interfacial waves

4. A simplified model

Although the almost self-intersecting solutions can be obtained by the boundary integral
equation method, the appearance of the singularity, i.e. the 120° angle, is a formidable
difficulty to overcome. As one can see from figures 2 and 3, the overhanging structure
is fully localised and shrinks rapidly when the value of R is decreased and, furthermore,
the local structure beneath the bubble looks very much like an obtuse angle between two
straight lines if the density ratio is small, e.g. R = 0.01. Motivated by these observations,
we attempt to propose a simplified model to describe the local structure of the limiting
configuration for small density ratios.

As shown in the simplified model of figure 5, the end points A and C, which respectively
represent upstream and downstream sides of a flow, are assumed to extend to infinity.
The lines OA and OC are supposed to be solid walls where impermeability boundary
conditions need to be satisfied. The angle y is considered to be a parameter, and y = 21/3
is the relevant value to model interfacial waves. This is because the flow inside the angle
approaches a stagnation flow as the point O is approached, where i is the angle between
the solid wall and the bubble bottom (see figure 5). The flow of fluid 1 inside the angle
y near the point O reduces then to the local flow considered by Stokes to model surface
waves. It then follows that y = 21 /3. We note that the bottom part of the bubble near O
is horizontal, so that 4 = (7 — y)/2. This can be justified by a local analysis of the flow
inside the angle u, a flow bounded above by a free surface and below by a solid wall. It
can be shown that the free surface has to be horizontal at O (the only other possibility is
the value = 27 /3 which is not relevant here), and the interested reader is referred to the
third chapter of the book by Vanden-Broeck (2010) for details.

For the sake of convenience, the origin of the Cartesian coordinate system is set to
coincide with the angle vertex O, with the y-axis pointing upward, and the summit of
the bubble is labelled as B. Because the fluid inside the bubble is stationary, Bernoulli’s
equation now reads

P2
7(”5 +v3) + (02 — p1)gn = 0. (4.1)

Our aim is to find the shape of the fluid bubble as well as the velocity potential ¢;. This
is a single layer problem because the fluid status beneath the interface is either known or
irrelevant.

To solve the problem, we introduce the complex velocity potential f = ¢, + iy, with ¥
being the stream function. The value of ¥ at the interface and along the solid walls as well
as ¢o(B) are set to zero. It is noted the origin is actually the intersection of two walls, and
hence we denote by O_ and O the left- and right-hand limits when approaching O along
the corresponding walls and let @ = ¢2(04+) = —¢2(O_) owing to symmetry. We then
non-dimensionalise the system by choosing (®2/g)!/3 and (®g)'/3 as characteristic length
and velocity scales, respectively. Following the work of Daboussy, Dias & Vanden-Broeck
(1998), we solve the problem by using the series truncation method. We introduce a
transformation

1+ 72
_ , 42
f 2 *2)

which maps the upper half f-plane (i.e. the domain occupied by the lighter fluid) onto the
upper half unit disk in the complex #-plane. The images of A, O_, B, O, C labelled in
figure 5 are r = 0, 1, 1, —1, 0. The complex velocity ¢ = up — iv; is analytic everywhere
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Fluid 2

Solid wall

Figure 5. A simplified model: two straight solid walls intersect at the origin forming an angle y and a closed
fluid bubble with a flat bottom is on top of the angle.
except at t = 0 and r = %1, where the asymptotic behaviours are
¢~V ast— 0, (4.3)
C~ (1 =222 agt— 1, (4.4)

with u = (1t — y)/2. Therefore, the complex velocity ¢ can be expressed as

¢ =exp (l¥) YT - YA (4.5)

where & is an unknown analytic function. We introduce two real functions 7 and 6
satisfying & = ¢* % and expand T — i0 as

o0 [o@) o0
T —i0 = Zan#" — Zan cos2no — i Zan sin 2no, (4.6)
n=0 n=0 n=1

where the coefficients a, are real. At the interface, r = ¢!’ and o € [0, 7t]. Upon noting
the identity xy + iyy = 1/¢, it is easy to verify that

2 T

e T(sing) 22 ginlo — (3 Y _2H* _r
Yy =€ "(2sino) sin |:9 <3 - - ) (O’ 2)i| , 4.7)

2 b

— o~ T (D sin )220/ (Y _=* _r
xp=e T(2sino) cos [9 (3 e ) (0 2)] . (4.8)

Thus Bernoulli’s equation becomes
R o
Eezf (2sino)* T L (R— 1) / yp sinada = 0. (4.9)
0

To solve (4.9), the infinite series in (4.6) is truncated at n = N — 1, and N collocation
points are uniformly distributed on the interval [0, 1t/2], namely

nw@i@i—1) .
oj=———, i=1,2,...,N. (4.10)

