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This work is dedicated to studying the similarity between wakes of wind turbines
with different yaw angles and tip speed ratios under different turbulent inflows using
large-eddy simulations with actuator surface models. Simulation results show that wake
characteristics from cases with different yaw angles overlap with each other when
normalized properly, which include the streamwise variations of the wake deflection,
the centreline velocity deficit, the widths of the wakes, the standard deviations of
instantaneous wake centre positions and the instantaneous wake widths. Different scalings
are proposed for the streamwise velocity deficit and the transverse velocity. The similarities
observed between cases with different yaw angles and the different scalings suggest that
it is proper to decompose the wake of a yawed wind turbine into a streamwise wake and
a lateral wake deflection, which is critical for developing analytical models. The mean of
the instantaneous wake widths and the mean of the instantaneous centreline streamwise
velocity are observed as being smaller than those of the time-averaged wake. These
quantities are then related by using two analytical expressions proposed in this work.
The observed similarities together with the proposed analytical expressions provide a
better understanding of wakes of yawed wind turbines and can be employed to develop
physics-based dynamic wake models.

Key words: wakes, turbulence simulation, turbulent mixing

1. Introduction

Wind turbine wakes that feature low-wind speeds and high-turbulence intensities, which
reduce the power outputs and increase the fatigue loads of downwind turbines, can
significantly impact the overall performance of wind farms (Thomsen & Sørensen
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1999; Barthelmie et al. 2009). To mitigate the negative impacts of turbine wakes,
advanced turbine control strategies have been developed and reported in the literature,
e.g. axial induction factor control (Annoni et al. 2016), yaw-based wake control (Munters
& Meyers 2018; Hoyt & Seiler 2020) and individual blade pitch control (Ossmann, Theis
& Seiler 2017). Understanding how these control strategies affect the characteristics of
turbine wakes is critical for their implementation in utility-scale wind farms. In this work,
we focus on the wake of a yawed wind turbine, which is redirected by deliberately creating
a misalignment between the rotor’s axis and the inflow directions (Gebraad et al. 2017).
Specifically, we investigate the similarity between wakes of turbines with different yaw
angles for different tip speed ratios (TSR) and turbulent inflows. For a general review and
perspective on the challenges in wind energy science, and recent reviews on the dynamics
of wind turbine and wind farm flows, the readers can refer to the papers by Stevens &
Meneveau (2017), Meneveau (2019), Veers et al. (2019) and Porté-Agel, Bastankhah &
Shamsoddin (2020).

As a key feature of wakes of yawed turbines, the wake deflection has been extensively
studied in the literature in terms of its origin and characteristics. Using hot-wire
measurement in a wind tunnel of a small wind turbine with a rotor diameter D = 0.12
m, Medici & Alfredsson (2006) found that the wake deflection is caused by a transverse
velocity, which convects the wake aside. Later, more details on the transverse velocity were
revealed by Howland et al. (2016) using experiments on a porous disk as well as large-eddy
simulation (LES) of turbines modelled using the actuator disk model and the actuator line
model (ALM) under uniform inflow. Their results showed that the transverse velocity is
non-uniformly distributed on the cross-section and can be described by a counter-rotating
vortex pair (CVP) with vortex centres located above and below the wake centre, which
not only convects the wake laterally but also deforms it into a curled shape. Moreover, the
results of the ALM reveal a top-down asymmetry in the wake owing to the rotation of
the rotor. Bastankhah & Porté-Agel (2016) explained the formation of the CVP based on
the continuity equation. In addition, from the wind tunnel experiment of a wind turbine
with D = 0.15 m under turbulent inflow, they confirmed the deformation and the top-down
asymmetry of the wake cross-section arising from the rotor rotation as well as the tower,
and named it as kidney-shape. Bartl et al. (2018) conducted wind tunnel measurements of a
yawed-turbine model (D = 0.90 m) with different inflow turbulence intensities and found
that the kidney-shaped deformation of the wake cross-section is largely alleviated when
increasing the inflow turbulence intensity from 2 % to 10 %. Bastankhah & Porté-Agel
(2016) also showed that when the yaw angle is less than 30◦, as in real-world applications,
the kidney-shaped deformation may not be significant, so the wake cross-section can be
approximated by an ellipse with a horizontal minor axis.

To facilitate the design and operation of wind farms, analytical models have been
derived in the literature for fast prediction of wakes of yawed turbines. An important aim
of these models is to predict the wake deflection. In the model of Jiménez, Crespo &
Migoya (2010), the far wake’s transverse velocity for computing the wake deflection is
related to the lateral component of the thrust on the rotor based on the momentum theory.
Later, it was found that this model may overpredict the wake deflection (Jiménez et al.
2010; Shapiro, Gayme & Meneveau 2018). To solve this problem, Shapiro et al. (2018)
proposed a model based on the analogy of a yawed wind turbine to a finite elliptical wing.
In the proposed model, the transverse velocity in the wake is assumed to be equal to the
the downwash on the wing created by the CVP according to Prantl’s lifting line theory.
Shapiro’s model predicts, in general, a smaller wake deflection compared with that of
Jiménez et al. (2010). A validation of the model of Shapiro et al. was carried out using
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the simulation results of an actuator disk model and the wind tunnel measurements of
Bastankhah & Porté-Agel (2016). It was found that the key to successfully predicting
the wake deflection is to accurately compute the transverse velocity, which gradually
decreases with the downstream distance to the turbine. Both the models of Jiménez
et al. and Shapiro et al. attribute the gradual decrease of lateral velocity to the wake
expansion, and assume that the wake widths defined by the streamwise velocity and
the transverse velocity are equal, so that the wake width computed from the streamwise
velocity can be employed for the transverse velocity. The above assumption is also
adopted by other analytical wake models, e.g. by Bastankhah & Porté-Agel (2016) and
Qian & Ishihara (2018). However, this assumption has not yet been proven and may
introduce errors, as pointed out by Jiménez et al. (2010). To this end, a part of this
work will be dedicated to verifying if the wake widths defined by the velocity in the
streamwise and spanwise directions are equal. Once the wake centreline is known along
the streamwise direction, the model for the time-averaged velocity deficit can be developed
based on the self-similarity. The self-similarity means that the velocity deficit profiles
in the far wake can be fitted to a Gaussian function and they overlap with each other
if the deficit is normalized by its local maximum and the abscissas are normalized by
the wake width (Wu & Porté-Agel 2012; Zhang, Markfort & Porté-Agel 2013; Chamorro
et al. 2015; Fuertes, Markfort & Porté-Agel 2018). For non-yawed turbines, Bastankhah
& Porté-Agel (2014) developed an analytical wake model with Gaussian wake profiles
assuming axisymmetry and self-similarity. Later, by assuming the elliptical cross-section
shape, Abkar & Porté-Agel (2015) extended this model to take into account the different
lateral and vertical growth rates, which are caused by the inflow shear and ground effects
(Xie & Archer 2015). Bastankhah & Porté-Agel (2016) explored the self-similarity of the
wake behind a yawed wind turbine and found that the velocity deficit in the horizontal
plane can still be fitted accurately to Gaussian functions with respect to the wake centre and
proposed an analytical wake model for yawed wind turbines to predict the time-averaged
velocity deficit.

With the aforementioned models, the wake deflection can be predicted with reasonable
accuracy. However, to realize yaw-based wake steering for the optimal wind farm design
and operation, fast analytical models need to be developed to predict more features of
the wake of a yawed wind turbine, which include both the time-averaged quantities (e.g.
the wake width and the time-averaged velocity deficit) and the instantaneous quantities
(e.g. the instantaneous wake influencing region). Most of the existing analytical models
for wakes of yawed turbines have been focused on the deflection and velocity deficit
of the time-averaged wake. For instance, the analytical wake model of Bastankhah &
Porté-Agel (2016), which was developed based on the self-similarity of the streamwise
velocity and the skew angle observed in the far wake, can predict the time-averaged
velocity distribution and wake deflection of yawed wind turbines. On the other hand,
high-fidelity models, e.g. LES with actuator surface/line models for turbine blades, can
accurately predict various additional aspects of the wake. However, it is still not feasible
to use high-fidelity models for the optimization of wind farm design and operations owing
to the expensive computational cost and the large number of cases to be simulated in
an optimization process. Meanwhile, similarities of turbine wakes have been observed
from the LES results for different wind turbine designs (Foti, Yang & Sotiropoulos 2018),
different inflow (Yang et al. 2015a) and different turbine operational conditions (Yang &
Sotiropoulos 2019b). Yang et al. (2015a) and Foti et al. (2018) found that the turbine-added
turbulence kinetic energies overlap with each other when normalized using a velocity
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scale defined by the thrust on the rotor for different inflows and turbine designs.
Moreover, similarities are observed for the statistics of the meandering motion of the wake
when normalized using a velocity scale based on the thrust on the rotor for the meandering,
owing to bluff body shear layer instability (Foti et al. 2018), and the diameter D for the
meandering, owing to large eddies in the incoming turbulent flow (Yang & Sotiropoulos
2019b). If the similarity also exists in turbine wakes for different yaw angles, then there is a
potential that fast models can be derived for predicting various aspects of wakes for yawed
turbines based on such a similarity and several typical high-fidelity simulations. However,
it should be noted that having similarities, especially for the present work (where only one
turbine is considered), is just one step towards the development of advanced models based
on physics and data from simulations and measurements. High-fidelity simulations provide
a way to improve our understanding on wake dynamics but under relatively simple wind
conditions. In real-life applications, computationally efficient models for heterogeneous
wind conditions, wind farm layouts, complex terrains and others are needed, which can
be developed by leveraging the power of low-fidelity models, e.g. the boundary-layer
equation (Ainslie 1988) and machine learning methods (Duraisamy, Iaccarino & Xiao
2019; Brunton, Noack & Koumoutsakos 2020).

The objective of this work is to examine the similarity between turbines with different
yaw angles with regards to the wake deflection and the wake on the frame of reference
fixed on the deflected wake centre. It is noted that the similarity we discuss in this
work is different from the self-similarity of turbine wakes reported in the literature. The
self-similarity does not necessarily guarantee the similarity between wakes of turbines
with different yaw angles. Investigation on such a similarity will provide a way to evaluate
a fundamental assumption for developing analytical models, e.g. the works of Bastankhah
& Porté-Agel (2016) and Shapiro et al. (2018), where the wake of a yawed wind turbine
can be decomposed into the streamwise turbine wake and the lateral wake deflection.
Specifically, we conduct a series of simulations of the EOLOS wind turbine (Hong et al.
2014; Chamorro et al. 2015) at four different yaw angles (i.e. γ = 0◦, 10◦, 20◦, 30◦) for
different TSRs under different turbulent inflows. The wind turbine wake is simulated
using LES with the wind turbine’s blades and nacelle modelled as actuator surfaces
(Yang & Sotiropoulos 2018). The time-averaged velocity field, turbine-added Reynolds
stress, and the instantaneous wake positions and widths are systematically examined.
Different scaling factors are derived to describe the similarity of these wake characteristics.
Two analytical expressions are also proposed to relate the instantaneous wake width and
velocity deficit with their time-averaged counterparts.

