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A B S T R A C T

Unmatched time scales of elastic and viscoplastic responses are not reasonably considered in linearizing the
constitutive laws of constituent phases in elasto‐viscoplastic microscopic heterogeneous materials, which
makes the interaction among the constituent phases very difficult to be described by homogenization
approaches. To address this issue, a new incremental secant linearization method is developed by solving lin-
earized equations of stress, strain and time increments obtained from the Hooke’s law and the Taylor’s expan-
sion of stress increment function. Subsequently, the new linearization method is implemented into the Mori‐
Tanaka’s (M−T) and self‐consistent (SC) homogenization approaches. Finally, the stress–strain responses of
elasto‐viscoplastic microscopic heterogeneous materials (including the composites and polycrystalline materi-
als) under different loading conditions are predicted by the incremental secant linearization‐based M−T and
SC approaches, and the predicted results are compared with the results obtained by other approaches, such as
finite element, fast Fourier transform and generalized affine linearization methods. The comparison shows that
the new secant linearization takes an important role in the accurate and effective simulations of the stress–-
strain responses of elasto‐viscoplastic microscopic heterogeneous materials, and the predictions are indepen-
dent of loading step size if the step size is not too large. Meanwhile, the homogenization approaches of
elasto‐viscoplastic and elasto‐plastic microscopic heterogeneous materials are expected to be unified since
the new secant linearization method provides the same mathematical structure for the linearized elasto‐
viscoplastic constitutive model as that for the elasto‐plastic one.
1. Introduction

The effectiveness of mean‐field homogenization (MFH) theory in
constructing a meso‐mechanical constitutive model has been widely
recognized [1‐5]. Thus, the MFH theory has been gotten much atten-
tion. In particular, since the Eshelby’s inclusion theory was put for-
ward [6], the MFH theory was greatly developed, and a series of
representative micromechanics approaches for linear microscopic
heterogeneous materials (e.g., composites and polycrystalline aggre-
gates) were proposed, such as the Mori‐Tanaka's (M−T) [7], self‐
consistent (SC) [8‐10], second‐ordered moment [11], bridging [12],
and generalized self‐consistent [13] methods. Of course, the validity,
capability and efficiency of such MFH approaches in predicting the
deformations of the microscopic heterogeneous materials consisting
of linear constituents were also proved.
However, the MFH theory of nonlinear (for instances, nonlinear
elasticity, plasticity, viscoelasticity and viscoplasticity) microscopic
heterogeneous materials becomes more complex. As we know, the
Eshelby's inclusion theory regards both matrix and inclusion phases
as linearly elastic media. It is no doubt that the above‐mentioned
MFH approaches of linear heterogeneous materials cannot be directly
applied to the heterogeneous materials consisting of nonlinear con-
stituents. Hill [14] thought that the exiting MFH approaches of linear
heterogeneous materials could be applied to the nonlinear heteroge-
neous materials if the nonlinear constitutive model of each constituent
could be reasonably linearized. From this point, he firstly applied the
SC approach to describe the overall elasto‐plastic responses of hetero-
geneous materials. Subsequently, based on Hill [14], some researchers
further extended the MFH approaches to describe the overall responses
of nonlinear heterogeneous materials [15‐21]. From the Hill's view-
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point [14], the MFH approaches of nonlinear microscopic heteroge-
neous materials can be established by a procedure containing two
steps, i.e., (1) linearize the constitutive law of each constituent; (2)
implement the linearized constitutive equations into a MFH scheme.
Thus, it could be said that the validity and efficiency of a MFH
approach for modeling nonlinear heterogeneous materials depend
strongly on the linearization of constituent constitutive models.

For different nonlinear constitutive models, their linearization
methods are significantly different from each other. For example, the
elasto‐plastic constitutive law assumes that such deformations of mate-
rials are immediate responses, not dependent on the time. Thus, the
stress function is a single‐valued function in a small loading step,
and the linearization of elasto‐plastic constitutive model can be easily
conducted based on the idea of differential approximation. An approx-
imate linearized relation between the stress increment Δσ and strain
increment Δɛ is simply given, i.e., Δσ ¼ Calg : Δɛ, where Calg is the algo-
rithmic tangent operator of elasto‐plastic constitutive model. With
such a linearization method, the overall deformations of elasto‐
plastic heterogeneous materials were reasonably described by the
MFH scheme as shown in Ref. [22]. However, for the elasto‐
viscoplastic material, its mechanical response is made up of immediate
elastic and hysteretic viscoplastic responses, and the responding stress
depends on both the applied strain and loading time. Thus, it implies
that the linearization methods of elasto‐plastic constitutive laws are
not suitable for the elasto‐viscoplastic ones. At present, several kinds
of representative linearization methods have been developed to lin-
earize the elasto‐viscoplastic constitutive laws. The linearization forms
given by these methods are different from each other. A brief review of
linearization methods and corresponding homogenization approaches
is conducted as follows:

(1) The approach based on Laplace's transformation [23,24]. Here,
the linearized elasto‐viscoplastic constitutive law is transformed into
the Laplace‐Carson's space at first. Since the separation of time scales
between elastic deformation and viscoplastic one doesn’t exhibit in the
Laplace‐Carson's space, a fictitious linear thermo‐elastic relationship
between the stress rate tensor _σ and strain rate tensor _ɛ can be simply
given as: σ� sð Þ ¼ C�

τ τ; sð Þ : ɛ� sð Þ � ɛ0� τ; sð Þð Þ, where C�
τ τ; sð Þ is an affine

modulus tensor, and ɛ0� τ; sð Þ denotes eigenstrain tensor. Since this lin-
earization form is the same as that of thermo‐elastic constitutive laws,
the classical thermo‐elastic homogenization approaches (e.g., the SC
or M−T ones) can be applied to describe the interaction among con-
stituents. Finally, the overall responses of heterogeneous materials in
the real‐time space are obtained by performing an inverse Laplace's
transformation. Although the interaction among different constituents
in the microscopic heterogeneous materials is reasonably reflected by
this kind of MFH approach, large calculation time during the Laplace's
transformation and complex mathematical form restrict its further
application.

(2) The approach based on additive interaction law [25‐30]. Here,
the elastic and viscoplastic deformations of elasto‐viscoplastic materi-
als are assumed to occur in two independent time scales, and then the
overall response of the materials is split into two different portions
(elastic part and viscoplastic one) independent of each other. Thus,
the relation among the strain rate _ɛ, stress σ and stress rate _σ is pro-
vided as: _ɛ ¼ C�1 : _σ þM : σ, where C denotes the elasticity tensor
and M denotes the viscoplastic tangent (or secant) modulus tensor.
Correspondingly, the elasto‐viscoplastic inclusion problem is regarded
as a superposition of equivalent elastic problem and viscoplastic one.
Then, based on this linearization method, the classical elastic homog-
enization schemes [14] and viscoplastic ones [31] are used to consider
the interactions involved in the equivalent elastic problem and vis-
coplastic one, respectively. This approach has an advantage of low cal-
culation time, but the coupling effect between the elastic deformation
2

and viscoplastic one is not considered. Thus, when the viscosity coef-
ficient of heterogeneous materials is small, its predicted results are
very near to the upper bound of solutions if a viscoplastic secant mod-
ulus tensor is adopted, while the predicted results are very near to the
lower bound of solutions if a viscoplastic tangent modulus tensor is
adopted.

(3) The generalized affine linearization (GAL) approach [32‐34]. In
fact, for elasto‐viscoplastic materials, a part of viscoplastic strain can-
not respond completely in each loading step due to the limited time.
To keep the match of time scales between the elastic response and vis-
coplastic one, an affine strain increment is introduced. Thus, the
elasto‐viscoplastic constitutive laws are linearized as follows: (a) the
constitutive laws are first discretized based on the Euler's integration
algorithm; (b) its main equations are linearized at a loading step,
and an affine relationship is given as: Δσ ¼ Calg : Δɛ � Δɛafð Þ, where
Calg denotes the tangent modulus operator, Δɛaf represents the affine
strain increment [32]. In fact, this linearization method provides a lin-
ear relationship between the stress increment Δσ and partial respond-
ing strain increment Δɛ � Δɛaf , rather than the stress increment Δσ and
whole strain one Δɛ; the introduced affine strain increment is the
strain corresponding to hysteretic viscoplastic response. This lineariza-
tion form is the same as that of thermo‐elastic constitutive laws, so the
linearized constitutive laws are easily implemented into the incremen-
tal MFH schemes (e.g., the SC or M−T ones) of thermo‐elastic hetero-
geneous material. This approach not only has a low calculation cost,
but also considers the coupling effect between the elastic and vis-
coplastic deformations. However, the obtained tangent modulus oper-
ator always overestimates the interaction among different constituents
in the microscopic heterogeneous materials. Correspondingly, the pre-
dicted results are stiffer than the corresponding finite element simula-
tions, especially for the heterogeneous materials with large viscosity or
subjected to a high strain rate loading [32].

(4) The approach based on incremental variational formulations
[35‐39]. Here, a so‐called linear analogy composite material is defined
as a virtual one whose constituents behavior as the linearized ones of
real constituents at a given stress–strain state. Then, based on the
defined linear relation, a designed variational statement is adopted
to estimate the optimal properties which can ensure the values of
potential being as close as possible to that at non‐uniform stress–strain
state. The key point of such approach lies in the definition of linear
analogy composite material. Different definitions of linear analogy
composites may result in different practicalities of the approaches.
Overall, the effectiveness of such approaches in predicting the overall
responses of two‐phase elasto‐viscoplastic composites has been
proved; however, the accuracy in modeling the local responses of local
phases should be further promoted.

