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ABSTRACT
A non-equilibrium wall model for large-eddy simulation with the immersed boundary (IB) method is proposed to reduce the required number
of grid points in simulating wall-bounded turbulence. The proposed wall model is presented as an appropriate slip velocity on the wall. The
slip velocity is constructed by integrating the simplified turbulent boundary layer (TBL) equation along the wall-normal direction, which
enhances the integral momentum balance near the wall on a coarse grid. The effect of pressure gradient on the near wall flow is taken into
account by retaining the pressure gradient term in the simplified TBL equation. The proposed model is implemented in the form of a direct-
forcing IB method with moving-least-square reconstruction near the wall. The benchmarks of plane channel turbulence and the flows over
a backward-facing step are used for validation. The proposed model improves the wall stresses and velocity profiles in the region where the
pressure gradient dominates the near wall flows.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0101010

I. INTRODUCTION

The purpose of this work is to develop a wall model within
the framework of the immersed boundary (IB) method for the
large-eddy simulation (LES) of turbulent flows. The wall models
use approximate boundary conditions to circumvent excessive res-
olution of the flow near the wall and to avoid the prohibitive grid
requirement for LES of wall-bounded turbulence at high Reynolds
numbers.1–3 The IB method has advantages in handling flows with
complex geometries and/or moving boundaries.4,5 The combination
of wall models with the IB method is expected to provide a feasible
tool for LES of turbulent flows with non-canonical walls.6–8

The most widely used wall model is the wall stress model, which
skips the flow details near the wall by modeling the inner-region of
the turbulent boundary layer and feeds the LES with the wall stress
boundary condition. Schumann9 proposed a wall stress model based
on the logarithmic law of the wall to simulate the turbulent flows
in plane channels and annuli. The model based on the logarith-
mic law of the wall can be constructed from the Reynolds-averaged

boundary layer equation by discarding the pressure gradient and
convective terms, which is often referred to as the equilibrium wall
model since the equilibrium stress balance.10 Correspondingly, the
model based on the Reynolds-averaged boundary layer equation
with pressure gradient and/or convective terms are often referred
to as the non-equilibrium wall model. The equilibrium wall stress
model was then improved by using the power-law velocity profiles to
avoid numerically solving the non-linear equation,11 accounting for
the time shifting caused by the sweeps and ejections near the wall,12

or including the effect of a buffer layer.13 John-Puthenveettil and
Jakirlić14 proposed an adaptive wall model by referring to a univer-
sal expression for the near wall velocity profiles, where a parameter
can be used to represent the non-equilibrium effect. Another way
to account for the non-equilibrium effects is to use the two-layer
model proposed by Balaras et al.15 in which the turbulent bound-
ary layer (TBL) equation on an embedded mesh near the wall is
solved. The non-equilibrium model is reported to give improved
results compared with the equilibrium models for square duct and
rotating channel flows. Recently, Yang et al.16 proposed an integral
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wall model by adopting the classical integral method of von Kár-
mán and Pohlhausen to avoid solving the differential TBL equation
on an embedded mesh. Suga et al.17 further simplified the subgrid
eddy viscosity to analytically integrate the boundary layer equa-
tion near the wall and obtained an algebraic non-equilibrium wall
model. Cai and Sagaut18 proposed another algebraic wall model
by expanding the near wall velocity profiles. Hosseinzadea and
Bergstrom19 found that the performance of the wall model is affected
by the temporal-filtering. A temporal-filtering period comparable to
the turbulent diffusion timescale helps in removing the nonessen-
tial high-frequency wavelengths that disturb the inputs of the wall
model. Wang et al.20 proposed a method to generate synthetic flow
fields based on a minimum flow unit, which provides an effective
approach to constructing off-wall boundary conditions for wall-
modeled LES. The details of the progress on the wall models for LES
can be found in the review papers of Piomelli and Balaras,1 Larsson
et al.,21 and Bose and Park.2

To date, most of wall models are developed in the framework
of the boundary conformal mesh method. The non-boundary con-
formal mesh method has attracted increasing attention in the last
two decades for its simplicity in mesh generation and advantages in
parallel computing.22–24 The combination of the wall models with
the non-boundary conformal mesh method is expected to help in
enhancing the LES of turbulent flows with complex geometries in
engineering.25–27 However, the application of wall models to the
non-boundary conformal mesh method is not straightforward due
to the difficulties in correctly imposing a momentum flux on the
boundaries with the non-boundary conformal mesh.28,29

The IB method is a typical non-boundary conformal mesh
method, in which the equations for fluid dynamics are usually solved
on an Eulerian (Cartesian) mesh and the equations for solid or struc-
tural dynamics are usually solved on a Lagrangian mesh. The effects
of solid boundaries on the flow are represented by body forces in the
momentum equation for fluid dynamics.30–35 The computation of
the body forces couples the variables on the Eulerian and Lagrangian
meshes. The IB method has been successfully used in simulations of
laminar flows with complex geometries and moving boundaries.36–41

However, the simulations of the turbulent flows by using the IB
method are reported in only a few works.42–45 The application of
the IB method to the high Reynolds number turbulent flows is of
great challenge, mainly because of the difficulties in fully resolving
the flows near the wall.7,46,47