The rest of the paper is structured as follows. In § 2, we describe the employed numerical
methods and the simulation set-up. Then in §§ 3–5, we present the results on the similarity
of the time-averaged wake velocity field and statistics of the wake turbulence for different
turbine operation conditions and turbulent inflows. Finally, we summarize the findings
from this work and draw conclusions in § 6.

2. Numerical methods and simulation set-up

2.1. Flow solver
The turbulent flow was solved using the LES module of the Virtual Flow Simulator code
(VFS-Wind). The capability of the employed code for simulating turbine wakes has been
extensively validated using wind tunnel (Yang et al. 2015b) and field measurements (Yang,
Pakula & Sotiropoulos 2018; Yang et al. 2021). The code is open source and available
at GitHub. (https://github.com/SAFL-CFD-Lab/VFS-Wind.) The governing equations are
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the filtered incompressible Navier–Stokes equations in curvilinear coordinates shown as

J
∂Ui

∂ξ i = 0, (2.1)

1
J

∂Ui

∂t
= ξ i

l
J

(
− ∂

∂ξ j

(
U jul

)
+ μ

ρ

∂

∂ξ j

(
gjk

J
∂ul

∂ξ k

)
− 1

ρ

∂

∂ξ j

(
ξ

j
l p
J

)
− 1

ρ

∂τlj

∂ξ j + fl

)
,

(2.2)

where i, j, k, l = {1, 2, 3} are the tensor indices and ξ i are the curvilinear coordinates
related to the Cartesian coordinates xl by the transformation metrics ξ i

l = ∂ξ i/∂xl.
Additionally, J denotes the Jacobian of the geometric transformation, Ui = (ξ i

l /J)ul is
the contravariant volume flux with ul as the velocity in Cartesian coordinates, μ denotes
the dynamic viscosity, ρ is the fluid density, gjk = ξ

j
l ξ k

l are the components of the
contravariant metric tensor, p is the pressure and fl are body forces introduced by the
actuator-type wind turbine model. In the momentum equation, τij is the subgrid-scale
(SGS) stress, which is computed using the dynamic Smagorinsky model (Smagorinsky
1963; Germano et al. 1991). The governing equations are discretized on a structured
curvilinear grid. A second-order accurate central differencing scheme is used for the
spatial discretization with a second-order fractional step method (Ge & Sotiropoulos 2007)
for the temporal integration. The momentum equation is solved with the matrix-free
Newton–Krylov method (Knoll & Keyes 2004). The pressure Poisson equation, for
satisfying the continuity constraint, is solved using the generalized minimal residual
(GMRES) method with an algebraic multi-grid acceleration (Saad 1993).

2.2. Wind turbine parametrization method
Geometry-resolving simulations of wind turbine wakes are extremely expensive, because
the characteristic length of wind turbine wakes is often more than two orders of magnitude
larger than the thickness of the boundary layer over the blades. (The length scale of wind
turbine wakes is proportional to the rotor’s diameter D; the thickness of the boundary layer
on the blade is approximately 1 cm for a turbine of D ≈ 100 m operating in region II, i.e.
when the wind velocity is between the cut-in and the rated speeds Yang & Sotiropoulos
2018) For this reason, the aerodynamics of wind turbines is often parametrized using
actuator disk (Chattot 2014), actuator line (Sorensen & Shen 2002) or actuator surface
(Shen, Zhang & Sorensen 2009; Yang & Sotiropoulos 2018) models. In this work, the class
of well validated actuator surface (AS) models for turbine blades and nacelle proposed by
Yang & Sotiropoulos (2018) was employed. The AS model represents each rotor blade
with a simplified two-dimensional (2-D) surface defined by the chord length and the twist
angle at each radial location. The lift and drag forces L and D at each radial location were
determined using the tabulated airfoil data using the local instantaneous relative incoming
velocity as follows:

L = 1
2ρCLc|Vref |2eL (2.3)

and
D = 1

2ρCDc|Vref |2eD, (2.4)

where c is the chord length, Vref is the instantaneous incoming velocity relative to the
rotating blade at the computing point averaged over the chord length, eL and eD are the
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Inflow 1 Inflow 2 Inflow 3

γ = 0◦ λ̃ = {7, 8, 9} λ̃ = 8 λ̃ = 8
γ = 10◦ λ̃ = {7, 8, 9} λ̃ = 8 λ̃ = 8
γ = 20◦ λ̃ = {7, 8, 9} λ̃ = 8 λ̃ = 8
γ = 30◦ λ̃ = {7, 8, 9} λ̃ = 8 λ̃ = 8

Pure inflow No turbine No turbine No turbine

Table 1. Summary of simulation cases: γ denotes the yaw angle, λ̃ denotes the TSR defined with the inflow
velocity projected along the rotor’s axis.

unit directional vectors of the lift and drag forces, and CL and CD are the lift and the drag
coefficients defined in 2-D airfoil tables as a function of Reynolds number and the angle of
attack. Corrections including the three-dimensional stall delay model (Du & Selig 1998)
and the tip loss correction (Shen et al. 2005) were applied. With the computed L and D,
the body force in (2.2) was calculated by uniformly distributing the forces along the chord
as follows:

f = (L + D)/c. (2.5)

A smoothed discrete delta function (Yang et al. 2009) was employed for transferring
quantities between the actuator surface and the background grid nodes for solving the
flow.

2.3. Simulation set-up
In this section, we present the set-up of the cases simulated in this work, as summarized
in table 1. Four different yaw angles γ , i.e. γ = 0◦, 10◦, 20◦, 30◦ (one extra case of γ =
−30◦ was also conducted to check the influence of negative yaw angle in Appendix D.),
defined as the misalignment between the inflow and the rotor axis (shown in figure 1),
were considered for three turbulent inflows with different levels of turbulence intensity.
For inflow 1, the effects of different turbine operation conditions (tip speed ratios) were
examined for different fixed yaw angles. For inflows 2 and 3, simulations were conducted
under the same turbine operating conditions to investigate the influence of the inflow
turbulence on the wake. For each inflow, an extra case without the wind turbine was also
simulated to provide the reference turbulent boundary layer flow. All the simulations were
conducted with the same set-up, i.e. the same boundary and initial conditions, and the same
time step to ensure the inflow turbulent structures were synchronized for the simulated
cases to facilitate the one-to-one comparison of instantaneous flow fields. Details on the
employed wind turbine, the computational domain and the boundary conditions, and the
turbulent inflow generation are provided in the following subsections.

2.3.1. Wind turbine and operation conditions
We simulated the three-blade horizontal-axis Clipper Liberty 2.5 MW wind turbine
located at the EOLOS wind energy research field station at the University of Minnesota,
USA. The rotor diameter was D = 96 m, the hub was at zhub = 80 m, and the nacelle had
a cuboid-like shape with its dimensions being approximately equal to 5.3 m × 4.7 m ×
5.5 m. The tower was conical with diameters varying from 3.0 m at the top to 4.1 m at the
bottom. It should be noted that the tower was not modelled in this work, which may affect
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1 km

Inflow

direction

Rotor axis

direction

3.5D

10.5D

7D

z

xy

γ

Figure 1. Schematic of the computational set-up employed for simulating the wake of a yawed wind turbine.

the top-down asymmetry of the wake of a yawed wind turbine as reported by Howland
et al. (2016). More information about the EOLOS wind turbine can be found in the papers
by Hong et al. (2014) and Chamorro et al. (2015).

In each simulation, the rotor rotated at a fixed modified TSR with respect to the project
velocity Ud normal to the rotor sweeping plane, as follows:

λ̃ = ΩR
Ud

, (2.6)

where Ω is the angular velocity of the rotor, R = 48 m is the radius of the rotor and

Ud = U∞ cos γ (2.7)

is the inflow velocity projected in the rotor’s axis direction.
The scenario we study herein is ideal, where the rotor rotates based on the modified

TSR λ̃, which cannot be easily realized in real-life applications. Defining the TSR based
on the velocity projected to the axial direction of the rotor was for the convenience of
explaining how we control the rotational speed of the rotor in this work. It does not
guarantee optimal energy conversion of a yawed wind turbine (Bastankhah & Porté-Agel
2019). Three different modified TSRs λ̃ = {7, 8, 9} were employed to vary the thrust and
power coefficients to investigate the effects of operation conditions on wake characteristics
of yawed wind turbines.

2.3.2. Computational domain and boundary conditions
We employed the same computational domain for all the cases, which is shown in figure 1.
The size of the computational domain was Lx × Ly × Lz = 14D × 7D × 1 km in the
streamwise (x), transverse (y) and vertical (z) directions, respectively. The origin of the
coordinates coincided with the wind turbine’s footprint on the ground. The domain was
discretized by a Cartesian grid with grid nodes of Nx × Ny × Nz = 281 × 281 × 143.
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(b)(a)

3

2

z/
D

1

0
0.5 1.0 1.5

3

2

1

0 0.1 0.2

Inflow 1
Inflow 2
Inflow 3

U/U∞ σu /U∞
Figure 2. Characteristics of the turbulent inflows: (a) the time-averaged streamwise velocity profile; and (b)
the streamwise turbulence intensity profile. The turbulence intensity at hub height for inflows 1, 2 and 3 are
6.9 %, 7.9 % and 9.6 %, respectively. The horizontal dash–dotted lines represent the turbine hub height and the
dotted lines represent the upper and the lower limits of the rotor.

The grid was uniform in the x, y directions with the grid spacing �x = D/20 and
�y = D/40. In the z direction, the grid was uniform near the ground (z ∈ (0, 2D)) with
�z = D/40 and was gradually stretched to the top boundary. A grid independent study
is presented in Appendix C. Turbulent inflows generated by a precursory simulation (to
be explained in the next section) were prescribed at the inlet (x = −3.5D). At the outlet
(x = 10.5D), the Neumann boundary condition for velocity (i.e. ∂ui/∂x = 0) was applied.
A wall model based on the logarithmic law for rough walls was applied on the ground,
i.e. u/u∗ = (1/κ) ln(z/z0), where u∗ is the friction velocity, κ is the Kármán constant
and z0 is the roughness length (Blocken, Stathopoulos & Carmeliet 2007). The roughness
length was set according to the inflow conditions. At the lateral and the top boundaries,
the free-slip condition was applied. The time step was 0.018D/U∞. All simulations
were first run for approximately 40 rotor revolutions to achieve a fully developed state.
Then the simulations were continued for another approximately 600 rotor revolutions
(corresponding to 45 minutes in physical time) for computing the statistics of the wake.
The total number of rotor revolutions was computed based on the rotor rotational speed of
the λ̃ = 8 and γ = 0◦ case.