In this work, aiming at the unmatched time scales of elastic and vis-
coplastic responses in the elasto‐viscoplastic microscopic heteroge-
neous materials, a new incremental secant linearization method is
put forward. The linearization relationship between the second‐
ordered stress increment Δσ and strain increment Δɛ tensors is given
as: Δσ ¼ Csec : Δɛ, where Csec is the four‐ordered incremental secant
modulus tensor. After the new secant linearization method is imple-
mented into the M−T and SC approaches, the stress‐stress curves of
different elasto‐viscoplastic microscopic heterogeneous materials
(i.e., the composite and polycrystalline materials) under different load-
ing conditions are predicted. By comparing the predicted results with
those obtained by the finite element method (FEM), fast Fourier’s
transformation (FFT) method and generalized affine linearization
(GAL) based homogenization approaches, it is shown that the new
secant linearization can take an important role in the effective and
accurate simulations of correspondent overall responses of elasto‐
viscoplastic microscopic heterogeneous materials.
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1.1. Incremental secant linearization method

The key issue in linearizing an elasto‐viscoplastic constitutive law
is how to deal with the unmatched time scales between the elastic
and viscoplastic deformations. Here, a new linearization method is
developed by reasonably handling such unmatched time scales
involved in elasto‐viscoplastic constitutive models. This new lineariza-
tion method consists of three steps: (1) based on the Taylor’s expansion
of a general form of stress increment function, a linearization equation
among the strain increment, time increment and stress increment is
constructed; (2) based on the Hooke’s law, another linearization equa-
tion among the strain increment, time increment and stress increment
is provided; (3) a linearization relationship between the stress incre-
ment and strain increment is obtained by solving such two equations.
The mathematical description of new linearization approach is given
as follows:

For elasto‐viscoplastic materials, the main constitutive equations
are given as the following general forms:

_ɛ ¼ _ɛe þ _ɛvp ð1aÞ

_σ ¼ C : _ɛe ð1bÞ

_ɛvp ¼ ɛ
∼p

σ;Vð Þ ð1cÞ

_V ¼ V
∼

σ; _ɛvp;Vð Þ ð1dÞ
where _ɛ and _σ denote the strain and stress rate tensors, respectively; _ɛe

and _ɛvp, respectively, represent the elastic and viscoplastic strain rate
tensors. C denotes the elasticity tensor, and V represents a collection
of all concerned internal variables, which generally contain the scalar,

vector and/or tensor variables. ɛ
∼p

and V
∼
are the functions defining the

evolutions of ɛvp and V, respectively.
Consider the time interval tn; tn þ 1½ �, and assume that the values of

such variables at the time tn have been known. Here, the increments
would be expressed by the symbol Δ, i.e., Δtn þ 1 ¼ tn þ 1 � tn. If the
strain and time increments are given, the corresponding stress incre-
ment Δσn þ 1 is determinable for stable materials. Then, based on the
above generalized elastic‐viscoplastic constitutive laws (a detailed
derivation process for this equation is given in Appendix B1), the func-
tion relation between the stress increment Δσn þ 1 and the strain incre-
ment Δɛn þ 1 and time increment Δtn þ 1 can be given as

Δσn þ 1 ¼ σ
∼

Δɛn þ 1; σn;Vn;Δtn þ 1ð Þ ð2Þ
It is seen that the stress increment Δσn þ 1 depends not only on the

strain increment Δɛn þ 1, but also on the time increment Δtn þ 1. This
implies that Δσn þ 1–

@Δσn þ 1
@Δɛn þ 1

: Δɛn þ 1, since Δtn þ 1 should not be 0 in

each loading step.
The initial condition of Eq. (2) can be given as

0 ¼ σ
∼

0; σn;Vn;0ð Þ ð3Þ
which implies that the stress increment Δσn þ 1 is zero once the

strain increment Δɛn þ 1 and time increment Δtn þ 1 are zero. In some
special loading cases (i.e., constant applied loading rates), the strain
increment may have a complex function relationship with the time
increment in a time interval. However, based on the invariance of total
differential forms, it is reasonable to only differentiate the explicit
variables in equation without distinguishing the relationship among
the variables. Thus, adopting the Taylor's expansion of stress incre-

mental function at the point σ
∼

Δɛn þ 1; σn;Vn;Δtn þ 1ð Þ, the value of

σ
∼

0; σn;Vn; 0ð Þ can be expressed as

0¼σ
∼
0;σn;Vn;0ð Þ¼Δσnþ1þ@Δσnþ1

@Δɛnþ1
0�Δɛnþ1ð Þþ@Δσnþ1

@σn
σn�σnð Þþ

@Δσnþ1
@Vn

Vn�Vnð Þþ @Δσnþ1
@Δtnþ1

0�Δtnþ1ð Þþo 0�Δɛnþ1;0;0;0�Δtnþ1ð Þ
ð4Þ
3

where, o 0� Δɛn þ 1; 0; 0;Δtn þ 1ð Þ is an infinitesimal quantity.
It can be obtained from Eq. (4) that

Δσnþ 1 ¼ @Δσnþ 1

@Δɛnþ 1
:Δɛnþ 1þ@Δσnþ 1

@Δtnþ 1
Δtnþ 1�o 0�Δɛnþ 1;0;0;0�Δtnþ 1ð Þ

ð5Þ
By neglecting the second‐ordered infinitesimal quantity, a lin-

earized equation among the stress increment Δσn þ 1, strain increment
Δɛn þ 1 and time increment Δtn þ 1 is obtained as:

Δσn þ 1≈
@Δσn þ 1

@Δɛn þ 1
: Δɛn þ 1 þ @Δσn þ 1

@Δtn þ 1
Δtn þ 1 ð6Þ

It should be noted that the term @Δσn þ 1
@Δtn þ 1

Δtn þ 1 denotes the hysteretic

response of viscoplastic materials with respect to time. Generally, the
hysteretic response resulting from the viscoplastic deformation always
leads to a stress relaxation. Thus, the term @Δσn þ 1

@Δɛn þ 1
: Δɛn þ 1 is always lar-

ger than Δσn þ 1.
Moreover, based on the Hooke’s law, another equation among

Δσn þ 1, Δɛn þ 1 and Δtn þ 1 can be obtained as

Δσn þ 1 ¼ C : Δɛn þ 1 � Δɛvpn þ 1

Δtn þ 1
Δtn þ 1

� �
ð7Þ

By Eqs. (6) and (7), a linearized equation for the stress increment
Δσn þ 1 with respect to the strain increment Δɛn þ 1 is easily obtained
as follows:

Let pn þ 1 be the direction tensor of @Δσn þ 1
@Δtn þ 1

and qn þ 1 be the direction

tensor of C :
Δɛvpn þ 1
Δtn þ 1

, then the following equation can be obtained:

@Δσn þ 1

@Δtn þ 1
¼ Φn þ 1pn þ 1 � qn þ 1 : C :

Δɛvpn þ 1

Δtn þ 1
ð8Þ

Φn þ 1 ¼
k @Δσn þ 1

@Δtn þ 1
k

k C :
Δɛvpn þ 1
Δtn þ 1

k
ð9Þ

where k @Δσn þ 1
@Δtn þ 1

k and k C :
Δɛvpn þ 1
Δtn þ 1

k are the magnitudes of @Δσn þ 1
@Δtn þ 1

and

C :
Δɛvpn þ 1
Δtn þ 1

. The direction tensors pn þ 1 and qn þ 1 satisfy

k @Δσn þ 1
@Δtn þ 1

kpn þ 1 ¼ @Δσn þ 1
@Δtn þ 1

and k C :
Δɛvpn þ 1
Δtn þ 1

kqn þ 1 ¼ C :
Δɛvpn þ 1
Δtn þ 1

.

Thus, combining Eqs. (6) with (7) (a detailed derivation process for
this equation is given in Appendix B2), it yields

I þΦn þ 1pn þ 1 � qn þ 1

� �
: Δσn þ 1 ¼ @Δσn þ 1

@Δɛn þ 1
þΦn þ 1pn þ 1 � qn þ 1 : C

� �
: Δɛn þ 1

ð10Þ
where I is the fourth‐order unit tensor.

If the tensor I þ Φn þ 1pnþ1 � qnþ1 is reversible, then

Δσn þ 1 ¼ Csec
n þ 1 : Δɛn þ 1 ð11aÞ

Csec
n þ 1 ¼ I þ Φn þ 1pn þ 1 � qn þ 1

� ��1

:
@Δσn þ 1

@Δɛn þ 1
þ Φn þ 1pn þ 1 � qn þ 1 : C

� �
ð11bÞ

where Csec
n þ 1 is the new proposed incremental secant modulus tensor.

Eq. (11a) is the linearized equation between the stress increment
Δσn þ 1 and strain increment Δɛn þ 1.

To sum up, by effectively dealing with the unmatched time scales
between the elastic and viscoplastic deformations, a new incremental
secant linearization method is developed in this work. Recently, Wu
et al. [40] also developed an incremental secant method for elasto‐
viscoplastic composites. However, different from Wu et al. [40], the
proposed new linearization method regards the time increment as an
independent variable which plays the same role as does the strain



W. Rao et al. Composite Structures 271 (2021) 114125
increment. Furthermore, the linearized equation for the elasto‐plastic
constitutive model is given as Δσn þ 1 ¼ Calg

n þ 1 : Δɛn þ 1; comparing it
with Eq. (11a), it is readily found that the linearization form of
elasto‐viscoplastic constitutive model provided by the newly proposed
method is the same as that of elasto‐plastic constitutive one. In fact,
such an incremental secant modulus tensor Csec

n þ 1 can be reduced to

the algorithmic tangent operator Calg
n þ 1 if the rate dependence can be

neglected (which means Φ ¼ 0). This implies that the incremental
secant linearization method can be regarded as an extended version
of the elasto‐plastic tangent one.

2. Incremental secant linearization-based homogenization
approaches

Since the M−T and SC approaches can reasonably provide the
relationship between the mechanical responses of heterogeneous
materials and the local ones of each constituent, they are widely
used to describe the mechanical responses of microscopic heteroge-
neous materials [7,17,25,26,41,42]. Here, the newly proposed lin-
earization method is implemented into the M−T and SC
homogenization approaches to describe the deformations of elasto‐
viscoplastic composite and polycrystalline materials, respectively,
and then the effectiveness and accuracy of the new linearization
method can be validated.

