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In the microgravity environment, liquid is usually adsorbed in corners or slots. Liquid accumulated in these regions is difficult
to be removed and used. A mathematical model describing static profiles of the liquid accumulated in the corner of truncated-
cone-shaped containers under microgravity is obtained through theoretical derivation in this paper. The profiles have two cases
according to liquid’s wettability and the angle of containers’ corners. Once coordinates of an endpoint of the profile are known,
the profile and volume of the liquid can be obtained using the Shooting method according to the mathematical model. Besides,
if abscissa values of the endpoints are unknown, the profile of the liquid can also be obtained using the dichotomy method and
shooting method when liquid volume is given. It is easier to use these methods than others proposed before and they can also
be used to predict liquid’s profiles in other conditions. Numerical simulation is performed with the volume of fluid method and
the results are in good agreement with theoretical ones. Based on the mathematical model, the profile and volume of the liquid
accumulated in the corner can be predicted accurately.
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1. Introduction

In the microgravity environment, surface tension plays a
dominant role so that liquid is usually adsorbed in corners or
slots. Liquid containers, such as satellite propellant tanks,
have a structure that consists of corners, reservoirs, etc.
Liquid accumulated in these regions is difficult to be re-
moved and used, which is a waste of precious liquid used on
satellites. Therefore, it is of great significance to study liquid
behaviour in corners of truncated-cone-shaped containers
under microgravity.
Capillary phenomena in both static and dynamic states

have been widely studied. The well-known Lucus-Washburn
equation was derived by adopting a balance between the

capillary driven force, the friction force on tube wall and the
gravity force [1,2]. A second order differential equation was
derived with consideration of the pressure loss at the tube
entrance by Levine et al. [3]. Capillary driven flow in cy-
lindrical tubes was divided into three regions by Stange et
al. [4]. Chen et al. [5] studied capillary flow in oval tubes
and proposed a new flow model in which capillary driven
flow was divided into two regions. Dynamic equations of
capillary driven flow in tubes with varying cross section
[6,7], concentric annuli [8], axisymmetric geometries [9],
complex containers [10], rectangular microchannel [11] and
capillary tubes [12] were also derived. Dreyer et al. [13]
studied capillary rise between parallel plates and Chen et al.
[14] explored capillary flow between plates with varying
cross-section. Dynamics in closed and open capillaries was
studied by Ramakrishnan et al. [15]. The governing equation
of capillary driven flow in interior corners was firstly de-
rived by Weislogel and Lichter [16], and was extended to
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corners formed by plates with varying wettability [17],
rounded interior corners [18], corners formed by a plate and
a rounded wall [19], curved interior corners [20], Taylor
rising [21], small corners between two curved walls [22] and
symmetric draining from corners [23]. Theories of capillary
driven flows and drop tower experiments are adopted to
analyze liquid behaviour in tanks under microgravity and
optimize propellant management device of tanks [24,25].
Static free surfaces under microgravity also attracted

much attention. Capillary free surfaces in containers and
corners were analyzed and the Concus-Finn condition was
proposed [26]. Carroll [27] derived theoretical expressions
for profiles of liquid drops on cylindrical fibers. Michielsen
et al. [28] studied liquid drops on conical fibers and obtained
the final location and profiles of liquid drops through ana-
lyzing Gibbs free energy. Profiles of liquid drops at the tips
of cylindrical fibers and at the bottom of cylindrical fibers
standing on flat substrates were studied by Du et al. [29,30].
Liquid bridges between solid walls were comprehensively
studied and their profiles were obtained [31-37]. Capillary
surfaces in cubes [38] and polyhedral containers [39] were
also discussed. The hydrodynamic stability of constrained
capillary surfaces was comprehensively analyzed by Bost-
wick and Steen [40]. Capillary breakup of armored liquid
filaments was explored by Zou et al. [41].
However, profiles of the liquid accumulated in corners of

truncated-cone-shaped containers at equilibrium have not
been studied yet. This study focuses on this problem and
proposes a mathematical model to describe the profile. The
theoretical derivation of the mathematical model is pre-
sented in this paper. Numerical simulation is performed
with the volume of fluid (VOF) method by considering
different liquid wettability, different volumes of liquid and
different geometries of containers. Besides, a numerical
method based on the shooting method is developed to
predict profiles of the liquid accumulated in corners. Two
situations are discussed. In the first case, the container’s
geometry, the liquid contact angle and the abscissa value of
a point on the profile curve are known. In the second case,
the container’s geometry, the liquid contact angle and the
volume of liquid are known. In previous study of liquid
drops on conical fibers, the Gibbs free energy minimization
method is adopted to calculate the profile in the second
case, which is more complicated than the method proposed
in this paper.