2.3.3. Turbulent inflow
The turbulent inflows were generated from precursory LESs with a larger computational
domain (L

′
x × L

′
y × L

′
z = 62D × 46D × 1 km) to capture large-scale eddies in the

atmospheric boundary layer (Wang & Zheng 2016; Liu, Wang & Zheng 2019). Periodic
boundary conditions were applied in the horizontal directions. The top boundary was set
as free-slip. The lower boundary was set as no-slip and modelled using the logarithmic law
for rough walls, as in the turbine simulations. Three different ground roughness lengths
were considered, i.e. z0 = 0.00016 m, 0.001 m, 0.01 m for inflow 1, inflow 2 and inflow
3, respectively. The characteristics of the inflows are shown in figure 2. In the precursory
simulations, the velocity fields on a y − z plane were saved at each time step and then
applied at the inlet of the turbine simulations. Linear interpolations were carried out if
necessary.
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λ̃ 7 8 9

C̃T 0.654 0.710 0.711
C̃P 0.443 0.488 0.487

Table 2. Modified thrust and power coefficients at different modified TSRs.

3. Similarity of time-averaged wake characteristics

In this section, we present the wake characteristics of the time-averaged velocity field
for different yaw angles under different turbine operation conditions with inflow 1. The
wake characteristics to be examined include the wake centreline deflection, the streamwise
velocity deficit, the yaw-induced transverse velocity, and the wake widths defined by the
streamwise velocity deficit and transverse velocity. We examined different scaling factors
for different wake characteristics. It is noted that some of the scaling factors can be found
in the literature (Jiménez et al. 2010; Bastankhah & Porté-Agel 2016; Shapiro et al. 2018),
and the derivations of the employed scaling factors are shown in Appendix A.

3.1. Variation of the thrust and power with yaw angles
Before probing into the flow fields, the variations of the computed thrust (normal to
the rotor sweep plane) and power (calculated from the shaft torque) with yaw angles
are compared in figure 3. The results were normalized by the value at γ = 0◦ at each
corresponding modified TSR λ̃. All results agreed well with the prediction obtained using
the axial momentum theory (Burton et al. 2011), which states that the thrust T and power
P scale with cos2(γ ) and cos3(γ ), respectively. This relation has also been observed in
other numerical and experimental studies (Krogstad & Adaramola 2012; Bartl et al. 2018).
With this relation, the thrust and power coefficients (C̃T and C̃P), which are defined with
respect to Ud and shown as

C̃T = T
1
2ρAU2

d

= T
1
2ρA (U∞ cos γ )2 , (3.1)

C̃P = P
1
2ρAU3

d

= P
1
2ρA (U∞ cos γ )3 , (3.2)

are independent of the yaw angles and are equal to those in the non-yawed cases, because
of T ∝ cos γ 2 and P ∝ cos γ 3. The values of C̃T and C̃P for different TSR are shown
in table 2. It is worth noting that the yaw angle independence of C̃T and C̃P may result
from the control strategy employed in the present work, i.e. the modified TSR λ̃ was fixed.
However, if another control strategy is employed, the thrust T and the power P may follow
cosa γ and cosb γ , respectively, with a < 2 and b < 3 (Bastankhah & Porté-Agel 2019;
Howland et al. 2020; Liew, Urbán & Andersen 2020). Making the comparison in figure 3
is just to verify the implementation of this idealized rotor control rather than indicating
that the power and thrust should vary in that way in real-life applications.
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Figure 3. Influence of yaw angle γ on the rotor’s thrust and power: (a) the normalized thrust T(γ )/T(0)

(symbols) compared with cos2 γ (solid line); and (b) the normalized power P(γ )/P(0) (symbols) compared
with cos3 γ (solid line). Here, T(0) and P(0) are the thrust and the power at γ = 0, respectively.

3.2. Time-averaged velocity fields
In this subsection, we examine the influence of yaw angle on the time-averaged wake
velocity. To illustrate such an influence, we first plot, in figure 4, the streamwise and the
transverse velocities U and V on the hub-height plane for cases with λ̃ = 8 (the cases with
other λ̃ have a similar pattern). The red thick dashed lines and the red dotted lines plot the
wake centreline (y = YC(x)) and the boundary (y = YC(x) ± R1/2(x)) obtained by fitting
the time-averaged velocity deficit using the Gaussian fit at each downstream location (x),
as follows,

�U(x, y) = U∞ − U(x, y) = �UC(x) exp
(

−( y − YC(x))2

2S2(x)

)
, (3.3)

where U(x, y) is the streamwise velocity and S(x) is the standard deviation of the Gaussian
distribution to be fitted with the velocity profile. A schematic of these definitions is
illustrated in figure 5. The wake half-width is defined as R1/2(x) = √

2 ln 2S(x), which
gives the distance from YC(x) to the position where �U = (�UC)/2.

First, figure 4 shows that the streamwise velocity U behaves similarly in the yawed and
non-yawed cases. As seen, U is symmetric with respect to the wake centreline. The overall
patterns of U computed at different yaw angles are very similar, although the magnitude
of the velocity deficit (�U) and the wake width (R1/2) gradually reduce with the increase
of yaw angle owing to the reduction of the streamwise thrust on the rotor Tx = T cos γ and
the projected rotor width R̃ = R cos γ .

In contrast, the transverse velocity V behaves differently in yawed and non-yawed cases,
as seen in the second column of figure 4. In the region close to the rotor, a diverging
transverse velocity is observed for all yaw angles, which is related to the expansion of
the streamtube at the rotor. In this region, it is difficult to distinguish the yaw-induced
transverse velocity and that induced by the wake expansion. Differences are observed
in the far wake: in the non-yawed case, the transverse velocity is close to zero and is
symmetrical to the wake centreline; when the rotor yaws, on the other hand, a transverse
velocity in the negative y direction is observed and its magnitude increases with yaw
angle. More importantly, the transverse velocity is observed as being asymmetric with
respect to the wake centreline YC(x) defined by the streamwise velocity deficit. That the
transverse velocity resides only on one side of the wake centreline (behind the leading
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Figure 4. The time-averaged velocity field behind wind turbines (at hub-height plane z = zhub): (a,c,e,g)
streamwise velocity; and (b,d, f,h) the transverse velocity. Panels in each column are ordered by increasing
yaw angle . The red dashed lines represent the centrelines of the streamwise velocity deficit. The red dots
denote the wake width where the streamwise velocity deficit is half that on the centreline. The blue dashed line
and blue dots denote the wake centreline and width defined by the transverse velocity. The black solid lines
illustrate the rotors.

edge of the yawed rotor) is in agreement with the wind tunnel measurement of Bastankhah
& Porté-Agel (2016). Owing to these differences observed in the transverse velocity V as
compared with the streamwise velocity U, it is expected that the wake quantities defined by
U and V should be treated differently. For this reason, we plot in addition the wake centre
position YV

C (x) and the wake width of RV
1/2(x), where the transverse velocity V is reduced

to half of the maximum. As seen, YV
C (x) (the blue dash lines) approximately overlaps with

the streamwise wake boundary (the red dots).
In the following subsections, we will examine the similarity of these wake

characteristics, using the different characteristic length and velocity scales presented in
Appendix A.

3.3. Similarity of wake centreline YC(x)
In figure 6, we examine the similarity of the wake centreline YC(x) for different yaw angles.
The length scale employed to normalize YC(x) is

YN = DC̃T cos2 γ sin γ, (3.4)
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R R� = R cos γ
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�U(x,y) = U∞ – U(x,y) = UC (x)e –
( y –YC (x))2

2S2(x)

Figure 5. Schematic and and key variables for describing the wake behind a yawed wind turbine on the
hub-height plane, where U∞ is the inflow velocity, Ud is the inflow velocity component in the rotor’s axis
direction, γ is the yaw angle, T is the thrust on the rotor and R = 0.5D is the rotor’s radius. Here, U and V
denote the streamwise and the transverse velocity, respectively.

which is proportional to the transverse thrust Ty as shown by Jiménez et al. (2010) and
Shapiro et al. (2018). Figure 6(a) shows that the wake centreline deflections increased
with yaw angle. For the same yaw angle, it was observed that YC(x) increases with λ̃ at the
far wake especially for the γ = 30◦ case. However, the differences of YC between cases of
different λ̃ are small because of the relative small difference in the thrust coefficients CT .
In figure 6(b), it is observed that the wake centrelines of different yaw angles overlap with
each other after being normalized by YN . This good scaling shows that the length scale
((3.4)) well describes the similarity of the wake centreline despite the complex dynamics
of yawed turbine wakes. Once the wake centreline is known for one yaw angle, it can be
generalized with the proposed length scale YN to predict the wake centrelines at other yaw
angles if the similarity observed in this work also exists in realistic conditions taking into
account the effects of thermal stability, wind speed shear, wind direction, wake interaction,
etc.

3.4. Similarity of streamwise velocity deficit �U
In this section, we examine the similarity of the quantities related to the streamwise
velocity deficit. The characteristic velocity employed for scaling is

UN = U∞
(

1 −
√

1 − C̃T cos2 γ

)
, (3.5)

which represents the streamwise velocity reduction caused by the rotor (Burton et al.
2011; Bastankhah & Porté-Agel 2016; Shapiro et al. 2018). In figure 7, we first examine
the streamwise evolution of the velocity deficits �UC(x) along the wake centreline for
different yaw angles and different λ̃. Figure 7(a) shows that �UC(x) with different λ̃ and
different yaw angles deviates from each other, which reveals the influence of both factors.
For the same λ̃, �UC(x) decreases with the increase of yaw angle. For the same yaw angle,
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Figure 6. Wake centreline YC(x): (a) normalized by the rotor’s diameter D; and (b) normalized by the length
scale YN = DC̃T cos2 γ sin γ .
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Figure 7. The characteristic velocity deficit �UC(x) for different λ̃ and yaw angles: (a) normalized by the

inflow velocity U∞; and (b) normalized by the velocity scale as UN = U∞(1 −
√

1 − C̃T cos2 γ ).

�UC(x) increases when increasing λ̃ owing to the increase of C̃T . More importantly, at all
considered downstream locations (1D ≤ x ≤ 10D), the �UC(x) profiles are observed to
vary in a similar manner. This similarity is further confirmed in figure 7(b), which shows
the �UC(x) profiles overlap with each other when normalized using the characteristic
velocity UN . In the figure, it is also noticed that �UC(x) first increases until approximately
x = 2.5D and then gradually decreases to far-wake locations. This flow deceleration is
related to the recovery of the pressure. In the far wake, the scaled wake centre velocities
�UC(x)/UN show an excellent agreement with each other, which indicates UN is the
proper velocity scale for the velocity deficit.

