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Abstract
A 1D radially self-consistent model in helicon plasmas has been established to investigate the
influence of radial heat conduction on plasma transport and wave propagation. Two kinds of 1D
radial fluid models, with and without considering heat conduction, have been developed to
couple the 1D plasma–wave interaction model, and self-consistent solutions have been obtained.
It is concluded that in the low magnetic field range the radial heat conduction plays a moderate
role in the transport of helicon plasmas and the importance depends on the application of the
helicon source. It influences the local energy balance leading to enhancement of the electron
temperature in the bulk region and a decrease in plasma density. The power deposition in the
plasma is mainly balanced by collisional processes and axial diffusion, whereas it is
compensated by heat conduction in the bulk region and consumed near the boundary. The role of
radial heat conduction in the large magnetic field regime becomes negligible and the two fluid
models show consistency. The local power balance, especially near the wall, is improved when
conductive heat is taken into account.

Keywords: helicon discharge, heat conduction, model coupling, plasma transport

(Some figures may appear in colour only in the online journal)

1. Introduction

Helicon discharges have been found in recent decades to
produce highly ionized plasmas given an appropriate power
supply [1, 2]. A very high plasma density of 1018–1020 m−3

can be produced and maintained in the laboratory [3, 4]. Due
to this remarkable property, they have been used as plasma
sources in diverse areas, from material processing to space
propulsion [5].

As an excellent plasma source, there are two main physical
processes dominating helicon discharge. Plasma–wave interaction
takes place inside the source leading to the deposition of wave

energy into the plasma, and multiple transport phenomena govern
the plasma dynamics [6]. Hence, research on helicon plasmas has
mainly focused on these two aspects. However, establishing a
complete model for studying these two coupled processes has
difficulties and complexities. Researchers tend to investigate each
process separately, based on appropriate assumptions about the
other. Several 1D and 2D plasma–wave interaction models have
been established to investigate the mechanisms of power
deposition and wave propagation in helicon plasmas [7–11]. For
plasma transport processes, the fluid dynamics and transport
properties have also been studied with 1D and 2D fluid models
[12–16].

Note that all these models mentioned above were developed
to study a single process in helicon discharges and based on
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strong physical assumptions. In the plasma–wave interaction
model above, the plasma transport is not taken into account
since the profiles of the plasma density and the electron temp-
erature are usually given by the experimental data or assumed
distributions [4]. Conversely, in most fluid models, the electron
temperature is assumed to be uniform [12, 15], and the details of
the plasma–wave interaction are neglected. However, these two
processes are coupled with and influence each other [6]. The
power deposition of wave energy in the plasma plays an
important role in the local energy balance and influences the
non-uniformity of the plasma density and the electron temper-
ature. Hence, it is necessary to implement a complete model
which couples the plasma–wave interaction model to the fluid
model to describe the whole processes. Cho and Lieberman [17]
established a 1D self-consistent model, which couples the 1D
radial plasma–wave interaction model to the 1D radial fluid
model, to investigate the influence of magnetic fields, input
power and plasma density on the power deposition and dis-
tribution of electron temperature. This model assumed that the
influence of heat conduction in the radial direction is trivial and
the variation in conductive heat is neglected. Similarly, Curreli
and Chen [18] also introduced a 1D self-consistent model
without considering conductive losses to investigate helicon
plasmas. They explained the reason for the short-circuit effect
and how it influences the variation of plasma parameters. Bose
et al [19, 20] developed a complete 2D helicon plasma model
considering heat conduction in the energy equation. Similar 2D
self-consistent models were further developed to study helicon
plasmas [21–24]. In addition, Naulin [25] introduced a 3D
global fluid model to simulate a linear helicon device. The
numerical results are well consistent with experiments. A 2D-3V
particles in cells (PIC) model for calculating a helicon source
with a plasma plume was introduced by Takase [26] and Emoto
[27]. The neutral distribution and characteristics of the magnetic
nozzle were investigated by applying this PIC model. More
recently, Zhou et al [28] proposed a 2D coupled model for
transport and wave propagation, where electron heat fluxes are
modeled based on an assumed closure relation.

