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A B S T R A C T

A full self-consistent model (FSCM) of the axisymmetric adhesive contact between a rigid
punch with an arbitrary surface shape and a power-law graded elastic half-space is developed.
The self-consistent equation between the surface gap and the surface interaction (e.g., the
Lennard–Jones force law) involves a nonlinear singular integral, posing a great challenge
to numerical calculations. By applying the properties of Gauss’s hypergeometric function,
the integral singularity is eliminated in the numerical calculation through Riemann–Stieltjes
integral. Case studies for power-law punch profiles are performed and the self-consistent
equation can be expressed in a dimensionless form with three dimensionless parameters, namely
a shape index, a gradient exponent, and a new generalized Tabor number. The FSCM results
are obtained by solving the self-consistent equation through the surface central gap control
method and Newton–Raphson iterative method. For large generalized Tabor numbers, the force–
displacement curves are ‘S-shaped’ and condense to the extended JKR limit in the high-load
branch. As the generalized Tabor number decreases, a continuous transition from the extended
JKR model to the Bradley model for the adhesion of power-law graded materials is obtained. It
is found that the pull-off force of a graded material usually depends on the three dimensionless
parameters, but for some cases of the shape index, it is not sensitive to the gradient exponent
when the generalized Tabor number is fixed. Asymptotic solutions are derived to predict the
unstable jump points, which coincide well with the FSCM predictions. The FSCM is applied to
validate the extended Maugis–Dugdale (M–D) model of graded materials and it is found that the
accuracy of the original M–D-𝑛-𝑘 model using the maximum strength condition to determine
the cohesive stress is limited. By introducing the rigid-limit-consistency condition of the pull-off
force to determine the cohesive stress, the M–D-𝑛-𝑘 model is improved and its predictions show
good consistency with the FSCM results.

. Introduction

Surface adhesion exists extensively in biological systems and plays an important role in micro/nanoscopic contact mechan-
cs (Arzt et al., 2003; Gao and Yao, 2004). Previous studies on some biological adhesion systems, e.g., gecko toes and spider hair,
ave shown that graded materials may have better adhesion properties in terms of robustness (flaw-tolerance) and stability than
omogeneous ones (Yao and Gao, 2007; Flenner et al., 2020; Dong et al., 2020). In the framework of continuum mechanics, several
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simplified theoretical models have been developed to characterize the adhesive contact behavior of graded materials (Giannakopou-
los and Pallot, 2000; Chen et al., 2009a,b; Jin et al., 2013, 2021). However, with the rapid development of bio-inspired material
design and fine surface measurement techniques, high expectations have been raised for the accuracy and applicability of adhesive
contact models.

The adhesive behavior of homogeneous solids has been well characterized in several contact models. The Hertz theory (Hertz,
882) pioneered contact mechanics, while the Bradley model (Bradley, 1932) first introduced the adhesion between two rigid
pheres. In the 1970s, two elastic adhesive contact models, namely the Johnson–Kendall–Roberts (JKR) model (Johnson et al.,
971) and the Derjaguin–Muller–Toporov (DMT) model (Derjaguin et al., 1975) were proposed. Due to the difference in predicting
he maximum adhesive force (pull-off force), these models have caused intense debate. In fact, there is a transition of pull-off force
ssociated with a dimensionless parameter, known as the Tabor number (Tabor, 1977)

𝜇 =

(

𝑅𝛥𝛾2

𝐸∗2𝑧30

)1∕3

, (1)

here 𝑅 is the sphere radius, 𝛥𝛾 is the interface energy per unit area, 𝑧0 is the characteristic length of the surface interaction range,
nd 𝐸∗ is the equivalent elastic modulus of a homogeneous solid. The JKR model is suitable for large Tabor numbers (soft material
nd strong adsorption), while the DMT/Bradley model is appropriate for small Tabor numbers (hard material and weak adsorption).
his JKR–Bradley transition was successfully characterized by a full self-consistent model (FSCM) (Hughes and White, 1979; Muller
t al., 1980; Greenwood, 1997; Feng, 2000). The FSCM adopts a self-consistent relationship between the surface interaction and gap,
aking it the most accurate model of adhesive contact in the framework of continuum mechanics. Another form of the transition

f pull-off force, known as the JKR–DMT transition, was derived from the Maugis–Dugdale (M–D) model (Maugis, 1992), with the
augis number being the transition parameter, defined as

𝜆 = 𝜎0

(

9𝑅
2𝜋𝛥𝛾𝐸∗2

)1∕3
, (2)

where 𝜎0 is the cohesive stress. In the M–D model, the cohesive stress was usually considered to be equal to the theoretical
stress (Maugis, 1992). This strategy is somewhat arbitrary and may greatly affect the prediction accuracy of the model. An alternative
strategy to determine the value of the cohesive stress, namely the rigid-limit-consistency condition, was introduced by Zheng and Yu
(2007b) when extending the M–D model to an arbitrary power-law profile, denoted as the M–D-𝑛 model with 𝑛 being the shape
ndex. The M–D-𝑛 model was recovered by using a harmonic potential function method (Zhou et al., 2011), and was validated by
inite element simulation and experimental results (Grierson et al., 2013).

The great success of the above adhesive models in dealing with the contact problems of homogeneous materials encourages
esearchers to apply them to understand the adhesion of graded materials. Among various kinds of graded materials, the materials
ith Young’s modulus dependent on depth according to a power law, namely the power-law graded materials, have received great
ttention due to the convenience of theoretical analysis. The fundamental solutions of this type of material under point, line, and
ing loadings were reported by Booker et al. (1985a,b). The Hertz solutions of the contact between axisymmetric rigid indenters
nd the power-law graded materials were presented by Giannakopoulos and Suresh (1997a,b). These solutions shed light on the
tudy of adhesive contact of power-law graded solids.

Based on the above fundamental solutions, a frictionless JKR model of power-law graded materials, namely the JKR-𝑘 model
ith 𝑘 being the gradient exponent of Young’s modulus, was developed for the plain strain (Giannakopoulos and Pallot, 2000; Chen
t al., 2009a) and axisymmetric (Chen et al., 2009b) adhesive contact problems. The JKR-𝑘 model was further extended to the
on-slipping cases (Jin and Guo, 2010, 2012; Guo et al., 2011) and the rough surface cases (Jin and Guo, 2013; Jin et al., 2016). Li
nd Popov (2018) adopted a boundary element method and used an energy balance condition identical to the JKR theory to study
he adhesion of power-law graded materials. It is expected that all these JKR-type models are valid only for soft material and strong
dsorption.

In response to the limitation of JKR-type models, Jin et al. (2013) extended the classical double-Hertz model developed
y Greenwood and Johnson (1998) and predicted the JKR–DMT transition of power-law graded materials. In addition, Willert
2018) applied the method of dimensionality reduction to the adhesive contact of power-law graded materials and obtained the
–D solutions of arbitrary surface shapes, namely the M–D-𝑘 model. Recently, Jin et al. (2021) adopted another method based on

he principle of superposition to derive the M–D-𝑘 model, and they applied the M–D-𝑘 solutions to the special case of power-law
unch profiles and obtained the M–D-𝑛-𝑘 model. It should be noted that there is an apparent difference in the force–displacement
urves as well as the pull-off forces when comparing the M–D-𝑛-𝑘 and finite element results, as shown in Figs. 5 and 6 of Jin et al.
2021). This indicates that the M–D-𝑛-𝑘 model is not accurate enough and needs to be improved.

This study aims to establish a much accurate adhesive contact model for the power-law graded materials and apply it to verify
he M–D-𝑛-𝑘 model. In Section 2, an FSCM for the power-law graded materials is established and the corresponding numerical
alculation procedure is provided. In Section 3, the main results of the FSCM, including the force–displacement curves, the JKR–
radley transition, the jumping-in/out instabilities, the surface deformation, and the pressure distribution, are analyzed. In Section 4,
he M–D-𝑛-𝑘 model is validated and improved. Conclusions are presented in Section 5.
2
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Fig. 1. Schematic representation of the frictionless adhesive contact between an axisymmetric rigid punch and a power-law graded elastic half-space.

2. Theoretical modeling and numerical calculation

2.1. A full self-consistent model

The frictionless adhesive contact between an axisymmetric rigid punch with its surface shape described by 𝑓 (𝑟) and a power-law
graded elastic half-space is considered, as shown in Fig. 1. The power-law graded elastic material is usually assumed to have a
constant Poisson’s ratio 𝜈 and a Young’s modulus 𝐸 varying with depth 𝑧 according to (Booker et al., 1985a,b; Giannakopoulos and
Suresh, 1997a,b)

𝐸 = 𝐸0
(

𝑧∕𝑐0
)𝑘, 0 < 𝑘 < 1, (3)

where 𝐸0 is the reference modulus, 𝑐0 is the characteristic depth and 𝑘 is the gradient exponent. During contact, the gap between
the punch and the half-space at radius 𝑟 is given by

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +𝑤(𝑟), (4)

where 𝛿 denotes the relative displacement of distant points in the two objects and 𝑤(𝑟) is the surface deformation of the power-law
graded elastic half-space.

For a determined interface pressure distribution 𝑝(𝑟), the surface deformation 𝑤(𝑟) can be calculated by

𝑤(𝑟) = ∫

∞

0
𝑝(𝑡)𝑤u(𝑟, 𝑡) d 𝑡, (5)

where 𝑤u(𝑟, 𝑡) is the surface displacement under a ring loading with an intensity of unit pressure per unit length at the circle of 𝑟 = 𝑡
(the subscript u represents ‘unit’). The analytical solution of 𝑤u(𝑟, 𝑡) for the power-law graded material has been derived by Booker
et al. (1985b), written as

𝑤u(𝑟, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝑏𝑐𝑘0
𝐸∗𝑡𝑘 2F1(

𝑘 + 1
2

, 𝑘 + 1
2

; 1; 𝑟
2

𝑡2
), 0 ≤ 𝑟 < 𝑡

2𝑏𝑡𝑐𝑘0
𝐸∗𝑟𝑘+1 2F1(

𝑘 + 1
2

, 𝑘 + 1
2

; 1; 𝑡
2

𝑟2
), 𝑟 ≥ 𝑡

(6)

where 2F1(⋅) is the Gauss’s hypergeometric function (its definition and some properties are given in Appendix A, and some inferences
are derived in Appendices B and C), 𝐸∗ = 𝐸0∕(1 − 𝜈2) is the equivalent elastic modulus and 𝑏 is a parameter defined as

𝑏 =
2𝑘+1 (𝑘 + 2) 𝑞 sin(𝑞𝜋∕2)
𝑘 (𝑘 + 1)B(𝑘∕2, 1∕2)

B(
3 + 𝑘 + 𝑞

2
,
3 + 𝑘 − 𝑞

2
), 𝑞 =

√

(1 + 𝑘)
(

1 − 𝑘𝜈
1 − 𝜈

)

, (7)

in which B(⋅) is the Euler’s beta function. The piecewise functions in Eq. (6) are inconvenient for numerical calculation. It is
interesting to find that the piecewise functions can be rewritten as a unified formula by using the Kummer’s quadratic transformation
formulas (see Appendix B)

𝑤u(𝑟, 𝑡) =
2𝑏𝑡𝑐𝑘0

𝐸∗(𝑟 + 𝑡)𝑘+1
2F1(

𝑘 + 1
2

, 1
2
; 1; 4𝑟𝑡

(𝑟 + 𝑡)2
). (8)

The Derjaguin approximation (Derjaguin, 1934; Greenwood, 1997, 2007, 2009) is adopted to describe the interface interaction,
which assumes that the force between two curved and inclined surfaces is identical to that between two plane and parallel surfaces
3
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and its value depends on the local surface gap, i.e.,

𝑝(𝑟) = 𝑝s(𝐻(𝑟)). (9)

