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ABSTRACT

In the low-Mach-number supersonic boundary layers, the oblique-breakdown regime may be the most efficient route to trigger the laminar–
turbulent transition, because the most unstable Mack first mode always appears as an oblique wave. In this paper, we revisit this issue by use
of the nonlinear parabolized stability equation (NPSE) approach and particularly focus on the extra amplification of the streak mode gener-
ated by the direct interaction of the introduced oblique modes. This mechanism is then well explained based on the weakly nonlinear analy-
sis, and its predictions on the evolution of the streak mode and the two-dimensional traveling-wave mode are quantitatively confirmed by
the NPSE calculations. Additionally, the important role of the streak mode, leading to the secondary instability, on triggering the transition
onset is identified.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0117622

I. INTRODUCTION

Laminar–turbulent transition in supersonic boundary layers is
always an attractive issue of practical importance in recent decades due
to its relevance to the aerodynamic design of high-speed vehicles.1,2 In a
low-perturbation environment, boundary-layer transition follows a nat-
ural route,3 in which four phases, that is, the receptivity, linear instabil-
ity, nonlinear breakdown, and turbulence, appear in sequence. In the
pioneering work of the linear stability analysis of supersonic boundary
layers, Mack4 reported that more than one discrete-mode solutions
exist, which are named as the Mack first, second,…, modes according to
the ascending order of their frequency. The linear evolution of these
modes was confirmed by a great number of subsequent numerical
works, such as Refs. 1 and 2. It was revealed by the asymptotic analysis
that only the first Mack mode with H > tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

(where H and
M denote the wave angle and Mach number, respectively) belongs to
the viscous nature,5,6 while the quasi-two-dimensional first and all the
higher-order Mack modes are inviscid.7–9 When the unstable modes are
accumulated to finite amplitudes, the nonlinear interaction among dif-
ferent Fourier components becomes the leading-order impact, which
includes the oblique-mode breakdown,10–15 the fundamental reso-
nance,16,17 and subharmonic resonance.18

The oblique-mode breakdown regime was first identified by
Thumm10 and Fasel et al.,11 based on the direct numerical simulation
(DNS) of a Mach 1.6 flat-plate boundary layer. It was found that a pair
of finite-amplitude oblique waves with the same frequency but oppo-
site spanwise wavenumbers form a stationary streak mode due to the
triadic resonance. The introduced oblique waves show almost linear
growth for the majority of the laminar phase, while the streak mode
grows with a greater rate and overwhelms the former modes in a short
distance before the breakdown of the laminar flow. After the streak
mode becoming dominant, the higher-order harmonic modes and the
mean-flow distortion grow more rapidly, which eventually leads to the
transition to turbulence. A subsequent study using the nonlinear para-
bolic stability equations (NPSE) approach by Chang and Malik12 also
confirmed this scenario. It was also reported that for low-Mach-num-
ber supersonic boundary layers, the oblique-mode breakdown regime
is more efficient on triggering transition than the fundamental and
subharmonic resonance regimes because the most unstable Mack first
modes are always oblique.

In an early experimental study, Ermolaev et al.19 reported an
“asymmetric subharmonic resonance” in a Mach 2 supersonic bound-
ary layer, in which the dominant perturbations consist of both the
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fundamental oblique waves and subharmonic oblique waves. A subse-
quent DNS study14 revisited the same configuration and showed that
the fundamental perturbations themselves can lead to oblique-mode
breakdown. Considering the expensive computational load of DNS,
the NPSE approach is more preferred and its accuracy was confirmed
by Mayer et al.20 The oblique-breakdown regime also exists in incom-
pressible boundary layers21 and hypersonic boundary layers.22

Particularly, in a Mach 6 flat-plate boundary layer, Franko et al.22 fur-
ther reported an overshoot of the skin friction and heat flux during the
transition process due to the generation of the streamwise vortices by
the oblique-wave interaction. Actually, the oblique-mode breakdown
regime can be observed in more generic configurations, such as the
generation of longitudinal streaks from the development of a wave
packet.23

Although the phenomenon of the oblique-mode breakdown has
been extensively studied for decades, theoretical works explaining its
inherent mechanisms are less sufficient. A decent asymptotic analysis
of the oblique-mode breakdown regime in supersonic boundary layers
was presented by Leib and Lee.13 Employing the nonlinear-critical-
layer theory as in Refs. 24 and 25, they derived the perturbation evolu-
tion by solving the amplitude equation. Their results showed that the
most rapidly growing oblique waves are enhanced by the nonlinear
critical layer and the amplitude ends in a singularity at a finite down-
stream position, leading to the breakdown of the laminar flow.
However, the numerical results10,11 indicate that the stationary streak
mode could be extra amplified before the oblique modes reaching the
nonlinear phase or reaching the vicinity of the upper-branch neutral
point. This phenomenon still remains puzzling to us, which is the
main task of the present work.

The rest of this paper is structured as follows. In Sec. II, we intro-
duce the physical model and the governing equations. The numerical
results of the oblique-mode breakdown process obtained by the NPSE
approach will be presented in Sec. III. In Sec. IV, a weakly nonlinear
analysis is presented to explain the extra amplification of the streak
mode theoretically, and its prediction will be compared with the NPSE
results. In Sec. V, we will show the effect of the streak mode on the
growth of other harmonic modes and its role on transition. Finally, we
conclude our numerical observations and present remarks and discus-
sions in Sec. VI.

II. MATHEMATICAL DETAILS
A. Physical model and governing equations

For a demonstration of the oblique-breakdown regime, we
choose the physical model to be studied as a supersonic boundary
layer over a sharp cone that is inserted into a supersonic stream with
zero angle of attack, as shown in Fig. 1. The half-apex angle of the
cone h is small, and a viscous boundary layer is formed behind the
cone-shaped shock. The body-fitted coordinate system ðx�; y�;uÞ is
employed with its origin locating at the cone tip, where x� and y� are
along and perpendicular to the wall, respectively, and u is the circum-
ferential angle. Throughout this paper, the superscript � and subscript
e denote the dimensional and the boundary-layer edge quantities,
respectively. At a location x� ¼ x�0 , a pair of oblique instability modes
is introduced and their nonlinear evolution will be calculated by
NPSE. The computation domain is shown by the blue box in Fig. 1.