Tessicini et al.48 introduced a wall model to the IB method
to extend its capability to LES of turbulent flows. They solved
the flow equations for LES to the second off-wall grid points and
reconstructed the velocity on the off-wall grid points by solving
the simplified TBL equations. The wall model significantly reduces
the computational cost and notably improves the results com-
pared to simulations without the wall model on the same grid.
Instead of solving the simplified TBL equations, Choi et al.49 recon-
structed the velocity at the Eulerian grid points near the wall
using the power law velocity profiles with high-order corrections.
In addition to reconstructing the velocity at the Eulerian grid
points near the wall, Roman et al.28 suggested imposing a RANS-
like eddy viscosity near the wall to preserve the balance between
the driving force and the wall stress. Most of the wall models in
the framework of the IB method are equilibrium wall models. A
non-equilibrium wall model in conjunction with the IB method

is needed to take the advantages of the IB method in handling
complex boundaries.

We propose a non-equilibrium wall model for LES with the
IB method. The non-equilibrium wall model is imposed as a slip
velocity on the wall. The slip velocity along the wall-parallel direc-
tion together with the transpiration velocity along the wall-normal
direction has been reported to give an improved prediction of the
turbulence intensities in the recent work of Bae et al.,50,51 in which
the slip and transpiration velocities are obtained based on a differ-
ential filter. Yang and Bose52 showed that the slip wall model based
on the differential filter is compatible with arbitrary LES filter and
can be motivated using the RANS-type momentum equation. There-
fore, we construct the slip-velocity based on an integral momentum
equation near the wall, instead of using the differential filter. The
proposed model is able to take into account the effects of pressure
gradient. The benchmark flows of the plane channel turbulence and
the flows over a backward-facing step are simulated to validate the
proposed model.

This paper is organized as follows: In Sec. II, we briefly outline
the governing equations and numerical method for LES. In Sec. III,
we give the details of the proposed slip-wall model in the framework
of the IB method. The validation and application of the model for
canonical flows are presented in Sec. IV. Finally, the summary and
conclusions are given in Sec. V.

II. GOVERNING EQUATIONS AND NUMERICAL
METHOD FOR LARGE-EDDY SIMULATION

The governing equations for the LES of incompressible flow are
the filtered continuity and Navier–Stokes equations

∂ũi

∂xi
= 0, (1)

∂ũi

∂t
+ ∂ũiũj

∂xj
= −1

ρ
∂p̃
∂xi
+ ν

∂2ũi

∂xj∂xj
+ ∂τij

∂xj
+ f i, (2)

where ũi (i = 1, 2, 3) and p̃ are the filtered velocity and pressure,
respectively, f i (i = 1, 2, 3) is the body force that represents the
boundary effect on the flow in the IB method, and ν and ρ are the
kinematic viscosity and density of the fluid, respectively. The subgrid
stress τij is computed as

τij −
1
3

τkkδij = 2νSGSS̃ij, (3)

where S̃ij is the resolved strain rate tensor. The subgrid scale (SGS)
eddy viscosity νSGS is determined by the wall-adapting local eddy vis-
cosity (WALE) model,53 which is specifically designed to obtain the
proper y3 near-wall scaling for the eddy viscosity without requiring
a dynamic procedure,

νSGS = C2
wΔ̄ 2 (S d

ij S
d
ij )

3/2

(S̃ ijS̃ ij)
5/2 + (S d

ij S
d
ij )

5/4 , (4)

where

𝒮 d
ij =

1
2
(g̃2

ij + g̃2
ji) −

1
3

δijg̃2
kk (5)
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is the traceless symmetric part of the tensor g̃2
ij = g̃ikg̃kj, with

g̃ij = ∂ũi/∂xj being the resolved velocity gradient tensor. The con-
stant parameter is set to Cw = 0.6. Δ̄ is the subgrid characteristic
length scale, which is taken as the grid length in this work.

The governing Eqs. (1) and (2) are numerically solved by using
the projection method in combination with the IB method,47

ũ∗i − ũn
i

Δt
= rhsn+1/2 − ∂p̃ n

∂xi
+ f n+1/2

i , (6)

ũn+1
i = ũ∗i − Δt

∂δp
∂xi

, (7)

∂2δp
∂xi∂xi

= 1
Δt

∂ũ∗i
∂xi

, (8)

p̃ n+1 = p̃ n + δp, (9)

where the superscript n denotes the number of time step, ũ∗i is
the intermediate velocity, rhs represents the discretized advective
and diffusive terms as well as the SGS stresses, Δt is the time step,
and δp is the pressure correction. The second-order central differ-
ence scheme on a staggered Cartesian grid is used for the spatial
discretization, and the second-order Adams–Bashforth method is
used for time advancement. The body forcing fi in the momen-
tum equation represents the effects of immersed boundaries on the
flow and will be discussed in Sec. III. The details of the numeri-
cal method can be found in Refs. 47 and 54. The validations and
applications of the flow solver for a variety of flows can be found
in Refs. 55–57.