2. Theory

Liquid tanks in satellites are basically spherical or cylind-
rical and, in the microgravity environment, liquid is usually
adsorbed in corners. When the amount of liquid is just en-
ough, it will form a liquid ring covering the entire circle of

the corner. And the profiles of liquid on all cross-sections
are same. As shown in Fig. 1a, a certain volume of liquid is
adsorbed in the corner of a truncated-cone-shaped container
under microgravity. The blue region represents liquid with a
volume of V0. Figure 1b and c is enlarged cross-sectional
views near the corner. The angle of the interior corner is α
and the radius at the bottom of the container is r0. φ is the
angle between the z axis and the line in the direction normal
to the profile. Points A and B are two endpoints of the
profile, which are also located on walls of the container.
When θ + α > π/2, the cross-section view of the liquid is
shown in Fig. 1b. When θ + α < π/2, the cross-section view
of the liquid is shown in Fig. 1c. In the second condition,

Figure 1 Schematic diagram of the model. a Front view of the whole
model. b Cross-sectional view of the corner with θ + α > π/2. c Cross-
sectional view of the corner with θ + α < π/2.
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curve AB is divided into two segments, curve AC and curve
BC, by point C, which is the point corresponding to φ = π/2.
The contact angle of the liquid on container’s wall is θ. The
z axis is defined as the symmetry axis of the container, and
the x axis is perpendicular to the z axis and is on the bottom
of the container. Because the model is axisymmetric, the y
axis is equivalent to the x axis and lies perpendicular to the
plane of paper, and it is not shown in this study. In space, the
gravity is less than 10−5g (g is the gravity on the ground). In
order to judge whether the gravity is negligible, we need to
calculate the Bond number, which is the ratio of the gravity
force to surface tension force. We take water as an example
and the radius of the container in satellites is less than 1 m.
The Bond number can be calculated to be less than 0.139.
Actually, the radius is usually much smaller than 1 m, the
Bond number will be much smaller than 1, and in this si-
tuation the effects of microgravity can be ignored. At each
point on curve AB, there are two principal curvatures, K1 and
K2.
Curvature K1 in radial direction and curvature K2 in azi-

muthal direction can be calculated as follows:

K x
z x

z x
= d

d
d / d

1 + (d / d )
, (1a)1 2

K
x z x

= 1
1 + (d / d )

. (1b)2 2

Adding up two curvatures leads to the capillary equation,

x x
x z x

z x
C1 d

d
d / d

1 + (d / d )
= , (2)

2 1

where C1 is a constant. The expression (dz/dx)/[1+(dz/dx)2]0.5,
radial component of the surface normal, equals the sine of
surface’s slope angle. After multiplying radius r, the first
integral of Eq. (2) is obtained as
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Combined with boundary conditions:
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The constants can be obtained as follows:
for θ + α > π/2,
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for θ + α < π/2,
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Using relationships:
for θ + α > π/2,

( )
AB z

xcurve :  d
d = tan = sin

1 sin
, (6a)

2 0.5

for θ + α < π/2,

( )
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dx = tan = sin
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, (6b)
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together with Eq. (3), allows the gradient of the profile, dz/
dx, to be solved numerically by the Runge-Kutta method.
Furthermore, Eqs. (6b) and (6c) can be expressed as a
function of x, which can be simplified into expressions as
follows:
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Writing
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Eqs. (7a) and (7b) can be written as
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Adopt variable substitutions,
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This allows Eq. (9) to be integrated, which leads to

( ) ( )AC z a x F k x E k Ccurve :  = , + , + , (12a)1 1 1 3 1 3

( ) ( )BC z a x F k x E k Ccurve :  = , + , + , (12b)2 2 2 3 2 4

where F(ϕ,k) and E(ϕ,k) are elliptic integrals of the first and
second kind respectively, C3 and C4 are constants. Combined

with points A and B, these two constants can be determined.
This transformation simplifies the calculation process of the
profile.
The volume of the liquid accumulated in corners is a

matter of great concern. It is expressed as
V V V= , for + > / 2, (13a)A AB0

V V V V= , for + < / 2, (13b)A AC B C0

where V0 is the liquid volume accumulated in corners, VA is
the volume of the container with a height of z1 from the
bottom, and VAB, VAC and VBC are the volumes of gas sur-
rounded by the liquid-gas interface.
The container’s volume VA is

