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A B S T R A C T   

SoH (State-of-Health) evaluation is of pressing need in the health management of commercial Li-ion batteries and 
has been a topic of intensive research. A simple route to supply a quick, non-destructive, and preferably on-site 
assessment of SoH with high fidelity is desired. In this paper, analysis based on a partial (dis)charge and a sliding 
voltage window on the constant-current (dis)charge voltage-time curve may fulfill the need. The incremental 
State-of-Charge (ΔSoC) (derived from the sliding window) is proportional to the SoH within a suitable voltage 
region. The slope k of the SoH − ΔSoC curve and its extrapolated interception at SoH=1, denoted as ΔS1

oC, can then 
be used to differentiate the remaining life of batteries of the same SoH. The proposed SoH evaluation method, 
along with the linearity characterized by k and ΔS1

oC, make it an appealing route toward quick and on-site health 
management of batteries.   

1. Introduction 

Li-ion batteries (LIBs) have been extensively used as energy storage 
systems for portable electronics, electric vehicles, and other fields [1–3]. 
Immediately after production, LIBs are bound to irreversible degrada-
tion, no matter in storage, transportation, in use or lay aside. Quanti-
fying the state of degradation in LIBs is therefore a crucial demand for 
the economical and reliable operations of LIBs-powered systems [4–8]. 
The SoH (State-of-Health) is a key parameter evaluating the current 
working conditions of LIBs. For its self-evident importance, various 
methods have been proposed to characterize the SoH of LIBs [9–11]. The 
capacity-fade indicator SoH, defined as the ratio of the current maximum 
available capacity Qc to the rated capacity Qr [11], i.e., SoH =

Qc
Qr

, is of 
general acceptance in the LIBs industry. In fact, in contrast to the simple 
definition, characterizing the contribution of a particular one out of 
many mechanisms to the degradation of LIBs (hence SoH) is not an easy 
job, since the degradation of LIBs often involves multiple interweaving 
mechanisms and processes [12–17], e.g. active material shedding, loss 
of electrical contact, lithium loss caused by SEI (Solid--
Electrolyte-Interphase) formation, and etc. The strong 
electro-chemo-mechanical coupling behavior during battery degrada-
tion [18–22] perplexes the determination of SoH in engineering 

applications. 
Among different technologies to characterize SoH of LIBs [23–26], 

two strategies have been prevailing, including a direct measurement and 
an indirect method [27]. With respect to the direct method, the available 
capacity and internal resistance are the two critical parameters for 
battery SoH estimation. The ampere-hour counting method is commonly 
used to measure available capacity through complete charging and 
discharging batteries at low current rates [28], which is time-consuming 
for on-site SoH evaluation. The electrochemical impedance spectroscopy 
technique, through applying a voltage or current excitation to obtain the 
change of impedance spectrum, may also reflect the battery degradation 
[29], which is however subject to data noise and constraints in field test. 

Methods through indirect analysis are often either physics- or data- 
driven-based, and the two also include different variants based on the 
adopted physical model and the strategy applied for feature extraction. 
Electrochemical-model-based and equivalent-circuit-model-based 
methods are the two commonly used physics-based approaches. The 
electrochemical-model-based approach uses a single physical feature 
involved in the (dis)charge processes, such as Li-ion concentration [30], 
SEI film thickness [31], and so on, to extract SoH. As the methods 
involve coupling of multiple fields, one often needs to solve a group of 
nonlinear partial differential equations [32,33]. The 
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equivalent-circuit-model-based methods are of moderate complexity, 
but limited operating conditions [34]. 