III. SLIP WALL MODEL FOR LARGE-EDDY SIMULATION
WITH THE IMMERSED BOUNDARY METHOD

We report the construction and implementation of the pro-
posed slip wall model in this section. The construction of the wall
model is based on the integral momentum equation near the wall.
The implementation of the slip wall model is based on the moving-
least-square (MLS) direct-forcing IB method.54 The details of the
procedures are reported as follows.

A. Construction of the slip wall model
We construct the slip wall model in a local orthogonal coordi-

nate system o–ξηζ as shown in Fig. 1. For a point W on the wall, the
o–η axis is along the wall-normal direction, the o–ξ axis is parallel to
the tangential velocity near the wall, and the o–ζ axis is perpendic-
ular to the o–η and o–ξ axes according to the right-hand rule. The
velocity near the wall can be decomposed as follows:

u⃗ − u⃗w ≡ Δu⃗ = uηe⃗η + uξ e⃗ξ , (10)

where u⃗w is the velocity at point W on the wall, e⃗η and e⃗ξ are the
unit vectors in the wall-normal and tangential directions, respec-
tively, and uη and uξ are the normal and tangential components of
the velocity in the local coordinate system o–ξηζ, respectively. In the

FIG. 1. Schematic illustration of the local orthogonal coordinate system. The closed
and open circles represent the Lagrangian point on the wall and the probe point
near the wall, respectively. The origin o and the point W on the wall coincide with
each other.

current work, u⃗w is set to be zero because the flows over a stationary
solid body are investigated. Notice that the velocity component uζ
is zero because the axis o–ξ is defined to be parallel to the tangen-
tial velocity near the wall. In the numerical simulation, we need to
compute only the tangential velocity at the probe point P as shown
in Fig. 1.

The Reynolds-averaged TBL equation for the velocity in the
wall-tangential direction is employed to model the flow near the wall
(hereinafter referred to as the wall-modeled region),

∂

∂η
[(ν + νt)

∂u⃗
∂η
⋅ e⃗ξ] = S, (11)

where S = 1
ρ∇P̄ ⋅ e⃗ξ + ∂u⃗

∂t ⋅ e⃗ξ + (u⃗ ⋅ ∇)u⃗ ⋅ e⃗ξ is the combination of the
pressure gradient, local acceleration, and convection terms, νt is the
eddy viscosity in the wall-modeled region, and P̄ is the Reynolds-
averaged pressure near the wall.

We integrate Eq. (11) along the wall-normal direction to a
probe point P near the wall (as shown in Fig. 1),

(ν + νt)
∂uξ,P

∂η
= τw

ρ
+ ∫

δP

0
Sdη, (12)

where uξ,P is the velocity component along the o–ξ direction at the
probe point P, δP is the distance from the probe point P to the wall,
and τw is the wall shear stress. Notice that the integral over S on
the right-hand side of Eq. (12) is not directly numerically computed
along the line from the wall to the probe point P, since we have
not embedded a fine grid to fully resolve the near wall velocities in
the current work. Instead, we approximately estimated this term by
considering only the pressure gradient term according the work of
Wang and Moin.10 The details of the approximation, derivation, and
implementation will be reported in Subsection III B.

We then construct the virtual slip velocity on the wall by
retaining the formally linear distribution of the velocity within the
wall-modeled region and adjust the eddy viscosity near the wall to
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preserve the momentum balance. Thus, the velocity gradient at the
probe point P can be approximated as

∂uξ,P

∂η
= uξ,P − uξ,W

δP
, (13)

where uξ,W is the slip velocity on the wall at point W. A combination
of Eqs. (12) and (13) gives an explicit expression for the slip velocity
at point W,

uξ,W = uξ,P −
δP

(ν + νt)
( τw

ρ
+ ∫

δP

0
Sdη). (14)

Equation (14) is the non-equilibrium slip wall model proposed
in this work. For a given point W on the wall, the slip velocity can
be computed based on the flow at the probe point P and the wall
shear stress τw. The probe point P is generally not coincident with
the Eulerian grid point. We interpolate the flow variables from the
Eulerian grid to the point P by using the MLS method according
to the work of Vanella et al.55 In the current work, the distance
between the probe point P and the wall, δP, is set as 2.0Δh, where Δh
is the grid length of the Eulerian grid. The MSL interpolation sten-
cil points are specified as all grid points located within 1.2Δh from
the probe point P. Thus, no point inside the body is involved in the
MLS reconstruction, and the undesired effects associated with cross
wall interpolation can be avoided, as shown in Fig. 2(a). The shear
stress is computed by using a wall model consistent with Eq. (11), as
discussed in Sec. III B.

When the grid resolution is fine enough to resolve the viscous
sublayer near the wall, the eddy viscosity and the source term on the

right-hand side of Eq. (14) diminish. In this situation, the slip wall
model reduces to the no-slip boundary condition

uξ,W = uξ,P −
δP

ν
τw

ρ

= uξ,P −
δP

ν
1
ρ
(μ

uξ,P

δP
)

= 0. (15)

We use the impenetrable boundary condition10 as follows for
the flows with stationary boundaries:

uη,W = 0, (16)

where uη,W is the velocity component in the wall-normal direction
at point W.