2.1. Incremental secant linearization-based Mori-Tanaka’s approach

For simplicity, we only focus on the two‐phase composites, i.e., a
matrix phase and an inclusion one. It should be noted that only the
main equations of incremental secant linearization‐based Mori‐
Tanaka’s approach are provided (the detailed deducing procedures
can be found in the Appendix B1) as follows:

Δɛn þ 1h iM ¼ Bn þ 1 : Δɛn þ 1h iI ð12aÞ

Δɛn þ 1h iI ¼ 1� fð ÞBn þ 1 þ f I½ ��1 : Δɛ
�
n þ 1 ð12bÞ

Bn þ 1 ¼ Sn þ 1 : Csec
n þ 1

� �
M

� ��1
: Csec

n þ 1

� �
I � Csec

n þ 1

� �
M

� �þ I ð12cÞ

C
�
sec
n þ 1 ¼ 1� fð Þ Csec

n þ 1

� �
M : Bn þ 1 : 1� fð ÞBn þ 1 þ f I½ ��1þ

f Csec
n þ 1

� �
I : 1� fð ÞBn þ 1 þ f I½ ��1

ð12dÞ

Δσ
�
n þ 1 ¼ C

�
sec
n þ 1 : Δɛ

�
n þ 1 ð12eÞ

where, Δɛn þ 1h iM and Δɛn þ 1h iI are the local volume averaged strain
increments, and Csec

n þ 1

� �
M and Csec

n þ 1

� �
I are the incremental secant mod-

ulus tensors of matrix and inclusion, respectively; f is the volume frac-
tion of inclusion phase, Sn þ 1 is the Eshelby's tensor [43]; Δɛ

�
n þ 1 and

Δσ
�
n þ 1 are the overall strain and stress increments, and C

�
sec
n þ 1 is the

equivalent incremental secant modulus tensor of the composites.

2.2. Incremental secant linearization-based self-consistent approach

It is assumed that each phase in the polycrystalline aggregates
obeys an elastic‐viscoplastic constitutive law. After linearization, the
incremental secant linearization‐based self‐consistent approach is
given in this section. It should be noted that the detailed deducing pro-
cedures can be found in the Appendix B2, only the main equations are
provided as follows:

Δɛnþ1h iI ¼ BI : Δɛ
�
nþ1 ð13aÞ

BI ¼ Snþ1 : C
�
sec
nþ1

� 	�1
: Csec

nþ1

� �
I � Snþ1 � Ið Þ


 ��1

ð13bÞ
4

C
�
sec
nþ1 ¼ ∑

n

I¼1
f I Csec

nþ1

� �
I : BI ð13cÞ
Δσ
�
nþ1 ¼ C

�
sec
nþ1 : Δɛ

�
nþ1 ð13dÞ

where, Δɛn þ 1h iI is the volume averaged strain increment of each phase,
Csec

n þ 1

� �
I is the incremental secant modulus tensors of each phase; f is

the volume fraction of inclusion phase, Sn þ 1 is the Eshelby's tensor
[43]; Δɛ

�
n þ 1 and Δσ

�
n þ 1 are the overall strain and stress increments,

and C
�
sec
n þ 1 is the equivalent incremental secant modulus tensor of

heterogeneous materials.

3. Validation and discussion

In this section, the effectiveness of new incremental secant lin-
earization method in modeling the deformations of microscopic
heterogeneous materials is validated. The predictions involve different
monotonic tensile and non‐monotonic/non‐radial loading conditions.
As we know, the effectiveness of FFT method and FEM in modeling
the mechanical responses of the heterogeneous materials character-
ized by a reasonable representative volume element (RVE) has been
proved in many existing references [22,39]. Thus, a comparison of pre-
dicted results by the newly developed incremental linearization‐based
M−T and SC approaches with that obtained by the FEM or FFT meth-
ods is conducted to validate the effectiveness of new incremental
secant linearization method in predicting the elasto‐viscoplastic defor-
mation of microscopic heterogeneous materials.
3.1. Particle-reinforced composites under monotonic loading conditions

In this section, the spherical particle reinforced elasto‐viscoplastic
composites are adopted as representative ones. Following Pierard
et al. [44], a unified elasto‐viscoplastic constitutive model is used to
describe the elasto‐viscoplastic deformations of matrix and inclusion
phases in the composites. It should be noted that the constitutive
model adopted in Ref. [44] doesn’t involve the kinematic hardening
term. Here, to make the constitutive model be more universal, a back
stress term is introduced to reflect the kinematic hardening. Main
equations of such an elasto‐viscoplastic constitutive model and the
derivation of the incremental secant modulus are provided in Appen-
dix C.

Furthermore, to highlight the advantage of incremental secant lin-
earization method more clearly, the predictions are also compared
with these obtained by the M−T approach based on the GAL method.
So, the material parameters used in the predictions are consistent with
that in Ref. [44] for a particle reinforced composite material.

The C3D8 element of ABAQUS code [45] is adopted, and the ele-
ment and node numbers of RVE (f = 10%) are 137,320 and
144979, respectively. Fig. 2c shows the finite element mesh for the
modeled composites (f = 10%). For simplification, the interfaces
between the matrix and inclusion are regarded as being perfect. To
impose the monotonic tension, a periodic boundary condition is
applied to the RVE, i.e.

v x1; x2; 0ð Þ � v3 ¼ v x1; x2; Lð Þ:
v x1; 0; x3ð Þ � v2 ¼ v x1; L; x3ð Þ:
v 0; x1; x2ð Þ � v1 ¼ v L; x1; x2ð Þ: ð14Þ

where v denotes the displacement vector, L is the RVE length. In finite
element simulations, a tensile loading is imposed along the x3‐
direction. Here, v3 ¼ 0;0; ɛLð Þ, v1 ¼ v1;0; 0ð Þ and v2 ¼ 0; v2;0ð Þ, where
ɛ denotes an imposed strain, v1 and v2 are two computable displace-
ments of cubic surfaces with the normal vectors perpendicular to the



Fig. 1. A model of particle reinforced composite: (a) inclusions embedded into the matrix periodically; (b) representative volume element (RVE); (c) gird for RVE.
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x3‐axis. Fig. 1 shows the representative volume element (RVE) for the
particle reinforced composites.

Fig. 2 gives the predictions of the composites containing different
volume fractions (f = 10%, 20%, 30%, 40% and 50%) of inclusion
phase and at a constant strain rate (i.e., 1 × 10−3 s−1); and Table 1
gives all used parameters. It should be noted that the predicted stress
responses with large inclusion volume fractions are smaller than the
real ones since the M−T method assumes that the remote stress of
matrix is equal to its mean stress. To effectively capture the overall
mechanical responses of the composites with large inclusion volume
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Fig. 2. Tensile stress–strain responses of the composites containing different
volume fractions predicted by FEM and M−T approach based on different
linearization methods at a strain rate of 10−3 s−1; (a) incremental secant
linearization one (NMT); (b) the generalized affine linearization one (MT).
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fractions, the new linearization method is applied into the extended
M−T method developed by Li et al [46] to model the deformation
of the composites with large inclusion volume fractions (i.e., 40%
and 50%), since the M−T method extended by Li et al. [46] is more
suitable for the composite with large inclusion volume fractions. It is
seen that the results predicted by the newly developed incremental
secant linearization‐based M−T approach (denoted as NMT in the fig-
ures) agree with correspondent finite element simulations (denoted as
FEM in the figures) well, the maximum error between the results pre-
dicted by the NMT and FEM is about 2%; while the results predicted by
the M−T approach based on a GAL method (denoted as MT in the fig-
ures) are stiffer than the finite element simulations. Furthermore, the
differences between the predicted results by the finite element simula-
tion and GAL based M−T approach become larger and larger if the
inclusion volume fraction increases. Such a deviation can be explained

from Fig. 3, which gives the evolution of ratio Δɛ
�af
11=M

�
: Δσ

�
11(where

Δɛ
�af

, Δ σ
�
and M

�
are the equivalent affine strain increment, equivalent

stress increment and equivalent secant operator for the new incremen-
tal secant linearization method or tangent operator for the GAL one of
composites, respectively). Fig. 3 shows that at the beginning of tensile
deformation, the ratios are equal to zero for the new secant lineariza-
tion method and GAL one since only elastic deformation exists, i.e.,
Δɛaf ¼ 0; however, this ratio for the GAL case increases with the
increase of strain and becomes even larger than one after certain vis-
coplastic deformation. Subsequently, the total strain increment Δ ɛ

�
in

the GAL method is dominated by Δɛ
�af

, rather than M
�
: Δ σ

�
; moreover,

the ratio Δɛ
�af
11= M

�
: Δ σ

�� 	
11

increases with the decrease of inclusion vol-

ume fraction. Thus, the effective compliance tensor derived by the GAL
method is so large that the interactions between the matrix and inclu-
sions are overestimated. However, for the newly developed incremen-

tal secant linearization method, the ratios Δɛ
�af
11= M

�
: Δ σ

�� 	
11

keep as

zero during the tensile deformation, the interactions between the
matrix and inclusions can be effectively predicted by the new
linearization‐based M−T approach.

To further demonstrate the validity of the newly developed incre-
mental secant linearization method, the monotonic tensile deforma-
tions of the composite (f = 20%) at two strain rates (i.e., 1 × 10−3

s−1 and 1 × 10−5 s−1) are also predicted by using the material param-
eters given in Table 1. Fig. 4 gives the predictions of the composite at
different strain rates. It is found from Fig. 4 that the new incremental
secant linearization‐based M−T approach (i.e., NMT in the figure) can
predict the tensile deformations of the composite at different loading
rates well. However, the results predicted by the M−T approach based
on the GAL method (i.e., MT in the figure) are not very accurate. The
differences between the results predicted by the NMT and FEM are less
than 2%, while the differences between the results predicted by the
MT based on the GAL method and FEM are much larger than 10%.

Fig. 5 gives the evolution of ratio Δɛ
�af
11= M

�
: Δ σ

�� 	
11
. It is shown that

these ratios are always equal to zero for the M−T approach based
on the newly proposed incremental secant linearization method; while
the ratios become larger and larger beyond the plastic yielding when



Table 1
Material parameters for the matrix and inclusion of the composites.