If the 12–6 Lennard–Jones (L–J) potential is adopted between any two atoms, the interface interaction between two flat and parallel
homogeneous half-space is given by Barber (2018)

𝑝s(𝐻) =
8𝛥𝛾
3𝑧0

[

(

𝐻
𝑧0

+ 1
)−9

−
(

𝐻
𝑧0

+ 1
)−3

]

, (10)

here 𝛥𝛾 is the interface energy per unit area and 𝑧0 is the characteristic length of the surface interaction range. For graded materials,
he interface interaction may not be expressed in an analytical form and should be determined from molecular dynamics simulation
r experimental tests. For simplicity, the 9–3 force law is taken as an example in the present study to approximately describe the
nterface interaction of power-law graded materials, which has also been used in finite element simulation (Jin et al., 2013, 2021).
ore accurate force law can also be considered and the entire analytical framework in this study remains valid for power-law graded
aterials. In the Derjaguin approximation, the interface interaction is assumed to be along the axial direction, and the radial traction

s ignored (Greenwood, 2009). Then, the total applied load 𝑃 can be given by

𝑃 = ∫

∞

0
𝑝s(𝐻(𝑟))2𝜋𝑟 d 𝑟. (11)

Substituting Eqs. (5), (8) and (9) into Eq. (4) yields the self-consistent equation for the adhesive contact of the power-law graded
lastic materials

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +
2𝑏𝑐𝑘0
𝐸∗ ∫

∞

0
𝑝s(𝐻(𝑡)) 𝑡

(𝑟 + 𝑡)𝑘+1
2F1(

𝑘 + 1
2

, 1
2
; 1; 4𝑟𝑡

(𝑟 + 𝑡)2
)d𝑡. (12)

For the full self-consistent model, the great challenge is to solve this nonlinear relation involved with integral singularity.
In the limit of 𝑘 → 0, we have 𝑏 = 1 and (see Appendix A)

2F1(
1
2
, 1
2
; 1; 4𝑟𝑡

(𝑟 + 𝑡)2
) = 2

𝜋
K(

2
√

𝑟𝑡
𝑟 + 𝑡

), (13)

and Eq. (12) can be reduced to

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) + 4
𝜋𝐸∗ ∫

∞

0
𝑝s(𝐻(𝑡)) 𝑡

𝑟 + 𝑡
K(

2
√

𝑟𝑡
𝑟 + 𝑡

)d𝑡, (14)

where K(⋅) denotes the complete elliptic integral of the first kind. Eq. (14) is the classical self-consistent equation for the adhesion
of homogeneous solids used in the extensive literature (Muller et al., 1980; Greenwood, 1997; Feng, 2000; Zheng et al., 2007; Zhu
et al., 2021).

2.2. Singularity elimination method

The adhesive contact solutions of power-law graded elastic materials can be acquired by solving the nonlinear integral equation
(Eq. (12)) numerically. But, there is a tough flaw that the Gauss’s hypergeometric function 2F1(⋅) in Eq. (12) is singular at 𝑡 = 𝑟.
This integral singularity may reduce the accuracy of numerical integration. When solving the reduced equation corresponding to
homogeneous material, i.e., Eq. (14), Muller et al. (1980) and Attard and Parker (1992) did not discuss the singular point, Greenwood
(1997) and Papangelo and Ciavarella (2020) dealt with the singular point through the overlapping triangles method, and Feng (2000)
considered the singular point through approximate integral. However, these approximations may limit the accuracy of numerical
integration and the efficiency of numerical solving.

In contrast to the approximate methods, Zheng et al. (2007) developed an exact method to deal with the integral singularity in
the adhesion problem of homogeneous material. The primitive function of K(⋅) was introduced and the integral singularity at 𝑡 = 𝑟
is avoided (see Appendix D), which was also adopted in our recent work (Zhu et al., 2021). A function with respect to 𝑠 is given
by (Zhu et al., 2021; Zheng et al., 2007)

𝛷0(𝑠) =
1
𝜋

[

(𝑠 − 1)K(
2
√

𝑠
1 + 𝑠

) + (1 + 𝑠) E(
2
√

𝑠
1 + 𝑠

)

]

, (15)

and its derivative is written as

d𝛷0(𝑠)
d 𝑠

= 2𝑠
𝜋(1 + 𝑠)

K(
2
√

𝑠
1 + 𝑠

), (16)

where the subscript 0 represents the homogeneous material (𝑘 = 0), and E(⋅) denotes the complete elliptic integral of the second
ind. By using Eqs. (15) and (16) with 𝑠 = 𝑡∕𝑟, Eq. (14) can be rewritten as

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) + 2𝑟 𝑡=∞
𝑝s(𝐻(𝑡))d𝛷0(𝑡∕𝑟). (17)
4
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Fig. 2. (a) The function 𝛷𝑘(𝑠) and its derivative 𝛷′
𝑘(𝑠) and (b) the function 𝛹𝑘(𝑠) for some values of gradient exponent 𝑘.

In numerical calculation, applying the Riemann–Stieltjes integral method to Eq. (17) can avoid the issue of integral singularity (Zheng
et al., 2007; Zhu et al., 2021).

Inspired by the strategy used in the adhesion problems of homogeneous material (Zheng et al., 2007; Zhu et al., 2021), we can
derive a new function 𝛷𝑘(𝑠) via rigorous mathematical derivation to avoid the integral singularity at 𝑡 = 𝑟 for power-law graded
elastic materials, given by (see Appendix E)

𝛷𝑘(𝑠) =
1

2(1 + 𝑠)𝑘

[

(𝑠 − 1) 2F1(
𝑘 + 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
) + (1 + 𝑠) 2F1(

𝑘 − 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
)
]

. (18)

he derivative of 𝛷𝑘(𝑠) with respect to 𝑠 can be derived as (see Appendix E)
d𝛷𝑘(𝑠)
d𝑠

=
(1 − 𝑘) 𝑠
(1 + 𝑠)1+𝑘

2F1(
𝑘 + 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
). (19)

The newly defined function 𝛷𝑘(𝑠) (Eq. (18)) and its derivative 𝛷′
𝑘(𝑠) (Eq. (19)) are plotted in Fig. 2(a) for several special values of 𝑘.

It is shown that 𝛷′
𝑘(𝑠) is singular at 𝑠 = 1, but 𝛷𝑘(𝑠) is a continuous function with respect to 𝑠 for any case of 0 ≤ 𝑘 < 1. Additionally,

it can be seen from Fig. 2(a) that 𝛷′
𝑘(𝑠) becomes sharper around the point 𝑠 = 1 with the increase of 𝑘. Hence, using an approximate

method to deal with the integral singularity may cause a larger numerical error for power-law graded elastic materials (0 < 𝑘 < 1)
compared with the homogeneous one (𝑘 = 0). By using Eq. (19) with 𝑠 = 𝑡∕𝑟, Eq. (12) can be rewritten as

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +
2𝑏𝑐𝑘0 𝑟

1−𝑘

𝐸∗(1 − 𝑘) ∫

𝑡=∞

𝑡=0
𝑝s(𝐻(𝑡))d𝛷𝑘(𝑡∕𝑟). (20)

Definitely, the integral singularity for any case of 0 < 𝑘 < 1 can also be avoided.
Here, we make some discussion on the case of 𝑟 = 0, which leads to 𝑡∕𝑟 → ∞ and 𝛷𝑘(𝑡∕𝑟) → ∞ when 𝑡 > 0. There is no need to

consider the case of 𝑡 → ∞, because in this case 𝑝s(𝐻(𝑡)) approaches zero quickly. It is noticed that 2F1(𝛼, 𝛽; 𝛾; 4𝑠∕ (1 + 𝑠)2) → 1 as
𝑠 → ∞ for arbitrary parameters 𝛼, 𝛽 and 𝛾, and for the case of a finite value of 𝑡 and 𝑟 → 0, 𝛷𝑘(𝑡∕𝑟) follows an asymptotic behavior

𝛷𝑘(𝑡∕𝑟) ∼ (𝑡∕𝑟)1−𝑘. (21)

Thus, we introduce another function 𝛹𝑘(𝑠), defined as

𝛹𝑘(𝑠) = 𝛷𝑘(𝑠) − 𝑠1−𝑘, (22)

and then Eq. (20) can be rewritten as

𝐻(𝑟) = −𝛿 + 𝑓 (𝑟) +
2𝑏𝑐𝑘0 𝑟

1−𝑘

𝐸∗(1 − 𝑘) ∫

𝑡=∞

𝑡=0
𝑝s(𝐻(𝑡))d𝛹𝑘(𝑡∕𝑟) +

2𝑏𝑐𝑘0
𝐸∗(1 − 𝑘) ∫

𝑡=∞

𝑡=0
𝑝s(𝐻(𝑡))d𝑡1−𝑘. (23)

he last term in Eq. (23) is independent of 𝑟 and it is the surface deformation at the central point, i.e., 𝑤(0). From Fig. 2(b), it
s found that 𝛹𝑘(𝑠) is bounded and continuous for 0 ≤ 𝑠 < ∞, so the integral singularity at 𝑟 = 0 is also eliminated. Fortunately,
q. (23) gives the self-consistent equation for power-law graded elastic materials without any integral singularity. Therefore, we
trongly recommend using Eq. (23) as the basic equation for numerical calculation. It should be noted that there is no restriction on
he form of the interface interaction in the full self-consistent equation (Eq. (23)) for power-law graded materials. An exact interface
nteraction obtained from molecular dynamics simulation or experimental tests may be applied in Eq. (23) to improve the accuracy
f the FSCM.
5
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A numerical calculation method is introduced in this study for 0 ≤ 𝑘 < 1. It is noticed that the numerical calculation may become
difficult when 𝑘 → 1 because 𝛹𝑘(𝑠) changes drastically around 𝑠 = 1, which requires a fine mesh. The case of linear gradient (𝑘 = 1)
is of great research interest. But for the limiting case of 𝑘 = 1, the Poisson’s ratio 𝜈 must be taken as 1∕2 to ensure that the term
𝑏∕(1−𝑘) in Eq. (23) is a finite value. The case of 𝑘 = 1 and 𝜈 = 1∕2 is referred to as the Gibson limit (Chen et al., 2009a,b; Jin et al.,
2013, 2021). It is noted that when 𝑘 → 1, 𝛷𝑘(𝑠) and 𝛹𝑘(𝑠) are both step functions, as illustrated in Fig. 2, and the self-consistent
equation can be solved by using the properties of the step function and its derivative the delta function. For the convenience of
comparison, the predictions in the case of Gibson solid (𝑘 = 1 and 𝜈 = 1∕2) will be presented in some figures below.

2.3. Nondimensionalization

Power-law punch profiles are taken as representative cases in this study. The shape function is described by (Zheng and Yu,
2007b)

𝑓 (𝑟) = 𝑟𝑛

𝑛𝑄
, (24)

where 𝑛 is the shape index and 𝑄 is the shape parameter with the dimension of [length]𝑛−1. For 𝑛 = 1, the punch profile is a cone,
and 𝑄 is usually denoted as tan𝜙, with 𝜙 being the semiangle. For 𝑛 ≠ 1, 𝑄 is usually written as 𝑅𝑛−1, with 𝑅 being a characteristic
length. For example, 𝑛 = 2 represents a paraboloid (or a near sphere), and 𝑛 → ∞ gives a flat punch.