2(N —1)
Equation (4.9) is then satisfied at the mesh points o2, 03, ..., ox with an additional
equation

/2
/ Xpsino do =0, (4.11)
0
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Figure 6. (a) Numerical solution of the simplified model for y = 27/3 and ;& = 1/6 (solid curve), together
with streamlines (dashed curves). (b) Similarity solutions for R = 0.9, 0.8, 0.6, 0.3, 0.1 from large to small.

which simply means the interface is closed. Finally, this system of N nonlinear equations
with N unknowns (ag, ai, ..., ay—1) is solved via Newton’s method for a given value of
y,and N > 300 in all computations. This method of series truncation has been applied
successfully to solve many free surface problems (see the book by Vanden-Broeck (2010)
for details and references).

Casel: y =2m/3

Numerical results for y = 21t/3 (i.e. © = 1 /6) are shown in figure 6. A typical profile
and corresponding streamlines are plotted in figure 6(a) for R = 0.1. From Bernoulli’s
equation,

. v
Ruattze + v2025) + (R — 1) sino ———

5 =0, (4.12)
us + V5

which is derived from (4.1) by taking the derivative with respect to o, one can eliminate R

by introducing
uy=/R/(1 —R) ua, vh=+/R/(1 —R)uvs. (4.13a,b)

This fact immediately suggests that profiles for different values of R are geometrically
similar, which is reasonable because no natural length scale appears in the reduced model.
To verify this assertion, numerical solutions are plotted in figure 6(b) where the profiles
from large to small correspond to R = 0.9, 0.8, 0.6, 0.3, 0.1.

Figure 7 shows comparisons between solutions of the simplified model and the almost
self-intersecting solutions obtained from the boundary integral equation method. The
black line represents the assumed 120° angle. To plot these solutions under the same
scaling, we enlarge the profiles of the simplified model and then move the profiles
vertically so that their top and bottom match the highest point and flat bottom of the bubble
structure of the primitive problem. The density ratios from figure 7(a—d) are 0.01, 0.05,
0.1, 0.2, respectively. It is observed that for a small density ratio, the simplified model
provides a good approximation to the almost self-intersecting solution of the primitive
equations and further to the limiting configuration shown in figure 1, if it exists.

Casell: y #27/3

It is natural to ask what happens to the reduced model when y #2m/3. In fact,
numerical solutions can be found for arbitrary y € [0, m]. Four typical solutions with
R = 0.1 are shown in figure 8.
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Figure 7. Comparisons between the almost self-intersecting solutions (blue curves) and profiles resulting from
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Figure 8. Solutions of the simplified model for: (a) y = w/18; (b) y = n/3; (c) y = 131/18; (d)

y = 17m/18.

Two limiting cases, y = 0 and y = 7, merit special attention. As can be seen from
figure 8, the profile becomes more and more circular as the value of y is decreased.
Therefore, one may expect a perfect circular interface to appear when y = 0. In fact,
it is not difficult to check that ¢ = it(1 — r*)ag is an explicit solution of (4.12), where
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Figure 9. (@) Numerical solution for y = 0 and ;& = 1/2 (solid curve) and streamlines (dashed curves). (b)
Comparison between the numerical solution (solid curve) and theoretical prediction (red circles).

ap = /(1 — R)/4R. One can then obtain the parametric form of the interface as

X = —L sin20, y= —L(cos 20 — 1), (4.14a,b)
4aq 4ag

which is a circle with radius 1/4ap. The numerical solution for R = 0.1 is plotted in

figure 9, where the profile and streamlines are displayed in panel (@) while the comparison

with the exact solution is in panel (b). It thus demonstrates the validity of the numerical

algorithm.

For the case of y = m, the bottom of the fluid bubble entirely attaches to the solid
wall, therefore the interface should intersect the solid wall with a 120° angle and form a
stagnation point according to the local analysis. A typical solution for R = 0.1 is shown in
figure 10 by setting u© = 27 /3 and dropping equation (4.11) because the profile is no longer
closed at the origin. This type of solution, which describes a still water bubble lying on the
flat bottom, exists for all R € (0, 1) owing to the geometrical similarity (4.13a,b). Unlike
those shown in figure 6 that represent the limiting solutions for R < 1, the profile shown
in figure 10 corresponds to another possible limiting configuration of interfacial solitary
waves, which appears under the Boussinesq limit, i.e. R — 1. Such solutions were found
by Pullin & Grimshaw (1988) when the upper fluid is infinitely deep. They proposed that
in such a scenario solitary waves are unbounded, and calculated the limiting configuration
by fixing the wave height and gradually decreasing the lower layer thickness to zero. In
particular, they concluded that the limiting interface features a half-lens shape with an
approximate aspect ratio (i.e. the ratio of width to height) of 4.36, which perfectly agrees
with 4.353 resulting from our simplified model.