Material parameters for the matrix
EM ¼ 70GPa, νM ¼ 0:33, γ0ð ÞM ¼ 0:0003
KM ¼ 1:5GPa, mM ¼ 50, aM ¼ 0:4
RM ¼ 70MPa, hM ¼ 15GPa, ξM ¼ 100
Material parameters for the inclusion
EI ¼ 400GPa, νI ¼ 0:286, γ0ð ÞI ¼ 0:0002
KI ¼ 8GPa, mI ¼ 50, aI ¼ 0:4
RI ¼ 400MPa, hI ¼ 45GPa, ξI ¼ 100

Fig. 3. Evolutions of ratio Δɛ
�af
11= M

�
: Δ σ

�� 	
11

for the composites with different
volume fractions of inclusion in tension at a strain rate of 10−3 s−1.

Fig. 4. The stress–strain curves of the composite (f = 20%) predicted by FEM
and M−T scheme based on different linearization approaches at different
strain rates; (a) incremental secant linearization approach (NMT); (b) the
generalized affine linearization method (MT).
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the one based on the GAL method is adopted. This implies that the
interaction between the matrix and inclusion is overestimated by the
GAL method based M−T approach.

Here, the prediction capabilities of the M−T approaches based on
different linearization methods to the overall deformations of elasto‐
viscoplastic composites with different viscosities are also discussed.
The material parameters used in the predictions for the composites
with different viscosities have been given in Table 2. Fig. 6 gives the
predicted tensile stress–strain curves of the composites (f= 20%) with
different viscosities (represented by different values of mM and mI) and
at a constant strain rate of 1 × 10−3 s−1. It is shown that there are
almost no differences between the results predicted by the M−T
approach based on the incremental secant linearization method and
those from FEM, while some significant differences are found in the
stress–strain curves predicted by the GAL method based M−T
approach and FEM. Fig. 7 shows the evolution of ratio

Δɛ
�af
11= M

�
: Δ σ

�� 	
11
. From Fig. 7, it can be found that with the increase

of viscosity, the Δɛ
�af
11= M

�
: Δ σ

�� 	
11

also increases when the GAL method

based M−T approach is adopted. This means that the effective compli-
ance tensor derived by the GAL method becomes larger and larger

with the increase of Δɛ
�af
11= M

�
: Δ σ

�� 	
11
; the interaction between the

matrix and inclusion is less effectively considered by the GAL method
when the viscosity of composite is large. Instead, if the NMT is
adopted, the interaction between the matrix and inclusion is effec-
tively considered since the effective compliance tensor is accurate

(i.e., Δɛ
�af
11= M

�
: Δ σ

�� 	
11
is always equal to zero).

Also, the deformations of the composites with different hardening
moduli (i.e., different KM and hM) are predicted by using the material
parameters given in Table 3. Fig. 8 gives the predicted results of the
composites (f = 20%) with different hardening moduli and at a strain
6

rate of 1 × 10−3 s−1. It is shown from Fig. 8 that the tensile stress–-
strain curves of the composites with different hardening moduli can be
well described by the M−T approach based on the new linearization
method, the predicted errors are less than 2%; while the tensile curves
of the composites with low hardening moduli cannot be accurately
predicted by the M−T approach based on the GAL method. Fig. 9

shows the evolutions of the ratio Δɛ
�af
11= M

�
: Δ σ

�� 	
11
. It is indicated from

Fig. 9 that the results of the composites with different hardening mod-
uli predicted by the M−T approach based on the new linearization
method are always equal to zero, while the ratios predicted by that
based on the GAL method are far larger than zero and very sensitive
to the variation in the hardening moduli of matrix. If the hardening
moduli of matrix are very low, the ratio would be very large, which
indicates that the interaction between the matrix and inclusion cannot
be effectively considered by the GAL method based M−T approach for
the composites with low hardening moduli. However, even if the hard-
ening moduli of matrix are very small, the interaction between the
matrix and inclusion is always effectively reflected by the M−T
approach based on the newly developed incremental secant lineariza-
tion method.



Fig. 5. Evolutions of ratio Δɛ
�af
11= M

�
: Δ σ

�� 	
11

for the composite (f = 20%) in
tension at different strain rates.

Table 2
Material parameters for the matrix and inclusion of the composites with
different viscosities.

Material parameters for the matrix
EM ¼ 70GPa, νM ¼ 0:33, γ0ð ÞM ¼ 0:0003
KM ¼ 1:5GPa, ξM ¼ 100, aM ¼ 0:4
RM ¼ 70MPa, hM ¼ 15GPa,
mM ¼ 50 for composite with low viscosity
mM ¼ 20 for composite with medium viscosity
mM ¼ 8 for composite with high viscosity
Material parameters for the inclusion
EI ¼ 400GPa, νI ¼ 0:286, γ0ð ÞI ¼ 0:0002
KI ¼ 8GPa, ξI ¼ 100, aI ¼ 0:4
RI ¼ 400MPa, hI ¼ 45GPa,
mI ¼ 50 for composite with low viscosity
mI ¼ 20 for composite with medium viscosity
mI ¼ 8 for composite with high viscosity

Fig. 6. The tensile stress–strain responses of the composites (f = 20%) with
different viscosities predicted by FEM and M−T scheme based on different
linearization methods at a strain rate of 1 × 10−3 s−1; (a) incremental secant
linearization approach (NMT); (b) the generalized affine linearization method
(MT).
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3.2. Particle-reinforced composites under complex loading conditions

To validate the effectiveness of the NMT approach in modeling the
deformation of the composites under the non‐monotonic loading con-
dition, the deformation of the spherical particle‐reinforced composites
under the uniaxial cyclic loading condition is predicted by the NMT
method at a strain rate of 10−3 s−1. And the predicted results are com-
pared with that predicted by FEM, which are provided by Czarnota
et al. [47]. The constitutive model for the matrix is the same as that
of inclusion, and listed in Appendix C1. The used parameters are listed
in Table 4. Fig. 10 gives the overall stress–strain curves of the compos-
ites with the inclusion volume fractions of 10% and 25%. From Fig. 10,
it can be found that the predictions by the NMT method are in good
agreement with the FEM simulations. Fig. 11 provides the correspon-
dent curves of local phases. It is shown that the curves of matrix pre-
dicted by the NMT method are also in good agreement with the FEM
results; while, for the curves of inclusion, the agreement with the
FEM results is not as good. When the volume fraction of inclusion is
relatively large (25%), there are some slight discrepancies between
the inclusion responses predicted by the FEM and NMT method. The
main reason is that the predicted slopes of the inclusion hardening
response are lower than those of the FE predictions.

In order to further prove the prediction capability of NMT approach
in evaluating the uniaxial cyclic deformation of composites, the cyclic
deformation of the composite (f = 25%) with large viscosity and no
plastic hardening at the applied strain rates of 5 × 10−3s−1 and
5 × 10−5s−1 are modeled by the NMT approach. Such results are
7

compared with the FFT simulations obtained from Ref. [39]. The con-
stitutive model for the matrix is provided in Appendix D1, and the
inclusion is assumed to be elastic. The material parameters used here
are given in Table 5. Fig. 12 shows the predicted overall stress–strain
curves of composites. From Fig. 12, it can be found that the results pre-
dicted by the NMT approach agree with the FFT simulations well.
Thus, it can be concluded that the NMT method is effective for the cyc-
lic deformation of composites.

In order to further validate the prediction capability of NMT
approach, we also model the deformation of composites subjected to
a varied strain in the following function form,

ɛ
�

tð Þ ¼ ɛ
�
ss tð Þ e1 � e3 þ e3 � e1ð Þ þ ɛ

�
as tð Þ e1 � e1 � 1

2
e2 � e2 � 1

2
e3 � e3

� �

ɛ
�
ss tð Þ ¼

ffiffiffi
3

p

4
r � 1� cos ωtð Þ½ �

ɛ
�
as tð Þ ¼ r � sin ωtð Þ ð15Þ



Fig. 7. Evolution of ratio Δɛ
�af
11= M

�
: Δ σ

�� 	
11

for the composites (f= 20%) with
different viscosities during tensile deformation at the strain rate of 1 × 10−3

s−1.

Table 2
Material parameters for the matrix and inclusion of the composites with
different viscosities.

Material parameters for the matrix
EM ¼ 70GPa, νM ¼ 0:33, γ0ð ÞM ¼ 0:0003
KM ¼ 1:5GPa, ξM ¼ 100, aM ¼ 0:4
RM ¼ 70MPa, hM ¼ 15GPa,
mM ¼ 50 for composite with low viscosity
mM ¼ 20 for composite with medium viscosity
mM ¼ 8 for composite with high viscosity
Material parameters for the inclusion
EI ¼ 400GPa, νI ¼ 0:286, γ0ð ÞI ¼ 0:0002
KI ¼ 8GPa, ξI ¼ 100, aI ¼ 0:4
RI ¼ 400MPa, hI ¼ 45GPa,
mI ¼ 50 for composite with low viscosity
mI ¼ 20 for composite with medium viscosity
mI ¼ 8 for composite with high viscosity

Fig. 8. Tensile stress–strain responses of the composites (f = 20%) with
different hardening moduli predicted by FEM and M−T scheme based on
different linearization approaches at a strain rate of 1 × 10−3 s−1; (a)
incremental secant linearization approach (NMT); (b) the generalized affine
linearization method (MT).

Fig. 9. Evolutions of ratio Δɛ
�af
11= M

�
: Δ σ

�� 	
11

for the composites (f = 20%)
with different hardening moduli in tension at the strain rate of 1 × 10−3 s−1.
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where r ¼ 10�3 and ω ¼ π=20 rad=s. The modeled results are compared
with the FFT ones provided by Idiart and Lahellec [39]. The constitu-
tive model for the matrix and inclusion is the same as that used in
the case shown in Fig. 12. The used parameters are provided in Table 5.
Fig. 13 gives the modeled results. From Fig. 13, it can be found that the
errors between the results predicted by the NMT and FFT methods are
very small, and only the initial yielding cannot be captured very well.
This implies that the NMT approach can predict the deformations of
composites under complex loading conditions reasonably.