For the adhesive contact problems between the power-law shaped punch and the power-law graded elastic materials, the
longitudinal characteristic size is 𝑧0 and the transverse characteristic size is (𝑄𝑧0)1∕𝑛. Hence, the following dimensionless parameters
an be introduced

𝐻̄ = 𝐻
𝑧0

, 𝛿 = 𝛿
𝑧0

, 𝑟̄ = 𝑟
(

𝑄𝑧0
)1∕𝑛

. (25)

The surface profile in a dimensionless form is given by

𝑓 (𝑟̄) ≡ 𝑓 (𝑟)
𝑧0

= 𝑟̄𝑛

𝑛
, (26)

and the dimensionless L–J function of surface interaction can be written as

𝑝̄s(𝐻̄) ≡
𝑝s(𝐻)
𝛥𝛾∕𝑧0

= 8
3

[

(

𝐻̄ + 1
)−9 −

(

𝐻̄ + 1
)−3

]

. (27)

y using the above parameters, the self-consistent equation (Eq. (23)) can be rewritten in a dimensionless form as

𝐻̄(𝑟̄) = −𝛿 + 𝑓 (𝑟̄) + 2𝜇(2𝑛+𝑘−1)∕𝑛

[

𝑟̄1−𝑘 ∫

𝑡=∞

𝑡=0
𝑝̄s(𝐻̄(𝑡))d𝛹𝑘(𝑡∕𝑟̄) + ∫

𝑡=∞

𝑡=0
𝑝̄s(𝐻̄(𝑡))d𝑡1−𝑘

]

, (28)

here 𝜇 is a generalized Tabor number, defined as

𝜇 =

[

𝑄1−𝑘𝑐𝑛𝑘0 𝛥𝛾𝑛𝑏𝑛

𝐸∗𝑛𝑧2𝑛+𝑘−10 (1 − 𝑘)𝑛

]1∕(2𝑛+𝑘−1)

. (29)

Some reduced forms of 𝜇 have been given for special values of 𝑛 and 𝑘 in the literature, e.g., the case of 𝑘 = 0 (Zheng and Yu,
2007b) and the case of 𝑘 = 0 and 𝑛 = 2 (Tabor, 1977). It is found that the dimensionless form of the self-consistent equation only
contains three dimensionless parameters, namely the shape index 𝑛, the gradient exponent 𝑘, and the generalized Tabor number 𝜇.

It should be pointed out that the generalized Tabor number 𝜇 defined here is slightly different from the one defined by Jin et al.
(2021), which is denoted as 𝜇Jin for distinction, i.e.

𝜇Jin ≡

(

𝑄1−𝑘𝑐𝑛𝑘0 𝛥𝛾𝑛

𝐸∗𝑛𝑧2𝑛+𝑘−10

)1∕(2𝑛+𝑘−1)

= 𝜇
( 1 − 𝑘

𝑏

)𝑛∕(2𝑛+𝑘−1)
. (30)

or the two limiting cases of homogeneous materials (𝑘 = 0) and Gibson solid (𝑘 = 1, 𝜈 = 1∕2), we have 𝑏∕(1 − 𝑘) → 1 from Eq. (7),
which leads to 𝜇 = 𝜇Jin. For general cases (0 < 𝑘 < 1), the two parameters are not identical. If one takes 𝜇Jin to obtain a dimensionless
form of the self-consistent equation, four parameters (𝑛, 𝑘, 𝜇Jin and 𝑏 (or 𝜈)) will be explicitly included in the equation. Therefore,
the benefit of using 𝜇 defined in Eq. (29) instead of 𝜇Jin is that the dimensionless parameters controlling the present problem can
be reduced from four to three. This means that the similarity model of the present problem only has three similarity parameters.

The Tabor number has been explained as a measure of the ratio of an elastic deformation to the range of surface force (Tabor,
1977). For the present problem, the elastic deformation at any place of the solid is affected by the gradient exponent, and the one
used to define the generalized Tabor number cannot be strictly estimated. Undoubtedly, the Tabor number can be generalized in
different ways, but a similarity model containing relatively few similarity parameters is expected. In this sense, we take the form in
Eq. (29) as the generalized Tabor number, and for simplicity, it is referred to as the Tabor number in the following parts.

A dimensionless form of the external force is given by

𝑃 ≡ 𝑃
2∕𝑛 2∕𝑛−1

= 2∫

∞
𝑝̄s(𝐻̄(𝑟̄))𝑟̄d𝑟̄. (31)
6
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2.4. Computational implement

A suitable control method should be adopted to obtain the solutions of Eq. (28). The displacement control method does not
ork well, because the force–displacement curves might be ‘S-shaped’, and this method may cause non-convergence of numerical

terations around the jumping points, as shown in the case of 𝑘 = 0 (Greenwood, 1997; Feng, 2000; Zheng et al., 2007). The
rc-length control method can well trace the equilibrium path and provide all equilibrium states (Feng, 2000; Zhu et al., 2021),
ut using this method in the numerical calculation is time-consuming. According to the existing experience (Greenwood, 1997;
heng et al., 2007), for the adhesive contact problems of smooth surfaces, the surface central gap control method works well as the
rc-length method, and it can increase computational efficiency. Hence, the surface central gap control method is employed in this
tudy.

In the surface central gap control method, the displacement 𝛿 is parameterized by the surface central gap 𝐻̄0 = 𝐻̄(0) (Greenwood,
997; Zheng et al., 2007). From Eq. (28), the surface central gap 𝐻̄(0) can be expressed as

𝐻̄0 = −𝛿 + 2𝜇(2𝑛+𝑘−1)∕𝑛
∫

𝑡=∞

𝑡=0
𝑝̄s(𝐻̄(𝑡))d𝑡1−𝑘. (32)

hus, the displacement 𝛿 is given by

𝛿 = −𝐻̄0 + 2𝜇(2𝑛+𝑘−1)∕𝑛
∫

𝑡=∞

𝑡=0
𝑝̄s(𝐻̄(𝑡))d𝑡1−𝑘. (33)

ubstituting Eq. (33) into Eq. (28) leads to

𝐻̄(𝑟̄) = 𝐻̄0 + 𝑓 (𝑟̄) + 2𝜇(2𝑛+𝑘−1)∕𝑛 𝑟̄1−𝑘 ∫

𝑡=∞

𝑡=0
𝑝̄s(𝐻̄(𝑡))d𝛹𝑘(𝑡∕𝑟̄). (34)

The present study considered the infinite indenters, and the effective integral domain is [0, 𝑟̄max], where 𝑟̄max is chosen as the
alue under which the surface interaction can be neglected. In our calculation, 𝑟̄max is set to make 𝑓 (𝑟̄max) = 50 (Zheng et al., 2007).
he effective domain is discretized into 𝑁 uniform segments [𝑟̄𝑗−1, 𝑟̄𝑗 ] and 𝑁 nodes (besides 𝑟̄0 = 0) at position 𝑟̄𝑗 , 𝑗 = 1, 2,… , 𝑁 .
or the cases studied, the accuracy of the results is sufficient when 𝑁 is as large as 2500.

The Newton–Raphson iterative method is employed to solve Eq. (34) for the 𝑁 unknowns of 𝐻̄𝑖 = 𝐻̄(𝑟̄𝑖) when 𝐻̄0 is given. The
iemann–Stieltjes integral method is applied to deal with the integral term in Eq. (34). The residual 𝑅̄𝑖 is defined as

𝑅̄𝑖 = 𝐻̄𝑖 − 𝐻̄0 − 𝑓 (𝑟̄) − 2𝜇(2𝑛+𝑘−1)∕𝑛 𝑟̄1−𝑘𝑖

𝑁
∑

𝑗=1
𝑝̄s(𝐻̄(𝜉𝑗 ))

(

𝛹𝑘(𝑟̄𝑗∕𝑟̄𝑖) − 𝛹𝑘(𝑟̄𝑗−1∕𝑟̄𝑖)
)

, (35)

here 𝑖 = 1, 2,… , 𝑁 , and 𝐻̄(𝜉𝑗 ) is approximated by 𝐻̄(𝜉𝑗 ) = (𝐻̄𝑗−1 + 𝐻̄𝑗 )∕2. For a given value of 𝐻̄0, the Newton–Raphson iterative
method gives

{

𝐻̄𝑚+1
𝑖

}

=
{

𝐻̄𝑚
𝑖
}

−
[

𝐽𝑚
𝑖𝑗

]−1 {
𝑅̄𝑚
𝑗

}

, (36)

where 𝑚 represents the iteration step and 𝐽𝑖𝑗 is the Jacobi matrix

𝐽𝑖𝑗 =
𝜕𝑅̄𝑖

𝜕𝐻̄𝑗
. (37)

The iteration continues until the maximum of |

|

|

𝐻̄𝑚+1
𝑖 ∕𝐻̄𝑚

𝑖 − 1||
|

for 𝑖 = 1, 2,… , 𝑁 is less than a given small value, say 10−6 (Zheng
et al., 2007). After 𝐻̄𝑖 (𝑖 = 1, 2,… , 𝑁) is determined, the displacement 𝛿 and the load 𝑃 can be calculated by

𝛿 = −𝐻̄0 + 2𝜇(2𝑛+𝑘−1)∕𝑛
𝑁
∑

𝑗=1
𝑝̄𝑠(𝐻̄(𝜉𝑗 ))

(

𝑟̄1−𝑘𝑗 − 𝑟̄1−𝑘𝑗−1

)

, (38)

𝑃 =
𝑁
∑

𝑗=1
𝑝̄𝑠(𝐻̄(𝜉𝑗 ))

(

𝑟̄2𝑗 − 𝑟̄2𝑗−1
)

, (39)

respectively. By changing 𝐻̄0 to 𝐻̄0 −𝛥𝐻̄0 and repeating the above steps, the solutions of the new control step can be acquired. The
initial value in each iteration step is given by the convergence solution of the previous control step. In the numerical calculation,
𝐻̄0 decreases from a large value (say 10) to a small value (say −0.1). All the equilibrium states can be obtained after finishing the
calculation steps.

3. Results and discussion

3.1. Features of the force–displacement curve at a large Tabor number

We first considered a special case of the adhesive contact between a rigid sphere (𝑛 = 2) and the power-law graded material of
𝑘 = 0.4 at a large Tabor number (𝜇 = 3), and compared the FSCM results with the JKR-𝑛-𝑘 results (Chen et al., 2009b; Jin et al.,
7
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Fig. 3. (a) The displacement/force–surface central gap curves and (b) the force–displacement curve for 𝑛 = 2, 𝑘 = 0.4 and 𝜇 = 3. The force–displacement curve
predicted by the JKR-𝑛-𝑘 model is also plotted in (b) for comparison.

2021). It is noted that in the following analysis, there is no need to specify the value of the Poisson’s ratio 𝜈 because its effect has
been included in our redefined Tabor number 𝜇.

The displacement–surface central gap (𝛿 vs. 𝐻̄0), the force–surface central gap (𝑃 vs. 𝐻̄0) and the force–displacement (𝑃 vs. 𝛿)
curves are given in Fig. 3. It can be seen from Fig. 3(a) that both 𝑃 and 𝛿 are single-valued functions of 𝐻̄0, indicating that the
surface central gap control method is available for the present problem. For large values of 𝐻̄0, 𝛿 is almost equal to −𝐻̄0 and 𝑃 is
close to zero, as shown in Fig. 3(a), because the surface deformation and pressure can be neglected when the contact objects are
distant. With the decrease of 𝐻̄0, the displacement 𝛿 first increases before reaching a local maximum (denoted as point A), then
decreases to a minimum (denoted as point B), and finally increases in a very steep way. If a displacement control method is adopted,
there will be an unstable jumping-in position (A → A′) in the approaching process and an unstable jumping-out position (B → B′) in
the detachment process, as illustrated in Fig. 3(b). For the surface central gap control method used, a full force–displacement curve
is obtained, as shown in Fig. 3(b). It is found that the curve between the jumping-in and jumping-out positions is ‘S-shaped’. The
calculation path is along B′–A–B–A′–C–D, in which points A, B, C, and D represent the jumping-in, the jumping-out, the pull-off, and
the zero-load points, respectively. For the displacement control method, the loading path is along B′–A–A′–C–D and the unloading
path is along D–C–A′–B–B′. The area of the region B′–A–A′–B–B′ represents the dissipated mechanical energy, namely the hysteresis
loss, which is caused by the unstable jumping during one loading/unloading cycle.