B. Computation of the wall shear stress
We investigate a simplified variant of the model with

S = 1/ρ(∇P̄ ⋅ e⃗ξ) as the non-equilibrium model proposed by Wang
and Moin,10 which accounts for effects of pressure gradient on near
wall flows (hereinafter referred to as the NEB model). In this case,
Eq. (11) reduces to an ordinary differential equation as follows:

∂

∂η
[(ν + νt)

∂u⃗ξ

∂η
] = 1

ρ
∂P̄
∂ξ

, (17)

where uξ = u⃗ ⋅ e⃗ξ is the tangential component of velocity, and
∂P̄
∂ξ = ∇P̄ ⋅ e⃗ξ is the pressure gradient along the tangential direction.

FIG. 2. Schematic illustration of the con-
struction and implementation of the pro-
posed slip wall model. (a) The probe
points (open circles, blue online) near the
wall and the schematic of the interpola-
tion stencil (square around the point P,
green online), (b) the local Lagrangian
mesh to compute the wall shear stress,
(c) reconstruct the slip velocity on the
wall from the wall shear stress by
retaining a linear velocity profile near
the wall, (d) the body force is com-
puted at the wall using a direct-forcing
method using the slip velocity. The black
curved lines in (a), (b), and (d) repre-
sent the immersed boundary, which is
discretized with Lagrangian points (solid
black circles). The probe points (open
circles, blue online) can be constructed
by extruding the Lagrangian points in the
normal direction to the wall at a specified
distance δP . The shaded squares around
points represent the interpolation region
for the MLS reconstruction.

AIP Advances 12, 095014 (2022); doi: 10.1063/5.0101010 12, 095014-4

© Author(s) 2022

D
ow

nloaded from
 http://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0101010/16470566/095014_1_online.pdf

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

The integral of Eq. (17) from a point W on the wall to η along the
wall-normal direction gives

(ν + νt)
∂uξ

∂η
(η) − τw = ∫

η

0

1
ρ
∂P̄
∂ξ

dη′, (18)

where τw = (ν + νt) ∂uξ
∂η ∣w = ν ∂uξ

∂η ∣w is the wall shear stress at the
point W on the wall. η′ on the right-hand side of Eq. (18) is an
auxiliary variable to distinguish the boundary of the integration η
along the wall-normal direction and the independent variable of the
pressure gradient ∂P̄

∂ξ (η
′) along the wall-normal direction.

We introduce the assumption that the pressure gradient along
the wall-normal direction is zero within the boundary layer. Based
on this assumption, 1

ρ
∂P̄
∂ξ is constant and Eq. (18) reduces to

∂uξ

∂η
(η) = τw

ν + νt
+ 1

ρ
∂P̄
∂ξ

η
1

ν + νt
. (19)

We integral Eq. (19) along the wall-normal direction from the wall to
the probe point P and obtain the expression in the form of tangential
velocity as follows:

uξ(η) = τw∫
δP

0

1
ν + νt

dη + 1
ρ
∂P̄
∂ξ ∫

δP

0

η
ν + νt

dη. (20)

The rearrangement of Eq. (20) gives the wall shear stress as
follows:

τw =
ρ

∫
δp

0
dη

ν+νt

{uξ,P − S∫
δp

0

ηdη
ν + νt

}. (21)

Here, uξ,P = uξ(δP) is the tangential velocity at the probe point P,
and S = 1

ρ
∂P̄
∂ξ is the pressure gradient near wall.

In numerical implementation, we use instantaneous pressure
gradient at the probe point P to approximate the term S in Eq. (21),

S ≈ 1
ρ
∂p̃
∂ξ
(δp). (22)

The eddy viscosity νt is computed as follows to account for the
effect of the pressure gradient:58

νt

ν
= κη∗[α + η∗(1 − α)3/2]

β
(1 − e−η∗/(1+α3A))

2
, (23)

where η∗ = ηuτp/ν is the corrected frictional length, and

uτp =
√

u2
τ + u2

p is a combination of the frictional velocity

uτ =
√
∣τw∣/ρ and the reference velocity defined by the pressure

gradient up = ∣(ν/ρ)(∂P̄ m/∂ξ)∣1/3. The parameter α = u2
τ/u2

τp
quantifies the preponderant effect between the shear stress and
pressure gradient. The other parameters are set according to those
used by Duprat et al.,58 i.e., κ = 0.41, β = 0.78, and A = 18. When
the pressure gradient is negligible, Eq. (23) reduces to the van Driest
formula, which effectively predicts the velocity profile for boundary
layers with a zero pressure gradient.

To compute η∗ and the wall-layer eddy viscosity νt in Eq. (23),
the friction velocity uτ is required. In the present implementation,

uτ =
√

τw/ρ is evaluated using the instantaneous τw from the previ-
ous time step according to the work of Wang and Moin.10 In this
sense, the proposed non-equilibrium wall model given by Eq. (14)
and the wall shear stress given by Eq. (21) are algebraic. The wall
shear stress and the slip velocity on the wall can be calculated by the
numerical integration through the boundary condition provided by
the probe points in each time step.