( )V z r r x x= 3 + + . (14)A 1 0
2

0 1 1
2

The volume of the solid of revolution is written as

V x z= d . (15)2

Combined with Eqs. (3)-(6) and (15), the volume of liquid
accumulated in corners can be obtained.
Moreover, VAC and VBC can be changed into the form as

follows:
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which can simplify the calculation process. If the co-
ordinates of points A, B and C are all known, the volume can
be obtained according to Eqs. (13)-(16). The volume can
also be obtained only based on x2 using the shooting method.
During this calculation process, x1 and x3 are decided using
the shooting method and x2 is the only independent variable.

3. Numerical simulation

To validate the proposed mathematical model, numerical
simulation is performed with the VOF method. Figure 2
shows a typical mesh model of a truncated-cone-shaped
container. Different sizes of containers are chosen. Grid-
independent verification is carried out and the total number
of grids is decided to be about 0.3 million. Boundary layers
are established near all walls of the container. The flow is
assumed to be laminar in our simulation. The time-step size
is 0.0004 s and simulation results are saved automatically
every 2000 steps. A kind of silicone oil named Shin-Etsu
Company SF 2 is selected in this study. Its properties are

listed in Table 1.
To save calculation time, liquid is initially accumulated in

the corner. As shown in Fig. 3, the yellow surface stands for
the liquid-gas interface, and the translucent blue surface is

Figure 2 Mesh model established for numerical simulation.

Table 1 Liquid properties (25°C)
Liquid μ (kg/(m s)) ρ (kg/m3) σ (N/m) ν (10−6 m2/s)
SF 2 0.001746 873 0.0183 2
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container’s wall. The volume of the liquid accumulated in
the corner and the contact angle of the liquid on container’s
wall are given, and they are also listed in Table 2. The
container is high enough to prevent the liquid from reaching
the top. There are two cases, one is that the amount of liquid
is not enough and it forms a liquid drop somewhere in the
corner instead of covering the entire circle of the corner; the
other one is that the amount of liquid is too much and it
covers the entire bottom of containers, which are not dis-
cussed in this paper.
The numerical calculation time is long enough for the

liquid to reach equilibrium. The free interface at equilibrium
is shown in Fig. 4a and the cross-sectional view of static
liquid distribution in the corner is shown in Fig. 4b. In Fig.
4a, it can be seen that, when θ + α ≥ π/2, there is no point on
the profile such that the tangent at this point is perpendicular
to the x-axis, therefore, the profile is curve AB as shown in
the theoretical analysis. In Fig. 4b, when θ + α < π/2, there

exists a point on the profile such that the tangent at this point
is perpendicular to the x-axis, and this is point C. To com-
pare with theoretical results, final results are obtained by
reading two sets of coordinate values of points A, B and C
on two cross-sectional profiles at two different moments
from simulation results, and taking average of the two sets
of coordinate values for points A, B and C respectively.
Result data are listed in Table 2.

4. Results and discussions

In the simulation, the geometry of containers and the vo-
lume and contact angle of the liquid are all given. And the
coordinates of points A, B and C can be measured. These
numerical results can be compared with theoretical predic-
tions to verify the mathematical model. Theoretical predic-
tions are based on certain inputs. Two situations are
discussed in this paper. The first situation is that the con-
tainer’s geometry, the liquid contact angle and the value of
x2 are used as inputs. While the second situation is that the
container’s geometry, the liquid contact angle and the vo-
lume of liquid are used as inputs.
In the first situation, theoretical predictions of the profile

and volume of the liquid can be obtained by inserting x2 into
the mathematical model. When θ + α > π/2, x2 measured
from numerical results is substituted into the mathematical
model proposed above, then x1 is adjusted in a given range

Table 2 Model parameters and comparison between numerical and theoretical results

No.
Parameters Numerical results Theoretical predictions Ratios of theoretical pre-

dictions to numerical results
r0

(mm)
α
(°)

θ
(°)

x1
(mm)

z1
(mm)

x2
(mm)

x3
(mm)

z3
(mm)

V0
(mm3)

x1
(mm)

z1
(mm)

x3
(mm)

z3
(mm)

V0
(mm3)

Ratios of z1
(%)