We then examined the wake half-width R1/2(x) = √
2 ln 2S(x), where S(x) is obtained

by fitting the velocity deficit to the Gaussian function ((3.3)). The initial wake width RN ,
derived using the streamwise one-dimensional momentum theory (details can be found
in Appendix A), was employed for the normalization. The expression of RN is shown
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Figure 8. The characteristic wake width R1/2(x) for different λ̃ and yaw angles: (a) normalized by the rotor

radius R; and (b) normalized by the length scale RN = R cos γ

√
(1 +

√
1 − C̃T cos2 γ )/(2

√
1 − C̃T cos2 γ ).

as follows:

RN = R cos γ

√√√√√√1 +
√

1 − C̃T cos2 γ

2
√

1 − C̃T cos2 γ

, (3.6)

which is a function of the thrust coefficient C̃T , yaw angle γ and the rotor’s radius R.
Figure 8(a) shows that there were differences in R1/2/R for the cases with different yaw
angles and different λ̃, but the curves overlapped when normalizing R1/2 using RN , as
shown in figure 8(b). That the curves overlap with each other at all considered downstream
locations in the range of 1D < x < 10D shows that the proposed length scale RN , a
characteristic wake width scale in the near wake, is still valid in the far wake. It is also
noticed that the wake width decreased slightly in the initial near-wake region, which was
attributed to the difficulties in fitting the velocity deficit profiles to the Gaussian function
when the root loss phenomenon is present, as shown in figure 4. It is noted that RN is
different from that in the paper by Bastankhah & Porté-Agel (2016) for predicting the
wake width at the onset of far wake (see details in Appendix B).

In figure 9, the similarity of the horizontal profiles of the streamwise velocity deficit at
different turbine downstream locations is examined. Figure 9(a–d) shows the magnitude
of the velocity deficit and the wake width decrease when increasing the yaw angles. In
contrast, the transverse profiles of the streamwise velocity deficit shown in figure 9(e–h)
overlap with each other when normalized using the velocity scale UN and the length scale
RN , and are shifted with respect to the wake centreline YC(x). It is seen from figure 9(e–h)
that the velocity deficit profiles are symmetrical to the wake centreline for different yaw
angles including γ = 30◦. The characteristic wake width scale RN and velocity deficit
scale UN are proper for describing the similarity of velocity deficits for different yaw
angles. It is noticed that at 3D turbine downstream, the velocity deficits �U/UN on the
plateau are approximately equal to 1, which indicates that the present scaling factor UN is
a good estimation of the velocity deficit in the near wake. Furthermore, the overlapping of
the velocity deficit profiles at further turbine downstream locations (figure 9 f –h) shows
that UN successfully describes the similarity of the velocity deficits for different yaw
angles, although it is derived at the imminent near wake.
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Figure 9. The time-averaged velocity deficit �U = U∞ − U at downstream locations of
(x ∈ {3D, 5D, 7D, 9D}) on the hub-height plane (z = zhub) for different λ̃ and yaw angles: (a–d) normalized by
the inflow velocity U∞; and (e–h) the wake centres are shifted with respect to YC, with the values normalized
by the proposed velocity and length scale UN and RN .

3.5. Transverse velocity V
In this subsection, we investigate the similarity of the transverse velocity V . Recall that
in figure 4, the transverse velocity field is shown to be significantly different from the
streamwise velocity and is thus not expected to have the same characteristic velocity
and length scales. Consequently, the characteristic quantities scales defined using the
transverse component of the thrust Ty, following Jiménez et al. (2010) and Shapiro et al.
(2018), will be employed for scaling the quantities related to the transverse velocity, i.e.
RV

1/2(x) and VC(x). Because the transverse velocity is induced by the CVP in the wake
(Bastankhah & Porté-Agel 2016; Howland et al. 2016), the transverse profiles of V are
fitted with a CVP shape function derived based on the Biot–Savart law instead of the
Gaussian function (see Appendix E for details).

We first examine the wake half-width RV
1/2(x) defined using the transverse profiles of

the transverse velocity. Figure 10 shows the streamwise variation of RV
1/2. Recall that both

wake expansion and yaw can induce transverse velocity near the rotor, as shown in figure 4,
so using the fitting function based on the CVP to define RV

1/2 works only in the far wake
(x > 4D). Despite some fluctuations, it is found that the variation of RV

1/2(x) with yaw
angles is smaller than that of R1/2. The curves of the same λ̃ cluster together, which shows
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Figure 10. Streamwise variations of the half-width RV

1/2(x) computed by fitting the transverse profiles of the
transverse velocity V . The grey curves replot R1/2(x) computed from the streamwise velocity in figure 8(a) for
comparison.

that RV
1/2(x) is less dependent on the yaw angle. The yaw-independent scaling of RV

1/2 is
consistent with the theory of Glauert (1926) for auto-gyros, where the initial influencing
zone of V is found to have the same size as the rotor disc instead of the projected size of the
rotor disc (Burton et al. 2011). The fluctuations of RV

1/2 may be explained by the complex
dynamics related with the transverse velocity, e.g. the CVP and its interaction with the
wake rotation (Bastankhah & Porté-Agel 2016; Howland et al. 2016). In the far-wake
locations (x > 4D), both RV

1/2(x) and R1/2(x) gradually increase with the distance from
the turbine.

We then examined the similarity of the transverse velocity using the velocity scale VN ,
which is proportional to the initial transverse velocity given by Jiménez et al. (2010) and
Shapiro et al. (2018):

VN = 1
2 C̃T cos2 γ sin γ U∞. (3.7)

Figure 11 shows the streamwise variations of the maximum transverse velocity VC(x)
obtained from with the CVP fitting function. In figure 11(b), VC(x)/VN increases
from approximately 0.4 at x = 2D to 0.7 at x = 4D and then gradually decreases to
approximately 0.4 at x = 10D. More importantly, the VC/VN profiles for different γ and λ̃
approximately overlap with each other especially at far downstream locations, which shows
the characteristic velocity VN successfully captures the main feature of the similarity. (The
standard deviations of the relative differences of the different curves from the mean of
the curves shown in figure 11(a,b) are approximately 31 % and 3.5 %, respectively, in the
far-wake region (x > 4D).) However, there are slightly larger differences between these
curves when comparing with U/UN (figure 7), which implies that VN does not include all
the underlying physics.

In figure 12(a–d), the V profiles are normalized using the incoming wind speed U∞.
For a given λ̃, the velocity amplitude increases when increasing the yaw angle for all
the considered streamwise locations. At x = 3D, the V profiles show complex variations,
especially for the cases with a yaw angle γ = 10◦. In figure 12(e–h), the V profiles are
normalized by the proposed velocity scale VN and shifted with respect to the centre
location YC based on the streamwise velocity deficit. It is noted that scaling of the
transverse velocity profiles is not as accurate as that for the streamwise velocity deficit.
This is probably because many other factors including the wake rotation and vertical shear,
which affect the transverse velocity, are not taken into account in the proposed scaling.
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Figure 11. The characteristic transverse velocity VC(x) for different yaw angles: (a) normalized by inflow
velocity U∞; and (b) normalized by the proposed velocity scale VN = (C̃T cos2 γ sin γ U∞)/2.

However, the profiles of the transverse velocity are approximately symmetrical about the
peak, and the overall shape can be fitted with the proposed CVP function (the grey curves)
especially in the far wake. Additionally, the peak of the transverse velocity locates on
one side of the wake centreline YC at approximately 0.5D and varies slightly with the
downstream locations, which was assumed to be approximately equal to S in (3.3) in the
paper by Bastankhah & Porté-Agel (2016). This shift of the maximum of the transverse
velocity from the wake centreline may explain the overestimation of YC computed using
a uniform V , as in the analytical wake models of Jiménez et al. (2010), as shown by e.g.
Bastankhah & Porté-Agel (2016). However, it should also be noticed that the shape of V is
different from the idealized shape of the CVP fitting function in the near wake, as shown
in figure 13, as a result of complex flow dynamics in the near wake caused by the nacelle,
the wake rotation (Bastankhah & Porté-Agel 2016; Howland et al. 2016) and the inflow
vertical shear (Gebraad et al. 2017). The tower, which was not considered in the work,
may also have an effect.

4. Similarity of turbulence statistics of yawed turbine wakes

In this section, we examine the turbulence statistics of yawed turbine wakes, which include
the turbine-added turbulence kinetic energy, turbine-added Reynolds shear stress and the
statistics of instantaneous wakes. This section presents the results of cases with inflow 1.
The influence of inflow turbulence will be discussed in § 5.

4.1. Turbine-added turbulent kinetic energy and Reynolds shear stresses
In this subsection, we examine the similarity of the turbine-added turbulence kinetic
energy �k and the turbine-added Reynolds shear stresses �〈u′v′〉 and �〈u′w′〉. The
employed characteristic velocity scale is given as follows:

UT = U∞ cos γ

√
C̃T/2. (4.1)

Figure 13 shows the streamwise velocity deficit, the turbine-added turbulence kinetic
energy and Reynolds shear stresses at x = 7D for cases of different yaw angles with
λ̃ = 8. The streamwise velocity deficit is plotted in figure 13(a–d), to illustrate the wake
region. The wake centre is shown to be deflected to the left and the wake’s cross-section
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Figure 12. The time-averaged transverse velocity V profile at downstream locations of (x ∈ {3D, 5D, 7D, 9D})
on the hub-height plane (z = zhub) for different yaw angles: (a–d) V normalized by the inflow velocity U∞;
(e–h) the wake centres are shifted with respect to YC, with the values normalized by the velocity scale VN =
(C̃T cos2 γ sin γ U∞)/2. The grey thick curves show the corresponding fitting function.

is deformed to a curled-shape with top-down asymmetry when increasing the yaw angle,
as described in the literature (Howland et al. 2016). Interestingly, the curled-shape is less
obvious for the turbine-added turbulence kinetic energy �k , which shows an approximate
left-right symmetry, as shown in figure 13(e–h). The turbine-added Reynolds shear stress
�〈u′v′〉 is plotted in figure 13(i-l) and �〈u′w′〉 is plotted in figure 13(m–p). Overall it is
found that these Reynolds stresses become asymmetric at large yaw angles. Moreover, it
is found that �〈u′v′〉 > �〈u′w′〉, which may be related to the stronger horizontal wake
meandering. In the following, the transverse profiles of �k and �〈u′v′〉 at the hub height
and different streamwise locations will be examined in detail for different yaw angles
and turbine operation conditions. The vertical profiles �〈u′w′〉, however, will not be
be examined because of its irregular shape and the difficulty to define the location for
comparison.