5. Concluding remarks

In conclusion, we have found numerical evidence for a possible limiting configuration of
interfacial solitary waves. Overhanging solutions which become almost self-intersecting
have been calculated via a boundary integral equation method for various density ratios,
strongly suggesting a limiting configuration characterised by a stagnation point at a 120°
angle and a closed fluid bubble on top of the angle (see figure 1). A simplified model based
on these numerical results has been proposed to study the local structure of these singular
solutions. Using a series truncation method, we have found exotic solutions depending
on the value of y, i.e. the angle formed by two intersecting walls. When y = 2m/3, the
simplified model provides a good approximation to those almost self-intersecting solutions
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for small density ratios. Solutions for other values of y have also been computed. In
particular, we have found an explicit solution featuring a circular profile for y = 0, and
a solution corresponding to another limiting configuration of interfacial solitary waves
for y = m. Furthermore, it is important to mention that the reduced model can also
be applied to periodic interfacial waves owing to its local nature. Finally, considering
the crest instability of the Stokes highest waves (see detailed numerical investigations
by Longuet-Higgins & Tanaka 1997), the Kelvin—Helmholtz instability of interfacial
gravity waves (Benjamin & Bridges 1997) and the Rayleigh—Taylor instability owing
to the mushroom structure, it is very likely that the almost limiting configurations of
progressive interfacial waves are unstable. Therefore, the competition mechanism among
different instabilities and the time-evolution of the instability are of particular interest
which merit further thorough studies. The only paper we know that provides stability
results for interfacial solitary waves is the paper of Kataoka (2006). For small amplitude
solitary waves, linear stability analyses based on the Korteweg—de Vries (KdV) equation
and its modified version (mKdV equation) show that these waves are stable. Using an
asymptotic analysis, Kataoka (2006) constructed a general criterion for the stability of
interfacial solitary waves with respect to disturbances that are stationary relative to the
basic wave. Interesting results were obtained for small density ratios. In particular, table 1
in the paper of Kataoka (2006) provides critical wave amplitudes H at which an exchange
of stability first occurs for air—water solitary waves (R = 0.0013) with various depth ratios
h. According to this table, all the waves considered in the present paper are unstable.
However, the mechanism of the instability is of great interest, because it is related to the
theory of wave breaking. As said above, it was suggested that the instability of solitary
waves is caused by the crest instability. Assuming that the local crest instability is also
the correct mechanism of interfacial solitary wave instability, there is still one important
question. Kataoka (2006) found that the exchange of stability occurs at the extremum in the
total wave energy. What is the physical connection between the crest instability, which is a
local phenomenon, and the extremum in the total wave energy, which is a global quantity?
On an apparently completely different problem related to super free fall, Villermaux &
Pomeau (2010) commented on the formation of a concentrated ‘nipple’ on top of an
essentially flat base solution and wondered about the relevance to wave breaking. They
noted that wave breaking does occur with standing waves (Taylor 1953) and in nature.
The formation of ‘nipples’ can easily be observed on wave crests. These nipples then
bend and splash on the sea surface, which forms foam and spume. Is the present study
definitely irrelevant to that common but yet unexplained phenomenon? We believe that
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some interesting dynamics arising from the instability of interfacial solitary waves at small
density ratios is likely to occur.

Funding. This work was supported by the National Natural Science Foundation of China under grant
11772341, by the Strategic Priority Research Program of the Chinese Academy of Sciences under grant
XDB22040203, by the European Research Council under the research project ERC-2018-AdG 833125
HIGHWAVE, and in part by EPSRC under grant EP/NO18559/1. X.G. would also like to acknowledge the
support from the Chinese Scholarship Council.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Z. Wang https://orcid.org/0000-0003-4393-2118;

F. Dias https://orcid.org/0000-0002-5123-4929.

REFERENCES

AMICK, C.J., FRAENKEL, L.E. & TOLAND, J.F. 1982 On the stokes conjecture for the wave of extreme form.
Acta Math. 148 (1), 193-214.

AMICK, C.J. & TURNER, R.E.L. 1986 A global theory of internal solitary waves in two-fluid systems. Trans.
Am. Math. Soc. 298 (2), 431-484.

BENJAMIN, T.B. & BRIDGES, T.J. 1997 Reappraisal of the Kelvin—-Helmholtz problem. Part 2. Interaction of
the Kelvin—Helmholtz, superharmonic and Benjamin—Feir instabilities. J. Fluid Mech. 333, 327-373.

DABOUSSY, D., DiAS, F. & VANDEN-BROECK, J.-M. 1998 Gravity flows with a free surface of finite extent.
Eur. J. Mech. B/Fluids 17, 19-31.