The velocity field u¼(u, v, w), density q, temperature T, pressure p,
and dynamic viscosity l are normalized by U�e ; q�e ; T

�
e , q

�
eU
�2
e , and l�e ,

respectively, where U�e ; T
�
e , and q�e are the velocity, temperature, and

density at the boundary-layer edge. The unit length is taken to be the
characteristic length of the boundary layer at the entrance of the compu-

tation domain, d� ¼
ffiffiffiffiffiffiffiffi
x�0l

�
e

q�e U
�
e

q
. Thus, the coordinate system and time are

normalized as ðx; yÞ ¼ ðx�; y�Þ=d� and t ¼ t�d�=U�e , respectively. The
flow system is governed by the characteristic parameters, the Reynolds
number R ¼ q�eU

�
e d
�=l�e and the Mach number M ¼ U�e =a

�
e , where

a�e is the sound speed at the edge of the boundary layer.
The dimensionless compressible Navier–Stokes (N–S) equations are

Dq
Dt
¼ �qr � u;

q
Du
Dt
¼ �rðqTÞ

cM2
þ 1

R
2r � lSð Þ � 2

3
r lr � uð Þ

� �
;

1
c
q
DT
Dt
¼ c� 1

c
T
Dq
Dt
þ c� 1ð ÞM2

R
2lS : S� 2

3
l r � uð Þ2

� �

þ 1
PrR
r � lrTð Þ;

(1)

where S ¼ ½ruþ ðruÞT �=2 is the rate of strain tensor, Pr is the
Prandtl number, c is the ratio of specific heat, D

Dt ¼ @
@t þ u � r denotes

the material derivative, and “:” denotes the double-dot product of two
second-order tensors. The equation of the state, p ¼ qT

cM2, has been used

to eliminate the pressure p in the momentum equations. Sutherland’s
viscosity law is assumed, namely, lðTÞ ¼ ð1þ CÞT 3

2=ðT þ CÞ with
C ¼ 110:4=T�e . In addition, the distance to the cone axis r can be
defined as

r ¼ r0 þ y cos h; (2)

with r0 ¼ x sin h denoting the radius on the wall. The instantaneous
flow field / � ðq; u; v;w;TÞ can be decomposed into a steady base
flow UB � ðqB;UB;R�1VB; 0;TBÞ and an unsteady perturbation ~/,

/ ¼ UBðx; yÞ þ ~/ðx; y;u; tÞ: (3)

B. Base flow

Because the base flow varies slowly with x, we introduce a slow
variable

X ¼ R�1x; (4)

such that @XUB ¼ Oð1Þ. Considering that the base flow is steady and
invariant with u, the N-S system (1) is reduced to

FIG. 1. Sketch of the physical model.
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@ qBUB�rð Þ
@X

þ @ qBVB�rð Þ
@y

¼ 0;

qB UB
@UB

@X
þ VB

@UB

@y

� �
¼ @

@y
lB
@UB

@y

� �
;

qB UB
@TB

@X
þ VB

@TB

@y

� �
¼ c� 1ð ÞM2lB

@UB

@y

� �2

þ 1
Pr

@

@y
lB
@TB

@y

� �� �
;

qBTB ¼ 1;

(5)

where �r ¼ X sin h, and the OðR�1Þ terms are neglected. The pressure
gradient is secondary from the potential-flow analysis. The no-slip,
non-penetration, and isothermal boundary conditions are applied at
the wall

ðUB;VB;TBÞ ¼ ð0; 0;TwÞ at y ¼ 0; (6)

where Tw is the dimensionless wall temperature. Note that for an adia-
batic wall, we simply change the wall temperature condition to
@TB=@y ¼ 0. The upper boundary conditions read

ðqB;UB;TBÞ ! ð1; 1; 1Þ as y!1: (7)

Introducing the Mangler transformation,26

~X ¼
ðX
0

�r2dX̂ ¼ 1
3
X3 sin2h; ~y ¼ �ry ¼ X sin hy;

�VB ¼
1
�r

VB þ
1
�r
d�r
dX

yUB

� �
¼ 1

X sin h
VB þ

y
X
UB

� �
;

(8)

the system (5) can be regularized into a planar form

@ qBUBð Þ
@~X

þ @ qB
�VB

� �
@~y

¼ 0;

qB UB
@UB

@~X
þ �VB

@UB

@~y

� �
¼ @

@~y
lB
@UB

@~y

� �
;

qB UB
@TB

@~X
þ �VB

@TB

@~y

� �
¼ c� 1ð ÞM2lB

@UB

@~y

� �2

þ 1
Pr

@

@~y
lB
@TB

@~y

� �� �
;

qBTB ¼ 1:

(9)

System (9) is the same as the compressible Blasius similarity solution
for a flat plate, which can be found in Refs. 12, 16, 27, and 28.

C. Perturbations

Substituting the decomposition (3) into the Navier–Stokes equa-
tion (1), and subtracting the base flow out, we obtain the nonlinear
disturbance equations

C
@~/
@t
þ A

@~/
@x
þ B

@~/
@y
þ C

@~/
@u
þD~/ þ Vxx

@2~/
@x2
þ Vyy

@2~/
@y2

þVuu
@2~/
@u2
þ Vxy

@2~/
@x@y

þ Vxu
@2~/
@x@u

þ Vyu
@2~/
@y@u

¼ F; (10)

where the coefficient matrices C; A; B, C; D; Vxx; Vyy; Vuu; Vxy;
Vyu, and Vxu are functions of the base flow quantities and F is a vector
corresponding to the nonlinear terms. They can be found in Appendix A.