The corresponding JKR-𝑛-𝑘 force–displacement curve (Chen et al., 2009b; Jin et al., 2021) is also plotted in Fig. 3(b). The FSCM
and the JKR-𝑛-𝑘 force–displacement curves coincide well along the high-load branch, but they are inconsistent along the low-load
branch, which is due to the absence of surface interaction before jumping-in contact in the JKR-𝑛-𝑘 model. It is found that the
JKR-𝑛-𝑘 model can well predict the jumping-out point (point B), but it cannot effectively predict the jump-in point (point A).

3.2. Effects of shape and material parameters

3.2.1. Effects of the shape index and the Tabor number
The effect of the Tabor number 𝜇 on the equilibrium force–displacement curve is analyzed for 𝑛 = 1, 1.5, 2 and 5, as shown in

Fig. 4. The representative value of 𝑘 is chosen as 0.4. It can be seen that the adhesion hysteresis does not appear for a very small
value of 𝜇, and begins to appear and becomes notable with the increase of 𝜇. For the cases of 𝑛 = 1 and 1.5, the maximum value
of −𝑃 , i.e., the dimensionless pull-off force −𝑃c, increases as 𝜇 increases, and the displacement at the pull-off point increases from
a value close to 0 (corresponding to the Bradley pull-off point). For the cases of 𝑛 = 2 and 5, the pull-off force decreases with the
increase of 𝜇, and the displacement at the pull-off point also decreases.

The effects of the Tabor number on the surface deformation and pressure distribution corresponding to the pull-off point are
studied for 𝑛 = 2 and 𝑘 = 0.4. For all the Tabor numbers considered, the surface deformation at the pull-off point piles up in the
edge zone of contact and approaches zero in the outer zone, as shown in Fig. 5(a). With the increase of 𝑟̄, the pressure distribution
at the pull-off point changes from compressive to tensile, and has a minimum near the edge of contact, as shown in Fig. 5(b). This
minimum is known as the theoretical strength −𝜎th for a specific surface interaction law, which can be calculated from Eq. (10) as
𝜎th ≐ 1.026𝛥𝛾∕𝑧0. With the increase of 𝜇, the pile-up of surface is very massive and the corresponding pressure distribution near the
theoretical strength becomes sharper. When 𝜇 is large (say ≥ 1), the surface deformation of the contact zone fits well with the punch
profile (dash lines in Fig. 5(a)), which means that the gap 𝐻(𝑟) between the punch and the half-space is almost zero. Therefore, the
so-called contact radius (an important parameter in the classical contact models such as the JKR-type and M–D-type models) can be
easily defined under a large value of 𝜇, e.g., the position corresponding to the theoretical strength −𝜎 . However, for a small value
8

th



Journal of the Mechanics and Physics of Solids 169 (2022) 105078Y. Zhu et al.

o
t
i

3

n
t
i
i

F

Fig. 4. The force–displacement curves for some special values of 𝜇 with 𝑘 = 0.4 and different shape indexes: (a) 𝑛 = 1, (b) 𝑛 = 1.5, (c) 𝑛 = 2, and (d) 𝑛 = 5.

f 𝜇 (say 0.1), the surface deformation of the inner zone is very small and does not fit well with the punch profile, which means
hat the gap 𝐻(𝑟) is not close to zero in the inner zone. Therefore, the contact area in this case cannot be strictly defined, which
ndicates that the adhesive contact models using the contact radius as a parameter may be invalid for small Tabor numbers.

.2.2. Effect of the gradient exponent
For fixed values of 𝑛 and 𝜇, the effect of 𝑘 on the adhesion results is analyzed in this section. But, it should be noted that the Tabor

umber 𝜇 is related to the gradient exponent 𝑘 in Eq. (29). A rigorous analysis of the effect of the gradient exponent should take
he governing equations before dimensionless, which contains a large number of parameters. The comprehensive analysis becomes
ntractable due to the plethora of parameters associated with this issue. In fact, in practical problems, just changing the value of 𝑘
s not trivial, because when producing graded materials, it is difficult to guarantee that 𝐸0 at depth 𝑐0 is identical. Therefore, the

strategy of fixing 𝑛 and 𝜇 and changing 𝑘 is adopted here to get some understanding of the effect of the gradient exponent.
The dependency of the force–displacement curves on the gradient exponent 𝑘 is studied for 𝑛 = 2 and 𝜇 = 0.5 and 1, as shown in

ig. 6. For the cases considered, the pull-off force increases monotonously with the increase of 𝑘, indicating that graded materials
may have better adhesion properties compared with homogeneous materials. It can be concluded from Fig. 6 that the Tabor number
rather than the gradient exponent determines whether the adhesion hysteresis occurs, but the gradient exponent may affect the
jumping-in/out positions as long as the hysteresis exists.

The effects of 𝑘 on the surface deformation and the pressure distribution corresponding to the pull-off point are studied for
𝑛 = 2 and 𝜇 = 1, as shown in Fig. 7. With the increase of 𝑘, the pile-up of surface becomes sharper and the pressure distribution
also becomes sharper near the position corresponding to theoretical strength. In addition, the surface deformation and compressive
pressure at the central point (𝑟 = 0) decrease as the gradient exponent increases.
9
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Fig. 5. Effects of the Tabor number on (a) the surface deformation and (b) pressure distribution at the pull-off point with 𝑛 = 2 and 𝑘 = 0.4.

Fig. 6. The force–displacement curves for some special values of 𝑘: (a) 𝑛 = 2, 𝜇 = 0.5 and (b) 𝑛 = 2, 𝜇 = 1.

Fig. 7. Effect of the gradient exponent 𝑘 on (a) the surface deformation and (b) pressure distribution at the pull-off point with 𝑛 = 2 and 𝜇 = 1.
10
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Fig. 8. Effect of the Tabor number on the (a) displacement and (b) surface central gap at the jumping-in/out points for four cases of 𝑘 = 0, 0.2, 0.4 and 0.6
with 𝑛 = 2.

3.3. The jumping-in/out instabilities

The adhesive hysteresis occurs under large Tabor numbers and may cause an energy hysteresis loss during one loading/unloading
cycle, as discussed above. The positions of the jumping-in/out points (denoted as A/B) are paramount for calculating the hysteresis
loss. Fig. 8 shows the effect of the Tabor numbers on the displacements (𝛿in, 𝛿out) and surface central gaps (𝐻̄ in

0 , 𝐻̄out
0 ) corresponding

to the jumping-in/out points for four special values of gradient exponent 𝑘 and 𝑛 = 2. As can be seen from Fig. 8(a), with the increase
of 𝜇, the displacements (absolute value) at the jumping-in/out points increase monotonously, and the difference between the two
displacements (||

|

𝛿in − 𝛿out ||
|

) also increases, indicating that the hysteresis phenomenon becomes more notable for the larger 𝜇 under
fixed values of 𝑛 and 𝑘. As 𝜇 increases, the surface central gap at the jumping-in point (𝐻̄ in

0 ) increases, and that at the jumping-out
point (𝐻̄out

0 ) decreases monotonously, as shown in Fig. 8(b). For given values of 𝑛 and 𝑘, the two curves (𝐻̄ in
0 vs. 𝜇 and 𝐻̄out

0 vs.
𝜇) intersect at a small value of 𝜇, which is the critical Tabor number of the adhesion hysteresis phenomenon. The hysteresis only
occurs when 𝜇 is larger than the critical value. In the four studied cases of 𝑘 = 0, 0.2, 0.4 and 0.6, the critical Tabor numbers are
about 0.70, 0.75, 0.78 and 0.78, respectively.

Although the numerical results of the jumping-in/out positions can be obtained from the FSCM, formula solutions are more con-
venient for practical application. Based on the FSCM, we extended the ‘semi-rigid’ theory for homogeneous materials (Greenwood,
2009; Song and Komvopoulos, 2014; Ciavarella et al., 2017) to that for power-law graded solids to obtain an explicit solution of the
jumping-in displacement, as presented below. Near the jumping-in point, the surface central gap 𝐻̄0 is large (as shown in Fig. 8(b)),
and it can be found from Eq. (27) that the surface traction 𝑝̄ (𝑟̄) is small, resulting in extremely small surface deformation 𝑤̄ (𝑟̄).
Consequently, the material is assumed to be rigid in the ‘semi-rigid’ theory, in which the gap between the punch and the half-space
is given by

𝐻̄(𝑟̄) ∼ 𝐻̄0 + 𝑟̄𝑛∕𝑛. (40)

By combining this assumption with Eqs. (27), (31) and (33), the dimensionless displacement and load near the jumping-in point
are calculated as

𝛿 ∼ −𝐻̄0 +
16𝑛 (1 − 𝑘) (𝜇∕𝑛)(2𝑛+𝑘−1)∕𝑛

3
(

𝐻̄0 + 1
)9−(1−𝑘)∕𝑛

[

B(9 − 1 − 𝑘
𝑛

, 1 − 𝑘
𝑛

) −
(

𝐻̄0 + 1
)6B(3 − 1 − 𝑘

𝑛
, 1 − 𝑘

𝑛
)
]

, (41)

𝑃 ∼ 16𝑛(2−𝑛)∕𝑛

3
(

𝐻̄0 + 1
)9−2∕𝑛

[

B(9 − 2
𝑛
, 2
𝑛
) −

(

𝐻̄0 + 1
)6B(3 − 2

𝑛
, 2
𝑛
)
]

. (42)

Since only the low-load branch of the force–displacement curves up to the jumping-in point A is concerned here, the repulsive force
(the ninth power term in Eq. (27)) is much smaller than the attractive force (the third power term in Eq. (27)). As a result, the first
term in the bracket of Eqs. (41) and (42) is much smaller than the second one, and can be neglected in the following mathematical
derivation. A similar approximation has been proposed in the literature (Wu, 2010; Ciavarella et al., 2017) for the contact problems
between a sphere and homogeneous materials. By applying this approximation, Eqs. (41) and (42) can be rewritten as

𝛿 ∼ −𝐻̄0 −
16 (1 − 𝑘)𝜇2−(1−𝑘)∕𝑛

3𝑛1−(1−𝑘)∕𝑛
(

𝐻̄0 + 1
)3−(1−𝑘)∕𝑛

B(3 − 1 − 𝑘
𝑛

, 1 − 𝑘
𝑛

), (43)

𝑃 ∼ − 16𝑛(2−𝑛)∕𝑛
( )3−2∕𝑛

B(3 − 2
𝑛
, 2
𝑛
). (44)
11
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Fig. 9. (a) Comparison of the jumping displacements between the FSCM and the asymptotic solutions as the Tabor number varies; (b) Effect of 𝑘 on 𝐶 in and
𝐶out for different 𝑛.