Data-driven-based methods are sweeping all corners of science, and 
are also adopted to predict SoH of the energy storage system (such as, 
battery, supercapacitor, etc.) by extracting essential features from data 
at hand using either statistical analyses or machine learning techniques 
[35,36]. Differentiating the contribution of a particular mechanism to 
capacity degradation and hence to SoH is off the table [37–40]. Both 
automatic extraction method by deep learning (AEM-DL) framework 
[41,42] and manual construction based on domain knowledge (MC-DK) 
framework [43–45] can be utilized for feature extraction. AEM-DL al-
gorithms are usually accompanied with complex computation based on 
available data, in which the specific meaning of individual features is 
generally obscure [46,47]. Moreover, the AEM-DL methods use testing 
data involving a full charging process, from 0% SoC (State-of-Charge) up 
to 100% SoC at the constant-current constant-voltage (CC–CV) 
charging mode. To avoid full charging process and reduce the test time, 
incremental capacity analysis (ICA) methods based on regional capacity 
and voltage were introduced for SoH estimation [48,49]. However, in-
cremental capacity and differential voltage curves are composed of 
substantial noise signals and require filtering techniques for data pre-
treatment. Besides, the ICA method is restricted to low charge current 
rates (1/5 to 1/25 C-rate) in order to achieve reasonable fidelity for SoH. 

Owing to the rapid development of novel data-driven-based 
methods, many endeavors have been devoted to effective feature 
extraction for SoH [50–52]. Liu et al. [53,54] estimated SoH with GPR 
(Gaussian Process Regression) and RVM (Relevance Vector Machine), 
and such methods can provide the posterior probability of predictions. Li 
et al. [55] applied transfer learning and network pruning to establish 
compact convolutional neural network models to improve the accuracy 

of SoH estimation. Regardless of the tremendous successes, differenti-
ating battery-wise distinctions in SoH using data-driven methods re-
mains challenging. The reliability depends highly on the data 
characteristics and volume [56]. High computational cost is another 
issue to prevent its application from on-site application [57]. 

In this report, we propose a quick, non-destructive, and potentially 
on-site assessment of SoH with high fidelity, and discuss its implication 
for differentiating the performance of batteries. We introduce in the 
second section the data acquisition details, followed with the sliding 
voltage window strategy to construct the SoH evaluation in Section 3, 
and report a linear relationship between SoH and the increment SoC. In 
Section 4 we demonstrate how the slope k of the SoH − ΔSoC curve and its 
interception at SoH=1 (ΔS1

oC) can be adopted to make a distinction 
about the remaining life of the batteries of same SoH. We conclude in 
Section 5 with further discussions on the implications of the methods for 
the health management of batteries. 

2. Experimental section 

The experiments were performed on commercial LFP (LiFePO4)/ 
graphite batteries (LISHEN, 18,650 cylindrical battery, 1.5 Ah nominal 
capacity). The LFP/graphite batteries were cycled by NEWARE battery 
testing systems with a sampling frequency of 1 Hz at 25 oC in a 
temperature-controlled environmental chamber. Typical constant- 
current constant-voltage (CC–CV) charging and discharging profiles 
adopted for the cycling measurements are shown in Fig. 1a. The cut-off 
voltage in constant-current (CC) charging stage and CC discharging 
stage are set to 4.0 and 2.0 V, respectively. The cut-off current during 
constant-voltage (CV) stage is set to 0.05C, where 1C is equal to 1.5 A. A 
dataset including 48 LIBs was generated, including 6 groups and each 

Fig. 1. The evolution of SoH of an LFP/graphite battery. (a) The current-time curve and its corresponding voltage-time response with highlighted shallow CC 
charge and CC discharge domain in the first full charge-discharge cycle under CC–CV mode (2.5C-3.0D); (b) The SoH vs cycle number curve, in which the color bar 
denotes cycling history; The voltage-time plots during charging (c) and discharging (d) at different cycles. 
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applied with the same charge and discharge profile. The 6 charge- 
discharge profiles are set with different CC (dis)charge rates, what are 
detailed in Table 1. 