1. Linear instability analysis

Under the parallel-flow assumption, the perturbation ~/ is
expressed in terms of a traveling-wave form

~/ ¼ e/̂ yð Þexp i ax þ nu� xtð Þ½ � þ c:c; (11)

where a, n, and x represent the streamwise wavenumber, circumfer-
ential wavenumber, and frequency, c:c represents the complex conju-
gation, and i �

ffiffiffiffiffiffi
�1
p

and /̂ denote the normalized shape function. In
what follows, the shape functions are normalized by the maximum
norm with the streamwise velocity perturbation. e� 1 measures the
amplitude of the perturbation. We are interested in the spatial mode
for which only a ¼ ar þ iai is complex with �ai representing its
growth rate. Substituting (11) into (10) and retaining the OðeÞ terms,
we arrive at compressible Orr–Sommerfeld (O–S) equation

~B@/̂
@y
þ Vyy

@2/̂
@y2
þ ~D/̂ ¼0; (12)

where

~B ¼B� iaVxy � inVyu;

~D ¼� ixCþ iaAþ inCþDþ a2Vxx;þ n2Vuu þ anVxu:
(13)

The perturbation field is subject to the no-slip, isothermal boundary
conditions ûð0Þ ¼ v̂ð0Þ ¼ ŵð0Þ ¼ T̂ ð0Þ ¼ 0 at the wall and attenua-
tion conditions /̂ ! 0 as y!1. If the instability is of the inviscid
nature for which the viscosity is secondary, (12) can be approximated
by the Rayleigh equation

B
@/̂
@y
þ ð�ixCþ iaAþ inCþDÞ/̂ ¼ 0: (14)

The system (14) can be recast to the differential equations about v̂ and
p̂, and the boundary conditions read v̂ð0Þ ¼ 0 and p̂ð1Þ ! 0. The
Malik’s scheme29 is employed to solve the linear systems (12) and
(14). In this paper, we are interested in the evolution of the Mack first
modes with jn=ðarr0Þj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

, which are of the inviscid nature.

2. Nonlinear parabolized stability equations

In order to take into account the non-parallelism and the nonlin-
earity of the finite-amplitude perturbations, we need to solve equation
(10) numerically. The computation could be rather efficient if the @xx
terms, which are indeed small numerically, are neglected, which leads
to the NPSE approach.12,30 Performing Fourier transform on ~/ and F
with respect tou and t, we obtain

~/ðx; y; z; tÞ ¼
XMe

M¼�Me

XNe

N¼�Ne

/
^

MNðx; yÞ exp i Nn0u�Mx0tð Þ½ �;

Fðx; y; z; tÞ ¼
XMe

M¼�Me

XNe

N¼�Ne

~FMNðx; yÞ exp i Nn0u�Mx0tð Þ½ �:
(15)
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Considering that the perturbations are propagating with two length
scales, a fast one with an oscillatory manner and a slow one related to
the non-parallelism, we express the disturbance /

^

as a Wentzel–
Kramers–Brillouin (WKB) form Fourier series

/
^

MNðx; yÞ ¼ �/MN x; yð Þ exp i
ðx
x0

aMNd�x

0
B@

1
CA; (16)

where the shape function �/MN varies slowly with x, each Fourier com-
ponent is denoted as (M, N), x0 and n0 are the fundamental frequency
and circumferential wavenumber, and aMN represents the complex
streamwise wavenumber of (M, N), respectively. x0 is a streamwise
position that is selected as the inlet of the computational domain of
the NPSE calculations. Here, we choose x0 ¼ R, such that the inlet of
the computation domain corresponds to X¼ 1. Me and Ne are the
upper limit of the order of the truncated Fourier series. In this paper,
we choose Me ¼ 7 and Ne ¼ 10, which are confirmed to be sufficient
for the considered cases.

Neglecting the second-order derivative of �/MN with respect to x,
system (10) is reduced to

~AMN@�/MN

@x
þ

~BMN@�/MN

@y
þ Vyy

@2�/MN

@y2
þ ~DMN

�/MN ¼ �FMN : (17)

The matrices ~AMN ; ~BMN , and ~DMN are given by

~AMN ¼A� 2iaMNVxx � iNn0Vxu;

~BMN ¼B� iaMNVxy � iNn0Vyu;

~DMN ¼� iMx0Cþ iaMNAþ iNn0CþDþ N2n20Vuu

þ a2MN � i
daMN

dx

� �
Vxx þ NaMNn0Vxu;

�FMN ¼ ~FMN exp �i
ðx
x0

aMNd�x

0
B@

1
CA:

(18)

3. Numerical details of the NPSE calculations
for the oblique-mode breakdown

In each NPSE calculation, we introduce a pair of oblique Mack
first modes with the same frequency but opposite wave angles at x
¼ x0 (X¼ 1), labeled by ð1;61Þ, as the inflow conditions

~/ ¼ e1;1/̂1;1ðyÞE1;1 þ e1;�1/̂1;�1ðyÞE1;�1 þ c:c; (19)

where EM;N ¼ exp ½ið
Ð x
x0

aðxÞdxþNn0u�Mx0tÞ�, and eM;N measures

the amplitude of each mode. In our paper, we assume the two modes

are of inviscid nature, and thus, a�n0=r0�x�1. /̂1;1 and /̂1;�1 are
obtained by solving O–S equation (12), or solving Rayleigh equation
(14) to leading-order approximation. The nonlinear interaction between
components (1,1) and (1,�1) will generate high-order harmonic modes
(jMjþjNj	2) and the mean-flow distortion (M¼N¼0), and the
wall-normal boundary conditions for each mode (M,N) read

ð�uMN ;�vMN ; �wMN ; �TMNÞ ¼ ð0; 0; 0; 0Þ at y ¼ 0;

ð�uMN ;�vMN ; �wMN ; �TMNÞ ! ð0; 0; 0; 0Þ as y!1:
(20)

In Eq. (17), because aMN is also unknown, an additional condi-
tion is required to close the system

ð1
0

qB �u†
MN

@�uMN

@x
þ �v†MN

@�vMN

@x
þ �w†

MN
@�wMN

@x

� �
dy ¼ 0; (21)

where the superscript † denotes the complex conjugate. In the numeri-
cal process, aMN is obtained by using an iterative approach

anewMN ¼ aoldMN �
i

EMN

ð1
0

qB �u†
MN

@�uMN

@x
þ�v†MN

@�vMN

@x
þ �w†

MN
@�wMN

@x

� �
dy;

(22)

where EMN ¼
Ð1
0 qBðj�uMN j2 þ j�vMN j2 þ j�wMN j2Þdy. Note that (22)

is not applied to the mean-flow distortion (MFD), for which
M ¼ N ¼ 0, implying that the growth of the MFD is reflected by the
growth of the modulus of its shape function, rather than its complex
wavenumber. In our calculations, the iteration continues until the
error in relative to the last iterative step is less than 10�7.