The jumping-in condition is given by
(

d 𝛿
d𝑃

)

A
=
(

d 𝛿∕d𝐻̄0

d𝑃∕d𝐻̄0

)

A
= 0, (45)

where subscript A represents the jumping-in point. Note that d𝑃∕d𝐻̄0 in Eq. (45) always has a finite value, thus one has
(

d𝛿∕d𝐻̄0
)

A =
0. By combining this condition with Eq. (43), the surface central gap at the jumping-in point A can be derived as

𝐻̄ in
0 =

[

16 (1 − 𝑘) (3𝑛 + 𝑘 − 1)
3𝑛(2𝑛+𝑘−1)∕𝑛

B(3 − 1 − 𝑘
𝑛

, 1 − 𝑘
𝑛

)𝜇(2𝑛+𝑘−1)∕𝑛
]𝑛∕(4𝑛+𝑘−1)

− 1. (46)

Substituting Eq. (46) into Eq. (43) leads to the displacement at the jumping-in point

𝛿in = 1 − 𝐶 in𝜇(2𝑛+𝑘−1)∕(4𝑛+𝑘−1), (47)

where 𝐶 in is given by

𝐶 in = 4𝑛 + 𝑘 − 1
3𝑛 + 𝑘 − 1

[

16 (1 − 𝑘) (3𝑛 + 𝑘 − 1)
3𝑛(2𝑛+𝑘−1)∕𝑛

B(3 − 1 − 𝑘
𝑛

, 1 − 𝑘
𝑛

)
]𝑛∕(4𝑛+𝑘−1)

. (48)

This asymptotic solution (Eq. (47)) coincides well with the FSCM results, as shown in Fig. 9(a) for 𝑛 = 2 and 𝑘 = 0.4. Eq. (47) indicates
that the dimensionless jumping-in displacement 𝛿in is positively correlated with 𝜇(2𝑛+𝑘−1)∕(4𝑛+𝑘−1). For 𝑛 = 2 and 𝑘 = 0, Eq. (47)
reduces to the asymptotic solution in the special case of a rigid sphere in contact with homogeneous elastic materials (Ciavarella
et al., 2017), given by

𝛿in = 1 − 7
5

(

5𝜋
√

2

)2∕7

𝜇3∕7. (49)

However, the ‘semi-rigid’ theory cannot be applied to predict the positions of the jumping-out points, because the surface central
gap is small (as shown in Fig. 8(b)) and the surface deformation cannot be neglected. Note that for small Tabor numbers, the jumping
instabilities do not appear, while for large Tabor numbers, the JKR-𝑛-𝑘 model coincides well with the FSCM at the high-load branch,
as discussed above. Actually, the asymptotic solution of the jumping-out position can be derived from the JKR-𝑛-𝑘 theory, as given
below. The displacement and force of the JKR-𝑛-𝑘 model are given by (Jin et al., 2021)

𝛿 = 1
2𝑄

B( 𝑛
2
, 1 + 𝑘

2
)𝑎𝑛 −

(

2𝜋𝑏𝑐𝑘0𝛥𝛾
cos(𝑘𝜋∕2)𝐸∗

)1∕2

𝑎(1−𝑘)∕2, (50)

𝑃 =
cos(𝑘𝜋∕2)𝐸∗

𝑏 (1 + 𝑘)𝑄𝑐𝑘0
B(1 + 𝑛

2
, 1 + 𝑘

2
)𝑎𝑛+𝑘+1 −

[

8𝜋 cos(𝑘𝜋∕2)𝛥𝛾𝐸∗

𝑏(1 + 𝑘)2𝑐𝑘0

]1∕2

𝑎(3+𝑘)∕2. (51)

where parameter 𝑎 is the contact radius. The jumping-out condition is given by
( d 𝛿 )

=
(

d 𝛿∕d 𝑎
)

= 0, (52)
12
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where subscript B represents the jumping-out point. Note that d𝑃∕ d 𝑎 in Eq. (52) always has a finite value, thus one has (d 𝛿∕d 𝑎)B =
0. By combining this condition with Eq. (50), the contact radius at the jumping-out point B can be derived as

𝑎out =

[

2𝜋𝑏𝑐𝑘0𝛥𝛾
cos(𝑘𝜋∕2)𝐸∗

(

𝑄 (1 − 𝑘)
𝑛B(𝑛∕2, 1∕2 + 𝑘∕2)

)2
]1∕(2𝑛+𝑘−1)

. (53)

Substituting Eq. (53) into Eq. (50) leads to

𝛿out ≡ 𝛿out

𝑧0
= −𝐶out𝜇, (54)

here 𝐶out is given by

𝐶out = 1
2
(2𝑛 + 𝑘 − 1)

[

2𝜋 (1 − 𝑘)
𝑛2 cos(𝑘𝜋∕2)

]𝑛∕(2𝑛+𝑘−1)( 1 − 𝑘
B(𝑛∕2, 1∕2 + 𝑘∕2)

)(1−𝑘)∕(2𝑛+𝑘−1)
. (55)

Eq. (54) indicates that the dimensionless jumping-out displacement is proportional to the Tabor number 𝜇. The asymptotic solution
Eq. (54) agrees well with the FSCM results, as shown in Fig. 9(a) for 𝑛 = 2 and 𝑘 = 0.4.

So far, we have derived two asymptotic solutions concerning the positions of the jumping-in point and the jumping-out point,
given by Eqs. (47) and (54), respectively. The dependency of the coefficients 𝐶 in and 𝐶out on the gradient index 𝑘 is shown in
Fig. 9(b) for 𝑛 = 1, 1.5, 2 and 5. For a given value of 0 ≤ 𝑘 < 1, both 𝐶 in and 𝐶out increase with the increase of 𝑛. As 𝑘 → 1, 𝐶 in

pproaches to 8∕3 and 𝐶out approaches to 2, and these limit values are independent of the shape index 𝑛.

.4. The JKR–Bradley transition for power-law graded materials

The effect of the Tabor number 𝜇 on the pull-off force is studied for 𝑘 = 0, 0.2, 0.4 and 0.6 and four representative values of
, as shown in Fig. 10. The dimensionless pull-off force approaches a constant value for small 𝜇, namely the Bradley-𝑛 limit. The
ormalized Bradley-𝑛 pull-off force has been given by (Zheng and Yu, 2007b)

− 𝑃 Bradley-𝑛
c = 32𝑛2∕𝑛

9𝑛 − 2
B(3 − 2

𝑛
, 2
𝑛
)
(

168B(4 − 2
𝑛
, 6)

)(3−2∕𝑛)∕6
, (56)

hich gives the values of 2.880, 2.166, 2 and 1.669 for 𝑛 = 1, 1.5, 2 and 5, respectively. The dimensionless Bradley-𝑛 pull-off force
s independent of 𝑘 because it represents the rigid limit. At the large-𝜇 extreme, the dependence of the dimensionless pull-off
orce on 𝜇 is positive for 𝑛 < 2 and negative for 𝑛 > 2. This understanding is different from that of Jin et al. (2021) because
ifferent dimensionless methods are used. This issue will be further discussed in Section 4. When 𝜇 is very large, the FSCM curve
symptotically approaches a straight line for each 𝑛 in the log–log scale coordinates system, which is the corresponding JKR-𝑛-𝑘
olution. From Eq. (51), the normalized JKR-𝑛-𝑘 pull-off force is given by (Jin et al., 2021)

− 𝑃 JKR-𝑛-𝑘
c =

2 (2𝑛 + 𝑘 − 1)
(1 + 𝑘) (𝑛 + 𝑘 + 1)

[

(

cos(𝑘𝜋∕2)
2𝜋 (1 − 𝑘)

)𝑛−2( 𝑘 + 3
𝑛B(𝑛∕2, 1∕2 + 𝑘∕2)

)𝑘+3
]1∕(2𝑛+𝑘−1)

𝜇(2−𝑛)∕𝑛. (57)

As the Tabor number 𝜇 changes from zero to infinity, a continuous transition from the Bradley-𝑛 model to the JKR-𝑛-𝑘 model is
obtained by the FSCM for the power-law graded materials.

For given Tabor numbers with 𝑛 = 1.5 and 2, the dimensionless pull-off force of the graded material increases with the increase of
𝑘 and is larger than that of the homogeneous material over the whole transition (except for the rigid limit), as shown in Figs. 10(b)
and 10(c). In addition, the JKR–Bradley transition curve approaches the JKR-𝑛-𝑘 limit at smaller Tabor numbers as 𝑘 increases for
𝑛 = 1.5 and 2. But for 𝑛 = 1 and 5, the pull-off force is not sensitive to the value of 𝑘, as shown in Figs. 10(a) and 10(d). To quantify
the sensitivity of the pull-off force to 𝑘, the relative deviation of the pull-off force between the graded and homogeneous materials
predicted by the JKR-type models (Jin et al., 2021; Zheng and Yu, 2007b) is calculated, which is

𝜒 =
|

|

|

|

|

𝑃 JKR-𝑛-𝑘
c − 𝑃 JKR-𝑛

c

𝑃 JKR-𝑛
c

|

|

|

|

|

. (58)

The effect of 𝑘 on the value of 𝜒 is explored in Fig. 11(a). The maximum of 𝜒 is 4.4%, 40.8%, 33.3% and 4.2% for 𝑛 = 1, 1.5, 2
and 5, respectively, which indicates that, for given Tabor numbers, 𝑘 has a large effect on the pull-off force with 𝑛 = 1.5 and 2,
and a small effect with 𝑛 = 1 and 5. Fig. 11(b) plots the variation of the maximum relative deviation with 𝑛. It can be found that
the maximum of the relative deviation 𝜒max is particularly small in two regions. If the relative deviation is limited to 10%, the two
egions are 0.974 ≤ 𝑛 ≤ 1.056 and 3.335 ≤ 𝑛 ≤ 6.219. But, this does not mean that 𝑘 has no effect in the two regions because the

Tabor number (Eq. (29)) is related to 𝑘. It can be concluded that the dimensionless pull-off force usually depends on the three
dimensionless parameters (𝑛, 𝜇 and 𝑘), but when 𝑛 is near 1 or in the range of (3.3, 6.2), the dimensionless pull-off force mainly
13
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𝑛

M

Fig. 10. Variation of the dimensionless FSCM pull-off force with the Tabor number for four special values of 𝑘 with (a) 𝑛 = 1, (b) 𝑛 = 1.5, (c) 𝑛 = 2, and (d)
= 5. The Bradley-𝑛 limits (dash line) and the JKR-𝑛-𝑘 limits (short dash line) are also plotted.

Fig. 11. (a) Effect of 𝑘 on the relative deviation of the pull-off force predicted by the JKR-𝑛-𝑘 model between the graded and homogeneous materials. (b)
aximum relative deviation as a function of 𝑛.
14



Journal of the Mechanics and Physics of Solids 169 (2022) 105078Y. Zhu et al.

w

w

4. Application to verify the M–D-𝒏-𝒌 model

4.1. Overview of the M–D-𝑛-𝑘 model

It is worth emphasizing the basic relations of the Maugis–Dugdale (M–D) model (Maugis, 1992). The first relation is the Hertzian
assumption of the close contact condition

𝐻(𝑟) = 0, 𝑟 < 𝑎. (59)

The second one is the stress non-singularity condition at the contact edge (𝑟 = 𝑎)

lim
𝑟→𝑎

√

2𝜋 (𝑎 − 𝑟)𝑝s(𝐻(𝑟)) = 0. (60)

The last relation is taken from the fracture mechanics principle, namely the Griffith relation over the cohesive zone (𝑎 < 𝑟 < 𝑐)

− ∫

𝑟=𝑐

𝑟=𝑎
𝑝s(𝐻(𝑟))d𝐻(𝑟) = 𝛥𝛾. (61)

The Dugdale approximation is usually adopted to give the stress in the cohesive zone,

𝑝s(𝐻(𝑟)) = −𝜎0, 𝑎 < 𝑟 < 𝑐, (62)

where 𝜎0 is a constant value, namely the cohesive stress.
The M–D model has been extended for different surface shapes or materials in the literature (Goryacheva and Makhovskaya,

2001; Zheng and Yu, 2007a,b; Johnson and Greenwood, 2008; Wu, 2009; Grierson et al., 2013; Jin et al., 2018). Recently, the M–D
model was extended to the power-law graded materials (M–D-𝑛-𝑘 model) based on the principle of superposition (Jin et al., 2021).
By introducing the following dimensionless variables

𝛿 ≡ 𝛿∕
[

𝑐𝑛𝑘0 𝑄1−𝑘𝛥𝛾𝑛𝐸∗−𝑛𝑏𝑛(1 − 𝑘)−𝑛
]1∕(2𝑛+𝑘−1), (63)