In helicon plasmas, the influence of heat conduction in the
direction perpendicular to the magnetic field lines is generally

considered to be inessential because of the assumed good
magnetic confinement and relatively low electron temperatures
[12, 18]. However, the confinement depends on the strength of the
magnetic field. Moreover, observing the results obtained by Cho
and Curreli [17, 18], it seems that the electron temperature in the
radial direction changes sharply near the boundary although it
varies slightly in the bulk region. It is suggested that the local
balance of energy would be incomplete without the heat flux term
and it is necessary to discuss the effects of the radial heat con-
duction. Therefore, the motivation of this work is to establish a
coupled 1D fluid model with radial heat conduction and a
plasma–wave interaction model. This 1D self-consistent model is
applied to investigate the effect of heat conduction on steady-state
plasma profiles in a helicon source.

In this paper, simulations with and without heat con-
duction are carried out. The model without radial heat con-
duction can be seen as a specific case of the fluid model with
heat conduction when the perpendicular heat conductivity is
zero. Different boundary conditions for these two fluid
models are applied near the lateral wall to study their influ-
ence. The radial velocity, plasma density and electron temp-
erature are compared and the variation in heat flux is given to
analyze the local equilibrium of energy in helicon sources.

The rest of this paper is organized as follows. Section 2
introduces the proposed model in detail. Section 3 shows the
results and discussion. The conclusions of this work are
gathered in section 4.

2. Model formulation

We consider a cylindrical helicon source of length L and
radius rp in a vacuum chamber with the same length and
radius rw. The plasma is confined by an axially uniform
magnetic field B0. The source is surrounded by an antenna of
radius ra, which emits radiofrequency (RF) radiation at
angular frequency ω. The neutral gas is ionized by hot elec-
trons, heated by the RF energy and plasma is produced and
energized, moving along with magnetic fields. Figure 1 shows
the typical geometry of helicon sources.

Figure 1. Typical geometry of helicon sources.
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For the plasma transport processes, a magnetized and
weakly ionized plasma is considered in the helicon source and
neutral depletion is not taken into account [12, 17]. Therefore,
the density of the neutral gas is assumed to be uniform. It
satisfies pg= ngTg, with pg the pressure, ng the density and Tg
the temperature of the neutral gas. In addition, quasi-neu-
trality in plasmas is postulated, with density n≡ ne= ni
(subscripts e and i represent electrons and ions, respectively).
Therefore, the following steady-state fluid equations are
considered to describe the transport processes for each species
( j= i, e):

n =· ( ) ( )un n 1j j j ion

f = - + - + ´ -· ( ) ( )
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where nj and uj represent the particle density and velocity,
respectively; pj= njTj is the pressure; and Tj is the temper-
ature. mj and qj are the particle mass and the electric charge,
respectively. f is the ambipolar electric potential and has the
relation Ep=−∇f, with Ep the quasi-electrostatic field
induced by the plasma. In addition, Sj=mjnjujνj is the
momentum loss for the species j due to different collisional
processes, which include ionization and ion–neutral, elec-
tron–neutral and electron–ion collisions, with frequencies
νion, νin, νen and νei, respectively [15].

For energy conservation, the power deposition and energy
transfer in helicon sources are mainly attributed to the interaction
of electrons with the wave fields, and the contribution of ions
can be neglected. Thus, only the energy equation of electrons is
taken into account [20]. In equation (3), pabs is the power density
absorbed by electrons and ploss represents the collisional energy
loss. The expression and discussion of collisional power loss in
this work are given in appendix A. Lastly, Fourier’s law is
applied to define the heat conduction in the electrons in order to
close the equation system. Qe represents the heat flux of elec-
trons and ¯̄ke is the heat conductivity tensor.

Considering the geometry and physical processes in
helicon sources, basic assumptions are proposed to further
simplify the equation system:

(1) In cylindrical helicon sources, the axially symmetric
geometry leads to the derivative in the azimuthal direction
being zero: ∂/∂θ= 0.

(2) It is assumed that the plasma density can be separated as
n(z, r)= f (z)nr(r) in the plasma range due to the variable
separation technique [12, 15]. The normalized function
f (z) tends to have a slight variation in axial length.

(3) As a consequence of quasi-neutrality, it is assumed that
the radial velocities of both ions and electrons satisfy the
ambipolar diffusion [14, 15], with ur≡ ure= uri.

(4) According to the relation between ions and electrons,
with me=mi, Ti= Te, electron inertia is neglected and

the influence of magnetic fields on ions is negligible so
the azimuthal velocity of ions uθi is not taken into
account [14].