With the CC–CV charge and discharge (2.5C-3.0D) applied to an 
LFP/graphite battery, the current-time curve in the first cycle is what we 
see in Fig. 1a. With cycling proceeding, the delivered capacity exhibits 
an apparent decay (see Fig. 1b), suggesting the SoH degradation. 
Extracting the corresponding voltage-time curves from the charge 
(Fig. 1c) and discharge (Fig. 1d) at different cycles, it can be seen that 
the time in the CC charge and CC discharge stages are greatly shortened 

with cycling, indicating a more prominent voltage-changing (discharg-
ing) rate at higher cycle numbers. 

3. Modelling 

Fig. 1 shows the response of a battery subject to full CC–CV charge 
and discharge cycle. We are interested in utilizing the voltage change in 
time during CC charge and CC discharge stages, and proceed to show 
how we may evaluate SoH from the voltage-time curves during both CC 
charging and CC discharging processes but with a shallow (dis)charging 
strategy, as illustrated in Fig. 1a. 

3.1. SoH-ΔSoC evolution during discharging 

To depict the SoH degradation from the voltage-time curves at CC 
discharge stages, we examine the variation of time Δt (equivalently ΔSoC 
through ΔSoC = CΔt where C means (dis)charge rate in the CC stage) for 
a given voltage drop (ΔV) in the voltage-time curves at different cycles, 
as illustrated in Fig. 2a. One may think of different ways to determine 
the starting voltage Vs in a discharge curve. We adopt a correlation 
analysis based on the spearman coefficient ρ [58] to indicate the sta-
tistical dependence of SoH on ΔSoC for a variety of combinations of ΔV 

Table 1 
The charge-discharge settings of the six groups of LIBs. In each group, there 
are eight batteries which were tested with the same charge and discharge profile 
listed here.  

Group No. Charge-Discharge Profiles Abbreviations 

1 1.0C charge – 3.0C discharge 1.0C-3.0D 
2 1.5C charge – 3.0C discharge 1.5C-3.0D 
3 2.0C charge – 3.0C discharge 2.0C-3.0D 
4 2.5C charge – 3.0C discharge 2.5C-3.0D 
5 2.0C charge – 2.0C discharge 2.0C-3.0D 
6 2.5C charge – 2.5C discharge 2.5C-2.5D  

Fig. 2. The SoH-ΔSoC evolution rule during discharging in the total cycle-life of the batteries, cycled with CC–CV mode (2.5C-3.0D). (a) The voltage-(1-SoC) 
plots during the 3C CC discharge stages at different indicated cycles. The light blue color region marks the selected voltage window for SoH-ΔSoC correlation analysis; 
(b) The spearman correlation coefficient image between SoH and ΔSoC with different voltage window (ΔV,Vs); (c) The SoH-(1 − ΔSoC) plots using the voltage window 
ΔV = 0.3,Vs = 3.3; (d) The dSoC/dV-voltage curves at different cycles. 
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and Vs. As seen from Fig. 2a, for each Vs and ΔV, the ΔSoC can be read at 
the voltage (ΔV, Vs). We have SoH,j and ΔSoC,j from a voltage-time curve 
at the j-th cycle. After converting (ΔSoC,j) and (SoH,j) to ranks R(ΔSoC,j)

and R(SoH,j), we define dj the difference between the two ranks, dj =

R(ΔSoC,j) − R(SoH,j). The Spearman correlation coefficient ρ can be 
computed using the formula below 

ρ = 1 −
6
∑n

j=1

(
dj
)2

n(n2 − 1)
, (1)  

where n is the total number of cycles, which is battery-specific. Note that 
ρ ranges from − 1 to 1, where ρ = 1, 0, and − 1 indicate a perfect positive 
association of ranks, no association of ranks, and a perfect negative as-
sociation between ranks, respectively. 