𝑃 ≡ 𝑃∕
[

𝜋
(

𝑐(2−𝑛)𝑘0 𝑄3+𝑘𝛥𝛾𝑛+𝑘+1𝐸∗𝑛−2𝑏2−𝑛(1 − 𝑘)𝑛−2
)1∕(2𝑛+𝑘−1)

]

, (64)

𝑎̃ ≡ 𝑎∕
[

𝑐𝑘0𝑄
2𝛥𝛾𝐸∗−1𝑏(1 − 𝑘)−1

]1∕(2𝑛+𝑘−1)
, (65)

the M–D-𝑛-𝑘 results (Jin et al., 2021) can be rewritten in a dimensionless form as

𝛿 = 𝑎̃𝑛

2
B( 𝑛

2
, 1 + 𝑘

2
) − 2𝛬𝑎̃1−𝑘

(

𝑚2 − 1
)(1−𝑘)∕2, (66)

𝑃 = 𝑎̃𝑛+𝑘+1

𝜋
(

1 − 𝑘2
) cos 𝑘𝜋

2
B(1 + 𝑛

2
, 1 + 𝑘

2
) − 𝛬

(

𝑚2 − 𝜔1𝑚
1−𝑘) 𝑎̃2, (67)

here 𝛬 is the generalized Maugis number, defined as

𝛬 = 𝜎0

[

𝑄1−𝑘𝑐𝑛𝑘0 𝛥𝛾1−𝑛−𝑘𝑏𝑛

𝐸∗𝑛(1 − 𝑘)𝑛

]1∕(2𝑛+𝑘−1)

, (68)

and parameter 𝑚 = 𝑐∕𝑎 is derived from the Griffith relation

𝛬2𝑎̃1−𝑘
[

2
(

𝑚2 − 1
)(1−𝑘)∕2 −

Γ(2 − 𝑘)𝑚1−𝑘

(Γ(3∕2 − 𝑘∕2))2
+

𝜔2

𝑚2𝑘

]

+ 𝛬𝑎̃𝑛
[

𝑚𝑛

𝑛
+ 1

2

(

𝜔3

𝑚1+𝑘
− 1

)

B( 𝑛
2
, 1 + 𝑘

2
)
]

= 1, (69)

here Γ(⋅) is the Gamma function. In the above equations, 𝜔1, 𝜔2 and 𝜔3 are defined as

𝜔1 =
4 cos(𝑘𝜋∕2)
𝜋
(

1 − 𝑘2
)

[

2F1(
𝑘 − 1
2

, 𝑘 + 1
2

; 𝑘 + 3
2

; 1
𝑚2

) − 𝑚𝑘−1(𝑚2 − 1
)(1−𝑘)∕2

]

, (70)

𝜔2 =
4 cos(𝑘𝜋∕2)
𝜋 (1 + 𝑘)

[

2F1(𝑘,
𝑘 + 1
2

; 𝑘 + 3
2

; 1
𝑚2

) − 𝑚𝑘−1(𝑚2 − 1
)(1−𝑘)∕2

2F1(
𝑘 + 1
2

, 𝑘 + 1
2

; 𝑘 + 3
2

; 1
𝑚2

)
]

, (71)

𝜔3 =
2cos(𝑘𝜋∕2)
𝜋 (1 + 𝑘)

[

2F1(
𝑘 + 1
2

, 𝑘 + 1
2

; 𝑘 + 3
2

; 1
𝑚2

) − 𝑘 + 1
𝑛 + 𝑘 + 1 2F1(

𝑘 + 1
2

, 𝑛 + 𝑘 + 1
2

; 𝑛 + 𝑘 + 3
2

; 1
𝑚2

)
]

. (72)

It should be pointed out that the definitions of the dimensionless variables in Eqs. (63)–(65) and the generalized Maugis number 𝛬
defined by Eq. (68) are slightly different from those in Jin et al. (2021) because parameter 𝑏 is included in the present dimensionless
parameters. Similar to the Tabor number, defining the generalized Maugis number in the present way can reduce one dimensionless
parameter from the similarity model. Consequently, for the M–D-𝑛-𝑘 model, the similarity model only contains three dimensionless
parameters, namely the shape index 𝑛, the gradient exponent 𝑘, and the generalized Maugis number 𝛬. Eqs. (66)–(72) can be reduced
to the homogeneous case (𝑘 = 0) (Zheng and Yu, 2007a,b), and further to the classical case of 𝑛 = 2 and 𝑘 = 0 (Maugis, 1992). An
additional condition is required to determine the value of the cohesive stress 𝜎0, which will be discussed in detail in the following
section.
15
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4.2. Two strategies to determine the cohesive stress

The value of the cohesive stress 𝜎0 has a great effect on the M–D-type results, but it may not be selected correctly in the extensive
literature. In the classical M–D model (𝑛 = 2, 𝑘 = 0), Maugis (1992) chose 𝜎0 equal to the theoretical stress of the L–J law, written
as

𝜎0 = 𝜎th =
16

√

3𝛥𝛾
27𝑧0

≐ 1.026
𝛥𝛾
𝑧0

, (73)

which relates 𝛬 and 𝜇 by 𝛬 ≐ 1.026𝜇. This strategy can be referred to as the maximum strength condition, which seems to have some
physical meanings, because the cohesive stress cannot exceed the theoretical stress at least. But, there is no evidence that this value
is appropriate. Even so, this traditional strategy was adopted by almost all the later researchers when they extended the M–D model
to different surface shapes or materials (Goryacheva and Makhovskaya, 2001; Johnson and Greenwood, 2008; Wu, 2009; Grierson
et al., 2013; Jin et al., 2018). Jin et al. (2021) also adopted the maximum strength condition when developing the M–D-𝑛-𝑘 model, but
ignored the decimal part of 1.026, which results in 𝜎0 = 𝛥𝛾∕𝑧0 and 𝛬 = 𝜇. So, Jin et al. (2021) did not distinguish the generalized

abor and Maugis numbers in their M–D-𝑛-𝑘 model.
Greenwood (1997) pointed out that there was no exact correspondence between the Maugis number and the Tabor number

ince a simplified surface force curve (the Dugdale law) is assumed in the M–D model. Johnson and Greenwood (1997) emphasized
hat the strategy that 𝜎0 was chosen to be the maximum L–J tension is somewhat arbitrary, but they did not give a better value.
in et al. (2021) observed that there is an apparent difference between the finite element results and the M–D-𝑛-𝑘 model using

the maximum strength condition, which was attributed to the sensitivity of the surface interaction form, but they did not suggest
an appropriate strategy to determine the interaction either. Johnson and Greenwood (1997) pointed out that the Maugis model
based on the Dugdale approximation is rough and the deviation can be evaluated by comparing it with the FSCM based on the L–J
law. Therefore, an appropriate strategy for choosing the value of 𝜎0 is to keep the deviation between the M–D-type model and the
FSCM as small as possible. To realize this goal, the cohesive stress 𝜎0 may depend on the surface shape parameters (e.g., 𝑛) and the

aterial parameters (e.g., 𝑘), and could change during the whole contact/detachment process, which makes the M–D-type model
ose its conciseness.

In response to this difficulty, Zheng and Yu (2007b) proposed an alternative strategy to determine the value of 𝜎0 when
eveloping the M–D-𝑛 model for homogeneous materials (𝑘 = 0) with power-law surface shape, which is described as follows. As
and 𝜇 approach zero, the M–D-𝑛 model and the FSCM reduce to the DMT-𝑛 model and the Bradley-𝑛 model, respectively. Notice

hat the pull-off point of the DMT-𝑛 model occurs at zero contact radius (𝑎 = 0), where there is no deformation. So, the DMT-𝑛
odel should be identical with the rigid model (i.e., the Bradley-𝑛 model) at the pull-off point. In the Zheng and Yu’s strategy, 𝜎0

s chosen to make the DMT-𝑛 pull-off force identical to the Bradley-𝑛 pull-off force, i.e.

− 𝑃DMT-𝑛
c = −𝑃 Bradley-𝑛

c , (74)

hich can be named as the rigid-limit-consistency condition. The value of 𝜎0 using this condition depends only on the surface shape
arameter 𝑛 through a specific function, which maintains the conciseness of the M–D model. In addition, the improved M–D model
sing this condition shows much better consistency with the FSCM, compared with the original M–D model using the maximum
trength condition, as shown in Figs. 5–7 of Zheng and Yu (2007b).

Therefore, in the present study, we apply the rigid-limit-consistency condition to improve the M–D-𝑛-𝑘 model. For power-law graded
aterials, the Bradley pull-off force is given by Eq. (56) and the DMT pull-off force is (Jin et al., 2021)

− 𝑃DMT-𝑛-𝑘
c = 𝜋(𝑛𝑄𝛥𝛾)2∕𝑛𝜎1−2∕𝑛0 , (75)

hich is independent of the gradient exponent 𝑘. In fact, for any kind of graded materials, the pull-off forces of the Bradley and
MT models are both independent of the elastic parameters such as the reference modulus and the gradient exponent. It can be
xpected that the rigid-limit-consistency condition for graded materials is the same as the one (Eq. (74)) for homogeneous materials.
ubstituting Eqs. (56) and (75) into Eq. (74) yields

𝜎0 = 𝜂(𝑛)
𝛥𝛾
𝑧0

, (76)

here 𝜂(𝑛) is defined as (Zheng and Yu, 2007b)

𝜂(𝑛) =
[

32
9𝑛 − 2

B(3 − 2
𝑛
, 2
𝑛
)
(

168B(4 − 2
𝑛
, 6)

)(3−2∕𝑛)∕6]𝑛∕(𝑛−2)
. (77)

Substituting Eqs. (29) and (68) into Eq. (76) leads to

𝛬 = 𝜂(𝑛)𝜇. (78)

Consequently, the improved M–D-𝑛-𝑘 model can be acquired by combining Eqs. (66)–(72) and Eq. (76). The value of 𝜎0 in the
improved M–D-𝑛-𝑘 model is an exclusive value, which is determined by the surface shape index 𝑛 through the function 𝜂(𝑛). The
function 𝜂(𝑛) increases monotonically with 𝑛, as plotted in Fig. 12(a) with a solid line. As 𝑛 → ∞, 𝜂(𝑛) → 1.026, which corresponds
to the theoretical stress 𝜎th used in the original M–D-𝑛-𝑘 model (Jin et al., 2021), as plotted in Fig. 12(a) with a dotted line. For
the four special cases of 𝑛 = 1, 1.5, 2 and 5 considered, the values of 𝜂(𝑛) are 0.347, 0.499, 0.588 and 0.803, respectively, as shown in
ig. 12(a).
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Fig. 12. (a) The function of 𝜂(𝑛) and the theoretical stress 𝜎th. (b) Variation of the surface pressure with the surface separation for the FSCM and the original
and improved M–D-𝑛-𝑘 models.

The variation of the surface pressure with the surface separation is shown in Fig. 12(b) for the FSCM, the original M–D-𝑛-𝑘 model
(𝜎0 = 1.026𝛥𝛾∕𝑧0), and the improved M–D-𝑛-𝑘 model (𝜎0 = 𝜂(𝑛)𝛥𝛾∕𝑧0). The integral areas of the three curves below the 𝐻-axis are
−𝛥𝛾, which means that the strain energy release rate is equal to the surface energy, i.e., the Griffith relation is satisfied in the three
models. The value of 𝜎0 in the improved M–D-𝑛-𝑘 model is smaller than that in the original M–D-𝑛-𝑘 model, so the width of the
cohesive zone (i.e., 𝑐 − 𝑎) of the former is larger than that of the latter to keep their areas identical.