The detail of the discretization scheme can be found in Appendix B.
At each streamwise location, discretization of system (17) ultimately
yields a system of algebraic equations of a generic form

LMN
�/MN ¼ RMN þ �FMN; (23)

where RMN , denoting the inhomogeneous terms due to parabolized
operator, is known, but the nonlinear term �FMN is unknown.
Therefore, an iterative procedure for �FMN is needed; see Ref. 31. The
amplitude of each Fourier mode (M,N) can be defined as

A/ðxÞ ¼ max
y
j/
^

MNðx; yÞ þ c:cj: (24)

Additionally, if F̂MN is set to be zero, Eq. (17) is recast to the lin-
ear parabolized stability equations (LPSE), which can be used to track
the evolution of each mode separately. The validation of our NPSE
code is shown in Appendix C.

III. NUMERICAL RESULTS FOR THE OBLIQUE-MODE
BREAKDOWN
A. Base flow and linear instability

In this paper, the computational parameters are listed in Table I.
The base-flow profiles for UB and TB at three streamwise stations are
plotted in Fig. 2, where the generalized inflectional points (GIPs),
defined by the positions where ðqBUB;yÞy ¼ 0, are shown by the

circles. Figure 3(a) shows the growth-rate contours in the U� x
planes at X¼ 1, where U ¼ tan�1ðn=arr0Þ. The greatest growth rate
appears at x ¼ 0:117 and U ¼ 36
. Four representative Fourier
modes with the same frequency x ¼ 0:117, but different wave angles
U (¼ 652
;636
), marked by red dots, are selected. The wave angles

of all the selected modes are smaller than tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

, which,
according to Smith,5 belongs to the inviscid nature. In panel (b), we

TABLE I. Parameters characterizing the flow condition.

M R Pr c
T�e
(K)

T�w
(K)

h
ð
Þ

d�

ðmmÞ
x�0
ðmmÞ

x0
� x�0=d

�

3 1170 0.72 1.4 52 300 7 0.117 137 1170
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plot the amplitude evolution of modes A3 and A4, which is defined by
either the LST, NðxÞ ¼

Ð x
x0
�aið~xÞd~x , or the LPSE, NðxÞ ¼ ln ½AuðxÞ=

Auðx0Þ�. The difference of the N factor between the LST and LPSE
calculations for each mode is rather limited, indicating that the nonpar-
allel effect plays a minor role.

B. Nonlinear development of a pair of first modes

Two cases with different initial perturbations, as listed in Table II,
are selected for the NPSE calculations in order to show the oblique-
mode breakdown process. Figure 4(a) plots the Au-evolution of each
Fourier component, marked by (M,N), for case I. The evolution of
(1,1) agrees with the LPSE prediction until X¼ 1.36, showing a linear
feature for the majority of the laminar phase. The growth of the streak
mode (0,2) is mainly attributed to the direct interaction of (1,1) and
(1,�1). It shows a superexponential growth in the close neighborhood
of the inlet, followed by a growth rate that is twice of the fundamental
modes ð1;61Þ; although it is preliminarily small, its high growth

ensures its dominant role for X > 1.28. The component (1,3) grows
with a rate that is tripled of (1,1), because it is driven by the nonlinear
interaction of (1,1) and (0,2). Because it is rather tiny initially, the com-
ponent (1,3) overwhelms (1,1) at a much later position. The two-
dimensional component (2,0), also driven by the direct interaction of
(1,1) and (1,�1), shows the same growth rate as that of (0,2), but its
amplitude is not as large as the component (0,2) because of its weaker
amplification near the inlet. The component (2,2), the harmonic mode

FIG. 3. The linear growth rate at X¼ 1 (a) and the comparison of the N factor obtained by the LST and LPSE predictions (b) of the Mack first mode. The red dashed lines in
(a) denote jUj ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

.

TABLE II. Parameters of introduced oblique modes for the NPSE calculations.

Case Unstable modes x0 n0 Label e

I A2 0.117 15 (1,�1) 0.001
A3 (1,1) 0.001

II A1 0.117 25 (1, �1) 0.001
A4 (1,1) 0.001

FIG. 2. Base-flow profile of UB (a) and TB (b) at X¼ 1, X¼ 1.5, and X¼ 2, where the circles represent the positions of the GIPs.
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of (1,1), also shows a doubled growth rate as (1,1) for X< 1.36, which
is however followed by an almost quadrupled growth rate due to the
nonlinear forcing of (0,2) and (2,0). These observations agree with that
in the oblique-breakdown calculation of Chang and Malik.12 Such phe-
nomena also apply to case II as shown in panel (c). We also plot the
Aw-evolution of each Fourier mode component for cases I and II as
shown in panels (b) and (d), respectively. The oblique components
show the same property as those of Au as shown in panels (a) and (b);
however, for the streak mode (0,2), Aw is much smaller than Au. For
the majority of the laminar phase, Au of the MFD (0,0) grows with the
same rate as components (0,2) and (2,0), and its amplitude is between
the two components. However, the MFD undergoes a greater amplifi-
cation when X> 1.44 (1.52) for case I (II).

Figure 5 shows the instantaneous contours of u in the u-X plane
at fixed three ~y ¼ y=

ffiffiffiffi
X
p

values for case I. Here, ~y is introduced to
accommodate the growth of the boundary-layer thickness. The high-
and low-speed streaks mainly form in the near-wall region and emerge
obviously at around X¼ 1.36, which agrees with the dominant role of
(0,2) at X � 1:30. Different from the streaks, the short-wavelength

waves appear far from the wall as shown in panel (c). For X< 1.44, the
perturbation field is dominated by the fundamental mode (1,1), fol-
lowed by a smaller-scale ribbles until X � 1:48, which is reminiscence
of (1,3). Such an observation also agrees with the fact Au of (1,3) over-
whelms (1,1) at X � 1:44 in Fig. 4.