To investigate the performance of the non-equilibrium wall
model, we also construct another simplified version of Eq. (14) with
S = 0, which yields an equilibrium wall model (hereinafter referred
to as the EB model) as follows:

uξ,W = uξ,P −
δP

(ν + νt)
τw

ρ
. (24)

The performances of the NEB model and the EB model will be
discussed in Sec. IV.

C. Implementation of the slip wall model
in the framework of immersed boundary method

We implement the slip wall model in the form of a direct-
forcing IB method proposed by Vanella and Balaras,54 where the
body forcing in the momentum equations is computed based on
the MLS reconstruction near the wall. This method can be applied
to arbitrary moving/deforming bodies with great effectiveness and
robustness.54

The body forcing, f n+1/2
i in Eq. (6) at the Eulerian grid point

(r, s, t) can be calculated as follows:

f n+1/2
i (r, s, t) =∑

L
w(r, s, t, L)Fn+1/2

i (L), L ∈ℒ, (25)

where Fn+1/2
i (L) is body forcing at the Lth Lagrangian grid point,

ℒ is the set of Lagrangian grid points associated with the consid-
ered Eulerian node at (r, s, t), and w(r, s, t, L) is a weighted function
computed by using the MLS method when interpolating the forces
from the Lth Lagrangian grid point to the Eulerian grid point (r, s, t).
The body forcing on the Lth Lagrangian grid point is computed by

Fn+1/2
i (L) = Ub

i (L) − Ũ∗∗i (L)
Δt

, (26)

where Ub
i is the slip velocity computed by using Eq. (14) on the

Lth Lagrangian grid point; Û∗∗i is the predicted velocity at the Lth
Lagrangian point, which can be interpolated from the surrounding
Eulerian grids as follows:

Ũ∗∗i (L) = ∑
(r,s,t)

w(L, r, s, t)ũ∗∗i , (r, s, t) ∈ E, (27)

where ℰ is the set of the Eulerian grid points associated with the Lth
Lagrangian marker, and û∗∗i is the predicted velocity in the Eule-
rian grids and can be computed using Eq. (6) without the body force
f n+1/2

i , i.e.,

û∗∗i = ũ n + Δt(rhsn+1/2 − ∂p̃ n

∂xi
). (28)

The procedures of constructing and implementing the pro-
posed slip wall model are summarized as follows:
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(i) Interpolate the flows from the Eulerian mesh to the probe
points, as shown in Fig. 2(a).

(ii) Compute the wall shear stress based on the flow on the probe
points according to Eq. (21), as shown in Fig. 2(b).

(iii) Construct the slip velocity on the wall based on the wall shear
stress and the flow at the probe points according to Eq. (14),
as shown in Fig. 2(c).

(iv) Compute the body forcing for the IB method according to
Eq. (25), as shown in Fig. 2(d).

IV. RESULTS AND DISCUSSION
This work combines the non-equilibrium wall model with the

IB method. The new development is that we propose to implement
the wall model as a slip wall boundary condition in the framework
of IB method. The features of the proposed model are (i) feeding the
LES with slip velocity boundary condition, instead of the wall shear
stress boundary condition; (ii) accounting for the non-equilibrium
effect associated with the pressure gradient. The validations used in
this section are designed with the focuses on the validity of the new
development. The wall-modeled LES of plane channel turbulence is
conducted to validate the first feature of the proposed model, i.e.,
the application of the slip velocity boundary condition instead of
wall shear stress boundary condition. The flows over a backward-
facing step are simulated to validate the capability of the proposed
model in handling flows with pressure gradient near the wall. We
would like to note that the Reynolds number in the flows over the
backward facing step is relatively low, although it is one of the most
widely used cases in validating the wall modeled LES in the liter-
ature. However, there is no well-documented benchmark at high
Reynolds numbers. To avoid the fairly fine resolution of the grid in
this case, we conducted the wall-modeled LES on a very coarse grid,
which is comparable to the widely used grid lengths in validating the
wall-models reported in the literature.

A. Plane channel turbulence
The errors of the current wall-modeled LES depend on the

errors of modeling the near wall flow and the errors of constructing
and implementing the slip velocity. The plane channel turbulence is
an appropriate case for investigating the validity of constructing and
implementing the slip velocity because Eq. (11) gives a good model-
ing of the near wall flow in plane channels. Plane channel turbulence
is an extensively investigated wall-bounded flow and it serves as a
benchmark to validate the wall-modeled LES. We use the equilib-
rium wall model, S = 0 in Eq. (14), for the plane channel turbulence.
The validity of Eq. (11) for plane channel turbulence can be clearly
seen in the a priori test shown in Fig. 3, where Eq. (11) with S = 0 is
integrated along the wall-normal direction

uξ(η) =
τw

ρ ∫
η

0

dη′

ν + νt
. (29)

For given wall shear stresses at Reτ = 1000, 2000, and 5200, the
mean velocity profiles near the wall predicted by Eq. (29) agree well
with those of direct numerical simulation (DNS) given by Lee and
Moser,59 where Reτ is computed based on the friction velocity uτ ,
the channel half height h, and the kinematic viscosity ν.