(5) It is assumed that the derivatives of parameters satisfy
the relations: f f¶ ¶ ¶ ¶( ) ( )T z T r, ,e e , ¶ q( )u u,r

¶ ¶ ¶q( )z u u r,r [15].

Based on these assumptions, the general fluid equations are
reduced to the 1D radial fluid model to investigate the influence
of the radially conductive heat in helicon sources. Two limit
cases, with and without heat conduction, are considered and the
details are introduced in the following sections.

2.1. Fluid model with heat conduction

In this part, the 1D radial fluid model with heat conduction is
established. Considering the basic assumptions above, the
general fluid equations are integrated and averaged in the
axial direction in order to eliminate the axial term [17, 29].
Therefore, equations (1)–(4) are expanded and simplified to
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Here, equation (8) is obtained from momentum conservation
for electrons in the radial direction. The energy loss due to the
electron inertia term is neglected in equation (9) considering
its trivial contribution to the whole power loss [15, 28].
According to different collision processes, we define the total
ion collision frequency as νi= νin and the total electron col-
lision as νe= νen+ νei. νw is the effective frequency relating
to the ionization and axial diffusion [14, 15]. pc represents the
collisional energy loss ploss averaged over z. The expressions
and explanations for the energy loss and collision frequencies
are given in appendix A. Additionally, the averaged power
density p̄abs is written below:
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where the integration ò ( )f z zd
L

0
is considered to be equal to

f̄ L, with f̄ the average density in the axial direction [17].
( )P rabs is the distribution of power deposition in the r direc-

tion which is obtained from the wave model. Moreover, k⊥
represents the radial heat conductivity and the expression is

3

Plasma Sci. Technol. 25 (2023) 015401 B Tian et al



n
w n

=
+

^
( )

( )k
n T

m

5

2
12r e e

ce
2

e
2

e

Here, the radially heat conduction is considered to be domi-
nated by classical diffusion and anomalous diffusion is not
taken into account in the heat conductivity due to the presence
of magnetic confinement and relatively low electron temper-
ature [19, 28]. The detailed derivation and discussion of k⊥
are introduced in appendix B. It is noticed that the heat flux
tends to be zero when the magnetic field is very large. Then,
equations (5)–(10) are combined and derived to the ordinary
differential equation system:
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This equation system can be solved with boundary conditions
to obtain the plasma parameters.

2.2. Fluid model without heat conduction

The 1D fluid model which neglects the heat conduction is
described in this part. This can be seen as a specific case for
the heat model when the perpendicular heat conductivity k⊥ is
zero. The conductive loss of heat in r direction has been ruled
out in equation (9), as d(rqr)/d(r)= 0. Equation (10) about
the heat flux is naturally not taken into account. Therefore, the
energy equation reduces to

n

f

= - + +

+

q¯ ( )

( )

n u
T

r
p p m n u u

en
r

u

5

2

d

d

1

2
d

d
19

r r r r

r r

e
abs c e

2
e

2
ion

Then, equations (5)–(8) and (19) constitute the fluid model
without heat conduction. Similarly, we derive the ordinary
differential equation system to obtain the parameters. The
equations related to the uθe, nr and f are the same with
equations (14)–(16) in the heat model and the equations about
ur and Te (equations (13) and (18), respectively) are changed

to
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Therefore, equations (14)–(16) and (20), (21) constitute the
ordinary differential equation system of the fluid model
without heat conduction. It is applied to discuss the influence
of radially conductive heat by comparing with the heat fluid
model.

2.3. Boundary conditions

In order to obtain the solution of each fluid model, boundary
conditions are applied to implement the whole equation systems.
The boundary conditions for the two fluid models are similar. To
consider the geometry and characteristics of helicon plasmas,
boundary conditions are applied at the cylinder axis r= 0 and at
the wall r= rp.