IV. EXPLANATION OF THE EXTRA AMPLIFICATION
OF THE STREAK MODES

The nonlinear interaction of the introduced oblique modes (19)
would lead to the generation of a series of harmonic modes. Now, we
perform the weakly nonlinear analysis (WNA) to probe the perturba-
tions that are driven by the direct interaction of the oblique modes

e1;1e1;�1/
^

3ðy;XÞ exp �2
ð

aiðxÞdx þ 2in0u

� �

þ e1;1e1;�1/
^

4ðy;XÞ exp 2i
ð

aðxÞdx � xt

� �� �
þOðe21;1; e21;�1Þ þ oðe1;1e1;�1Þ þ c:c; (25)

FIG. 4. The evolution of each Fourier components obtained by NPSE. (a) Au for case I; (b) Aw for case I; (c) Au for case II; and (d) Aw for case II.
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where /
^

3; /
^

4 represent the shape functions of two harmonic modes,

respectively. The first perturbation /
^

3 behaves as a stationary, longitu-

dinal streak mode, while the second perturbation /
^

4 behaves as a two-
dimensional (2D) traveling wave. Note that for an unstable Mack
mode, we have �ai � ar ¼ Oð1Þ. For convenience, we introduce
r ¼ �2ai � 1.

A. Streak mode

In the high-R approximation, the inviscid Mack modes show a
double-deck structure, namely, a main layer where y ¼ Oð1Þ and a
viscous Stokes layer where y ¼ OðR�1=2Þ.9,28 For the present configu-
ration, the stokes layer is passive and we focus on the evolution in the
main layer. Substituting (19) and (25) into the system (10) and collect-
ing the Oðe1;1e1;�1Þ exp ð2in0uÞ terms, we obtain

rUBM
2p
^

3 þ ru
^

3 þ v
^

3;y þ 2ibw
^

3 ¼ F̂
ð1Þ
3 ; (26a)

qBðrUBu
^

3 þ UB;yv
^

3Þ þ rp
^

3 ¼ F̂
ð2Þ
3 ; (26b)

qBrUBv
^

3 þ p
^

3;y ¼ F̂
ð3Þ
3 ; (26c)

qBðrUBw
^

3Þ þ 2ibp
^

3 ¼ F̂
ð4Þ
3 ; (26d)

where we have put b ¼ n0=r0 and F̂
ð1Þ
3 to F̂

ð4Þ
3 represent the nonlinear

terms. Taking /̂1;1; /̂1;�1 and the inhomogeneous forcing terms F̂
ð1Þ
3

to F̂
ð4Þ
3 are all O(1), we find from (26d) that w

^

3 � 1=r. Balance of the

continuity equation leads to u
^

3 � 1=r2 and v
^

3 � 1=r. From (26c),

we find that p
^

3 is at most O(1). Such scalings ensure that the nonlinear
terms and pressure gradients in (26a) and (26b) do not appear in the
leading order, but those in (26c) and (26d) do.

Now, we re-express the perturbation field of the streak mode as

/
^

3 ¼ ðr�2û3;r
�1v̂3; r

�1ŵ3;r
�2q̂3; r

�2T̂ 3; p̂3Þþ;…;

where /̂3 � 1; then, the governing equations to the leading order are
recast to

û3 þ v̂3;y þ 2ibŵ3 ¼ 0; (27a)

UBû3 þ UB;yv̂3 ¼ 0; (27b)

qBUBv̂3 þ p̂3;y ¼ F̂
ð3Þ
3 ; (27c)

qBUBŵ3 þ 2ibp̂3 ¼ F̂
ð4Þ
3 ; (27d)

where F̂
ð3Þ
3 and F̂

ð4Þ
3 can be found in Appendix D. The boundary con-

dition for (27) reads

v̂3 ¼ 0 at y ¼ 0; p̂3 ! 0 as y!1: (28)

In numerical process, we need to calculate F̂
ð3Þ
3 and F̂

ð4Þ
3 from the

introduced oblique mode beforehand and discretize (27) using
Malik’s29 approach.

The implication of the above analysis is that the small growth

rate r determines the amplification of the streak mode, namely, w
^

3

� v
^

3 � r�1 and u
^

3 � r�2. The perturbation of the streamwise veloc-
ity is extra amplified by a factor of r�2, showing a longitudinal-streak
nature.

B. Traveling harmonic mode

Similar analysis can also be performed for the unsteady traveling

mode /
^

4. Being different from the streak mode, the convective term
of the traveling wave mode is ~S ¼ 2iðaUB � xÞ ¼ Oð1Þ instead of the
small factor rUB as in (26). Therefore, we express the governing equa-

tions of /
^

4 as

M2~Sp
^

4 þ 2iau
^

4 þ v
^

4;y ¼ F̂
ð1Þ
4 ; (29a)

qB
~Su
^

4 þ UB;y �v4 þ 2ia �p4 ¼ F̂
ð2Þ
4 ; (29b)

qB
~Sv
^

4 þ p
^

4;y ¼ F̂
ð3Þ
4 ; (29c)

where the nonlinear term from F̂
ð1Þ
4 to F̂

ð3Þ
4 are O(1) and can be found

in Appendix D. We find that in this system, u
^

4 � v
^

4 � p
^

4 � 1. Being

different from the stationary streak mode /
^

3, there is no extra amplifi-

cation for /
^

4, although it has the same growth rate as the streak mode.

C. WNA predictions and comparison with the NPSE
results

It has been shown in Fig. 4 that in the majority of the laminar
phase, X< 1.45, the streak mode (0,2) and the 2D traveling wave (2,0)
share the same growth rate, but the magnitude of their amplitudes Au

is of different orders. This can be readily explained by the WNA in
Secs. IVA and IVB. Solving the systems (27) and (29) numerically, we
can obtained the evolution of the streak mode (0,2) and the 2D travel-
ing waves (2,0), respectively. The comparisons of the amplitudes Au

and Aw for both the streak and 2D traveling modes obtained by the
NPSE calculation and WNA prediction for the two cases are shown in
Fig. 6. After a certain adjustment region near X¼ 1, the WNA predic-
tions agree well with the NPSE calculations, and the extra amplifica-
tion of Au for the streak mode is well predicted by the WNAmethod.

FIG. 5. Contours of the instantaneous u-velocity in the X-u plane at ~y ¼ 2:56 (a),
5.12 (b), and 7.20 (c) for case I.
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V. ROLL OF THE STREAK MODE

Now we probe the impact of the streak mode on the nonlinear
evolution of other Fourier components. Figure 7(a) compares the Au-
evolution of each Fourier component with that obtained by removing
artificially the streak mode (0,2) for case I. The two families of curves
agree with each other before X � 1:24, where the fundamental mode
(1,1) grows almost linearly as confirmed in Fig. 4(a). However, when
the streak mode is removed, the sharp amplification of the other com-
ponents is not seen, indicating the crucial role of the streak mode in
the nonlinear phase. This phenomena also appear for case II as shown
in panel (b), and the two families of curves deviate at X � 1:28.