FUNAKOSHI, M. & OIKAWA, M. 1986 Long internal waves of large amplitude in a two-layer fluid. J. Phys.
Soc. Japan 55, 128-144.

GRIMSHAW, R.H.J. & PULLIN, D.I. 1986 Extreme interfacial waves. Phys. Fluids 29 (9), 2802-2807.

HAVELOCK, T.H. 1918 Periodic irrotational waves of finite height. Proc. R. Soc. A 665, 38-51.

HUNTER, J.K. & VANDEN-BROECK, J.-M. 1983 Accurate computations for steep solitary waves. J. Fluid
Mech. 136, 62-71.

KATAOKA, T. 2006 The stability of finite-amplitude interfacial solitary waves. Fluid Dyn. Res. 38, 831-867.

LENAU, C.W. 1966 The solitary wave of maximum amplitude. J. Fluid Mech. 26, 309-320.

LONGUET-HIGGINS, M.S. 1973 On the form of the highest progressive and standing waves in deep water.
Proc. R. Soc. A 331, 445-456.

LONGUET-HIGGINS, M.S. & TANAKA, M. 1997 On the crest instabilities of steep surface waves. J. Fluid
Mech. 336, 51-68.

MAKLAKOV, D.V. 2020 A note on the existence of pure gravity waves at the interface of two fluids. Physica
D 401, 132157.

MAKLAKOV, D.V. & SHARIPOV, R.R. 2018 Almost limiting configurations of steady interfacial overhanging
gravity waves. J. Fluid Mech. 856, 673-708.

MEIRON, D.I. & SAFFMAN, P.G. 1983 Overhanging interfacial gravity waves of large amplitude. J. Fluid
Mech. 129, 213-218.

OKAMOTO, H. & SHOJI, M. 2001 The Mathematical Theory of Permanent Progressive Water—waves.
Advanced Series in Nonlinear Dynamics, vol. 20. World Scientific.

PULLIN, D.I. & GRIMSHAW, R.H.J. 1988 Finite-amplitude solitary waves at the interface between two
homogeneous fluids. Phys. Fluids 31 (12), 3550-3559.

RUSAS, P.-O. & GRUE, J. 2002 Solitary waves and conjugate flows in a three-layer fluid. Eur. J. Mech.
B/Fluids 21, 185-206.

SCHWARTZ, L.W. 1974 Computer extension and analytic continuation of Stokes’ expansion for gravity waves.
J. Fluid Mech. 62, 553-578.

SAFFMAN, P.G. & YUEN, H.C. 1982 Finite-amplitude interfacial waves in the presence of a current. J. Fluid
Mech. 123, 459-476.

SHA, H. & VANDEN-BROECK, J.-M. 1993 Two-layer flows past a semicircular obstruction. Phys. Fluids A S,
2661-2668.

TAYLOR, G.I. 1953 An experimental study of standing waves. Proc. R. Soc. A 218, 44-59.

TURNER, R.E.L. & VANDEN-BROECK, J.-M. 1986 The limiting configuration of interfacial gravity waves.
Phys. Fluids 29 (2), 372-375.

921 A9-13


https://orcid.org/0000-0003-4393-2118
https://orcid.org/0000-0003-4393-2118
https://orcid.org/0000-0002-5123-4929
https://orcid.org/0000-0002-5123-4929
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.521

Downloaded from https://www.cambridge.org/core. University of Toledo, on 12 Aug 2021 at 13:17:12, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2021.521

X. Guan, J.-M. Vanden-Broeck, Z. Wang and F. Dias

TURNER, R.E.L. & VANDEN-BROECK, J.-M. 1988 Broadening of interfacial solitary waves. Phys. Fluids 31
(9), 2486-2490.

VANDEN-BROECK, J.-M. 2010 Gravity-Capillary Free-Surface Flows. Cambridge University Press.

VANDEN-BROECK, J.-M. & SCHWARTZ, L.W. 1979 Numerical computation of steep gravity waves in
shallow water. Phys. Fluids 22 (10), 1868-1871.

VILLERMAUX, E. & POMEAU, Y. 2010 Super free fall. J. Fluid Mech. 642, 147-157.

YAMADA, H. 1957a Highest waves of permanent type on the surface of deep water. Rep. Res. Inst. Appl. Mech.
Kyushu Univ. 5, 37-52.

YAMADA, H. 1957b On the highest solitary wave. Rep. Res. Inst. Appl. Mech. Kyushu Univ. 5, 53-67.

921 A9-14


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.521

	1 Introduction
	2 Mathematical formulation
	3 Numerical results via a boundary integral method
	4 A simplified model
	5 Concluding remarks
	References