3.3. Polycrystalline materials

To validate the effectiveness of the new increment secant linear
method in modeling the deformation of heterogeneous media, the ten-
sile deformation of polycrystalline material at a strain rate of 10−3 s−1

is also predicted, and the obtained results are compared with the FEM
simulation obtained from Ref. [48]. Each grain is assumed to be an
FCC crystal, and only the {1 1 1} 〈1 1 0〉 slip systems are considered.
The main equations of elasto‐viscoplastic constitutive model for each
grain are provided in Appendix E1, and corresponding incremental
secant modulus is deduced in Appendix E2. The material parameters
used here are given in Tables 6 and 7, respectively. Fig. 14 shows
the stress–strain curve predicted by the SC approach based on the
new linearization method (NSC) and FEM. From the comparison, it
is seen that the maximum error is about 5%. In fact, the shape of grains
used in the FEM simulation is irregular, while that used in the NSC pre-
8



Table 4
Material parameters for the composites with no kinematic hardening.

Material parameters for the matrix
EM ¼ 100GPa, νM ¼ 0:3, γ0ð ÞM ¼ 0:0003
ξM ¼ 100, mM ¼ 10, aM ¼ 1
RM ¼ 100MPa, KM ¼ 1:5GPa,hM ¼ 0GPa
Material parameters for the inclusion
EI ¼ 500GPa, νI ¼ 0:3, γ0ð ÞI ¼ 0:0003
KI ¼ 5GPa, mI ¼ 10, aI ¼ 1
RI ¼ 500MPa, hI ¼ 0GPa, ξI ¼ 100

Fig. 10. Overall stress–strain curves of the composites with the inclusion
volume fractions of 10% and 25% predicted by the FEM and NMT approach
during the monotonic tensile deformation at a strain rate of 10−3 s−1. The
FEM results are cited from Ref. [47].

Fig. 11. Phase stress-overall strain curves of the composites with the inclusion
volume fractions of 10% and 25% predicted by the FEM and NMT approach
during the monotonic tensile deformation at a strain rate of 10−3 s−1. The
FEM results are cited from Ref. [47].
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diction is regular sphere. It implies that the deformation of heteroge-
neous media can also be well captured by the increment secant linear
method.

3.4. Discussion

3.4.1. Influence of loading step size
Here, the influence of loading step size on the predictions by using

theM−T approaches based ondifferent linearizationmethods is further
9

discussed by adopting the parameters given in Table 1. Fig. 15 shows the
predictions to the composite (f=10%) at a strain rate of 1× 10−3 s−1

and with different loading step sizes. As shown in Fig. 15, the change of
loading step size hardly affects the predicted results by the NMT
approach, but significantly influences the predicted results by the GAL
method based M−T approach. This is because the strain corresponding
to the hysteretic viscoplastic response becomes larger and larger with
the increase of loading step size. The interaction between the matrix
and inclusion is reasonably considered by the new linearizationmethod
even if the hysteretic viscoplastic response becomes large, while it is
overestimated by the GAL one. Of course, if the size of loading step is
not fine enough to capture the short‐term and long‐term viscoplastic
behaviors, the predicted results by the NMT approach also become to
be dependent on the size of loading step.

3.4.2. Different choices of Eshelby's tensors
It is well known that the Eshelby's tensor is very important in effec-

tively and accurately describing the interaction between the matrix



Table 5
Material parameters for the composites with no plastic hardening.

Material parameters for the matrix
μM ¼ 103 � σy , κM ! 1, γ0ð ÞM ¼ 0:001
mM ¼ 5,
Material parameters for the inclusion
μI ¼ 5μM , κI ! 1,

Fig. 12. Overall stress–strain curves of the composites with an inclusion
volume fraction of 30% predicted by the FFT and NMT approach during the
monotonic tensile deformation at different strain rates. The FFT results are
cited from Ref. [39].

Fig. 13. Overall stress response of the composites with a spherical elastic
inclusion under a cyclic loading condition. The FFT result is cited from Ref.
[39].

Table 6
Interaction parameters between different
slip systems.

Interaction type Interaction coefficient

Self 1
Coplanar 1
Collinear 0.6
Hirth 12.3
Glissile 1.8
Lomer 1.6

Table 7
Material parameters for single crystal.

c1111 ¼ 197GPa, c1122 ¼ 125GPa, c1212 ¼ 122GPa
K ¼ 12MPa, m ¼ 11, r0 ¼ 40MPa
Q ¼ 10MPa,B ¼ 3A ¼ 40GPa
D ¼ 1:5GPa
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and inclusion in the composites. So, different Eshelby's tensors were
developed in Refs. [32,49]. However, all these Eshelby's tensors are
dependent on the linearization method of nonlinear constitutive
model. To further demonstrate the wide applicability of the newly
developed incremental secant linearization operator, the tensile defor-
mations of the composites containing different volume fractions of
inclusion phase are predicted by the new secant linearization based
M−T approach (NMT one) with different Eshelby's tensors, i.e., the
isotropic Eshelby’s tensor used in the previous subsections of this work
(denoted as the isotropic Eshelby’s tensor I) [32], isotropic Eshelby’s
tensor developed by Peng et al. [49] (denoted as the isotropic Eshel-
by's tensor II) and anisotropic Eshelby's tensor [50]. The material
parameters given in Table 1 are used here. Fig. 16 gives the predicted
tensile stress–strain curves for the composite at a strain rate of 10−3

s−1. It is shown that the stress–strain curves of the composite predicted
by the NMT approach with the isotropic Eshelby's tensor I agree with
that from the FEM simulations well; the stress values predicted by the
NMT approach with the Eshelby's tensor II are only slightly smaller
than that from the FEM simulations; while the predictions by using
the NMT approach with the anisotropic Eshelby's tensor have large
deviation to the FEM simulations. It is in good agreement with the dis-
cussion in Ref. [49], and demonstrates that the new incremental secant
linearization approach can play a key role in reasonably reflecting the
interaction between the matrix and inclusion in the composites, even if
different isotropic Eshelby's tensors are chosen.

3.4.3. Effect of linearization form
It is well‐known that whether the homogenization approaches can

effectively consider the interaction among the constituent phases of
composites is determined by the adopted linearization methods for
the constitutive models of constituent phases. As commented in the
introduction section of this work, the existing linearization methods
of elasto‐plastic constitutive models can provide a linear relationship
10
between the stress increment and strain one. Its linearization form
has the same mathematical form as the Hooke's law, so the homoge-
nization approaches developed for the linearly elastic composites are
easily extended to the elasto‐plastic composites. However, the existing
linearization methods developed for the elasto‐viscoplastic composites
cannot always directly give a similar relation between the stress and
strain increments. For example, as discussed in the introduction, the
approach based on the Laplace's transformation provides a fictitious
linear relationship among the stress rate _σ, strain rate _ɛ and eigenstrain
tensor ɛ0� τ; sð Þ; the approach based on the additive interaction law
gives a linear relation among the stress σ, stress rate _σ and strain rate
_ɛ; and the GAL method gives a linear relation among the stress incre-
ment Δσ, strain increment Δɛ and affine strain increment Δɛaf . Thus,
the classical thermo‐elastic homogenization schemes are used to esti-
mate the interaction among the different constituents of elasto‐
viscoplastic composites if the approach based on the Laplace's transfor-
mation or the GAL method is adopted; classical elastic homogenization
schemes and viscoplastic ones have to be used to consider the interac-
tion between the equivalent elastic problem and viscoplastic one,
respectively. It implies that the relation between the elasto‐plastic
homogenization method and elasto‐viscoplastic ones is cut off if the



Fig. 14. Stress–strain curves of polycrystalline aggregates predicted by FEM
and NSC approach during tensile deformation at a strain rate of 10−3 s−1. The
FEM results are cited from Ref. [48].

Fig. 15. Tensile stress–strain curves of the composites (f= 10%) predicted by
the M−T approaches based on different linearization methods at different
sizes of loading step; (a) new incremental secant linearization approach
(NMT); (b) generalized affine linearization method (MT).

Fig. 16. Stress–strain curves of the composites containing different volume
fractions predicted by FEM and the NMT approach with different Eshelby
tensors at the strain rate of 1 × 10−3 s−1.
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existing linearization methods are used. Instead, the linearization
form, i.e., Eq. (11a), obtained from the newly developed incremental
secant linearization method is the same as that provided by the lin-
earization methods for the elasto‐plastic composites. Thus, the corre-
spondent homogenization approaches established for the elasto‐
plastic composites are also suitable to consider the interaction among
the constituent phases in the elasto‐viscoplastic composites if the
newly proposed incremental secant linearization method is adopted.
It implies that the homogenization approaches for the elasto‐plastic
and elasto‐viscoplastic composites would be unified with the help of
newly developed incremental secant linearization method.

4. Conclusion

A new incremental secant linearization method is developed for the
elasto‐viscoplastic constitutive model by reasonably handling the
unmatched time scales of elastic and viscoplastic deformations. And
then this new linearization method is implemented into the M−T
approach and SC one. Finally, the tensile deformations of elasto‐
viscoplastic microscopic heterogeneous materials (including the com-
posites with different inclusion volume fractions, viscosities and hard-
ening moduli, and the polycrystalline aggregates) under different
loading conditions are predicted by the M−T and SC approaches based
on the newly developed incremental secant linearization method. The
predicted stress–strain curves are compared with that obtained by the
FEM and FFT methods. Some key conclusions are obtained as:

(1) The elasto‐viscoplastic constitutive model of each constituent is
effectively linearized by the new incremental secant linearization
method, and then the homogenization schemes based on the new lin-
earization method can reasonably and accurately predict the overall
tensile deformations of elasto‐viscoplastic microscopic heterogeneous
materials.

(2) Since the unmatched time scales between the elastic and vis-
coplastic deformations are effectively dealt with, the size of loading
step has little effect on the predicted results of elasto‐viscoplastic
heterogeneous materials by the homogenization approaches based
on the new linearization method, if the size of loading step is fine
enough to capture the short‐term and long‐term viscoplastic behaviors.

(3) Since the linearized equation, i.e., Eq. (11a), obtained from the
incremental secant linearization method has the same mathematical
structure as that from the existing methods for the rate‐independent
elasto‐plastic constitutive models, the MFH approaches for elasto‐
plastic and elasto‐viscoplastic heterogeneous materials can be unified
with the help of newly developed incremental secant linearization
method.