The correlation between SoH and ΔSoC, with different voltage win-
dows (ΔV,Vs) from the voltage-(1-SoC) curve at the 3C CC discharge rate, 
is then examined. As seen in Fig. 2b, a strong positive association be-
tween SoH and ΔSoC is found at the initial discharging process (3.2 to 
2.9 V). As the selected voltage window slides down to lower voltages, 
the correlation reduces and disappears (ρ becomes negative as the 
voltage drops from 2.9 to 2.5 V). Taking the sliding voltage window ΔV 
= 0.3,Vs = 3.3 as an example, see the SoH-(1 − ΔSoC) curve in Fig. 2c, a 
strong correlation is indicated between SoH and ΔSoC: SoH firstly 

decreases proportionally with decreasing ΔSoC at the initial degradation 
stage, and then followed by a nonlinear degradation as ΔSoC reduces 
further. 

The incremental capacity (IC) curve, calculated as the derivative of 
SoC with respect to voltage (dSoC/dV vs. V), is commonly applied to 
reveal characteristic peaks associated with different chemical reaction 
processes. The peak features in IC curves, including the amplitude, area, 
and peak shifts, may change with battery cycling, which can be applied 
for SoH analyses [49]. Fig. 2d shows the IC curves at different cycles 
extracted from the tested voltage vs. (1-SoC) curves (Fig. 2a). Often there 
are two peaks on the IC curves at an early degradation stage (marked by 
the solid black arrow in Fig. 2d), and the intensity of the two peaks decay 
with cycling. At this stage, there is a strong linear correlation between 
SoH and 1 − ΔSoC, as demonstrated in Fig. 2c. Further cycling leads to 
accelerated degradation, as exemplified by the significant intensity 
decay and position offset of Peak 1 to the lower end voltage (marked by 
the dashed black arrow in Fig. 2d). Peak 2 becomes invisible at this 
stage. The accelerated degradation regime on IC curves in Fig. 2d refers 
perfectly to the nonlinear SoH-ΔSoC evolution period shown in Fig. 2c. 

3.2. SoH-ΔSoC evolution during charging 

The SoH-ΔSoC correlation is also present at the CC charge stages, as 

Fig. 3. The SoH-ΔSoC evolution rule at the charge stage in the total life cycle of the batteries, cycled with CC–CV mode (2.5C-3.0D). (a) The voltage-SoC 
evolution curve during the 2.5C CC charge stages at different indicated cycles; (b) The spearman correlation coefficient image between SoH and ΔSoC with different 
(ΔV,Vs) conditions; (c) The SoH-(1 − ΔSoC) correlation plot with the voltage window (ΔV = 0.3,Vs = 3.3); (d) The dSoc/dV-voltage curves at different cycles. 
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shown in Fig. 3. By choosing a voltage window (the light blue color 
marked region in Fig. 3a) and sliding along the voltage-time curves from 
low voltage to high voltage, we show in Fig. 3b the Spearman coefficient 
ρ between SoH with ΔSoc. A strong correlation is indicated at the initial 
charge stage with low voltages. Fig. 3c shows the SoH-ΔSoC relationship 
with a suitable voltage window of ΔV = 0.3,Vs = 3.3, a linear evolution 
is observed for SoH to 0.5. In the linear SoH-ΔSoc evolution stage, Peak 1 

shows an intensity reduction and position offset to the higher voltage 
end (marked by the solid black arrow in Fig. 3d). Progressive decay in 
SoH, as seen in Fig. 3c, may be identified by the leveled-out intensity 
Peak 1, as indicated by the dashed blue arrow in Fig. 3d. 

Our sliding voltage window method is further validated with another 
experimental dataset of 8 Kokam pouch batteries (SLPB 533459H, 
0.74Ah nominal capacity) with a mixed positive electrode of lithium 

Fig. 4. Validation of the SoH-ΔSoC model during CC charging by the pouch LIBs. The exploited dataset includes eight Kokam pouch batteries from Birkl et al. [59, 
60]. (a) The voltage-SoC evolution curves during the 1C CC charge stages at different cycles; (b) The SoH-(1-ΔSoC) relationship with the sliding voltage window (ΔV =
0.2,Vs = 3.8) at the 1C charge rate. . 