Ratios of V0
(%)

#1 20 90 30 20 10.33 9.317 – – 5058 20 10.45 – – 4828 101.2 95.45
#2 20 90 40 20 10.68 7.693 – – 6771 20 11.09 – – 6390 103.8 94.37
#3 20 90 50 20 8.690 10.40 – – 5058 20 8.816 – – 4674 101.5 92.41
#4 20 108.4 20 23.78 11.43 8.250 – – 5426 23.61 10.84 – – 5218 94.84 96.17
#5 20 108.4 30 23.22 9.744 7.681 – – 6387 23.43 10.32 – – 6103 105.9 95.55
#6 20 108.4 40 23.10 9.379 8.252 – – 6387 23.08 9.248 – – 6077 98.60 95.15
#7 20 108.4 50 22.15 6.916 12.24 – – 3944 22.16 6.502 – – 3478 94.01 88.18
#8 40 45 15 28.06 11.83 22.86 29.11 7.681 16286 27.63 12.37 28.78 8.054 15146 104.6 93.00
#9 40 45 60 30.31 9.64 26.07 – – 13977 30.16 9.841 – – 13374 102.1 95.69
#10 40 56.31 20 30.12 14.85 21.27 30.91 10.91 19242 29.38 15.93 29.78 12.60 21347 107.3 110.9
#11 40 56.31 50 34.90 7.558 30.66 – – 7830 34.81 7.787 – – 7476 103.0 95.48
#12 40 56.31 60 35.52 6.694 31.53 – – 7353 35.31 7.037 – – 6596 105.1 89.70
#13 60 39.81 30 41.11 15.63 34.59 41.63 11.31 47242 40.29 16.43 41.14 11.64 49885 105.1 105.6
#14 60 39.81 60 49.34 8.792 45.83 – – 19193 49.11 9.078 – – 20051 103.3 104.5
#15 60 101.3 30 63.00 15.12 44.23 – – 39416 63.10 15.51 – – 37348 102.6 94.75
#16 60 101.3 40 62.88 14.56 44.71 – – 39416 62.93 14.69 – – 39736 100.9 100.8
#17 80 26.57 35 57.19 11.23 54.16 58.13 6.467 54079 56.83 11.59 57.91 7.296 53378 103.2 98.70
#18 80 26.57 65 59.46 10.18 56.92 – – 51175 59.35 10.33 – – 47585 101.5 92.98
#19 80 69.44 30 72.26 20.52 57.80 – – 85320 72.09 21.10 – – 82781 102.8 97.02
#20 80 69.44 50 72.93 18.57 59.64 – – 85320 72.87 19.02 – – 82719 102.4 96.95

Figure 3 Initial liquid-gas interface in a container.
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using the shooting method until it is on the container’s wall.
Once x1 is determined, theoretical predictions of the profile
and volume of the liquid will also be obtained. When θ + α <
π/2, the calculation process is similar to that proposed
above, and both x1 and x3 are adjusted until x1 is on the
container’s wall.
Theoretical values of x1, z1, x3, z3 and V0 are shown in

Table 2. The ratios of theoretical predictions to numerical
results are also given in the table. Points A and B are located
on the wall. Their locations are easy to identify and rela-
tively easy to measure. When θ + α < π/2, the coordinates of
point C need to be measured from numerical results, and the
measurement of the position of point C is dependent on the
subjective judgement, which may cause a little error. Gen-
erally speaking, theoretical and numerical results are very
close in z1 and V0, and the error is acceptable. In our simu-
lation, the volume of liquid is given at first so that we can
compare the given volume with the predicted results. In fact,
the volume of liquid accumulated in the corner is hard to
measure directly in the simulation if the volume is not given
at first. But the coordinates of x2 can be easily measured.
Once x2 is obtained, according to the mathematical model,
the volume of liquid accumulated in the corner can be cal-
culated.
To compare numerical and theoretical results of the profile

more comprehensively, we measure coordinates of several
points on the profile under different conditions from nu-
merical results, and plot the points together with theoretical
curves, as shown in Fig. 5. The case numbers are labeled in
the upper-left corner of the figure. In cases 1, 16 and 19, θ +
α > π/2, while in cases 8 and 17, θ + α < π/2. And the value
of r0 varies from 20 mm to 80 mm while the value of α
varies from 26.57° to 101.3°. The solid curves are theore-
tical results and the squares represent the points taken from
numerical results. Different colors represent different con-
ditions, which are annotated in the upper left corner of the
figure. The profiles from numerical results are in good
agreement with those from theoretical results.
In the second situation, the abscissa values of points A, B