Figure 14 compares the turbine-added turbulence kinetic energy �k computed
from cases with different γ and λ̃ at different downstream locations. The curves in
figure 14(a–d) are �k profiles normalized using U2∞. Here, the �k profiles of different
yaw angles show apparent differences in terms of the magnitude, the locations of the �k
peaks and the width of the zone with increased turbulence. Figure 14(e–h)show the same
results with the abscissa scaled by U2

T and the ordinate shifted with YC(x) then scaled
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Figure 13. Wake characteristics at x = 7D for cases of different yaw angles with λ̃ = 8: (a–d) the streamwise
velocity deficit �U; (e–h) the turbine-added turbulence kinetic energy �k; (i–l) the turbine-added Reynolds
shear stress �〈u′v′〉; and (m–p) the turbine-added Reynolds shear stress �〈u′w′〉. The dashed circles illustrate
the projected rotor.

by RN . With this scaling, the �k profiles of different yaw angles overlap with each other
in the far wake, which shows that the characteristic velocity UT is still the proper velocity
scale for the wake of yawed wind turbines. By further probing into the �k profiles in the
near wake, it is found that the profile of �k contains two peaks with the distance between
the two peaks scaled well by RN , as the location of �k peaks appear at YC ± S, which is
consistent with results in the literature (Schottler et al. 2018). It is also observed that �k in
the near wake (x = 3D, figure 14a,e) is asymmetric when γ /= 0◦ (especially for γ = 30◦)
and �k behind the trailing half of the rotor (y − yC < 0) is larger than that behind the
leading half (y − yC > 0), which is similar to the flow passed an inclined circular disc
(Calvert 1967; Gao et al. 2018). This asymmetry increases with γ and cannot be captured
by the proposed velocity scale UT . However, it only manifests in the near wake and may
be considered as immaterial in utility-scale wind farms, where the turbine spacing is often
larger than 5D (Méchali et al. 2006). At far-wake locations, this asymmetry disappears
with the �k/U2

T profiles overlapping well with each other on the ( y − YC)/RN coordinate.
Figure 15 plots the turbine-added Reynolds shear stress �〈u′v′〉 at the hub-height plane

(z = zhub) presented in the same manner as figure 14. In figure 15(a), it is observed that
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Figure 14. The turbine-added turbulence kinematic energy �k at downstream locations of (x ∈
{3D, 5D, 7D, 9D}) on the hub-height plane (z = zhub) for different yaw angles and λ̃ : (a–d) normalized by
the square of the inflow velocity U2∞; (e–h) the wake centres are shifted with respect to YC and normalized by
the length scale RN , with the values normalized by the square of the velocity scale U2

T .

�〈u′v′〉 profiles are featured by complex variations near the wake centre at x = 3D, which
is caused by the turbine nacelle and root loss near the hub. When �〈u′v′〉 are plotted on
the coordinate ( y − YC)/RN , the turbine-added Reynolds shear stress profiles normalized
using U2

T overlap with each other in the far wake (x ≥ 5D) for different yaw angles and λ̃,
which confirms UT as the proper velocity scale for the turbine-added Reynolds stresses.

4.2. Statistics of instantaneous wake centre and width
This subsection analyses the influence of the yaw misalignment on the dynamics of the
horizontal large-scale wake motion (wake meandering), which has a significant impact on
the wake expansion, recovery and the fatigue loads on downstream wind turbines (Ainslie
1988; Högström et al. 1988; Larsen et al. 2007). In the same way as for the time-averaged
wake centre, the instantaneous wake centre is defined as the centre of the Gaussian fit
of the instantaneous velocity deficit, which is obtained by subtracting the velocity field
computed from the case without wind turbines at exactly the same instant. Figure 16
shows the velocity deficit behind a turbine with γ = 0◦ and a turbine with γ = 30◦ at
the same instant. To obtain the wake centre position and the width along the downstream
locations, the velocity deficit �U profile is first spatially filtered with a width of 0.5D in
the streamwise direction (x) and then is fitted to the Gaussian function at each downstream
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Figure 15. The turbine-added Reynolds shear stress �〈u′v′〉 on the hub-height plane (z = zhub): (a–d)
normalized by the square of the inflow velocity U2∞; (e–h) the wake centres are shifted with respect to YC

and normalized by the length scale RN , with the values normalized by the square of the velocity scale U2
T . For

the legend, see figure 14.

location with (3.3). The curve_fit function in the scipy.optimize package is employed for
the fitting process. At each time step, the fitting starts from the near wake with the fitting
results serving as the initial guess for the next downstream location to help to converge
the fitting process. The filtered velocity deficit and the fitted Gaussian curve are illustrated
in figure 16(b) for γ = 0◦ and figure 16(d) for γ = 30◦ both with λ̃ = 8. Despite some
fluctuations in the instantaneous velocity profiles (blue lines), the fitted Gaussian curves
(red dashed lines) capture the wake centre position yc and width r1/2 satisfactorily. In
figure 16(a,c), the fitted wake centre lines yc(x) and the characteristic wake half-width
(defined by r1/2(x)) are plotted with red dotted lines and red dashed lines, respectively.
Generally, they provide a good estimation of the overall trend of the wake in the entire
region except for 9D < x < 10D, where the velocity deficit is small and irregular. It is
found that the wake behind a yawed wind turbine is generally narrower and that the
velocity deficit is smaller than the wake behind a non-yawed turbine. This observation is in
accordance with the time-averaged wake quantities. In the following, we examine whether
the proposed scales for the time-averaged wake are still appropriate for the statistics of the
instantaneous wakes. The following analyses in this section are based on the data collected
on the horizontal plane located at the turbine hub height with inflow 1.
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Figure 16. Instantaneous flow field behind the wind turbines at hub-height plane z = zhub. The contour of the
velocity deficit �U at the same simulation time for yaw angles γ = 0◦ (a) and γ = 30◦ (c). The black solid
lines illustrate the wind turbines. Red dash–dotted lines denote the wake centreline yc(x) and the red dashed
lines denote the wake width defined by r1/2(x) obtained from the Gaussian fit of the instantaneous streamwise
velocity. The velocity deficit at x = 7D and the corresponding Gaussian fit for yaw angles γ = 0◦ (b) and
γ = 30◦ (d).

We first show the probability density function (p.d.f.) of the wake centre location at
x ∈ {5D, 7D, 9D} for different yaw angles in figure 17. In this figure, panels in the same
rows are at the same downstream location and the panels in the same columns are at
the same yaw angle. For brevity, only the results of λ̃ = 8 are plotted as the results of
all considered λ̃ were similar. The p.d.f. is plotted as grey bars and is fitted to normal
distribution curves. In each panel, two vertical lines are plotted to denote the wake
centreline location obtained from the time-averaged velocity field (YC) and the mean
value of the instantaneous centre location (yc), respectively. These two lines overlap. When
increasing the yaw angle, the p.d.f. moves in the −y direction owing to the wake deflection.
In the last column, the p.d.f. profiles for the different yaw angles are shifted with respect to
YC and plotted in the same figure, and are shown to overlap with each other. This indicates
that the transverse distribution of the instantaneous wake centres is independent of the yaw
angle at different downstream locations for the present cases, which further indicates that
the amplitude of wake meandering, defined as the standard deviation of the wake centre
location, does not change with yaw angle. By comparing the p.d.f.s at different locations, it
is found that the wake centres distribute in a wider range as the wake travels downstream,
which is in accordance with the wake expansion phenomenon. It is also noted that the
p.d.f. distribution is not exactly Gaussian. To examine this, we compute the skewness of
the distribution in table 3. The skewness for cases with non-zero yaw angles generally has
a positive value, which shows that the distribution has a longer tail on the right (Lovric
2011), i.e. in the opposite direction of the mean wake deflection. However, because these
skewness is rather small (in the range of −0.5 to 0.5), the distribution is thus approximately
symmetrical and can be approximated by the normal distribution (Cramer 2002).
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Figure 17. The probability density function of the instantaneous wake centre at x ∈ {5D, 7D, 9D} for different
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fitted curves are compared in panels (e, j,o). The orange dashed vertical lines denote the mean value of the
instantaneous wake centre locations and the red dotted vertical lines are plotted at the wake centre obtained
from the time-averaged velocity shown in figure 6.

γ = 0◦ γ = 10◦ γ = 20◦ γ = 30◦

x = 5D 0.013 −0.045 0.079 0.039
x = 7D 0.015 0.037 0.271 0.126
x = 9D 0.073 0.223 0.273 0.193

Table 3. The skewness of the instantaneous wake centre position yc for different yaw angles. The skewness is
defined as g1 = m3/σ

3
yc

with m3 = (1/N)
∑N

i=1( yc − yc)
3 and N is the number of samples.

Similarly, the p.d.f.s of the instantaneous wake width r1/2 are compared in figure 18. The
peak of the p.d.f. is found to move towards the left when increasing the yaw angle, which
indicates that the wake width decreases with yaw angle. Travelling downstream, the peak
moves slightly to the right owing to the wake expansion. For the cases with yaw angles
γ = 0◦ and 10◦, the distributions of r1/2 are well represented by the normal distribution,
while for the cases with γ = 20◦ and 30◦, the p.d.f.s are slightly skewed with a longer
right tail especially at x = 9D. On the other hand, the standard deviation of r1/2 is not
greatly affected by the yaw angles, as observed in the last column.

We further analyse the streamwise evolution of instantaneous wake characteristics at
different γ and λ̃. In figure 19(a), the streamwise variations of yc computed from different
yaw angles and λ̃ are compared. The mean of the instantaneous wake centre locations is
shown to scale well using the proposed length scale YN and agrees with the wake centre
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Figure 18. The probability density function of the instantaneous wake width at x ∈ {5D, 7D, 9D} for different
yaw angles at TSR λ̃ = 8. The histogram is fitted to a Gaussian distribution in each panel, and the fitted curves
are compared in panels (e, j,o).

obtained from the time-averaged field YC (in grey). Figure 19(b) plots the streamwise
evolution of the standard variation of the wake centre position σyc , which indicates the
amplitude of the meandering motion of the wake centre around its mean position. In
figure 19(b), the rotor diameter D, instead of YN , is used for the normalization. Here,
the σyc for the different cases overlap with each other. This observation further confirms
the finding from the p.d.f. of the wake centre in figure 17, where the wake meandering
amplitudes are independent of yaw angle and TSR. Furthermore, it is observed that σyc

increases approximately linearly with the distance to the turbine, which shows that the
meandering amplitude increases as the wakes travel downstream, and this conforms with
Taylor’s frozen eddy hypothesis.

The instantaneous wake width r1/2 is analysed in figure 19(c,d). From figure 19(c),
it is found that the mean value of the instantaneous wake width r1/2(x) for different γ

and λ̃ can be properly scaled by the proposed length scale RN . When compared with the
time-averaged wake width R1/2(x) shown in grey, the widths defined by both approaches
agree well in the near wake (x = 1D), then R1/2 becomes larger at further downstream
locations. This is because R1/2, defined using the time-averaged velocity field, combines
both the expansion of the instantaneous wake width r1/2 and the wake meandering, and
the latter smears the instantaneous velocity deficit over a wider region; in contrast, the
wake width follows the instantaneous wake centre yc and expands slower. The difference
between r1/2 and R1/2 increases with turbine downstream distance in accordance with
the meandering amplitude represented by σyc . Figure 19(d) plots the standard deviation
of the instantaneous wake half-width σr1/2 , which represents the wake deformation that
expands and shrinks with time. It is noticed that the standard deviations of the wake
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Figure 19. Streamwise distribution of the statistics of instantaneous quantities of the wakes behind yawed wind
turbines, where the values are scaled with the same factors as for the time-averaged quantities: (a) the mean
value of instantaneous wake centre positions yc(x), scaled by YN ; (b) the standard deviation of yc(x) normalized
by the rotor diameter D; (c) the mean value of the characteristic instantaneous wake width r1/2(x) scaled by
RN ; (d) the standard deviation of r1/2(x) normalized by D. In (a,c), the grey curves plot the corresponding
normalized characteristics obtained from the time-averaged velocity field.

width for different yaw angles and λ̃ overlap with each other when normalized by the
rotor diameter D, which suggests again that the wake deformation is not greatly influence
by the turbine operation condition. Furthermore, the standard deviation of r1/2 gradually
increases travelling in the streamwise direction, which indicates a larger wake deformation
in the far wake.