The coefficients of the skin friction, Cf ¼ ð2�l
R
@�u
@yÞy¼0, are plotted

in Fig. 8, where the overbar represents the temporal and circumferential
averaging. For both case I and case II, the Cf curves decreases with X
gradually at the beginning, agreeing with the unperturbed laminar-flow
state. The Cf curve starts to deviate from the laminar state at X � 1:44
and 1.52, respectively. The two positions correspond to the locations
when the MFD components undergo greater growth rates shown in
Fig. 4. The sudden increase in the Cf curves lead to the breakdown of

FIG. 6. The comparison of Au and Aw between the NPSE results and the WNA predictions. Plot (a) case I; and plot (b) case II.

FIG. 7. The comparison of the Au-evolution between the NPSE calculations and those by artificially removing the streak component. (a) case I; and (b) case II.

FIG. 8. Comparison of the Cf curves between the NPSE calculations and those by
artificially removing the streak component.
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the laminar flow. The transition onset for case I appears a little earlier,
because of the greater growth rate of the introduced perturbations.
When the streak mode is removed, the drastic increase in the Cf curve
for each case disappears immediately, confirming again the important
role of the streak mode. A sketch of transition process by oblique-mode
breakdown can be summarized in Fig. 9.

It is then concluded that the streak mode plays a crucial role on
triggering the laminar–turbulent transition in the oblique-mode break-
down regime. Although its amplitude is initially small, it undergoes an
extra amplification and becomes the dominant perturbation in the late
laminar phase. When it reaches a finite amplitude, it serves as the seed
for the rapid growth of the small-scale secondary instability modes,
which is a reminiscent of the bypass transition.32–34 As a consequence,
the mean flow is further distorted by the finite-amplitude perturbations
due to their forcing in terms of the Reynolds stress, leading to the sud-
den increase in the Cf curve and breakdown of the laminar flow.
Artificially removing the streak mode simply leads to a remarkable post-
pone of the transition onset. Such a phenomenon was also observed in
a subharmonic-resonance study in an incompressible boundary layer.35

VI. SUMMARY AND CONCLUSION

In a low-Mach-number supersonic boundary layer, the oblique-
mode breakdown is believed to be the most efficient regime for the
laminar–turbulent transition, because the linear instability, the Mack
first mode, is the most unstable at a certain oblique wave angle.
Although this regime has been studied extensively by numerics and
experiments, some phenomena are still unexplained. In this paper,
we revisit this regime by considering the evolution of a pair of

finite-amplitude oblique first modes in a Mach 3 supersonic boundary
layer over a sharp cone.

From the NPSE calculations, it is confirmed that the streak mode
is greatly amplified due to the direct interaction of the introduced obli-
que modes, and its streamwise velocity perturbation attains an even
larger amplitude. This phenomenon is explained by the weakly nonlin-
ear analysis based on the main-layer solutions in the large-R asymp-
totic framework, and the WNA predictions are confirmed to be
sufficiently accurate by comparing with the NPSE calculations.

Indeed, the extra amplified streak mode plays a crucial role in
triggering the transition onset, confirmed by comparing with the
results with the streak component artificially removed. Therefore, the
whole scenario of the oblique-mode breakdown is well understood: (i)
the rapid growth of the linear oblique modes leads to an extra amplifi-
cation of the streak mode, which overwhelms the oblique modes
before they reach nonlinear saturation; (ii) the dominant streak mode
leads to a rapid amplification of the small-scale secondary instability
modes, producing finite Reynolds stress to distort the mean flow; and
(iii) the mean-flow distortion starts to increase with an even greater
rate than that caused by the direct interaction of the fundamental obli-
que modes, leading to a drastic increase in the Cf curve. This is consid-
ered as the onset of transition to turbulence.

ACKNOWLEDGMENTS

This work was supported by NSFC Basic Science Center
Program for “Multiscale Problems in Nonlinear Mechanics” (Grant
No. 11988102), National Science Foundation of China (Grant

FIG. 9. Sketch of transition process by oblique-mode breakdown.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 104110 (2022); doi: 10.1063/5.0117622 34, 104110-9

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0117622/16581177/104110_1_online.pdf

https://scitation.org/journal/phf


Nos. 12002235 and U20B2003), and Strategic Priority Research
Program, CAS (No. XDB22040104).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Runjie Song: Data curation (lead); Formal analysis (equal);
Investigation (lead); Resources (lead); Validation (lead); Visualization
(lead); Writing – original draft (lead). Ming Dong: Conceptualization
(equal); Formal analysis (equal); Funding acquisition (equal); Project
administration (equal); Supervision (equal); Writing – review & editing
(equal). Lei Zhao: Funding acquisition (equal); Investigation (equal);
Methodology (lead); Software (lead).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX A: THE COEFFICIENT MATRICES AND THE
NONLINEAR FORCING IN EQUATION (10)

In Eq. (10), C; A; B; C, D; Vxx; Vyy; Vuu; Vxy; Vyu, and Vxu

are 5� 5-order matrices, whose non-zero elements are

C11 ¼ 1; C22 ¼ C33 ¼ C44 ¼ qB;

C51 ¼ �
ðc� 1ÞTB

c
; C55 ¼

qB

c
;

A11 ¼ UB; A12 ¼ qB; A21 ¼
TB

cM2
;

A22 ¼ qBUB �
4 glB þ lB;xð Þ

3R
;

A23 ¼ �
lBhþ sTB;y
� �

R
; A25 ¼

qB

cM2
þ 2s

R
1
3
r � ~U � S11

� �
;

A32 ¼
2lB;y

3R
; A33 ¼ qBUB �

lB;x þ glBð Þ
R

; A35 ¼
�2sS12

R
;

A44 ¼ qBUB �
glB þ lB;xð Þ

R
; A51 ¼ �

c� 1
c

TBUB;

A52 ¼ �
4 c� 1ð ÞM2

R
lB S11 �

1
3
r � ~U

� �
;