FIG. 3. Comparison of the mean velocity profiles of turbulent channel flow at Reτ
= 1000, 2000, and 5200 (from the bottom up) in the a priori test. The profiles are
shifted up by four units for clarity of visualization.

Besides the a priori test, the validity of constructing and imple-
menting the slip velocity are investigated by the a posteriori test at
Reτ = 2000, where the LES is conducted with the EB model. The
computational domain is a rectangular domain of 8πh × 3h × πh in
the streamwise, wall-normal, and spanwise directions, respectively,
as shown in Fig. 4(a). We discretize the computational domain using
uniform Eulerian grids. The channel walls are immersed in the com-
putational domain and discretized as uniform Lagrangian grid with
the same grid length as the Eulerian grid. The Lagrangian grid points
are intentionally positioned to be not coincident with the Eulerian
grid points, to mimic the relative position of the Eulerian grid points
and Lagrangian grid points for a general shape, as shown in Fig. 4(b).
The proposed slip wall model with S = 0 in Eq. (14) is implemented
on the wall by using the IB method. The periodic boundary condi-
tions are applied on the computational domain in the streamwise
and spanwise directions. The flow is initially evolved up to a non-
dimensional time of 30h/uτ with a constant mass flux, and statistics
are obtained for an additional 10h/uτ non-dimensional time.

We conduct the simulations on two different grids with
Δh = h/32 (Δh+ = 125) and Δh = h/16 (Δh+ = 250), respectively.
The mean streamwise velocity profiles are plotted against the wall
distance using the inner and outer scales, respectively, as shown in
Fig. 5. Both the simulations give the acceptable mean streamwise
velocity profiles outside the probe point. The velocity profile on the
coarse mesh (Δh+ = 250) slightly deviates from the DNS result. This
is caused by the large distance between the probe point P and the
wall, δp+ = 2Δh+ = 500, where the probe point P is in the margin of
the logarithmic layer. The deviation is notably suppressed on the fine
mesh with Δh+ = 125 (Δh = h/32), where the probe point is within
the logarithmic layer, as shown in Fig. 5(b).

Figure 6 shows the distributions of the Reynolds stresses
across the channel in the simulation on the grid with Δh+ = 125
(Δh = h/32). The predictions to the Reynolds stress far from the
wall (y/h > 0.3) are acceptable, although the predictions in the near
wall region deviates from the DNS results. The proposed model
overpredicts the streamwise velocity fluctuations and underpredicts
the normal and spanwise velocity fluctuations, which is a persistent
problem in the wall-modeled LES.50 The similar results of overpre-
dictions and underpredictions to the velocity fluctuations are also
reported in the wall-modeled LES on the boundary conformal mesh
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FIG. 4. Schematics of (a) the computa-
tional domain of the channel flow and
(b) the Eulerian and Lagrangian meshes.
The Lagrangian mesh nodes are inten-
tionally positioned to be not coincident
with the Eulerian mesh nodes.

FIG. 5. Mean velocity profiles of the turbulent channel flow at Reτ = 2000 in (a) outer scales and (b) inner scales. Uc is the channel center velocity, and Ph/16 and Ph/32
indicate the positions of the probe points in the simulations with coarse and fine meshes, respectively. The solid lines represent the DNS data of Lee and Moser.59

method.58,60,61 Wang et al.61 comprehensively assessed the capability
of different wall models in predicting the turbulence kinetic energy.
They find that the wall models can reasonably predict the turbulence
fluctuations far from the wall, although the near-wall flows are not
fully resolved. It is of great challenge to improve the velocity fluc-
tuations near the wall for wall-modeled LES.51 Since we focus on
proposing a way to accounting for the non-equilibrium effect in the

FIG. 6. Distribution of the resolved part of the Reynolds stresses in the turbu-
lent channel flow on the fine-grid region with Δh = h/32. From top to bottom,
⟨u′u′⟩, ⟨v′v′⟩, ⟨w′w′⟩, and ⟨u′v′⟩. The solid lines are the DNS data of Lee and
Moser.59

framework of the IB method in the current work, we have not tuned
the proposed model with special treatments near the wall to improve
the prediction of velocity fluctuations. The audiences can refer to
the recent models50,62–64 with specific handling of the flow details
in the vicinity of the wall for improving the predictions of velocity
fluctuations.

The LES of plane channel turbulence with the proposed model
shows that it is valid to construct and implement the wall model in
the form of slip velocity on the wall. The proposed model gives a
fairly good prediction of the mean velocity profiles. The prediction
of the Reynolds stresses is acceptable in the region far from the walls
(y/h > 0.3). The discrepancy of the velocity fluctuations near the
wall is a persistent problem, since the grid length in wall-modeled
LES is much larger than wall units (Δh+ = 125 in the current work).
The results given by the proposed model are consistent with those of
wall-modeled LES on boundary conformal mesh method.