and C are unknown, but the volume of liquid is given as an
input. When θ + α > π/2, the volume of liquid V0 is con-
sidered to be a function of x2, and it can be obtained using
the dichotomy method. Firstly, x2 is estimated within a given
range, and then the values of liquid volume are calculated
based on different values of x2 until the deviation from the
given volume of liquid is less than 0.01%. Once x2 is de-
termined, the profile can be obtained using the shooting
method. When θ + α < π/2, the calculation process is similar
to that proposed above. x2 is obtained using the dichotomy
method at first. Then we adjust both x1 and x3 using the
shooting method until x1 locates on the container’s wall. By
using the values of r0, α, θ and V0 in Table 2, theoretical
predictions of coordinates of points A, B and C are obtained
and ratios of predicted to numerical results are shown in
Table 3.
To observe the accuracy of theoretical predictions, ratios

of theoretical to numerical results are shown in Fig. 6a and
b. The abscissa represents the case number, and the ordinate
represents the ratio. Figure 6a shows ratios when x2 is given
and Fig. 6b shows ratios when V0 is given. It can be seen
that, in most cases, the ratios are within 100% ± 5%. And
the maximum deviation is also within ±12%. It indicates that
theoretical predictions based on the mathematical model
using the shooting method are in good agreement with nu-
merical results.
The numerical method proposed above has important

applications in spacecraft or orbiting vehicles. For example,
it can be useful in many applications associated with utili-
zation of propellant in tanks. Firstly, simulate the process of
propellant extrusion under microgravity. When the pro-
pellant stops flowing out of the tank, there must be some
residual in corners. And the volume of residual is hard to
measure from the numerical results. But the container’s
geometry and liquid contact angle are known, and x2 can be
easily measured from numerical results. Based on these
inputs, the volume of propellant absorbed in corners can be
calculated. Our numerical method will be helpful for
calculating the utilization of propellant. Compared with

Figure 4 Distribution of SF 2 at equilibrium. a r0 = 20 mm, α = 108.4°, θ = 40°. b r0 = 40 mm, α = 45°, θ = 15°.
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surface evolve or fluent, our method is much easier and
needs much less work to obtain the profiles and volume
of liquid absorbed in the corner. Besides, the method
based on the Gibbs free energy proposed before is more
complicated than ours. The previous method needs a
series of equations to describe the Gibbs free energy of
the free surface. And solve the equations to obtain the
minimum of the Gibbs free energy to further predict the
profile. Our method uses the geometry of the container as
the boundary condition, which is much easier than the
previous method.
Predicted profiles are shown in Fig. 7a when θ + α > π/2

and Fig. 7b when θ + α < π/2. The black lines represent the
profile of the container’s wall and the colored curves stand
for profiles of the liquid under different conditions. The
profiles are similar to those in Figs. 4a and b. When θ + α <

π/2, the profile of the liquid is divided into two sections and
there exists a point where the tangent line is perpendicular to
the x-axis.
For further analysis, dimensionless expressions of profiles

are given as follows:

( )
AB z

x

C x x
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C x x x x
x x

curve :  dd = tan = sin

1 sin
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( )V z x x= 3 1 + + , (18)A 1 1 1
2
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where x x r= /1 1 0, x x r= /2 2 0, x x r= /3 3 0, z z r= /1 1 0,

Table 3 Predicted values compared with numerical results

No.
Theoretical predictions Ratios of predicted to numerical results

x1 (mm) z1 (mm) x2 (mm) x3 (mm) z3 (mm) Ratios of x1 (%) Ratios of x2 (%) Ratios of x3 (%)
#1 20 10.70 9.007 – – 100 96.67 –
#2 20 11.41 7.139 – – 100 92.80 –
#3 20 9.174 9.901 – – 100 95.20 –
#4 23.68 11.05 7.954 – – 99.58 96.41 –
#5 23.51 10.54 7.248 – – 101.2 94.36 –
#6 23.14 9.448 7.776 – – 100.2 94.23 –
#7 22.30 6.903 11.62 – – 100.7 94.93 –
#8 27.10 12.90 22.14 28.30 8.398 96.58 96.85 97.22
#9 29.91 10.09 25.71 – – 98.68 98.62 –
#10 30.00 15.00 22.43 30.37 11.87 99.60 105.5 98.25
#11 34.68 7.982 30.43 – – 99.37 99.25 –
#12 35.03 7.456 31.02 – – 98.62 98.38 –
#13 40.91 15.91 35.38 41.73 11.28 99.51 102.3 100.2
#14 49.36 8.867 46.16 – – 100.4 100.7 –
#15 63.19 15.94 43.78 – – 100.3 98.98 –
#16 62.92 14.63 44.78 – – 100.1 100.2 –
#17 56.66 11.67 53.97 57.75 7.350 99.07 99.65 99.35
#18 58.49 10.76 55.96 – – 98.37 98.31 –
#19 71.96 21.45 57.44 – – 99.58 99.38 –
#20 72.75 19.33 59.30 – – 99.75 99.43 –