A53 ¼ �
4 c� 1ð ÞM2

R
lBS12; A55 ¼

qBUB

c
� sTB;x þ glBð Þ

RPr
;

B11 ¼ ~VB;B13 ¼ qB; B22 ¼ qB
~VB �

hlB þ lB;y
� �

R
;

B23 ¼
2lB;x

3R
; B25 ¼

�2sS21
R

; B31 ¼
TB

cM2
;

B32 ¼ �
1
R

lB;x þ
1
3
glB

� �
; B33 ¼ qB

~VB �
4
3R

lB;y þ hlB
� �

;

B35 ¼
qB

cM2
þ
2lB;T

R
1
3
r � ~U � S22

� �
;

B44 ¼ qB
~VB �

hlB þ lB;y
� �

R
;

B51 ¼ �
c� 1

c
TB ~VB; B52 ¼ �

4 c� 1ð ÞM2

R
lBS21;

B53 ¼ �
4 c� 1ð ÞM2

R
lB S22 �

1
3
r � ~U

� �
;

B55 ¼
qB

~VB

c
�
2lB;y þ hlB

RPr
;

C14 ¼
qB

r
; C24 ¼

7glB

3rR
þ
2lB;x

3rR
;

C34 ¼
2lB;y þ 7hlB
� �

3rR
; C41 ¼

TB

rcM2
;

C42 ¼ �
1
rR

7
3
glB þ lB;x

� �
;

C43 ¼ �
1
rR

7
3
hlB þ lB;y

� �
;

C45 ¼
qB

rcM2
þ 2s
rR

1
3
r � ~U � S33

� �
;

C54 ¼ �
4 c� 1ð ÞM2

rR
lB S33 �

1
3
r � ~U

� �
;

D11 ¼ r � ~U; D12 ¼ qB;x þ gqB; D13 ¼ qB;y þ hqB;

D21 ¼ UBUB;x þ ~VBUB;y

	 

þ TB;x

cM2
;

D22 ¼ qBUB;x þ
2g
3R

2glB þ lB;xð Þ;

D23 ¼ qBUB;y þ
2h
3R

2glB þ lB;xð Þ;

D25 ¼
qB;x

cM2
� 1
R

(
s

"
2S11 �

2
3
r � ~U

� �
x
þ 2S21;x þ 2hS21

þ 2gS11 � 2gS33

#
þ 2S11 �

2
3
r � ~U

� �
sx þ 2S21sy

)
;

D31 ¼ UB ~VB;x þ ~VB ~VB;y

	 

þ

TB;y

cM2
;

D32 ¼ qB
~VB;x þ

2g
R

lB;y

3
þ hþ g

3

� �
lB

� �
;

D33 ¼ qB
~VB;y þ

2h
3R

2hlB þ lB;y
� �

;

D35 ¼
qB;y

cM2
� 1
R

(
s

"
2S12;x þ 2S22 �

2
3
r � ~U

� �
y
þ 2hS22

þ 2gS12 � 2hS33

#
þ2S12sx þ 2S22 �

2
3
r � ~U

� �
sy

)
;

D44 ¼ qB gUB þ h~VB

� �
þ 1
R

g2 þ h2
� �

lBþ
2
3
glB;x

� �
;

D51 ¼
1
c
~U � rTB

� �
;

D52 ¼
qBTB;x

c
� 4lB c� 1ð ÞM2g

R
S33 �

1
3
r � ~U

� �
�

c� 1ð ÞTBqB;x

c
;
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D53 ¼
qBTB;y

c
� 4lB c� 1ð ÞM2h

R
S33 �

1
3
r � ~U

� �

�
c� 1ð ÞTBqB;y

c
;

D55 ¼ �
2 c� 1ð ÞM2s

R
SB :: SB �

1
3
r � ~Uð Þ2

� �

�r � lBrTBð Þ
RPr

� c� 1
c

~U � rqB

� �
;

Vxx;22 ¼ �
4lB

3R
; Vxx;33 ¼ �

lB

R
; Vxx;44 ¼ �

lB

R
;

Vxx;55 ¼ �
lB

RPr
; Vyy;22 ¼ �

lB

R
; Vyy;33 ¼ �

4lB

3R
;

Vyy;44 ¼ �
lB

R
; Vyy;55 ¼ �

lB

RPr
; Vuu;22 ¼ �

lB

r2R
;

Vuu;33 ¼ �
lB

r2R
; Vuu;44 ¼ �

4lB

3r2R
; Vuu;55 ¼ �

lB

r2RPr
;

Vxy;23 ¼ Vxy;32 ¼ �
lB

3R
; Vxu;24 ¼ Vxu;42 ¼ �

lB

3rR
;

Vyu;34 ¼ Vyu;43 ¼ �
lB

3rR
;

with ~VB¼R�1VB; s¼ dlB
dTB

, ~U¼ ½UB; ~VB;0�T ; g¼ sinh=r; h¼ cosh=r;

r�~U¼UB;xþ ~VB;yþ gUBþh~VB and SB the rate of strain tensor of
the base flow, whose components are

S11 ¼ UB;x; S22 ¼ ~VB;y; S33 ¼ gUB þ h~VB;

S12 ¼ S21 ¼ ~VB;x þ UB;y

	 

=2:

F is a vector, and its elements are

Fð1Þ ¼ � ~qr �~u þ~u � r~qð Þ;

Fð2Þ ¼� ~q~ut � ~q UB~ux þ ~VB~uy þ ~uUB;x þ ~vUB;x

	 


� ~q þ qBð Þ ~u~ux þ ~v~uy þ ~w~uu=r � g~w2
� �

� ~q~T
� �

x

cM2

� 2
3R

~lr �~uð Þx þ
2
R

�
~l~S11
� �

x þ ~l~S21
� �

y

þ ~l~S31
� �

u=r þ ~l g~S11 þ h~S21 � g~S33
� ��

;

Fð3Þ ¼� ~q~vt � ~q UB~vx þ ~VB~vy þ ~u ~VB;x þ ~v ~VB;y

	 


� ~q þ qBð Þ ~u~vx þ ~v~vy þ ~w~vu=r � h~w2
3

� �
�

~q~T
� �

y

cM2

� 2
3R

~lr �~uð Þy þ
2
R

�
~l~S12
� �

x þ ~l~S22
� �

y

þ ~l~S32
� �

u=r þ ~l g~S12 þ h~S22 � h~S32
� ��

;