W. Rao et al. Composite Structures 271 (2021) 114125
It should be noted that the newly developed secant linearization
method will be extended to the viscoelastic‐viscoplastic heterogeneous
materials in further work so that the linearization method of rate‐
dependent constitutivemodels can be unified further, although its effec-
tiveness and accuracy are only verified for the elasto‐viscoplastic micro-
scopic heterogeneous materials in this work. Of course, there are still
some shortcomings in our currentwork. For example, the new lineariza-
tion method based MFH approach used here is unable to simulate the
creep or relaxation of some composites. Thus, we are actively trying to
deal with these shortcomings in future work.
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Appendix A

From Eqs. (1c) and (1d), we can obtain that

Δɛvpnþ1 ¼ _ɛvpnþ1Δtnþ1 ¼ ɛ
∼p

σnþ1;Vnþ1ð ÞΔtnþ1 ¼ ɛ
∼p0

σnþ1;Vnþ1;Δtnþ1ð Þ ðA1Þ
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In a small increment step, it can be given as

_ɛvpnþ1≈
Δɛvpnþ1

Δtnþ1
; Vnþ1

¼ Vn þ ΔVnþ1; σnþ1 ¼ σn þ Δσnþ1 ðA3Þ
Combining Eqs. (A2) and (A3), then
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Eq. (A4) is an implicit function of ΔVnþ1. From this implicit func-
tion, we can give an explicit function of ΔVnþ1 as

ΔVnþ1 ¼ V
∼ 000
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Combining Eqs. (A1) and (A5), then
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∼p0

Δσnþ1 þ σn;Vn þ V
∼ 000

Δσnþ1; σn;Δɛ
vp
nþ1;Vn;Δtnþ1

� �
;Δtnþ1


 �

¼ ɛ
∼p00

Δσnþ1; σn;Δɛ
vp
nþ1;Vn;Δtnþ1

� �
ðA6Þ
12
Eq. (A6) is also an implicit function of Δɛvpnþ1. From this implicit
function, we can give an explicit function of Δɛvpnþ1 as

Δɛvpnþ1 ¼ ɛ
∼p000

Δσnþ1; σn;Vn;Δtnþ1ð Þ ðA7Þ
From Eqs. (1a) and (1c), it can be obtained that

Δσnþ1 ¼ C : Δɛnþ1 � Δɛvpnþ1

� � ðA8Þ
Substituting Eqs. (A7) into (A8), it yields

Δσnþ1 ¼ C : Δɛnþ1 � Δɛvpnþ1

� �
¼ C : Δɛnþ1 � ɛ

∼p000
Δσnþ1; σn;Vn;Δtnþ1ð Þ

h i ðA9Þ

Since C is constant, we can think that Δσnþ1 is a function of Δɛnþ1,
Δσnþ1, σn, Vn and Δtnþ1. Thus, a function can be given as

Δσnþ1 ¼ σ0 Δɛnþ1;Δσnþ1; σn;Vn;Δtnþ1ð Þ 10Þ
Eq. (A10) is an implicit function of Δσnþ1. If we transform it into an

explicit form, Eq. (2) can be obtained.

Appendix B

B1 incremental secant linearization-based Mori-Tanaka's approach

According to the newly proposed incremental secant linearization
method, the linear relationships between the volume averaged stress
increment and volume averaged strain one in the matrix and inclusion
phases are expressed as

Δσn þ 1h iM ¼ Csec
n þ 1

� �
M : Δɛn þ 1h iM: 1aÞ

Δσn þ 1h iI ¼ Csec
n þ 1

� �
I : Δɛn þ 1h iI: 1bÞ

where Δσn þ 1h iM and Δσn þ 1h iI are the volume averaged stress
increments, Δɛn þ 1h iM and Δɛn þ 1h iI are the volume averaged strain
increments, and Csec

n þ 1

� �
M and Csec

n þ 1

� �
I are the incremental secant mod-

ulus tensors of matrix and inclusion, respectively. Hereafter, �ð ÞMand
�ð ÞI denote that the �ð Þ belong to the matrix and inclusion, respectively.

From the Eshelby's theory, a heterogeneous problem can be equiv-
alent to a homogeneous inclusion one. Thus,

Δσn þ 1h iI ¼ Csec
n þ 1

� �
I : Δɛn þ 1h iI ¼ Csec

n þ 1

� �
M : Δɛn þ 1h iI � Δɛ�n þ 1

� � ðB2Þ
where Δɛ�n þ 1 is an increment of eigenstrain tensor. Referring to Rao
et al. [41,42], a relationship between the increments of eigenstrain
and disturbance strain is written as:

Δɛn þ 1h iI � Δɛn þ 1h iM ¼ Sn þ 1 : Δɛ�n þ 1 ðB3Þ
Here, Sn þ 1 is the Eshelby's tensor [43].
Combining Eqs. (B2) with (B3), it yields

Δɛn þ 1h iM ¼ Sn þ 1 : Csec
n þ 1

� �
M

� ��1
: Csec

n þ 1

� �
I � Csec

n þ 1

� �
M

� �þ I
n o

: Δɛn þ 1h iI ðB4Þ
Let

Bn þ 1 ¼ Sn þ 1 : Csec
n þ 1

� �
M

� ��1
: Csec

n þ 1

� �
I � Csec

n þ 1

� �
M

� �þ I ðB5Þ
Then, Eq. (B4) can be rewritten as

Δɛn þ 1h iM ¼ Bn þ 1 : Δɛn þ 1h iI ðB6Þ
The relationship between the overall strain increment and local

volume averaged strain one can be given as

Δɛ
�
n þ 1 ¼ 1� fð Þ Δɛn þ 1h iM þ f Δɛn þ 1h iI ðB7Þ
Here, f is the volume fraction of inclusion phase.
Combining Eqs. (B6) with (B7), it yields

Δɛn þ 1h iI ¼ 1� fð ÞBn þ 1 þ f I½ ��1 : Δɛ
�
n þ 1 ðB8Þ
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Combining Eqs. (B6) with (B8), it yields

Δɛn þ 1h iM ¼ Bn þ 1 : 1� fð ÞBn þ 1 þ f I½ ��1 : Δɛ
�
n þ 1 ðB9Þ

Similarly, a relationship between the overall and local volume aver-
aged stress increments can be given as

Δσ
�
n þ 1 ¼ 1� fð Þ Δσn þ 1h iM þ f Δσn þ 1h iI ðB10Þ
Substituting Eqs. (B1a), (B1b), (B8) and (B9) into Eq. (B10), it

yields

Δσ
�
n þ 1 ¼ C

�
sec
n þ 1 : Δɛ

�
n þ 1 11aÞ

C
�
sec
n þ 1 ¼ 1� fð Þ Csec

n þ 1

� �
M : Bn þ 1 : 1� fð ÞBn þ 1 þ f I½ ��1þ

f Csec
n þ 1

� �
I : 1� fð ÞBn þ 1 þ f I½ ��1

ðB11bÞ

where C
�
sec
n þ 1 is the equivalent incremental secant modulus tensor of

the composites.

3.2. Incremental secant linearization-based self-consistent approach

After linearization, the constitutive equations can be rewritten as:

Δσnþ1h iI ¼ Csec
nþ1

� �
I : Δɛnþ1h iI ðB12Þ

The macroscopic overall constitutive equation of heterogeneous
material can also be written as the following affine form:

Δσ
�
nþ1 ¼ C

�
sec
nþ1 : Δɛ

�
nþ1 ðB13Þ

where Δɛ
�
nþ1 and Δσ

�
nþ1 are the macroscopic overall strain and stress

increments, respectively, and C
�
sec
nþ1 is the effective incremental secant

modulus.
Different from the M−T one, the SC homogenization approach

assumes that the inclusion is embedded into an equivalent medium
with the same overall response as that of microscopic heterogeneous
material. Thus, according to the Eshelby's equivalent inclusion theory,
the effective modulus tensor of the inclusion can be replaced by that of
homogeneous equivalent medium once an artificial eigenstrain incre-
ment is introduced. Then, a similar constitutive equation between
the local phase and overall polycrystalline aggregates can be obtained
as the following equivalent form:

Δσnþ1h iI ¼ Csec
nþ1

� �
I : Δɛnþ1h iI ¼ C

�
sec
nþ1 : Δɛnþ1h i � Δɛ

��� 	
ðB14Þ

where Δɛ
��

is the eigenstrain increment.
Based on the Eshelby's inclusion theory and the hypothesis of SC

homogenization approach, the volume averages of strain increments
in the matrix and equivalent medium and the eigenstrain increment
can be linked by the Eshelby's tensor S, i.e.,

Δɛnþ1h iI � Δɛ
�
nþ1 ¼ S : Δɛ� ðB15Þ

Substituting Eq. (B15) into Eq. (B14), it yields

Δɛnþ1h iI ¼ S : C
�
sec
nþ1

� 	�1
: Csec

nþ1

� �
I � S� Ið Þ


 ��1

: Δɛ
�
nþ1 ðB16Þ

Let

BI ¼ S : C
�
sec
nþ1

� 	�1
: Csec

nþ1

� �
I � S� Ið Þ


 ��1

ðB17Þ

Then, Eq. (B16) can be rewritten as

Δɛnþ1h iI ¼ BI : Δɛ
�
nþ1 ðB18Þ

Following the rules of mixture, the relationship between the overall
stress increment of heterogeneous material and the volume averages of
the stress increments in the local phases can be shown as

Δσ
�
nþ1 ¼ ∑

n

I¼1
f I Δσnþ1h iI ðB19Þ
13
Substituting Eqs. (B12), (B18) and (B19) into Eq. (B19), it yields

Δσ
�
nþ1 ¼ ∑

n

I¼1
f I Csec

nþ1

� �
I : BI : Δɛ

�
nþ1 ðB20Þ

And the effective incremental secant modulus tensor of polycrys-
talline aggregates is expressed as

C
�
sec
nþ1 ¼ ∑

n

I¼1
f I Csec

nþ1

� �
I : BI ðB21Þ
Appendix C

In this subsection, a unified elasto‐viscoplastic constitutive model
used in Section 4.1 is given. Furthermore, to apply it into the M−T
approach, its linearization is also deduced by using the incremental
secant linearization method.