In summary, figure 19 mainly reveals that the mean of the instantaneous wake quantities
and their standard deviation are scaled differently. The proposed scaling factors derived for
the time-averaged velocity field still work for the mean value of yc, r1/2, but the standard
deviations of these quantities, on the other hand, are independent of the length scales
defined using the turbine operation condition. The influence of inflow turbulence on the
meandering amplitude and the wake deformation will be analysed in detail in § 5.

5. Effects of inflow turbulence

In this section, the simulation results for cases with λ̃ = 8, γ = {0◦, 10◦, 20◦, 30◦} and
the three different turbulent inflows are examined to probe the influence of the inflow
turbulence on the wake characteristics and the proposed velocity and length scales. Recall
that the three turbulent inflows denoted as inflow 1, inflow 2 and inflow 3 have the same
normalized mean streamwise at the turbine’s hub height and their turbulent intensities are
equal to 6.9 %, 7.9 % and 9.6 %, respectively.
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5.1. Characteristics of the time-averaged wake
Figure 20 shows the characteristics of the time-averaged wake for different yaw angles and
different inflow conditions. In figure 20(a), the wake centreline deflection is compared.
When comparing curves from the cases with the same inflow, the wake deflections YC(x)
for the cases with different yaw angles overlapped with each other when normalized by YN .
Furthermore, a reduction of the wake deflection was observed at far-wake locations when
the inflow turbulence intensity was increased, which is in agreement with previous studies
(Jiménez et al. 2010; Bastankhah & Porté-Agel 2016; Bartl et al. 2018). Furthermore, the
spanwise velocity VC(x) in figure 20(b) was found to decrease with increasing inflow
turbulence intensity and the normalized values in general agreed with each other for
the same inflow. The influence of the inflow turbulence on the streamwise velocity
deficit is shown in figure 20(c). The normalized streamwise velocity deficits �UC(x)/UN
showed a remarkably good agreement between different yaw angles, but they decreased
with the turbulence intensity. Moreover, all the curves started at similar y intercepts at
approximately 1 in the near wake, which showed that the effect of the inflow turbulence
on the imminent wake is minor, where the streamwise velocity deficit can be predicted
well by the one-dimensional momentum theory. In contrast, the effect of the inflow
condition becomes important in the far wake, where it affects wake recovery, as reported
in the literature (Bastankhah & Porté-Agel 2017). The length of the near-wake region can
be defined using the maximum streamwise velocity deficit. The so-computed near-wake
region is shown in figure 20(d). Interestingly, it is found that increasing the yaw angle
and inflow turbulent intensity both result in a shorter near-wake region, with a larger
impact from the inflow turbulence. The streamwise variation of the wake width R1/2 is
shown in figure 20(e). The curves overlap well with each other in the near wake regardless
of the inflows. Beyond this near-wake region, the wake expands approximately linearly.
For the cases with higher turbulence intensity, the wake width is also larger as the wake
expansion starts earlier and grows faster. It is also worth noting that small discrepancies of
the normalized wake width for different yaw angles are observed in the far wake at x > 6D,
especially for the inflow 3 cases with the highest turbulence intensity. This indicates that
the length scale RN , which is derived from the one-dimensional momentum theory, may
encounter difficulties to scale the far-wake width when the inflow turbulence intensity is
high.

The transverse profiles of the streamwise velocity deficit �U and the transverse velocity
V are presented in figure 21. In general, these results confirm that the proposed scaling
factors are able to overlap the profiles of different yaw angles for the same inflow, and that
the magnitudes of the turbine induced streamwise velocity deficit �U and the transverse
velocity V decrease faster for inflows with higher turbulence intensity.

5.2. Characteristics of instantaneous wakes and the turbine-added turbulence
The statistics of the turbine-added turbulent characteristics, which include the added TKE
�k, and the added Reynolds shear stress �〈u′v′〉 are plotted in figure 22. These curves are
normalized by the proposed velocity scale UT and RN , as in § 4. In general, these curves
have similar shapes regardless of the incoming flow. Under the same inflow condition,
the curves overlap, which indicates that the proposed velocity and length scales can still
describe the similarity of these characteristics for different yaw angles. Because these
scales do not consider the influence of the inflow condition, discrepancies between the
curves from cases with different inflows are observed, as expected. For �k, the influence
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Figure 20. Effects of inflow turbulence on the statistics of time-averaged wakes: (a) the centreline deflection;
(b) the characteristic spanwise velocity; (c) the characteristic streamwise velocity deficit; (d) near-wake length
defined using the streamwise location where the velocity deficit reaches the maximum; and (e) the width of the
wake.

of inflow is the most obvious at x = 7D, where the added TKE decreases when the inflow
is changed from inflow 1 and inflow 2 to inflow 3, which is in agreement with the work of
Crespo & Herna (1996). For the added Reynolds stress �〈u′v′〉, an overall good scaling is
observed for the cases under different inflows.

The effects of inflow conditions on the instantaneous wake quantities are examined in
figure 23. The same technique explained in § 4 is employed to extract the instantaneous
wake quantities from the flow field for the three inflow conditions. In figure 23(a), the mean
of the instantaneous wake centre location yc/YN as a function of downstream location is
compared with the wake centreline YC/YN obtained from the time-averaged velocity field.
The mean wake centrelines defined by these two approaches agree fairly well with each
other even in the far wake. Figure 23(b) shows the standard deviations of the instantaneous
wake position for different inflows, as in § 4. It is seen that σyc(x) is independent of
yaw angle for the considered cases. Considering that σyc(x) essentially represents the
meandering amplitude, the observation in figure 23(b) suggests that the wake meandering
is dominated by the incoming large eddies instead of turbine operation for the present
cases, which is consistent with the works of Bastankhah & Porté-Agel (2017) and Yang &

921 A11-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.495


Z. Li and X. Yang

0 0.5 1.0
�U/UN

−2

−1

0

1

2
(a) x = 3 D

0 0.5 1.0
�U/UN

(b) x = 5 D

0 0.5 1.0
�U/UN

(c) x = 7 D

0 0.5 1.0
�U/UN

(d) x = 9 D

(e) x = 3 D ( f ) x = 5 D (g) x = 7 D (h) x = 9 D

−0.8 −0.4 0
V/VN

−1

0

1

−2

−1

0

1

2

−1

0

1

−2

−1

0

1

2

−1

0

1

−2

−1

0

1

2

−1

0

1

(y
 −

 Y
C

)/
D

(y
 −

 Y
C

)/
R N

−0.8 −0.4 0 −0.8 −0.4 0 −0.8 −0.4 0
V/VN V/VN V/VN

Figure 21. Effects of inflow turbulence on horizontal profiles of the normalized time-averaged wake velocity:
(a–d) the streamwise velocity deficit; and (e–h) the spanwise velocity. See figure 20 for the legend.

Sotiropoulos (2019b). Figure 23(c) compares the mean of the instantaneous wake width
r1/2 with the wake width obtained from the time-averaged velocity field R1/2 (plotted in
grey). The normalized instantaneous wake widths r1/2/RN overlap well with each other for
all the considered inflow conditions and yaw angles, which shows that the near-wake width
RN is a good scaling factor even in the far wake. Moreover, the mean of the instantaneous
wake width grows very slowly at all the considered locations (1D < x < 10D), which
suggests that the expansion of the instantaneous wake width is much weaker than that
of the time-averaged wake. This should be taken into account in wake meandering
models (e.g. the dynamic wake meandering model Larsen et al. 2008). Furthermore,
it is observed that the instantaneous wake widths are not very sensitive to the inflow
condition, i.e. the effects of the inflow turbulence on the expansion of the instantaneous
wake are negligible for the considered cases. This further suggests that the faster recovery
of the time-averaged wake for cases with higher inflow turbulence intensity is mainly
caused by stronger meandering motions. Lastly, the effects of inflow on the standard
deviation of the instantaneous wake width are shown in figure 23(d). Here, σr1/2 is shown
to have a similar behaviour to σyc , i.e. it increases linearly with downstream distance,
and the slope of the increase is nearly independent of turbine yaw angles but increases
with the turbulence intensity of the inflow, which indicates stronger instantaneous wake
deformation for higher inflow turbulence intensities. Moreover, this figure clearly reveals
that increasing the inflow turbulence intensity (TI) leads to an increase in the growth rates
of both σyc and σr1/2 . The empirical formula for the dependence of the expansion rate of the
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Figure 22. Effects of inflow turbulence on the normalized added turbulence: (a–d) the added kinetic
turbulent energy; and (e–h) the added in-plane Reynolds shear stress.

time-averaged wake width on the inflow turbulence intensity can be found in the literature
e.g. k = 0.38TI + 0.004 proposed by Niayifar & Porté-Agel (2016). However, to the best
of the authors’ knowledge, similar empirical formulae for σyc and σr1/2 do not exist yet,
which need further investigation.

5.3. Relation between the time-averaged wake and the instantaneous wake
This section is dedicated to relating the time-averaged wake and the instantaneous wake
to the standard deviation of the wake centre position σyc , which represents the wake
meandering amplitude.

To derive the relations, hypotheses are made as follows. At any downstream location x,

(i) the wake centre position yc follows the normal distribution N (yc, σ
2
yc

), i.e. the
probability function of the wake centre is

P( yc = ξ) = 1√
2πσyc

exp

(
−(ξ − yc)

2

2σ 2
yc

)
, (5.1)

as shown in figure 17;
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Figure 23. Effects of inflow turbulence on the instantaneous wake quantities: (a) the mean of the instantaneous
wake centre positions yc; (b) the standard deviation of the instantaneous wake centre position σyc ; (c) the
mean of the characteristic instantaneous wake width r1/2; and (d) the standard deviation of the characteristic
instantaneous wake width σr1/2 . In (a,c), the curves in grey scale plot the corresponding terms obtained from
the time-averaged wake. In (b,d), the growth rates k of σyc and σr1/2 are illustrated by a short dashed line for
each inflow condition.

(ii) the transverse profiles of instantaneous velocity deficits can be approximated
by a Gaussian function with �u( y, ξ) = �uc exp (−(( y − ξ)2/2s2)) as shown in
figure 16, where s is the standard deviation of the Gaussian function related to the
wake width with r1/2 = √

2 ln 2s and ξ is the instantaneous wake centre.

The time-averaged velocity deficit �U can be regarded as the ensemble-average of the
instantaneous velocity deficits, so it can be calculated by multiplying the p.d.f. of the wake
centre P( yc = ξ) with the instantaneous wake deficit function �u( y, ξ) and integrating ξ

from −∞ to +∞, as follows,

�U( y) =
∫ +∞

−∞
P( yc = ξ)�u( y, ξ) dξ

=
∫ +∞

−∞
1√

2πσyc

exp

(
−(ξ − yc)

2

2σ 2
yc

)
�uc exp

(
−( y − ξ)2

2s2

)
dξ

=
√

s2

σ 2
yc

+ s2 �uc exp

(
( y − yc)

2

2(σ 2
yc

+ s2)

)
. (5.2)
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Figure 24. (a,d,g) Mean of the instantaneous wake width r1/2 (in colour) compared with the time-averaged
wake width R1/2 (in grey). (b,e,h) Standard deviation of the wake centre position. (c, f ,i) The predicted

time-averaged wake width R̃1/2(x) =
√

2 ln 2σ 2
yc

(x) + r1/2(x)
2

(in colour) compared with the time-averaged
simulation results R1/2 (in grey).