We first discuss the boundary conditions for the heat fluid
model. At the symmetry axis r= 0, plasma parameters satisfy
[17]

f= = = = = =qu u q T T n n0, ,r r re e e0 0

Here, the values Te0 and n0 are unknown and can be deter-
mined by the boundary condition at the wall. At r= rp, the
plasma parameters are governed by the Bohm condition and
we have

g
= = ( )u c

T

m
22r s

e

i

where cs is the Bohm velocity and γ is the polytropic index,
with γ= 1 for the case with heat conduction. Then, the
electron heat flux at the sheath edge is written as [29]

= ( )q E n c 23r w s s

where ns represents the plasma density at the sheath edge and
the conductive energy deposited at the sheath edge is
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This expression of the heat flux qr at the sheath edge is
obtained by the integral of the distribution function of the
velocity to make sure only the conductive energy is taken into
account [30]. The derivation and discussion are given in
appendix B. Therefore, these two conditions at the wall yield
the unique n0 and Te0.
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For the model without heat conduction, the boundary
conditions at r= 0 are the same as for the heat model except
that the heat flux is not taken into account. It is also necessary
to obtain the value of the density and temperature at the axis.
Therefore, the Bohm condition at the wall r= rp is applied.
Here, the polytropic index γ is 5/3 for the model without heat
conduction due to the adiabatic approximation [17]. Thus, the
plasma velocity at r= rp is written as

= = ( )u c
T

m

5

3
25r s

e

i

Because the heat conduction is not considered, equation (23) is
not satisfied for the model without heat conduction. Therefore,
the local balance of energy at the axis (r= 0) is applied as the
other boundary condition to implement the equation system.
Equation (19) at r= 0 can be simplified to [17]

- =¯ ( )p p 0 26abs c

For a given profile of power density, the electron temperature Te0
can be written as a function of the plasma density n0 by using this
relation. Then, the integration of fluid equations from the origin
to the wall yields the unique n0 to satisfy the Bohm condition. It
should be noted that the local equilibrium relation of
equation (26) is not satisfied for the heat model since the deri-
vative of heat flux at the origin is uncertain.

2.4. Plasma–wave interaction model

The 1D plasma–wave interaction model which is applied to
couple the 1D fluid model has been introduced by numerous
authors [7, 8, 31] and is described here to give a general
framework to explain how it is established and works. It is
assumed that the plasma–wave response varies as w-( )texp i
and is governed by the Maxwell equations

w ´ = ( )E Bi 27

m w ´ = - +( ) ( )B D ji 280 a

where E and B represent only the RF-related electromagnetic
field, ja is the external current density and μ0 is the permeability
in a vacuum. Additionally, k=

=
D E0 is the electric displace-

ment field, with ò0 the permittivity in a vacuum and k
=
the di-

electric tensor in the medium. Fourier expansion in time has been
applied, and all magnitudes are expressed in complex form. All
parameters of plasmas, such as the plasma density, the temper-
ature and the applied magnetic field, are loaded in the Maxwell
equations by the cold, collisional dielectric tensor k

=
[7].

According to the finite length helicon source and the
reflecting boundary condition at the conducting end wall, all
quantities in the z and θ directions can be expanded as sin or cos
series for integer modes as (l, m). Hence, applying the new
expressions, the Maxwell equations are rearranged into four
differential equations and two algebraic equations [31]. The set of
equations can be solved numerically as an ordinary differential
problem in radially uniform and non-uniform plasmas and all
electromagnetic (EM) field components can be obtained.

Then, once all fields have been calculated, it is necessary
to consider the power deposition in the plasma. Here, it is
assumed that the antenna is a perfect conductor and there is

no power loss in it [7, 11]. All RF power Prf emitted by the
antenna is absorbed by the electrons. Therefore, the total
power Ptotal deposited in the plasma is equal to the RF power,
as
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Here, pabs is the time-averaged power density in the plasma at
a given location (r, θ, z), with
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where s w k= -
= =

i 0 is the plasma conductivity tensor. The
fields E are the sum of all (l, m) modes. The superscript *
represents the conjugation of parameters. The power deposi-
tion in r is written as below:

ò ò q q=
p

( ) ( ) ( )P r p r z z, , d d 31
L

abs
0

2

0
abs

Substituting equation (31) into equation (11), it is convenient
to calculate the averaged power density p̄abs using the fluid
model.

2.5. Numerical procedures

In this part, the numerical procedures for obtaining solutions
in this work are described. The fluid models and the plasma–
wave interaction model can be solved independently with
appropriate initial conditions if only a single process is con-
cerned. For the fluid models, the equation system has singu-
larity at the origin. In order to carry out the numerical
integration from the axis, it is necessary to use the Taylor
expansion for the variables around r= 0 [14, 17]:

n
w n

n n
f= =

+
=

= = =

qu r u r

q n n T T

1

2
,

1

2
, 0,

0, , .

r

r r

w e
ce w
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0 e e0

Based on these initial values, the shooting method is used and
the equation system is integrated from the axis to the wall to
obtain the complete solutions.