B. Backward-facing step flow
The flow over a backward-facing step in a channel is a bench-

mark test case for the non-equilibrium wall models. The flow
subjects to a sudden change of cross section, which results in a
separation at the end edge of the backward-facing step and forms
a separation bubble with non-neglectable pressure gradient behind
the step. We conduct the wall-modeled LES using the proposed slip
wall model with both the NEB model and the EB model.

AIP Advances 12, 095014 (2022); doi: 10.1063/5.0101010 12, 095014-7

© Author(s) 2022

D
ow

nloaded from
 http://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0101010/16470566/095014_1_online.pdf

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 7. Schematic illustration of the backward-facing step flow configuration and
definition of the computational domain.

FIG. 8. Instantaneous flow structures characterized by the distribution of the
vorticity magnitude from different points of view (predicted by the NEB model).

The channel with the backward-facing step has an expan-
sion ratio of 1.2. The Reynolds number in the simulations is
Reh = U0h/ν = 5000, where U0 is the maximum inlet velocity, and
the h is the step height. The results are compared with the exper-
imental study by Jovic and Driver65 at the same Reynolds number
and the DNS analysis conducted by Le et al.66 at Reh = U0h/ν = 5100
based on a body-conformal mesh.

The simulation is conducted in a rectangular domain of
30h × 6.55h × 3h in the streamwise, normal, and spanwise direc-
tions, respectively, as shown in Fig. 7. The backward-facing step is
immersed in the rectangular domain with a distance of 10h from the
inlet to the step surface. The velocity profile at the inlet is a flat-plate
turbulent boundary layer profile,67 and the boundary layer thick-
ness is δ99 = 1.2h. A free-convection boundary condition is set at

the outlet, periodic boundary condition is applied in the spanwise
directions, and free-slip boundary condition is used on the top and
bottom boundary of the computational domain. The slip-velocity on
the immersed step (the gray surface in Fig. 7) is constructed by using
the proposed model and implemented in the form of the IB method.
The flow is initialized with flat-plate boundary velocity in the region
of h ≤ y ≤ 6.55h and zero within the region of 0 ≤ y < h. The flow is
developed for 20 “flow through” times, and the statistics are taken
for an additional 15 “flow through” times.

We discretized the computational domain by using an Eule-
rian uniform grid with a grid length of Δh = h/16. The immersed
backward-facing step is discretized by using a uniform Lagrangian
grid with the same grid length as the Eulerian grid. The Lagrangian
grid points are intentionally positioned to not coincide with the
Eulerian grid points as that in the case of the plane channel
turbulence.

Figure 8 shows the instantaneous vorticity magnitude, where
the boundary layer sheds from the step and forms the shear layer
in the near wake. The vorticity in the shear layer interacts with
the mean velocity and the wall, resulting in complex flow struc-
tures in the downstream. The flow reattaches to the wall and forms
a recirculation region. Both the NEB model and EB model give
a correct prediction of the average reattachment length of about
6.3h according to the zero wall shear stress, as shown in Fig. 9(a).
The skin–friction and surface pressure coefficients predicted by
using the proposed model are consistent with those reported in the
wall-modeled LES on a boundary conformal mesh. The EB model
severely underpredicts the skin–friction coefficient in the recircu-
lation region, as shown in Fig. 9(a). The skin–friction coefficient
predicted by using the EB model is less than one half of the DNS
result or the experimental measurements within the recirculation
region. The underprediction is similar to that reported in the work
of Cabot and Moin,60 in which the LES is conducted with different
wall models on boundary conformal meshes and the underpredic-
tion is found to be related to the equilibrium flow assumption near
the wall.

The skin–friction is reported to be sensitive to the pressure
gradient.68 The NEB model accounting for the effects of pressure
gradient on the near wall gives acceptable results in the recirculation
region, as shown in Fig. 9(a). The NEB model overpredicts the skin
friction after the reattachment. The overprediction of the skin fric-
tion coefficient near the exit is also reported in the work of Cabot and

FIG. 9. Distribution of the time-averaged
(a) skin–friction and (b) surface pressure
coefficients on the bottom surface in the
backward-facing step flow. The exper-
imental results of Jovic and Driver65

(open circles) and the direct numeri-
cal simulation results of Le et al.66 (the
green dashed–dotted lines) are taken
as references. The blue dashed–dotted
lines and red dashed lines are the results
predicted by the EB and NEB slip wall
models, respectively. The dotted line in
(a) indicates the line of C f = 0.
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Moin60 when the non-equilibrium TBL equation model is used on a
boundary conformal mesh and the overprediction is considered to
be related to the rapid change of the velocity near the wall for a fixed
free stream in a channel.

The pressure coefficient on the bottom wall drops immediately
after the step and recovers gradually after the reattachment point,
as shown in Fig. 9(b). The EB model severely underpredicts the
pressure drop around the recirculation region with high pressure
gradient (x/h < 7.0), while the NEB model greatly improves the pre-
diction by accounting for the non-equilibrium associated with the
pressure gradient.