Comparing (5.2) and (3.3), one obtains the following relations,

�UC =
√

s2

σ 2
yc

+ s2 �uc, (5.3)

S =
√

σ 2
yc

+ s2. (5.4)

Recall the definition of the wake width is R1/2 = √
2 ln 2S and r1/2 = √

2 ln 2s for the
time-averaged and instantaneous wakes, respectively. One obtains the relation of R1/2,
r1/2 and σyc as

R1/2(x) =
√

2 ln 2 σ 2
yc

(x) + r1/2(x)
2
. (5.5)

This relation is validated with the simulation results for all the inflow conditions and yaw
angles in figures 24 and 25. Figure 24 compares the wake width predicted by (5.5) with that
from simulation. The panels (a,d,g) show clearly the difference between the instantaneous
wake width (in colour) and the time-averaged wake width (in grey), whereas the panels
(c, f,i) show an excellent agreement between the time-averaged wake width calculated by
(5.5) (in colour) and the simulation results (in grey). Figure 25 compares the mean of the
instantaneous centreline velocity deficit �uc with the time-averaged centreline velocity
deficit �UC. The panels (a,d,g) show that the discrepancies between these two definitions
increase with downstream distance owing to the increasing wake meandering amplitudes
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Figure 25. (a,d,g) Mean of the instantaneous velocity deficit �uc (in colour) compared with the
time-averaged wake velocity deficit �UC (in grey). (b,e,h) Standard deviation of the wake centre position.

(c, f ,i) The predicted time-averaged velocity deficit �̃UC(x) =
√

s2/(s2 + σ 2
yc

) (in colour) compared with the
simulation results UC (in grey). See figure 24 for the legend.

in the far wake, as shown in panels (b,e,h). In panels (c, f ,i), the prediction �̃UC using
(5.3) agrees well with the computed �UC from the time-averaged simulation results. This
agreement shows that the contribution of the wake meandering can be well captured by
(5.3).

Physically speaking, the derived relations and observations in figures 24 and 25 show
the relative importance of (i) wake meandering and (ii) turbulence diffusion and pressure
(on the moving frame of reference located at the instantaneous wake centre) on the
recovery of the wake, i.e. the decrease of velocity deficit and the growth of wake
radius. When the wake meandering amplitude is small (σyc < r1/2) in the near wake,
the recovery of the time-averaged wake is dominated by the second factor mentioned
above. Otherwise, when the meandering amplitude is large (σyc > r1/2), the recovery of
the time-averaged wake is mainly caused by the wake meandering. Additionally, because
σyc is independent of yaw angle, this equation explains why the far-wake width, where
the inflow turbulence is dominant, is poorly scaled with RN (derived based on the turbine
operation condition for the near wake). These findings and the derived relations can be
employed in the development of advanced wake meandering models to take into account
more accurately the instantaneous wake features instead of using models based on the
time-averaged wake (Jiménez et al. 2010; Bastankhah & Porté-Agel 2016; Shapiro et al.
2018).

6. Summary and conclusion

We investigate the wake characteristics of a yawed utility-scaled wind turbine using LES
with the blades and nacelle parametrized using the actuator surface model. Four yaw
angles (γ = 0◦, 10◦, 20◦, 30◦) are considered with the turbine operating at three modified
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TSRs (λ̃ = 7, 8, 9) defined based on the velocity projected to the axial direction of the
rotor. For TSR λ̃ = 8, we further investigate the effects of three different turbulent inflows
on the wake dynamics of turbines with different yaw angles.

Similarities between cases with different yaw angles are observed for different
characteristics of turbine wakes under different turbine operation conditions. For the
time-averaged flow field, we examine two kinds of similarities, i.e. the similarity of the
streamwise velocity deficit and the similarity of the transverse velocity. It is observed that
the wake deficits �U of cases with different yaw angles overlap well with each other
when normalized using the characteristic velocity UN , i.e. the velocity difference between
the incoming velocity and velocity in the near wake of the turbine, and the characteristic
length RN , i.e. the radius of the near wake, which are derived from the one-dimensional
momentum theory. For the transverse motion of the wake, the transverse deflection YC
and the magnitude of the transverse velocity V are observed to scale well with the length
scale YN and the velocity scale VN , respectively, which are derived using the transverse
component of the thrust on the turbine. The width RV

1/2 of the region dominated by the
transverse velocity, on the other hand, is similar for cases of different yaw angles and
scales well by the rotor diameter. For the turbulence characteristics of the wake, the
computed results show a good scaling of the turbine-added turbulence kinetic energy
�k and the Reynolds shear stress �〈u′v′〉 at far-wake locations when normalized by UT ,
which is defined using the streamwise component of the thrust on the turbine. For the
statistics of the instantaneous wake, the p.d.f. profiles of the instantaneous wake positions
yc normalized using rotor diameter are observed to overlap with each other for cases of
different yaw angles. Meanwhile, we find that the standard deviation of the instantaneous
wake deflection fluctuations σyc and of the instantaneous wake radius fluctuations σr1/2

overlap with each other when normalized using the incoming velocity and rotor diameter
without using the characteristic scales depending on yaw angles. We further examine
the above-mentioned wake characteristics for different inflows. Similarities are in general
observed for cases of different yaw angles under the same inflow. When comparing results
from different inflows, some quantities, e.g. the standard deviation of the position of
instantaneous wake centres and the standard deviation of the radius of instantaneous
wakes, are observed as being affected by the inflow turbulence. Two more interesting
observations are: (i) the mean of the instantaneous wake width r1/2, which barely grows
travelling downstream, is smaller than the time-averaged wake width R1/2; (ii) the mean
of the velocity deficit located at the instantaneous centreline �uc recovers slower than
the time-averaged centreline velocity deficit �UC. By assuming normal distribution
for the positions of instantaneous wake centres, two analytical expressions are then
proposed to relate the mean of the instantaneous wake quantities averaged on the frame
of reference following instantaneous wake centres, i.e. r1/2 and �uc, with those of the
time-averaged wake with the wake meandering amplitude. Overall, we have observed that
the characteristics of time-averaged wake, which include �U, R1/2, YC and V except for
RV

1/2, scale well using the velocity and length scales defined based on turbine operational
conditions, while the characteristics of wake fluctuations, which include p.d.f. ( yc), σyc

and σr1/2 , are independent of yaw angles and TSRs. This suggests that the yaw of a turbine
mainly influences the time-averaged wake characteristics, while the characteristics of wake
fluctuations are largely affected by the incoming turbulence for the considered cases.

The similarity observed on the time-averaged flow fields suggests that the wake behind
a yawed wind turbine can be decomposed into a straight wake behind an equivalent
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non-yawed wind turbine and a deflected centreline caused by the transverse component
of the thrust on the turbine, which is also the assumption for deriving the corresponding
velocity and length scales. Furthermore, the simulation results show that the transverse
motion and the streamwise velocity deficit of the wake reside in different regions with
different influencing zones, the wake width defined based on the streamwise velocity
deficit R1/2 decreases when increasing the yaw angle γ , and the width defined based
on the transverse velocity RV

1/2 barely changes with the yaw angle. A note here is
that the fitting method employed for the transverse velocity can introduce uncertainty
to the value of RV

1/2, as shown in Appendix E. The present results suggest that the
employed CVP fitting performs better than Gaussian fitting for the transverse velocity.
The decomposition of the wake into streamwise and transverse components can potentially
be employed to simplify the development of analytical models. The differences between
the transverse velocity and the streamwise velocity deficit, on the other hand, make it
difficult to predict quantities related to the wake’s transverse motion with analytical
models based on the momentum theory, and these needs to be considered to improve
the existing analytical models (Jiménez et al. 2010; Bastankhah & Porté-Agel 2016;
Qian & Ishihara 2018). The similarity observed in this work provides a new way to
model the transverse motion of the wake from a yawed wind turbine where the wake
deflection, transverse velocity and other quantities can be computed using the simulation
results at one yaw angle together with the velocity and length scales employed in this
work.

To conclude, the observed various similarity characteristics for different turbulence
statistics show a potential for the decoupling between the meandering motion of the
wake and the turbine-added wake turbulence. That the p.d.f. ( yc), σyc and σr1/2 scaled
by D suggests that wake meandering is mainly dominated by the incoming large eddies
instead of the turbine operational conditions. The turbine-added turbulence kinetic energy
can be decomposed into two parts, i.e. the part caused by the shear layer in the wake
and the nominal part caused by the meandering motion of the wake. The meandering
motion is similar for the same inflow, such that the overlap of the �k profile, when
scaled by UT , implies its similarity on the coordinate system following the meandering
motion of the wake. This suggests an efficient approach to develop advanced models for
wake dynamics, where the wake turbulence and the meandering motion can be modelled
separately. However, further work has to be carried out to develop such models. One
problem is how to model the effects of meandering motion on wake turbulence in the
coordinate system following the meandering motion of the wake. To solve this problem,
one approach is to treat the velocity deficit and wake turbulence as passive scales, as done
in the dynamic wake meandering model developed at Technical University of Denmark
(Larsen et al. 2007). In the dynamic wake meandering model, the wake radius and velocity
deficit have to be modelled on the moving frame of reference following the wake centre.
The relations proposed in this work ((5.2) and (5.5)) indicate that the wake radius and
velocity deficit can be estimated using those of the time-averaged wake and the standard
deviation of the wake centre fluctuations, for which the latter can be approximated based on
Taylor’s frozen flow hypothesis or advanced models for space–time correlations (He, Jin &
Yang 2017; Yang 2020). The other problem is how to account for the bluff body shear layer
instability on the meandering motion of turbine wakes (Heisel, Hong & Guala 2018; Yang
& Sotiropoulos 2019a), which often happens at higher frequency (Yang & Sotiropoulos
2019b) and has been shown to play an important role in the wake of utility-scale wind
turbines (Foti et al. 2018) and wind farms (Foti et al. 2019). Moreover, how incoming
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(a)

(b)

R = R cos γ

RW

U∞ YC
R1/2

R1/2

T

Tx

UW

YCTy

UR

U

U

V

=

+

V

y

γ

xz

Figure 26. Decomposition of the wake behind a yawed wind turbine into: (a) an equivalent non-yawed wind
turbine’s wake of streamwise thrust Tx; and (b) the wake transverse velocity and the centreline deflection caused
by the transverse thrust component Ty.

turbulence and stratification conditions affect the similarity observed in this work need to
be further investigated in the future.
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Appendix A. Derivation of velocity scales and length scales for yawed turbine wakes

In this appendix we derive the velocity and length scales for yawed turbine wakes based
on one-dimensional momentum theory. We assume that the streamwise velocity U and the
spanwise velocity V are independent and the wake can be decomposed into a straight wake
generated by an equivalent non-yawed turbine and wake deflection owing to the yaw of the
turbine, as illustrated in figure 26.