4.3. Validations of the M–D-𝑛-𝑘 model

4.3.1. The force–displacement curves
As the FSCM is the most accurate adhesive contact model in the continuum framework, we apply it to validate the M–D-𝑛-𝑘

models with different selection strategies of cohesive stress 𝜎0. The force–displacement curves of the original and improved M–D-
𝑛-𝑘 models are compared with the corresponding FSCM results in Fig. 13 for four special values of 𝑛. Fixed parameters are 𝑘 = 0.4
and 𝜇 = 1. Compared with the original M–D-𝑛-𝑘 model (Jin et al., 2021), the improved M–D-𝑛-𝑘 model shows a better agreement
with the FSCM results for the cases considered. For 𝑛 = 1, 1.5 and 2 in Fig. 13, the improved M–D-𝑛-𝑘 model almost coincides
with the FSCM for the contact parts. For 𝑛 = 5 in Fig. 13(d), the improved M–D-𝑛-𝑘 model still shows superiority over the original
one, despite the fact that the force of the improved M–D-𝑛-𝑘 model is larger than that of the FSCM, which can be attributed to the
oversimplification of the surface interaction in the cohesive zone of the M–D model itself. It can be concluded from Fig. 13 that
the rigid-limit-consistency condition can significantly improve the accuracy of the M–D-𝑛-𝑘 force–displacement curves when compared
with the FSCM.

4.3.2. The pull-off force
The pull-off force as a function of Tabor number 𝜇 is studied for the cases of 𝑘 = 0.4 and 𝑛 = 1, 1.5, 2 and 5, as shown in Fig. 14.

For the cases considered, the predictions of the original and improved M–D-𝑛-𝑘 models agree well with the FSCM results for large 𝜇
(say 2), because the M–D-𝑛-𝑘 models reduce to the JKR-𝑛-𝑘 model at large 𝜇, which is independent of the value of 𝜎0. For 𝑛 = 2 in
Fig. 14(c), the M–D-𝑛-𝑘 models coincide well with the FSCM for very small and large 𝜇 (e.g., 0.01 and 2), but the improved M–D-𝑛-𝑘
model shows a much better agreement than the original one over a wide range of moderate Tabor numbers (say 0.05–2). For 𝑛 ≠ 2
in Fig. 14, the results of the improved M–D-𝑛-𝑘 model are very close to those of the FSCM, but a great discrepancy is observed
between the original M–D-𝑛-𝑘 model (Jin et al., 2021) and FSCM results for small and moderate Tabor numbers (e.g., 𝜇 < 2).

The pull-off force is scaled by the magnitude of the rigid limit, thus it approaches constant values for small Tabor numbers, as
shown in Fig. 15. It can be seen clearly from Fig. 15 that the improved M–D-𝑛-𝑘 model shows a better agreement with the FSCM
over the whole JKR–Bradley transition than the original one. If the pull-off force is scaled by the magnitude of the soft limit (Jin
et al., 2021), it approaches constant values for large Tabor numbers, as shown in Fig. 16(a). The discrepancy in Fig. 16(a) seems
not significant, because the range of the vertical axis is too large in this scaling way. Actually, the relative error 𝜅 of the pull-off
force between the M–D-𝑛-𝑘 models and the FSCM is identical in the two scaling ways, which can be used as a parameter to judge
the accuracy of the M–D-𝑛-𝑘 models. Fig. 16(b) plots the variation of the relative errors 𝜅 of the M–D-𝑛-𝑘 models as a function of
the Tabor number 𝜇 for 𝑘 = 0.4 with four representative values of 𝑛. For all cases, the relative errors 𝜅 of the original and improved
M–D-𝑛-𝑘 models approach zero at large 𝜇 (say 𝜇 > 2). For small and moderate Tabor numbers (say 𝜇 < 2), the relative error of the
improved M–D-𝑛-𝑘 model (solid line) compared with the FSCM is much smaller than that of the original M–D-𝑛-𝑘 model (dash line)
17
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Fig. 13. Validating the force–displacement curves of the original and improved M–D-𝑛-𝑘 models by comparing with the FSCM results for (a) 𝑛 = 1, (b) 𝑛 = 1.5,
c) 𝑛 = 2 and (d) 𝑛 = 5 with 𝑘 = 0.4 and 𝜇 = 1.

ith 𝑛 = 1, 1.5 and 5. For example, the maximum relative errors of the original M–D-𝑛-𝑘 model (Jin et al., 2021) are 65.0%, 21.2% and
5.9% for 𝑛 = 1, 1.5 and 5, respectively, whereas the corresponding values of the improved M–D-𝑛-𝑘 model are only 5.8%, 1.7% and
.7%. For 𝑛 = 2, the relative errors of the original and improved M–D-𝑛-𝑘 models are both close to zero for small and large 𝜇. But for
oderate 𝜇 in this case, the improved M–D-𝑛-𝑘 model can still show its superiority over the original one, e.g., the maximum relative

rrors of the original and improved models are 3.5% and 0.73%, respectively. Therefore, it is concluded that the rigid-limit-consistency
ondition (Eq. (74)) can greatly improve the accuracy of the M–D-𝑛-𝑘 pull-off forces over the whole JKR–Bradley transition when
ompared with the FSCM.

.3.3. Surface deformation and pressure distribution
The surface deformation and pressure distribution of the M–D-𝑛-𝑘 models with two selecting strategies of the cohesive stress

orresponding to the pull-off point are shown in Fig. 17, where the FSCM results are also plotted for comparison. The surface
eformation of the improved M–D-𝑛-𝑘 model shows a slightly better agreement with that of the FSCM inside the contact zone
𝑟 < 𝑎) and outside the cohesive zone (𝑟 > 𝑐) when compared with the original one, as shown in Fig. 17(a). In the cohesive zone
𝑎 < 𝑟 < 𝑐), the surface deformations of both the original and improved M–D-𝑛-𝑘 models do not coincide with the FSCM results,

because the surface pressure is over-simplified in this zone, as shown in Fig. 17(b). The surface deformation of the original model
is sharp and that of the improved model is smooth, because the latter has a smaller value of 𝜎0 and a wider cohesive zone than the
18
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Fig. 14. Effect of the Tabor number on the pull-off force: comparison between the original and improved M–D-𝑛-𝑘 models and the FSCM for (a) 𝑛 = 1, (b)
𝑛 = 1.5, (c) 𝑛 = 2 and (d) 𝑛 = 5 with 𝑘 = 0.4.

Fig. 15. Comparison of the JKR–Bradley transition between the original and improved M–D-𝑛-𝑘 models and the FSCM with the pull-off force scaled by the rigid
limit.
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Fig. 16. (a) Comparison of the JKR–Bradley transition between the original and improved M–D-𝑛-𝑘 models and the FSCM with the pull-off force scaled by the
soft limit; (b) The relative errors between the M–D-𝑛-𝑘 models and the FSCM.

Fig. 17. Comparison between the original and improved M–D-𝑛-𝑘 models and the FSCM: (a) the surface deformation and (b) the pressure distribution. Fixed
parameters are 𝑛 = 2, 𝑘 = 0.4 and 𝜇 = 1.

5. Conclusions

In this study, a full self-consistent model (FSCM) is developed for the adhesive contact between an axisymmetric rigid punch and
a power-law graded elastic half-space. The adhesive contact problem is described by a nonlinear singular integral equation, which
gives the coupling relationship between the surface gap and the surface interaction. With rigorous mathematical derivation, the
singularity in numerical integration is eliminated through Riemann–Stieltjes integral. The power-law punch profiles are studied as
representative cases and the surface interaction is described by the L–J force law. The self-consistent equation is nondimensionalized
and its dimensionless form contains only three dimensionless parameters, i.e., the shape index 𝑛, the Tabor number 𝜇, and the
gradient exponent 𝑘. The surface central gap control method and Newton–Raphson iterative method are adopted to solve the
nonlinear integral equation numerically, and the full force–displacement curves are obtained.

For a large Tabor number 𝜇, the full force–displacement curve is ‘S-shaped’ and there are two unstable positions, namely the
jumping-in/out points, if the displacement control method is adopted (e.g., in experimental tests). These phenomena were also
observed in the homogeneous case (Greenwood, 1997; Feng, 2000). It is found that the JKR-𝑛-𝑘 force–displacement curves coincide
well with those of the FSCM at the high-load branch, but have a large difference at the low-load branch (including the jumping-in
point) due to the absence of surface interaction before jumping-in contact in the JKR theory.

Asymptotic solutions are derived to predict the unstable positions during adhesive contact, which give power-law relations
between the jumping-in/out displacements and the Tabor number. The dimensionless jumping-in displacement 𝛿in is positively
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correlated with 𝜇(2𝑛+𝑘−1)∕(4𝑛+𝑘−1) and the dimensionless jumping-out displacement 𝛿out is proportional to 𝜇. The asymptotic solutions
coincide well with the FSCM results and are useful in estimating the adhesion hysteresis energy loss of the power-law graded
materials.

The effects of shape and material parameters on the adhesion of power-law graded materials are discussed in detail. With the
increase of the Tabor number, the adhesion hysteresis becomes notable, and the dimensionless pull-off force increases for the small
shape index (e.g., 𝑛 = 1 and 1.5) and decreases for the large shape index (e.g., 𝑛 = 2 and 5). The JKR–Bradley transition for
the power-law graded material is obtained when the Tabor number increases from zero to infinity. There are two ranges for 𝑛
(0.974 ≤ 𝑛 ≤ 1.056 and 3.335 ≤ 𝑛 ≤ 6.219) where the relative deviation of the pull-off force between the graded and homogeneous
materials is not sensitive to 𝑘. In these two ranges, the dimensionless pull-off force mainly depends on 𝑛 and 𝜇.

The FSCM is the most accurate adhesive contact model in the continuum framework, thus we apply it to validate the M–D-𝑛-𝑘
model developed by Jin et al. (2021). It is shown that the accuracy of the original M–D-𝑛-𝑘 model (Jin et al., 2021) is limited due
to the improper choice of the cohesive stress. The M–D-𝑛-𝑘 model is improved by applying the rigid-limit-consistency condition (Zheng
and Yu, 2007b) to determine the value of the cohesive stress. Compared with the original M–D-𝑛-𝑘 model, the improved one shows
a much better agreement with the FSCM in many aspects, such as the force–displacement curves and the pull-off forces. Therefore,
we strongly recommend the rigid-limit-consistency condition as an additional basic relation to the M–D-type models.

This study makes an attempt to establish a full self-consistent model for the adhesive contact of nonhomogeneous materials.
It presents a further understanding on the adhesion of the power-law graded elastic materials and is helpful to verify/improve the
existing simplified adhesive contact models. The FSCM for power-law graded materials developed in this study adopts the frictionless
boundary condition, which may be further extended to the non-slipping adhesive contact cases, and the studies of the JKR and M–D
type models (Chen and Gao, 2006a,b; Jin and Guo, 2010, 2012) may inspire this extension. For analytical tractability, the Young’s
modulus of graded materials considered in this work varies with depth according to a power-law relation and is zero at the surface.
By combining with the adhesive contact solution of the homogeneous materials, the present results may provide a first approximation
to the contact solution for power-law graded materials with non-zero surface modulus (Giannakopoulos and Pallot, 2000). The effect
of surface modulus on the adhesion of power-law graded materials may be studied through a finite element method in the future.
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Appendix A. Some properties of the Gauss’s hypergeometric function

The Gauss’s hypergeometric function is defined as (Abramowitz and Stegun, 1965)

2F1(𝛼, 𝛽; 𝛾; 𝑥) =
Γ(𝛾)

Γ(𝛽)Γ(𝛾 − 𝛽) ∫

1

0

𝑡𝛽−1(1 − 𝑡)𝛾−𝛽−1

(1 − 𝑥𝑡)𝛼
d𝑡, (A.1)

where Γ(⋅) is the Gamma function. In the following appendices, we abbreviate 2F1(⋅) as F(⋅) for convenience. Some useful properties
f the Gauss’s hypergeometric function are given in this appendix and they will be used in the following Appendices. The following
ormulas can be consulted from the handbook of Abramowitz and Stegun (1965).