Appendix C. 1 main equations of elasto-viscoplasticity
constitutive model

In a unified elasto‐viscoplastic constitutive model, the strain tensor
ɛ can be divided into an elastic part ɛe and viscoplastic one ɛvp, then

ɛ ¼ ɛe þ ɛvp ðC1Þ
The Hooke's law is expressed as

σ ¼ C : ɛe ðC2Þ
The von Mises's equivalent stress σeq can be written as

σeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

s� αð Þ : s� αð Þ
r

ðC3Þ

where s ¼ devðσÞ denotes a deviatoric stress tensor, and α denotes a
back stress tensor.

The viscoplastic strain rate _ɛvp is

_ɛvp ¼
ffiffiffi
3
2

r
_γN ðC4Þ

where _γ is the viscoplastic flow rate, and N denotes the viscoplastic
flow direction.

The viscoplastic flow rate _γ is taken as

_γ ¼ _γ0
f
R


 �m

ðC5Þ

where _γ0 is the referential viscoplastic multiplier; f ¼ σeq � R is the
driving force; R denotes the viscoplastic flow resistance, m is a power‐
law exponent. is Macauley’s bracket, i.e., as x < 0, xh i ¼ 0; as x ⩾ 0,
xh i ¼ x.

The viscoplastic flow direction N is

N ¼ s� α
k s� α k ðC6Þ

The back stress α is simply taken as

_α ¼ 2
3
h _ɛp � ξα _γ ðC7Þ

Here, h denotes a material parameter, ξ denotes a dynamic recovery
coefficient.

The resistance R can be expressed as

R ¼ σ0 þ Kγa ðC8Þ

where, σ0 denotes the initial yielding stress, K and a are two
parameters.
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Appendix C. 2 deducing the incremental secant modulus tensor

Consider the time interval of Δtn þ 1, and assume that the solutions
at the time tn are known, and a total strain increment Δɛn þ 1 and time
increment Δtn þ 1 at this time interval are given, respectively. The
elasto‐viscoplastic constitutive equations are discretized first. Such dis-
crete equations are

Δσn þ 1 ¼ C : Δɛn þ 1 � Δɛpn þ 1

� � ðC9aÞ

Δɛvpn þ 1 ¼
ffiffiffi
3
2

r
Δγn þ 1Nn þ 1 ðC9bÞ

Δαn þ 1 ¼ 2
3
hΔɛvpn þ 1 � ξαn þ 1Δγn þ 1 ðC9cÞ

σeqn þ 1 ¼
ffiffiffi
3
2

r
k sn þ 1 � αn þ 1 k ðC9dÞ

Δγn þ 1 ¼ _γ0
σeqn þ 1 � Rn þ 1

Rn þ 1


 �m

Δtn þ 1 ðC9eÞ

Nn þ 1 ¼ sn þ 1 � αn þ 1

k sn þ 1 � αn þ 1 k ðC9fÞ

Rn þ 1 ¼ σ0 þ Kγan þ 1 ðC9gÞ
Differentiating all items in Eq. (C9e), it yields

dΔγn þ 1 ¼ d _γ0
f n þ 1
Rn þ 1

D Em
Δtn þ 1

h i
¼ m _γ0

f nþ1
Rnþ1

� 	m
Δtnþ1

df nþ1
f nþ1

� dRnþ1
Rnþ1

� 	
þ _γ0

f nþ1
Rnþ1

� 	m
dΔtnþ1

¼ mΔγnþ1
dσeqnþ1
f nþ1

� dRnþ1
f nþ1

� dRnþ1
Rnþ1

� 	
þ Δγnþ1

Δtnþ1
dΔtnþ1

¼ mΔγnþ1
dσeqnþ1
f nþ1

� dRnþ1
f nþ1

� aKγa�1
n þ 1dγnþ1

Rnþ1

� 	
þ Δγnþ1

Δtnþ1
dΔtnþ1

¼ mΔγnþ1
dσeqnþ1
f nþ1

� dRnþ1
f nþ1

� aKγa�1
n þ 1 dγnþdΔγnþ1ð Þ

Rnþ1

� �
þ Δγnþ1

Δtnþ1
dΔtnþ1

¼ mΔγnþ1
dσeqnþ1
f nþ1

� dRnþ1
f nþ1

� aKγa�1
n þ 1dΔγnþ1

Rnþ1

� 	
þ Δγnþ1

Δtnþ1
dΔtnþ1

¼ A
ffiffi
3
2

q
mΔγn þ 1

Nn þ 1 :d sn þ 1�αn þ 1ð Þ
f n þ 1

þ Δγn þ 1
Δtn þ 1

dΔtn þ 1

h i
ðC10Þ

where, A ¼ 1þmΔγn þ 1Kaγa - 1
n þ 1

1
f nþ1

þ 1
Rn þ 1

� 	h i�1
. It should be noted

that dγn ¼ 0 since γn is a constant at the time increment Δtn þ 1. In fact,
the solutions of �ð Þ at the time tn are known, which implies that
d �ð Þn ¼ 0.

Differentiating all items in Eq. (C9f), it can be obtained that

dNn þ 1 ¼ d sn þ 1�αn þ 1
ksn þ 1�αn þ 1k

� 	
¼ I�Nn þ 1�Nn þ 1

ksn þ 1�αn þ 1k : d sn þ 1 � αn þ 1ð Þ
ðC11Þ

Differentiating all items in Eq. (C9c), it yields

dΔαn þ 1 ¼ d 2
3 hΔɛ

p
n þ 1 � ξαn þ 1Δγn þ 1

� �
¼ 2

3 hdΔɛ
p
n þ 1 � ξdαn þ 1Δγn þ 1 � ξαn þ 1dΔγn þ 1

ðC12Þ

Combining Eq. (C10) and Eq. (C12), it yields

dΔαn þ 1 ¼ H 1 :
2
3 hdΔɛ

p
n þ 1 � ξA

ffiffi
3
2

q
mΔγn þ 1

αn þ 1�Nn þ 1 :dsn þ 1
f n þ 1

þ
�h

Δγn þ 1
Δtn þ 1

αn þ 1dΔtn þ 1

	i ðC13Þ

where

H 1 ¼ 1þ ξΔγn þ 1

� �
I �

ffiffiffi
3
2

r
mΔγn þ 1ξA

αn þ 1 � Nn þ 1

f n þ 1

" #�1

ðC14Þ

Differentiating all items in Eq. (C9b), it gives
14
dΔɛvpn þ 1 ¼ d
ffiffi
3
2

q
Δγn þ 1Nn þ 1

� 	
¼

ffiffi
3
2

q
dΔγn þ 1Nn þ 1 þ

ffiffi
3
2

q
Δγn þ 1dNn þ 1:

15Þ

Substituting Eqs. (C10), (C11) and (C12) into Eq. (C15), it gives

dΔɛvpn þ 1 ¼ I þ 2
3 hH2 : H 1

� ��1
: H3 : dσn þ 1 þ ξH2 : H 1 : αn þ 1 þ

ffiffi
3
2

q
Nn þ 1

� 	h
A Δγn þ 1

Δtn þ 1
dΔtn þ 1

i

where

H2 ¼ 3
2
AmΔγn þ 1

Nn þ 1 � Nn þ 1

f n þ 1
þ

ffiffiffi
3
2

r
Δγn þ 1

� Id � Nn þ 1 � Nn þ 1

k sn þ 1 � αn þ 1 k ðC17aÞ

H 3 ¼ H2 þ
ffiffiffi
3
2

r
mΔγn þ 1ξA

H2 : H 1 : αn þ 1 � Nn þ 1

f n þ 1

 !
ðC17bÞ

Differentiating all items in Eq. (C9a), it gives

dΔσnþ 1 ¼C : dΔɛnþ 1�dΔɛvpnþ 1

� �
¼ Iþ2μ Iþ 2

3hH2 :H 1
� ��1

:H3

h i�1
: C : dΔɛnþ 1�2μ½

Iþ 2
3hH2 :H 1

� ��1
: ξH2 :H 1 :αnþ 1þ

ffiffi
3
2

q
Nnþ 1

� 	
AΔγnþ 1

Δtnþ 1
dΔtnþ 1

i
ðC18Þ

Let

H4 ¼ I þ 2μ I þ 2
3
hH2 : H 1

� ��1

: H3

" #�1

ðC19aÞ

H5 ¼ AH4 : I þ 2
3
hH2 : H 1

� ��1

:

ffiffiffi
2
3

r
ξH2 : H 1 : αn þ 1 þ Nn þ 1

 !
� Nn þ 1 ðC19bÞ

Then, Eq. (C18) is rewritten as

dΔσn þ 1 ¼ H4 : C : dΔɛn þ 1 �H5: 2μ

ffiffiffi
3
2

r
Δγn þ 1

Δtn þ 1
Nn þ 1dΔtn þ 1 ðC20Þ

Thus, it can be obtained from Eq. (C20) that

@Δσn þ 1

@Δɛn þ 1
¼ H4 : C ðC21aÞ

@Δσn þ 1

@Δtn þ 1
¼ �H5: 2μ

ffiffiffi
3
2

r
Δγn þ 1

Δtn þ 1
Nn þ 1 ðC21bÞ

Substituting Eqs. (C21a) and (C21b) into Eq. (6), it yields

Δσn þ 1≈H4 : C : Δɛn þ 1 �H5: 2μ

ffiffiffi
3
2

r
Δγn þ 1

Δtn þ 1
Nn þ 1Δtn þ 1 ðC22Þ

Combining Eqs. (C9a) and (C21), it gives

Δσn þ 1≈ I �H5ð Þ�1 : H4 �H5ð Þ : C : Δɛn þ 1 ðC23Þ
Then, the incremental secant modulus tensor can be expressed as

Csec
n þ 1 ¼ I �H5ð Þ�1 : H4 �H5ð Þ : C ðC24Þ
Appendix D

In this subsection, some constitutive models used in Sections 4.2
and 4.3 are provided. Since the forms of these constitutive models
are similar to that of the model listed in Appendix D1, the increment
secant modulus tensors for such constitutive models listed in this sub-
section have a similar derivation process to that listed in Appendix D2.
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Thus, we don’t give the derivation process for their increment secant
modulus tensors here.