The velocity profiles behind the step are shown in Fig. 10. The
NEB model gives a better prediction of the mean velocity profiles in
the recirculation region than the EB model, although both of them
give a fairly good prediction of the mean velocity profiles behind
the reattachment point, as shown in Fig. 10(a). This is because the
effects of pressure gradient cannot be ignored in the recirculation
region and is ignorable in the attached flow region. The EB model
without accounting for the pressure gradient gives a large deviation
of the mean velocity profiles in the wall-modeled region, as shown
in Fig. 11. The mean velocity profiles in Fig. 11 reflect the validity
of the way to model the near wall flows. The mean velocity profiles
for the EB model is computed by using Eq. (29) where the effects of
the pressure gradient are ignored. The mean velocity profiles for the
NEB model are computed by

uξ(η) =
τw

ρ ∫
η

0

dη′

ν + νt
+ ∫

η

0
∫

η

0
(1

ρ
∂p
∂ξ
)

W
dη′dη′, (30)

where (∂p
∂ξ )W

is the tangential pressure gradient on the wall. The EB
model cannot correctly give the mean velocity profiles in the recir-
culation region. The NEB model improves the results remarkably
although only the non-equilibrium effect associated with the pres-
sure gradient is taken into account. The deficiencies are expected to

be associated with the neglected convection terms.68 The NEB model
also gives a fairly good prediction of the velocity fluctuations and the
Reynolds stress, while those predicted by using the EB model have
relatively large discrepancies, as shown in Figs. 10(b)–10(d).

The results show that the proposed non-equilibrium wall model
is able to give an acceptable prediction of the wall stresses and the
flow statistics on a coarse grid. Compared to the equilibrium model,
the inclusion of the non-equilibrium effect associated with the pres-
sure gradient in the NEB model gives a remarkable improvement of
the results.

We would like to note that the validations in this section
are designed to validate the proposed way to implement the non-
equilibrium wall model in the IB method as a slip-wall boundary
condition. We just use a simple non-equilibrium wall model, where
the effects of pressure gradients on the wall shear stress are taken
into account while the effects of the convective terms are discarded.
Larsson et al.21 show that the discarding of the convective terms
might result in inconsistences because the pressure gradient is essen-
tially balanced by the convection outside of the viscous layer. The
accounting for the convective terms might improve the velocity
profiles near the wall.21,68,69 The non-equilibrium effects associ-
ated with the unsteady and convection terms can be taken into
account in the way similar to the pressure gradient. Another way
to improve the near wall flow statistics is to use a transpiration
velocity instead of the no-transpiration velocity in the wall-normal
direction. The slip velocity in the wall-parallel direction with the
transpiration velocity in the wall-normal direction are reported to
improve the prediction of turbulence intensities by avoiding the
formation of long streaks and relaxing the blocking effect of the
wall.50 However, it is not trivial to correctly model all the statis-
tics behaviors of the non-equilibrium near wall flows on a coarse
mesh. Efforts should be paid to tune the way to couple the wall mod-
els with the flows at the probe points and the way to compute the
near wall eddy viscosity, which are expected to be investigated in
future work.

FIG. 10. Velocity profiles of the (a)
mean streamwise velocity, (b) RMS
of the streamwise velocity fluctuations,
(c) RMS of the normal velocity fluc-
tuations, and (d) the Reynolds shear
stress profiles for backward-facing step
flow at five downstream stations (x/h
= 4.0, 6.0, 10.0, 15.0, and 19.0 from
left to right). The experimental results
of Jovic and Driver65 (open circles) and
the direct numerical simulation results
of Le et al.66 (the green dashed–dotted
lines) are taken as references. The blue
dashed–dotted lines and red dashed
lines are the results predicted by the EB
and NEB slip wall models, respectively.
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FIG. 11. Distributions of the mean
streamwise velocity of the flow over a
backward-facing step at (a) x/h = 4.0,
(b) x/h = 6.0, (c) x/h = 10.0, and
(d) x/h = 15.0.

V. SUMMARY AND CONCLUSIONS
The combination of the wall model with the IB method pro-

vides a feasible approach for LES of turbulent flows with non-
canonical boundaries at a reasonable computational cost. We pro-
posed a slip wall model for LES with the IB method to account for
the non-equilibrium flow near the wall. The proposed wall model
feeds the LES with a slip velocity on the wall. The slip velocity is
constructed based on the integral of the simplified thin boundary
layer equation near the wall to improve the momentum balance on
a coarse grid. The non-equilibrium flow associated with the pres-
sure gradient is taken into account by retaining the pressure gradient
term in the simplified thin boundary layer equation. The proposed
slip wall model is implemented in the framework of direct-forcing
IB method with MLS reconstructions near the wall.

We validated the proposed model by the wall-modeled LES
of plane channel turbulence and the flows over a backward-facing
step. Both the velocity profiles and the wall stresses were con-
sistent with the experimental or numerical results. Compared to
the equilibrium wall model for LES with the IB method, the pro-
posed non-equilibrium wall model greatly improved the numerical
results on relatively coarse grids. In particular, the equilibrium wall
model underpredicts the wall shear stress and deviates from the
correct velocity fluctuations in the recirculation region in the flow
over the backward-facing step, while the proposed non-equilibrium
wall model considerably improved the predictions. The results
show that the proposed slip wall model is a feasible approach to
account for the non-equilibrium flow near the wall in LES with the
IB method.
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