One of the Kummer’s quadratic transformations is written as (Eq. 15.3.27 in p. 561 of Abramowitz and Stegun (1965))

F(𝛼, 𝛽; 𝛼 − 𝛽 + 1; 𝑥2) = (1 + 𝑥)−2𝛼F(𝛼, 𝛼 − 𝛽 + 1 ; 2𝛼 − 2𝛽 + 1; 4𝑥 ). (A.2)
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The relations between the hypergeometric function and the complete elliptic integrals are given by (Eqs. 17.3.9 and 17.3.10 in p.
591 of Abramowitz and Stegun (1965))

K(𝑥) = 𝜋
2
F( 1

2
, 1
2
; 1; 𝑥2), (A.3)

E(𝑥) = 𝜋
2
F(−1

2
, 1
2
; 1; 𝑥2), (A.4)

where K(⋅) and E(⋅) are the complete elliptic integrals. The derivative of 𝐹 (𝛼, 𝛽; 𝛾; 𝑥) is given by (Eq. 15.2.1 in p. 557 of Abramowitz
and Stegun (1965))

d
d𝑥

F(𝛼, 𝛽; 𝛾; 𝑥) =
𝛼𝛽
𝛾
F(𝛼 + 1, 𝛽 + 1; 𝛾 + 1; 𝑥). (A.5)

Several Gauss’s relations of the hypergeometric function are written as (Eqs. 15.2.10, 15.2.14, 15.2.18 and 15.2.20 in p. 557
of Abramowitz and Stegun (1965))

(𝛾 − 𝛼) F(𝛼 − 1, 𝛽; 𝛾; 𝑥) + (2𝛼 − 𝛾 − 𝛼𝑥 + 𝛽𝑥) F(𝛼, 𝛽; 𝛾; 𝑥) + 𝛼 (𝑥 − 1) F(𝛼 + 1, 𝛽; 𝛾; 𝑥) = 0, (A.6)
(𝛽 − 𝛼) F(𝛼, 𝛽; 𝛾; 𝑥) + 𝛼F(𝛼 + 1, 𝛽; 𝛾; 𝑥) − 𝛽F(𝛼, 𝛽 + 1; 𝛾; 𝑥) = 0, (A.7)
(𝛾 − 𝛼 − 𝛽) F(𝛼, 𝛽; 𝛾; 𝑥) − (𝛾 − 𝛼) F(𝛼 − 1, 𝛽; 𝛾; 𝑥) + 𝛽 (1 − 𝑥) F(𝛼, 𝛽 + 1; 𝛾; 𝑥) = 0, (A.8)
𝛾 (1 − 𝑥) F(𝛼, 𝛽; 𝛾; 𝑥) − 𝛾F(𝛼 − 1, 𝛽; 𝛾; 𝑥) + (𝛾 − 𝛽) 𝑥F(𝛼, 𝛽; 𝛾 + 1; 𝑥) = 0. (A.9)

Appendix B. Two special cases of Kummer’s quadratic transformations

Taking 𝛼 = 𝛽 = (𝑘 + 1)∕2 and 𝑥 = 𝑟∕𝑡 in Eq. (A.2) leads to

F(𝑘 + 1
2

, 𝑘 + 1
2

; 1; 𝑟
2

𝑡2
) = 𝑡𝑘+1

(𝑟 + 𝑡)𝑘+1
F(𝑘 + 1

2
, 1
2
; 1; 4𝑟𝑡

(𝑟 + 𝑡)2
), (B.1)

and making 𝛼 = 𝛽 = (𝑘 + 1)∕2 and 𝑥 = 𝑡∕𝑟 in Eq. (A.2) gives

F(𝑘 + 1
2

, 𝑘 + 1
2

; 1; 𝑡
2

𝑟2
) = 𝑟𝑘+1

(𝑟 + 𝑡)𝑘+1
F(𝑘 + 1

2
, 1
2
; 1; 4𝑟𝑡

(𝑟 + 𝑡)2
). (B.2)

By using Eqs. (B.1) and (B.2), Eq. (6) can be rewritten as Eq. (8).

Appendix C. Two inferences of the Gauss’s relations

Making 𝛼 = 𝜁 , 𝛽 = 1∕2 and 𝛾 = 1 in Eq. (A.7) yields

1
2
(1 − 2𝜁 ) F(𝜁, 1

2
; 1; 𝑥) + 𝜁F(𝜁 + 1, 1

2
; 1; 𝑥) − 1

2
F(𝜁, 3

2
; 1; 𝑥) = 0. (C.1)

Similarly, taking 𝛼 = 𝜁 + 1, 𝛽 = 1∕2 and 𝛾 = 1 in Eq. (A.8) leads to

− 1
2
(1 + 2𝜁 ) F(𝜁 + 1, 1

2
; 1; 𝑥) + 𝜁F(𝜁, 1

2
; 1; 𝑥) + 1

2
(1 − 𝑥) F(𝜁 + 1, 3

2
; 1; 𝑥) = 0, (C.2)

and considering 𝛼 = 𝜁 + 1, 𝛽 = 3∕2 and 𝛾 = 1 in Eq. (A.9) gives

(1 − 𝑥) F(𝜁 + 1, 3
2
; 1; 𝑥) − F(𝜁, 3

2
; 1; 𝑥) − 1

2
𝑥F(𝜁 + 1, 3

2
; 2; 𝑥) = 0. (C.3)

Then, substituting Eqs. (C.1) and (C.2) into Eq. (C.3), we have one inference of the Gauss’s relations

F(𝜁 + 1, 3
2
; 2; 𝑥) = 2

𝑥
F(𝜁 + 1, 1

2
; 1; 𝑥) − 2

𝑥
F(𝜁, 1

2
; 1; 𝑥). (C.4)

Replacing 𝜁 with 𝜁 + 1 in Eq. (C.4) gives

F(𝜁 + 2, 3
2
; 2; 𝑥) = 2

𝑥
F(𝜁 + 2, 1

2
; 1; 𝑥) − 2

𝑥
F(𝜁 + 1, 1

2
; 1; 𝑥), (C.5)

and making 𝛼 = 𝜁 + 1, 𝛽 = 1∕2 and 𝛾 = 1 in Eq. (A.6) leads to

− 𝜁F(𝜁, 1
2
; 1; 𝑥) + 1

2
(2𝜁 + 1) (2 − 𝑥) F(𝜁 + 1, 1

2
; 1; 𝑥) − (𝜁 + 1) (1 − 𝑥) F(𝜁 + 2, 1

2
; 1; 𝑥) = 0. (C.6)

Thus, combining Eqs. (C.5) and (C.6), we have another inference of the Gauss’s relations

F(𝜁 + 2, 3 ; 2; 𝑥) = 1 [

(2𝜁 + 𝑥) F(𝜁 + 1, 1 ; 1; 𝑥) − 2𝜁F(𝜁, 1 ; 1; 𝑥)
]

. (C.7)
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Appendix D. Treatment of singular integral in the FSCM of homogeneous materials

The derivatives of K(⋅) and E(⋅) are

d
d𝑠

K(
2
√

𝑠
1 + 𝑠

) = 1 − 𝑠
2𝑠(1 + 𝑠)

[

−K(
2
√

𝑠
1 + 𝑠

) +
(1 + 𝑠)2

(1 − 𝑠)2
E(

2
√

𝑠
1 + 𝑠

)

]

, (D.1)

d
d𝑠

E(
2
√

𝑠
1 + 𝑠

) = 1 − 𝑠
2𝑠(1 + 𝑠)

[

−K(
2
√

𝑠
1 + 𝑠

) + E(
2
√

𝑠
1 + 𝑠

)

]

. (D.2)

Eqs. (D.1) and (D.2) give the relations between the complete elliptic integrals E(⋅), K(⋅) and their derivatives. By combining
qs. (D.1) and (D.2), the term with E(⋅) on the right hand can be eliminated and we have

1
𝜋

d
d𝑠

[

(𝑠 − 1)K(
2
√

𝑠
1 + 𝑠

) + (1 + 𝑠) E(
2
√

𝑠
1 + 𝑠

)

]

= 2𝑠
𝜋(1 + 𝑠)

K(
2
√

𝑠
1 + 𝑠

), (D.3)

which corresponds to Eqs. (15) and (16). By using Eq. (D.3), Eq. (14) can be rewritten as Eq. (17), and the integral singularity at
𝑠 = 1 (i.e., 𝑡 = 𝑟) is eliminated.

Appendix E. Treatment of singular integral in the FSCM of graded materials

Inspired by the processing method in Appendix D, it is needed to find the primitive function of

𝜑𝑘(𝑠) =
𝑠

(1 + 𝑠)𝑘+1
F(𝑘 + 1

2
, 1
2
; 1; 4𝑠

(1 + 𝑠)2
) (E.1)

to eliminate the integral singularity at 𝑡 = 𝑟 in Eq. (12). From Eq. (A.5), we can obtain the following derivative relations

d
d𝑠

F(𝑘 + 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
) =

(𝑘 + 1) (1 − 𝑠)
(1 + 𝑠)3

F(𝑘 + 3
2

, 3
2
, 2, 4𝑠

(1 + 𝑠)2
), (E.2)

d
d𝑠

F(𝑘 − 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
) =

(𝑘 − 1) (1 − 𝑠)
(1 + 𝑠)3

F(𝑘 + 1
2

, 3
2
, 2, 4𝑠

(1 + 𝑠)2
). (E.3)

Making use of Eqs. (C.7) and (C.4) with 𝜁 = (𝑘 − 1) ∕2 and 𝑥 = 4𝑠∕ (1 + 𝑠)2, we can rewrite Eqs. (E.2) and (E.3) as

d
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, 1
2
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), (E.4)

d
d𝑠

F(𝑘 − 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
) = 𝜂3F(

𝑘 + 1
2

, 1
2
; 1; 4𝑠

(1 + 𝑠)2
) + 𝜂4F(
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here 𝜂1, 𝜂2, 𝜂3 and 𝜂4 are given by

𝜂1 =
𝑘
(

1 + 𝑠2
)

𝑠
(

1 − 𝑠2
) −

(𝑘 + 1) (1 − 𝑠)
2𝑠 (1 + 𝑠)

, 𝜂2 =
(1 − 𝑘) (1 + 𝑠)
2𝑠 (1 − 𝑠)

, 𝜂3 =
(𝑘 − 1) (1 − 𝑠)
2𝑠 (1 + 𝑠)

, 𝜂4 = −𝜂3. (E.6)

n fact, the term 1∕ (1 + 𝑠)𝑘 should also be included in the derivatives on the left side of Eqs. (E.4) and (E.5) to fully eliminate the
rimitive function 𝜑𝑘(𝑠) for arbitrary values of 𝑘. From Eqs. (E.4) and (E.5), we have
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where 𝜂5, 𝜂6, 𝜂7 and 𝜂8 are given by

𝜂5 =
𝑘
(

1 + 3𝑠2
)

− (1 − 𝑠)2

2𝑠 (1 − 𝑠) (1 + 𝑠)𝑘+1
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, 𝜂8 =
1 − 𝑠 − 𝑘 (1 + 𝑠)
2𝑠(1 + 𝑠)𝑘+1

. (E.9)

qs. (E.7) and (E.8) give the relationships of two Gauss’s hypergeometric functions and their derivatives. Combining Eqs. (E.7) and
E.8) to eliminate the term with F((𝑘 − 1) ∕2, 1∕2; 1; 4𝑠∕(1 + 𝑠)2) on the right hand, we have
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2
, 1
2
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)
]

= (1 − 𝑘)𝜑𝑘(𝑠). (E.10)

his relation leads to Eqs. (18) and (19), and the singular point at 𝑠 = 1 (i.e., 𝑡 = 𝑟) for power-law graded elastic materials is
23

liminated.
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