Figure 5 Comparison between theoretical and numerical results.
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x x r= / 0 and z z r= / 0.

Changes of dimensionless liquid volume with contact
angle of the liquid or the angle of the corner are shown in
Fig. 8a-d respectively. The abscissa represents contact angle
or angle of the corner, and the ordinate represents the di-
mensionless volume. The figures show changes of liquid
volume when x2 = 0.5, 0.6 and 0.7. It can be seen that liquid
volume always increases monotonously with increase of the
contact angle or the angle of the corner. For a wide range of
abscissa values, α is set to be 71° in Fig. 8a but 29° in
Fig. 8c, and θ is set to be 80° in Fig. 8b but 30° in Fig. 8d.
Comparing the changes of the volume of liquid at different
values of x2, it can be seen that the volume of liquid in-
creases at a higher rate with the increase of the liquid contact
angle or the angle of the corner when x2 is smaller.

5. Conclusions

Understanding capillary phenomena in the corner of trun-

cated-cone-shaped containers under microgravity is im-
portant because it will be helpful for liquid management in
space. The mathematical model of the profile of the liquid
accumulated in the corner is derived. According to liquid’s
wettability and the angle of the container’s corner, the
profiles have two cases: when θ + α < π/2, there exists a
point named point C such that the tangent at this point is
perpendicular to the x-axis; when θ + α > π/2, there is no
point C on the profile. Numerical simulation is performed
with the VOF method and numerical results are consistent
with theoretical predictions.
Based on the model, expressions of liquid volume are also

obtained. As the geometry of containers and the contact
angle of the liquid are given, if one of abscissa values of
points A, B and C is known, theoretical predictions of the
profile and volume of the liquid can be obtained using the
shooting method; if abscissa values of points A, B and C are
unknown, the profile of the liquid at equilibrium can also be
obtained using the dichotomy method and shooting method
if liquid volume V0 is known. These methods are easier than
the method based on the Gibbs free energy discussed before,

Figure 6 Ratios of theoretical predictions to numerical results. a Ratios when x2 is given and b ratios when V0 is given.

Figure 7 Predicted profiles based on the dichotomy method and shooting method. a θ + α > π/2. b θ + α < π/2.
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and can also be used to predict profiles of the liquid in other
situations, such as liquid bridges between two different
spheres. Based on the mathematical expressions presented in
this study, the profile and volume of the liquid accumulated
in the corner of truncated-cone-shaped containers can be
predicted accurately. The numerical methods proposed in
this paper have important applications in aerospace. For
example, it can be used to calculate the utilization of pro-
pellant in tanks.
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微重力下圆台形容器内角处毛细现象

陈上通, 章楚, 李文, 李永, 丁凤林, 康琦

摘要 在微重力环境中, 液体通常吸附在夹角或缝隙中. 积聚在这些区域的液体难以排出和使用. 本文通过理论推导得到了微重力环

境下圆台形容器内角处液体的气液界面轮廓. 根据液体的润湿性和内角大小, 界面轮廓可分为两种情况. 一旦知道轮廓某个端点的坐

标, 就可以根据数学模型使用打靶法获得液面轮廓和体积. 此外, 如果轮廓端点的横坐标值无法测量得到, 在给定液体体积的情况下,
也可以使用二分法和打靶法获得液面轮廓.本文提出的方法比之前提出的基于Gibbs自由能的方法更容易.该方法也可用来预测其他结

构间的液面轮廓. 本文采用有限体积法开展数值模拟, 仿真结果与理论值吻合良好. 基于该数学模型, 可准确预测圆台形容器内角处积

聚液体的液面轮廓和体积.
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