Here, the main equations for the constitutive model with no plastic
hardening are provided as

ɛ ¼ ɛe þ ɛvp ðD1Þ

σ ¼ C : ɛe ðD2Þ

_ɛvp ¼
ffiffiffi
3
2

r
_γN ðD3Þ

σeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
dev sð Þ : dev sð Þ

r
ðD4Þ

_γ ¼ _γ0
σeq

σy

� �m

ðD5Þ

Nn þ 1 ¼ dev sð Þ
k dev sð Þ k ðD6Þ

where C is the elasticity tensor; _γ0 is the referential viscoplastic multi-
plier; m is a power‐law exponent; σy is the initial yielding stress; n is the
hardening exponent.

Appendix E

In this subsection, the main equations of a constitutive model for a
single crystal are provided, and the derivation process for its increment
secant modulus tensor is also given.

Appendix E. 1 the main equations for the constitutive model of
single crystal

In a unified elasto‐viscoplastic constitutive model of single crystal,
its strain tensor ɛ can be divided into an elastic part ɛe and viscoplastic
one ɛvp, then

ɛ ¼ ɛe þ ɛvp ðE1Þ
The Hooke's law is expressed as

σ ¼ C : ɛe ðE2Þ
where C is the elasticity tensor of single crystal.

The viscoplastic strain rate _ɛvp can be expressed as

_ɛvp ¼ ∑
N

s¼1

1
2
_γs ms � ns þ ns �msð Þ ðE3Þ

where _γs is the viscoplastic shear strain rate for the slip system s. ms and
ns are the direction of slip plane and the slip direction in the slip system
s, respectively.

The evolution equation of viscoplastic shear strain rate can be
given as

_γs ¼ τs � xsj j � rsh i
k

� �m

sign τs � xsð Þ ðE4Þ

where xs and rs are the shear back stress and isotropic deformation
resistance, respectively; k is a viscosity parameter, m is a strain rate sen-
sitivity parameter; sign �ð Þ is a sign function, τs is the driving force for
viscoplastic slip (i.e., the resolved shear stress in the slip system s),
and its evolution is given as

τs ¼ σ : ms � nsð Þ ðE5Þ
The kinematic hardening rule representing the evolution of shear

back stress can be expressed as

xs ¼ Ays _ys ¼ _γs � Dys _γsj j ðE6Þ
where A and D are two kinematic hardening parameters.
15
The evolution equation of isotropic deformation resistance can be
given as

rs ¼ r0 þ ∑
N

t¼1
QHstqt _qt ¼ 1� Bqtð Þ _γtj j ðE7Þ

where Q and B are two isotropic hardening parameters; H is the param-
eter matrix characterizing the interaction between different slip sys-
tems; r0 is the initial critical resolved shear stress for the dislocation
slipping in each slip system, which is assumed to be the same for each
slip system here.

Appendix E. 2 deducing the incremental secant modulus tensor

Consider the time interval of Δtn þ 1, and assume that the solutions
at the time tn are known, and a total strain increment Δɛn þ 1 and time
increment Δtn þ 1 at this time interval are given, respectively. The
elasto‐viscoplastic constitutive equations of single crystal are dis-
cretized first. The discrete equations are

Δσn þ 1 ¼ C : Δɛn þ 1 � Δɛpn þ 1

� � ðE8aÞ

Δɛvpnþ1 ¼ ∑
N

s¼1

1
2
Δγsnþ1 ms � ns þ ns �msð Þ ðE8bÞ

τsn þ 1 ¼ σn þ 1 : ms � nsð Þ ðE8cÞ

Δγsnþ1 ¼
τsnþ1 � xs

nþ1

�� ��� rsnþ1

� �
k

� �m

sign τsnþ1 � xs
nþ1

� �
Δtnþ1 ðE8dÞ

Δxs
nþ1 ¼ AΔysnþ1 Δy

s
nþ1 ¼ Δγsnþ1 � Dysnþ1 Δγsnþ1

�� �� ðE8eÞ

Δrsnþ1 ¼ ∑
N

t¼1
QHstΔqtnþ1 Δq

t
nþ1 ¼ 1� Bqtnþ1

� �
Δγtnþ1

�� �� ðE8fÞ

Differentiating all items in Eq. (E8e), it yields

dΔxs
nþ1 ¼ AdΔys

nþ1

¼ AdΔγsnþ1 � Ad Dysnþ1 Δγsnþ1

�� ��� �
¼ 1

1þAD Δγsnþ1j j A� Dxs
nþ1 � signðΔγsnþ1Þ

� �
dΔγsnþ1

¼ 1
1þAD Δγsnþ1j j A� Dxs

nþ1 � signðΔγsnþ1Þ
� �

δstdΔγtnþ1

ðE9Þ

Where δst ¼ 1 if s ¼ t; otherwise, δst ¼ 0.
Here, a second‐ordered tensor L1 is defined, and its components

can be given as

Lst1 ¼ 1
1þ AD Δγsnþ1

�� �� A� Dxs
nþ1 � signðΔγsnþ1Þ

� �
δst ðE10Þ

Then, Eq. (E10) can be rewritten as

dΔxs
nþ1 ¼ Lst1 dΔγ

t
nþ1 ðE11Þ

Differentiating all items in Eq. (E8f), it yields

dΔrsnþ1 ¼ ∑
N

t¼1
QHstdΔqtnþ1

¼ ∑
N

t¼1
QHst 1� Bqtnþ1

1þ B Δγtnþ1

�� �� sign Δγtnþ1

� �
dΔγtnþ1 ðE12Þ

Let L2 be a second‐ordered tensor, and its components can be given
as

Lst2 ¼ QHst 1� Bqtnþ1

1þ B Δγtnþ1

�� �� sign Δγtnþ1

� � ðE13Þ

Then, Eq. (E12) can be rewritten as

dΔrsnþ1 ¼ ∑
N

t¼1
Lst2 dΔγ

t
nþ1 ðE14Þ
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Differentiating all items in Eq. (E8c), it yields

dτsn þ 1 ¼ ms � nsð Þ : dσn þ 1 ðE15Þ
Differentiating all items in Eq. (E8d), it yields

dΔγsnþ1 ¼ d
τsnþ1�xsnþ1j j�rsnþ1h i

k

� �m

sign τsnþ1 � xs
nþ1

� �
Δtnþ1


 �

¼ m Δγsnþ1j j
τsnþ1�xsnþ1j j�rsnþ1h i � dτsnþ1 � dΔxs

nþ1 � sign τsnþ1 � xs
nþ1

� �
dΔrsnþ1

� �þ Δγsnþ1
Δtnþ1

dΔtnþ1

ðE16Þ

Let us define a second‐ordered tensor L3 and a third‐ordered one L4

further, and their components can be given, respectively, as

Lst3 ¼ δst þ m Δγsnþ1

�� ��
τsnþ1 � xs

nþ1

�� ��� rsnþ1

� � � Lst1 þ sign τsnþ1 � xs
nþ1

� �
Lst2

� � ðE17aÞ

Lsij4 ¼ m Δγsnþ1

�� ��
τsnþ1 � xs

nþ1

�� ��� rsnþ1

� �msinsj ðE17bÞ

Then, combining Eqs. (E11), (E13), (E16) and (E17), it yields

dΔγsnþ1 ¼ ∑
N

t¼1
Lst5 : Lt

4 : dσ nþ1 þ Δγtnþ1

Δtnþ1
dΔtnþ1

� �
ðE18Þ

where L5 is the inverse of L3, and Lt
4

� �ij ¼ Ltij4 .
Differentiating all items in Eq. (E8b), it yields

dΔɛvpnþ1 ¼ ∑
N

s¼1

1
2 ms�nsþns�msð ÞdΔγsnþ1

¼ ∑
N

s¼1

1
2 ms�nsþns�msð Þ∑

N

t¼1
Lst5 : Lt

4 : dσnþ1 þ Δγtnþ1
Δtnþ1

dΔtnþ1

� 	
ðE19Þ

Differentiating all items in Eq. (E8a), it yields

dΔσn þ 1 ¼ C : dΔɛn þ 1 � dΔɛpn þ 1

� �
¼ C : dΔɛn þ 1 � ∑

N

s¼1

1
2 ms � ns þ ns �msð Þ ∑

N

t¼1
Lst5 : Lt

4 : dσ nþ1 þ Δγtnþ1
Δtnþ1

dΔtnþ1

� 	� �

¼ C : dΔɛn þ 1 � ∑
N

s¼1

1
2 ms � ns þ ns �msð Þ ∑

N

t¼1
Lst5 : Lt

4 : dΔσ nþ1 þ Δγtnþ1
Δtnþ1

dΔtnþ1

� 	� �
ðE20Þ

Let

H1 ¼ I þ C : ∑
N

s¼1

1
2

ms � ns þ ns �msð Þ ∑
N

t¼1
Lst5 : Lt

4 ðE21Þ

Then, Eq. (E20) can be rewritten as

dΔσn þ 1 ¼ H�1
1 : C

: dΔɛn þ 1 � ∑
N

s¼1

1
2

ms � ns þ ns �msð Þ ∑
N

t¼1
Lst5

Δγtnþ1

Δtn þ 1
dΔtn þ 1

� �
ðE22Þ

Thus, we can obtain that

dΔσn þ 1

dΔɛn þ 1
¼ H�1

1 : C ðE23Þ

dΔσn þ 1

dΔtn þ 1
¼ �H�1

1 : C : ∑
N

s¼1

1
2

ms � ns þ ns �msð Þ ∑
N

t¼1
Lst5

Δγtnþ1

Δtn þ 1
ðE24Þ

If substitute Eqs. (E23) and (E24) into Eq. (11), the incremental
secant modulus tensor is easy to be obtained.
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