Fig. 5. The linear SoH-ΔSoC evolution. (a) The linear SoH-ΔSoC evolution of LIBs with different CC charge and CC discharge rates (Markers: experimental results; 
Solid lines: fitting results). Distributions of (b) k and (c) ΔS1

oC from linear fitting results. (d) The fitting errors of each battery in a dataset of 48 batteries are examined. 
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cobalt oxide and lithium nickel cobalt oxide, and graphite as negative 
electrode material [59,60]. The pouch batteries were cycled with two 
different types of charge and discharge profiles (the 
dynamic-driving-profile and the characterization cycles) at 40 Co. The 
dynamic-driving-profile is composed of a 2C (1C corresponds to 0.74 A) 

CC charge and the Artemis urban drive cycle with an average discharge 
current of 1.36 A [61]. After each 100 dynamic-driving-profile cycles, a 
characterization cycle is then employed with the 1C CC charge and 
discharge. Fig. 4a shows the voltage-SoC curves during charging at 
different characterization cycles. For the SoH-(1-ΔSoC) correlation 

Fig. 6. Application by utilizing the linearity of SoH-ΔSoC for SoH prediction. (a-f) The linear SoH-ΔSoC evolution of LIBs with different charge and discharge rates 
(blue points: predicted SoH evolution; black solid lines: experimental results; red points: certain test points from experiments). (g) The errors of our prediction errors 
for the 48 batteries. 
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evaluation, a voltage window (ΔV = 0.2,Vs = 3.8), in the 1C CC charge 
stage (light blue color marked region in Fig. 4a), is employed. We show 
in Fig. 4b the SoH-(1-ΔSoC) evolution curves of the 8 Kokam batteries. 
The SoH-(1-ΔSoC) evolution pattern is in concerted with what we 
demonstrated in Figs. 2c and 3c. 

3.3. Linear SoH-ΔSoC relationship 

A total of 48 LISHEN LFP/graphite LIBs with 6 different charge- 
discharge rates are then employed for cycling performance check. The 
linear evolution stage of the SoH-ΔSoC relationship is then extracted from 
voltage-time curves at CC discharge stages. The cut-off condition of the 
linear SoH-ΔSoC evolution rule is set to an offset voltage of Peak 1 of 0.3% 
in IC curves, deviating from the initial voltage position. The extracted 
linear SoH-ΔSoC evolution stage of the total 48 batteries falls primarily 
within the region SoH>0.75 (Fig. 5a), which is the typical working 
condition as the first-life of LIBs with high reliability [62]. We then 
define the linear SoH-ΔSoC relationship as 

SoH = 1 + k
(
ΔSoC − ΔS1

oC

)
, (2)  

where k reflects the degradation slope and ΔS1
oC is the extrapolated 

interception at SoH = 1. 
The SoH-ΔSoC curves from a broad variety of charging rates, as seen in 

Fig. 5a, suggest the robustness of the linear degradation characterized by 
k and ΔS1

oC. The histograms of k and ΔS1
oC are shown in Fig. 5b and 

Fig. 5c, respectively. It can be seen that the slope k is insensitive to the 
CC charge and CC discharge rates, at least within our exploration with 
48 cells. The trend of ΔS1

oC is evident, it increases as decreasing discharge 
rate, as shown in Fig. 5c. 