Meanwhile, the iteration process can be carried out to
couple the two models and obtain the self-consistent steady-state
solution. It is noticed that the two fluid models follow the same
iteration process. When the given profiles of nr and Te are
considered to be the initial conditions, the plasma–wave inter-
action model is first solved and the iteration steps are as follows:

Step 1: Applying the profiles of nr and Te in the wave
model, obtain the solution of EM fields and the power
density Pabs.
Step 2: Applying the distribution of Pabs in the fluid model,
solve the fluid equations and update the parameters nr and Te.
Step 3: Comparing the updated profiles of nr and Te with old
profiles, the iterative process is finished if the convergence is
achieved. If not, the iteration returns to step 1 to continue the
iteration.

In addition, the fourth- and fifth-order Runge–Kutta methods,
which are mature methods for solving ordinary differential
problems, are applied in the fluid and wave module to obtain
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the solution. This self-consistent process has been introduced
theoretically by researchers [17, 32] and the numerical results
have been verified by comparing with experiments [18, 33].

3. Results and discussion

The numerical results are described and discussed in this section.
The simulations are based on a typical helicon source geometry
which is immersed in a cylindrical vacuum chamber shown in
figure 1. The main parameters are summarized in table 1. A
Nagoya III antenna is applied to ionize and heat plasmas with

emitting RF waves of frequency 27MHz. The input RF power is
400 W. It is assumed that the antenna wire is a perfect conductor
with no resistance. Considering the specific structure of the
Nagoya III antenna, the expression of the current density is
written as a function of the (l, m) modes and only odd modes of
m are effective [7, 8]. The antenna is located in the center of the
chamber and the length is 1/4 of the chamber length. Hence,
due to the non-zero modes and main contribution of the (l, m)
mode, l= 2, 4, 6 and m=− 1, 1 modes are taken into account
in the simulations [17]. In the following discussions, we first
present results for the transport model assuming a uniform
power deposition profile, and for the electromagnetic model
assuming different density profiles to obtain non-uniform power
deposition profiles. Then, the self-consistent results of the two
coupled models are discussed.

3.1. Uniform power deposition

In this subsection, the fluid model is solved independently,
assuming a uniform power distribution is given. The iteration
process in this part is not taken into account in order to
observe the effects of conductive heat directly.

Figures 2 and 3 show the distributions of plasma para-
meters in the radial direction for two different cases at
B0= 300 G and 50 G, respectively. For the model without

Table 1. Summary of input data for the numerical simulations.

Parameter Value

Plasma and cage axial length L 0.8 m
External cage radius rw 0.1 m
Plasma radius rp 0.05 m
Antenna loop radius ra 0.06 m
Antenna axial length La L/4
Antenna symmetry plane za L/2
Frequency of the RF emission fRF 27 MHz
Pressure of neutral gas pg 10 mTorr

Figure 2. Distribution of plasma parameters in the r direction for the uniform power density profile at B0 = 300 G and Prf = 400 W. The heat
flux qr for the fluid model without heat conduction is estimated by numerically differentiating the temperature profile with equation (10).
q0 = n0Te0c0 is the reference of the heat flux, with =c T m0 e0 i .
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heat conduction, the heat flux is not taken into account. In
order to compare with the heat model, we estimate the dis-
tribution of the heat flux qr for the model without heat con-
duction shown in the figures by differentiating the
temperature profile with equation (10). It is shown that the
basic trends of all results obtained by the two models are
consistent and the influence of the heat conduction at low
magnetic fields is moderate.

At B0= 300 G, the plasma is mainly confined in the bulk
region due to the strong magnetic field strength, so that the radial
velocity ur changes slightly and sharp variation occurs near the
boundary to satisfy the Bohm condition. Moreover, the profiles
of the electron temperature and heat flux show similar trends.
The local peak of electron temperatures occurs near the
boundary. The decrease in Te near the wall is caused by the
temperature difference between the plasma and the lateral wall.
To observe the results of different models, the heat conduction
has a slight influence in terms of the confinement of the
magnetic field. The distributions of ur and nr are nearly the same
in the whole plasma region and the difference is less than 2%.
The main difference appears in the profile of Te near the
boundary. Because of the effects of heat conduction, the local
peak of the electron temperature near the boundary is lower than
for the model without heat conduction.