First, we derive the characteristic velocity UN and characteristic length RN by applying
one-dimensional momentum theory to the equivalent non-yawed turbine. The equivalent
non-yawed turbine is defined as a turbine of thrust Tx, the same as the streamwise
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component of the yawed turbine, and an elliptical rotor-swept area with the horizontal
radius being R̃ = R cos γ and the vertical radius being R and computed as

Ã = πR̃R = πR2 cos γ = A cos γ (A1)

with A as the rotor sweeping area. With the thrust component aligned with the inflow
computed as Tx = T cos γ , the thrust coefficient of this equivalent turbine is defined as
follows:

CTx = Tx
1
2 ÃρU2∞

= T cos γ

1
2 A cos γρU2∞

= T
1
2 AρU2∞

. (A2)

Substituting (3.1) into (A2) yields

CTx = C̃T cos2 γ. (A3)

Based on the one-dimensional momentum theory (Burton et al. 2011), the streamwise
velocity UW in the turbine’s near wake is obtained as follows:

UW = U∞
√

1 − CTx = U∞
√

1 − C̃T cos2 γ . (A4)

Then, UN is obtained as the different between the inflow velocity U∞ and the wake
velocity U, as in (3.5), as follows:

UN = U∞ − UW = U∞
(

1 −
√

1 − C̃T cos2 γ

)
, (A5)

which is the streamwise velocity deficit in the near wake of the equivalent non-yawed wind
turbine. This expression is the same as that in the wake model of Shapiro et al. (2018) for
the initial streamwise velocity deficit.

The length scale for the wake width RN is defined as the width of the imminent wake
of the equivalent non-yawed wind turbine, which reflects the expansion of the streamtube
encompassing the rotor owing to the flow deceleration and can be computed from the mass
conservation equation. To derive RN , we first compute the streamwise velocity at the rotor
disc, as

UR = 1
2 (U∞ + UW) = 1

2 U∞
(

1 +
√

1 − C̃T cos2 γ

)
. (A6)

Following Bastankhah & Porté-Agel (2016), the wake cross-section normal to the
streamwise direction is also assumed to be elliptical, with transverse radius R̃W =
RW cos γ , where RW is the vertical wake radius. Based on the conservation of mass rate in
the streamtube, we obtain

ṁ = ρπR̃RUR = ρπR̃WRWUW , (A7)

which gives the final expression for RN as

RN =̇ R̃W = R cos γ

√√√√√√1 +
√

1 − C̃T cos2 γ

2
√

1 − C̃T cos2 γ

. (A8)

We then derive the velocity scale VN and length scale YN for the wake deflection arising
from the yaw of the turbine. The velocity scale VN for the transverse motion of the wake
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can be derived with the spanwise momentum theory as follows:

VN = Ty

ρAU∞
=

1
2ρAC̃T cos2 γ sin γ U2∞

ρAU∞
= 1

2
U∞C̃T cos2 γ sin γ. (A9)

It is worth noting that the denominator is computed with A, instead of the projected
area A cos γ , to reflect the fact that the width of the spanwise velocity RV

1/2 is constant
for different yaw angles. The resulting VN is the same as that of Jiménez et al. (2010) for
the initial transverse velocity, and is twice as large as the initial transverse velocity in the
model of Shapiro et al. (2018).

The length scale for the wake centre location YN is obtained by multiplying VN by a
typical time scale D/U∞ and is shown as

YN = DC̃T cos2 γ sin γ. (A10)

The velocity scale for the turbine-added turbulence is obtained following Yang et al.
(2015a) and Foti et al. (2018), where a velocity scale UT is defined with the thrust force T
and the rotor area A for non-yawed wind turbines, as follows:

UT =
√

T
ρA

. (A11)

By substituting (3.1) into (A11), the corresponding UT for yawed wind turbines is obtained
as follows:

UT =
√

ρA
C̃T cos2 γ U2∞

2ρA
= U∞ cos γ

√
C̃T

2
. (A12)

Figure 27 compares the proposed velocity and length scales, which vary with the thrust
coefficients yaw angle γ for different thrust coefficients C̃T .

Appendix B. Wake width in the study of Bastankhah & Porté-Agel (2016)

In (6.10) of the paper by Bastankhah & Porté-Agel (2016), an analytical expression of wake
width is represented with the standard variation of a Gaussian curve fit as follows (adapted
with the present nomenclature),

S
R

= cos γ

√√√√√√ 1 +
√

1 − C̃T cos3 γ

2
(

1 +
√

1 − C̃T cos2 γ

) ≈ cos γ

√
1
2

(B1)

assuming small γ . Here, (A8) and (B1) are different because Bastankhah & Porté-Agel
(2016) employed a different way to calculate the rotor induction factor with CT , which
resulted in a different flow velocity at the rotor.

Appendix C. Influence of spatial and temporal resolutions

In this appendix, a brief study of the effect of spatial and temporal resolution on the
simulation results is presented. Three cases of different grid sizes and time steps (as shown
in table 4) are investigated, where the medium case corresponds to the resolution employed
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Figure 27. The proposed velocity and length scales varying with yaw angle γ for different thrust coefficients
C̃T .
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Figure 28. Effect of spatial and temporal resolution on the time-averaged results of: (a) wake centreline
deflection YC(x); (b) the wake width R1/2(x); and (c) the characteristic velocity deficit.

in the present work. The grid sizes in three directions are changed simultaneously with
the size of time steps changed accordingly to keep the Courant–Friedrichs–Lewy (CFL)
number constant. In all the cases listed in table 4, λ̃ = 8 and γ = 30◦. Figures 28 and 29
show the influence of the resolution on the time-averaged wake characteristics. It is found
that the wake centreline, the wake width and the characteristic velocity deficit remain
almost the same with mesh refinement, as shown in figure 28. The differences between
different resolutions are also observed as being minor for the profiles of the time-averaged
velocity deficit and the turbine-added TKE at different turbine downstream locations, as
shown in figure 29.

Appendix D. Influence of yaw direction on wake characteristics

In this section, we briefly investigate the influence of the direction of yaw misalignment.
Previous studies (Fleming et al. 2014; Bastankhah & Porté-Agel 2016; Gebraad et al. 2017)
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Figure 29. Effect of the spatial and the temporal resolutions on the profiles of: (a–d) the velocity deficit; and
(e–h) the turbine-added turbulence kinetic energy.

�x �y = �z �t

Coarse D/15 D/30 0.0135D/U∞
Medium D/20 D/40 0.0180D/U∞

Fine D/25 D/50 0.0225D/U∞

Table 4. Spatial and temporal resolution employed for the convergence study.

suggested that the centreline of the wake behind a non-yawed wind turbine may be
deflected to one side owing to the rotation in the wake caused by the rotation of turbine’s
blades and the incoming flow. To examine the effect of rotor rotation on the wake of yawed
wind turbines, we conducted an extra simulation with negative yaw angle, i.e. γ = −30◦ ,
for the case with λ̃ = 8 and inflow 1.

Simulation results of γ = 30◦ and γ = −30◦ are compared in figure 30 for different
quantities of the wake. Figure 30(a) compares the wake centreline deflection for γ =
±30◦. To facilitate the comparison, the wake centreline of γ = −30◦ is reflected with
respect to y = 0 and is plotted in grey. A generally good agreement between the
two lines was found. The deflection of γ = 30◦ was slightly larger in the far wake,
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Figure 30. Wake characteristics with negative and positive yaw angles for: (a) the wake centerline, the grey
dashed lines shows the reflected wake centreline of γ = −30◦ for comparison; (b) the wake width; (c) the wake
centre velocity deficit; and (d–g) the transverse profiles of the velocity deficit.

because in the non-yawed case, the wake centreline was slightly skewed towards −y (see
figure 6). The wake width R1/2 and the characteristic velocity deficit �UC agreed well for
the two opposite yaw angles, as shown in figure 30(b,c). In figure 30(d–g), the horizontal
profiles of the velocity deficit are shown. At x = 3D, discrepancies are observed between
the two profiles, where the velocity deficit profiles are not symmetric. On the other hand,
the wake profiles agree well with each other for x > 5D.

Appendix E. Fitting of the transverse velocity

In this appendix, we explain how the transverse velocity is fitted to extract its features.
According to Howland et al. (2016) and Bastankhah & Porté-Agel (2016), the transverse
velocity in the wake of a yawed wind turbine is induced by a pair of counter-rotating
vortices, as illustrated in figure 31(a). For simplicity, the influences of the wake rotation
and the ground are not considered, and the vortices are assumed as being symmetric with
respect to the hub-height plane. Each vortex has a circulation magnitude of Γ and is
located H(x) from the hub-height plane. The induced transverse velocity at the hub height
can be calculated using the Biot–Savart law as follows,

V(x, y) = Γ (x)
πL

cos θ, (E1)

with L =
√

H2(x) + ( y − YV
C (x))2 as the distance to the vortex centre, cos θ = H(x)/L

and YV
C (x) is the centreline position of the transverse velocity V . At each downstream

location x, the lateral profile of the transverse velocity V(x, y) at the hub height is
substituted into (E1) together with the transverse coordinate y to obtain Γ (x), H(x) and
YV

C (x) using the method of least squares. It is found that the so-computed function fits well
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Figure 31. (a) Schematic on computing the transverse velocity (V) at hub height induced by a CVP, and (b)
the fitting of the V profile to CVP and Gaussian functions for the case with γ = 30◦, λ̃ = 8 at downstream
location x/D = 6. The solid dots indicate the halfwidth of the wake defined by each fitting method.

to the transverse profile of V , as shown in figure 12(e–h). Once the fitting parameters are
determined, the characteristic transverse velocity VC(x) is computed as the peak transverse
velocity (at y = YV

C (x)), i.e.

VC(x) = Γ (x)
πH(x)

, (E2)

and the half-width of the transverse velocity RV
1/2(x) is defined as the position where the

transverse velocity is reduced to half of the peak value, as

V(x, YV
C (x) ± RV

1/2(x)) = 1
2 VC(x). (E3)

Substituting (E1) and (E2) into (E3) results in

RV
1/2(x) = H(x). (E4)

The CVP fitting is compared with the Gaussian fitting in figure 31(b). It is observed
that the physics-based CVP fitting can capture well the variation of the transverse velocity
V in the spanwise direction y. The Gaussian function, on the other hand, fails to capture
the peak and the halfwidth of the distribution of the transverse velocity. This comparison
shows the importance of choosing proper fitting functions for extracting wake features
from simulation results. Different fitting functions should be employed for different

921 A11-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

49
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.495


Z. Li and X. Yang

wake quantities. The results obtained from this work reveal that the Gaussian shape is
still proper to approximate the streamwise velocity deficit even with yaw angles. However,
the transverse velocity is non-Gaussian even in the far wake and the physics-based CVP
fitting can be employed to obtain correct wake features.
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