The linearity of SoH-ΔSoC is crucial to the SoH estimation. We now 
demonstrate that this feature can be utilized to assess SoH by adopting 
shallow (dis)charging. We define both commonly used error criteria to 
evaluate the linearity as the Maximum Error (ME), ME = max

i=1,2,…,n
(yi − ŷi)

and the Mean Absolute Error (MAE), MAE = 1
n
∑n

i=1
⃒
⃒yi − ŷi

⃒
⃒. Here yi and 

Fig. 7. Validation of the SoH-ΔSoC linearity from the 4C CC discharge stages in a dataset including 45 A123 LFP/graphite batteries from Attia et al. [63]. (a) 
The SoH-(1-ΔSoC) plots with the voltage window (ΔV = 0.3,Vs = 3.3). (b) The dSoC/dV-voltage curves at different cycles from one battery of the indicated dataset. (c) 
The fitting error on SoH of each battery in comparison with the extracted one from the linear SoH-ΔSoC relationship. 
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ŷi are observed and fitted SoH, respectively, and n is the total number of 
the tested SoH. The fitting errors of 48 batteries are shown in Fig. 5d. We 
can see that the fitted MEs of SoH range from 0.4% to 1.4% in the 48 
batteries, and the MAEs are smaller by 0.5%. 

We then predicted the SoH evolution of the 48 batteries based on k 
and ΔS1

oC. Fig. 6a-f show the comparison between experimentally 
measured (black solid lines) and predicted SoH (blue points). For the 
SoH prediction, accompanied with a drop of SoH up to 0.04 (red points), 
the k value was then corrected once to improve accuracy. In engineering 
practice, for example in electrical vehicles, the parameter correction 
process can be performed during the annual maintenance of vehicles. 
The predictability of our model for the 48 batteries is shown in Fig. 6g. 
We can see that the ME of SoH ranges from 0.5% to 2% in the 48 bat-
teries, and the MAE is within 0.7%, which are comparable to fitting 
results shown in Fig. 5d. The efficacy of the model demonstrated 
through Fig. 6 highlights the robust predictability when employing the 
linear SoH-ΔSoC relationship for SoH estimation. 

We further validated the SoH-ΔSoC linearity by another dataset of a 
total 45 LIBs [63] with the LFP cathode and the graphite anode (A123, 
1.1Ah nominal capacity). The 45 A123 LIBs were cycled with the same 
discharging profiles using 4C (1C=1.1A) CC discharge rate till 2 V CV 
mode with a 1/50C cut-off current. We show in Fig. 7 the SoH-ΔSoC 
evolution by applying the voltage window (ΔV = 0.3,Vs = 3.3) to the 
4C discharge voltage-time curve. A strong correlation between SoH and 
ΔSoC can also be found in Fig. 7a. Different from the SoH-ΔSoC rela-
tionship shown in Fig. 2c (LISHEN LFP/graphite batteries), a nonlinear 
evolution occurs in the initial stage, predominantly when SoH>0.93, 
and followed by a linear evolution until SoH=0.7. Two different evo-
lution stages from the IC curves are shown in Fig. 7b: for the two peaks 
shown in the IC curves, and the intensity of peak 1 reduces at the initial 
nonlinear stage and disappears by the end. In contrast, the magnitude of 
Peak 2 drops proportionally with cycling in the linear SoH-ΔSoC region. 
The linearity of the evolution stage is then examined for each battery in 
the dataset composing 45 A123 batteries (Fig. 7c). The fitted ME of SoH 
ranges from 0.4% to 2.0%, and the MAE is smaller by 0.5%. The ME, 
based on SoH measured against SOH predicted, ranges from 0.4% to 2% 
in the 48 batteries, and the MAE is even smaller and within 0.7%. In 
comparison with the error results from other SoH estimation models 
[25], the proposed model can give more competitive SoH estimation on 
accuracy. Applications of our model to data from two independent 
studies (Figs. 5 and 7) indicate its efficiency and capability for 
generalization. 