Fð4Þ ¼� ~q~wt � ~q UB~wx þ ~VB~wy þ g~wUB þ h~wVB

h i
� ~q þ qBð Þ ~u~wx þ ~v ~wy þ ~w~wu=r þ g~u~w þ h~v ~w

� �
�

~q~T
� �

u

crM2
� 2
3rR

~lr �~uð Þu þ
2
R

�
~l~S13
� �

x þ ~l~S23
� �

y

þ ~l~S33
� �

u=r þ 2~l g~S13 þ h~S23
� ��

;

Fð5Þ ¼� ~q
c

~T t þ~u � rTB þ ~U � r~T þ~u � r~T
� �

þ c� 1ð ÞM2 2~l~S : : ~S� 2
3

~l r �~uð Þ2
� �

þ c� 1
c

~T ~qt þ~u � rqB þ ~U � r~q þ~u � r~q
� �

þ c� 1ð ÞM2

�
2lB

~S : : ~S� 2
3
lB r �~uð Þ2

þ 4~l~S : : ~S� 4
3

~l r � ~Uð Þ r �~uð Þ
�
þ c� 1

c
TB ~u � r~qð Þ

� qB

c
~u � r~Tð Þ þ r � ~lr~T

� �
;

with ~u ¼ ½~u;~v; ~w�T ; r �~u ¼ ð~ux þ ~vy þ ~wu=r þ g~u þ h~vÞ and ~S
the rate of strain tensor of disturbance, whose six dependent com-
ponents are

~S11 ¼ ~ux; ~S22 ¼ ~vy; ~S33 ¼ ~wu=r þ g~u þ h~v;

~S12 ¼ ~S21 ¼ ~vx þ ~uy
� �

=2;

~S13 ¼ ~S31 ¼ ~wx þ ~uu=r � g~w
� �

=2;

~S23 ¼ ~S32 ¼ ~wy þ ~vu=r � h~w
� �

=2:

APPENDIX B: DISCRETIZATION OF THE NPSE

The rectangular mesh system is employed for the NPSE calcu-
lation, which is uniform in the streamwise direction but clustered in
the near-wall region in the transverse direction. Each grid point is
denoted by (i, j), with i 2 ½0; I� and j 2 ½0; J�. The streamwise deriv-
ative is discretized as

@/̂MN;i

@x
¼

3/̂MN;i � 4/̂MN;i�1 þ /̂MN;i�2
2Dx

; for i > 1;

@/̂MN;i

@x
¼

/̂MN;i � /̂MN;i�1
Dx

; for i ¼ 1;

(B1)

where Dx is the grid spacing in the streamwise direction. The non-
uniform transverse coordinate y is mapped into a uniform compu-
tational coordinate g, and @=@y and @2=@y2 are recast to

@

@y
¼ gy

@

@g
;

@

@y2
¼ gyy

@

@g
þ g2y

@2

@g2
: (B2)

Thus, the wall-normal derivative is discretized as

@/MN;j

@g
¼ 1

Dg

Xk¼jþ2
k¼j�2

ck/MN;k;

@/MN;j

@g
¼ 1

Dg

Xk¼jþ2
k¼j�2

dk/MN;k;

(B3)

where cj and dj can be found in Tables III and IV, respectively. The
order-of-accuracy for different choices of cj and dj is also given in
the tables. In this paper, we choose the number of the grid points in
the wall-normal direction to be J¼ 580, and the grid points are allo-
cated as
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yj
d99
¼ aj=J

1þ a=�yJ � j=J
; a ¼

�yJ
�yJ � 2

; �yJ ¼ yJ=d99; (B4)

where d99 denotes the nominal boundary-layer thickness at the inlet
of the computational domain.

APPENDIX C: VALIDATION OF THE NPSE CODE

In order to verify our NPSE code, we repeat the case study of
Chang and Malik,12 in which a two-dimensional wave [mode (2,0)]
with a frequency of x ¼ 0:0208 and two pairs of three-dimensional
disturbances with equal spanwise wavenumbers of b ¼ 0:049 92
and frequencies of 0.0208 [mode (2,l) and (2, �1)] and 0.0104
[mode (1,l) and (1, �1)] are introduced at Rx ¼ 520 in a Mach 1.6

flat-plate boundary layer, where Rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q�1u

�
1x
�

l�1

q
. As shown in Fig. 10,

our calculations of the Fourier components (2,0), (2,1), and (1,1)
agree well with those in Ref. 12, confirming the accuracy of our
NPSE code.

APPENDIX D: NONLINEAR TERMS IN THE WNA
EQUATIONS (27) AND (29)

F̂
ð3Þ
3 ¼ �2 q̂1;1 iað Þ†UB v̂1;1ð Þ† þ ixð Þ v̂1;1ð Þ†

h in o
r

�2qB iað Þ†û1;1 v̂1;1ð Þ† þ v̂1;1 v̂†1;1
	 


y

� �
r

�2qB ibð Þŵ1;1 v̂1;1ð Þ†

 �

r ;

F̂
ð4Þ
3 ¼ 2 q̂1;1 ixð Þŵ†

1;1 þ iað Þ†UBŵ
†
1;1

h in o
i

þ 2qB iað Þ†û1;1 ŵ1;1ð Þ† þ v̂1;1 ŵ†
1;1

	 

y

� �
i

þ 2qB ibð Þŵ1;1 ŵ1;1ð Þ†

 �

:

(D1)

F̂
ð1Þ
4 ¼ �2M2 iað Þû1;1p̂1;1 þ v̂1;1 p̂1;1

� �
y
� ibð Þŵ1;1p̂1;1

h i
;

F̂
ð2Þ
4 ¼ �2qB iað Þû2

1;1 þ v̂1;1 û1;1ð Þy � ibð Þŵ1;1û1;1

h i
þ 2q̂1;1 ixð Þû1;1 � iað ÞUBû1;1 � UB;yv̂1;1


 �
;

F̂
ð3Þ
4 ¼ �2qB iað Þû1;1v̂1;1 þ v̂1;1 v̂1;1ð Þy � ibð Þŵ1;1v̂1;1

h i
þ 2q̂1;1 ixð Þv̂1;1 � iað ÞUBv̂1;1


 �
:

(D2)
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