4. Cycle-life property evaluated by the linear SoH-ΔSoc indexes 

We analyze the correlation between the linear SoH-ΔSoC evolution 
and the cycle life of batteries. A total of 32 LISEHN LFP/graphite bat-
teries with the same 3C discharge rate (constant current) and four 
different charge rates (Groups 1 to 4 described in Table 1) are employed 
to extract the linear SoH-ΔSoC evolution (see Fig. 5a). The average 
degradation rate of SoH, defined by dSoH/dN, may then serve the pur-
pose of indicating cycle-life property of LIBs. Since the linear SoH-ΔSoC 
evolution of LIBs is within their serving status of high reliability, e.g., for 
electric vehicle batteries, SoH>0.8, we show in Fig. 8a the correlation 
between dSoH/dN and the cycle-life N80 – the cycle number till SoH 
degrades to 0.8. The tight negative correlation between dSoH/dN and N80 
indicates that the batteries with the lower dSoH/dN would exhibit better 
cycle-life properties. 

The correlations of dSoH/dN with k and ΔS1
oC are shown in Fig. 8b and 

8c, respectively. The dSoH/dN vs. k plots, shown in Fig. 8b, indicate 
positive correlation for the same (dis)charging profile. In particular, the 
strongest positive correlation between dSoH/dN and k in Fig. 8b occurs 
when 1.0C charge rate was applied, where its degradation rate of SoH is 
the lowest among the four (dis)charging profiles investigated here. We 
then check the correlation between dSoH/dN and the extrapolated 
interception ΔS1

oC. The correlation between dSoH/dN and ΔS1
oC is shown 

in Fig. 8c, indicating a negative correlation. Results shown in Fig. 8 then 
suggest that the batteries with lower k and greater ΔS1

oC would have 
better cycling performance. As a corollary, both k and ΔS1

oC may be 
adopted as auxiliary parameters, in addition to SoH, to further differ-
entiate the remaining life of batteries with close SoH. 

5. Conclusion 

Through experimental investigations and theoretical analyses by 
taking a sliding voltage window in the constant-current (dis)charge 
voltage-time curve of LIBs, we explored the correlation between SoH 
and the incremental SoC (ΔSoC): In commonly reliable SoH operation, 
the ΔSoC and the SoH follow a linear relationship within a suitable 
voltage region. The linearity of SoH-ΔSoC is also validated through ex-
periments with different battery types and manufacturers, and source 
data from different groups. Such a linearity between SoH-ΔSoC, as char-
acterized by two core indexes (the slope k and the extrapolated inter-
ception ΔS1

oC), can then be employed to estimate the SoH of LIBs during 
onward cycling, by adopting shallow (dis)charge. 

By virtue of the linearity between SoH-ΔSoC, we may acquire 
sequential evaluation for SoH of LIBs in onward cycling by adopting 

Fig. 8. The correlation analyses between linear SoH-ΔSoC evolution performance and cycle-life of the 32 LISHEN LFP/graphite batteries. (a) The dSoH 

/dN-N80 (N80: total cycle number till SoH descending to 0.8), (b) dSoH/dN-k and (c) dSoH/dN-ΔS1
oC plots under charge rates 1.0C, 1.5C, 2.0C, and 2.5C, but the same 

3C discharge rate. (Symbols: experimental data; Solid lines: linear fitting). 
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shallow (dis)charge. In comparison with existing proposals to charac-
terize SoH of LIBs [23–27], we find the following features makes this 
proposal a distinct one: (1) Our strategy of estimating SoH is applicable 
to both the commonly applied CC charge and CC discharge profiles in 
engineering, with no restriction to (dis)charging rates; (2) The method is 
simple and easy to be implemented since the input is voltage – time 
curve at even shallow (dis)charging; (3) The method is robust in terms of 
efficacy and accuracy for SoH evaluation regardless of the quality of 
voltage – time curve, which makes the method fit to quick assessment, in 
less than a few minutes. 

In conclusion, we report in this paper a practicable SoH estimation 
model for LIBs, which after the initial two to three full cycles of charge- 
discharge, we may evaluate with high fidelity the SoH based on partial 
charge and discharge segment method. The proposed SoH estimation is 
quick and non-destructive, and could be applied to monitor the health of 
commercial LIBs in service. 
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