In contrast, the influence of heat conduction plays a
relatively important role at B0= 50 G. The plasma density nr
obtained by the heat model is lower than for the model
without heat conduction. For the electron temperature Te, it is
also higher in the bulk region and sharply decreases near the
boundary. The difference between the plasma density of
the two models at the axis n0 is about 8.2% and that of the
electron temperature Te0 is about 2%. However, the difference
becomes larger near the wall. In particular, for the electron
temperature, it reaches 18%, about 0.5 eV. In addition, the
normalized plasma velocity obtained by the heat model is
higher. This proves that the influence of the radial heat con-
duction in the low magnetic field is moderate. The importance
depends on the application of the helicon source. For plasma
etching and material surface treatment, the performance is
more sensitive for the plasma parameters of the helicon source
and has a very high requirement in parameter control [34].
Therefore, the effects of the radial heat conduction cannot be
neglected. However, for the new concept of space propulsion,
the helicon plasma thruster, the radial heat conduction could
hardly play a significant role if the differences in the central
plasma density and the electron temperature are too low [16].

In figure 3, the heat flux qr keeps consistency with the
estimated value in the bulk region and changes significantly

Figure 3. Distribution of plasma parameters in the r direction for the uniform power density profile at B0 = 50 G and Prf = 400 W. The heat
flux qr for the fluid model without heat conduction is estimated by numerically differentiating the temperature profile with equation (10).
q0 = n0Te0c0 is the reference of the heat flux, with =c T m0 e0 i .
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near the wall due to the variation in Te. It is noticed that the
heat flux is negative in the bulk region and varies to be
positive near the wall. This illustrates that the conductive
energy flux flows to the center in the bulk region and to the
wall near the boundary. The energy is carried into two sides
of the local peak. Therefore, the local energy equilibrium is
changed due to heat conduction and leads to a decrease in the
plasma density and the variation in electron temperature.

To further clarify the influence of heat conduction, the
density and electron temperature in the center (r= 0) varying
with magnetic field and input power are shown in figures 4
and 5. With an increment in magnetic field and input power,
the two models show consistency. The initial plasma density
n0 becomes larger and the initial electron temperature Te0
reduces accordingly as the magnetic field increases in
figure 4. It is concluded that increasing the magnetic field is
beneficial for improving the plasma density in helicon sour-
ces, which has been proven in numerous experiments and
simulations [17, 35]. This is a typical principle for discharge
where the plasma is weakly ionized [34]. In figure 5, it is
shown that n0 increases linearly and Te0 tends to be constant

with a variation in input power. These results suggest that the
relation between n0 and Te0 is determined by the local equi-
librium of energy. For the fluid model without heat conduc-
tion, the local power balance at r= 0 satisfies equation (26).
Substituting equation (A.10) to equation (26), it can be
rewritten as

å n= + +⎜ ⎟
⎛
⎝

⎞
⎠

¯ ¯ ( )p n n K E T n E
f u

f L
n

5

2

2
32x xabs 0 g e0 0 ion w

s s
0

This relation shows that the power deposition in the center is
mainly balanced by the collision processes and the axial
diffusion. Considering each term in the right side of
equation (32) given in appendix A, the local balance can be
simplified to

=¯ ( ) ( )p n H T 33abs 0 e0

Therefore, it is clearly indicated that the power density in the
center is proportional to the initial plasma density n0 and
dependent on a function of the initial electron temperature
Te0. This is consistent with the results shown in figures 4 and
5. In addition, for giving a specific input power in the center,

Figure 4. Plasma density and electron temperature in the center (r= 0) varying with magnetic field at Prf = 400 W. η represents the ratio of
the term associated with heat conduction to the power deposition as defined in equation (37).

Figure 5. Plasma density and electron temperature in the center (r= 0) varying with input power at B0 = 150 G. η represents the ratio of the
term associated with heat conduction to the power deposition as defined in equation (37).
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larger n0 implies that more energy is applied to ionize the
neutral gas and Te0 yields to diminish correspondingly. As the
magnetic field increases, the confinement of electrons
becomes stronger and suppresses the diffusion of electrons in

the radial direction. This leads to more collisions in the bulk
region and enhances the ionization of the neutral gas.

This principle is not only satisfied in the fluid model
without heat conduction but also in the heat model. Considering

Figure 7. Distribution of plasma parameters in the r direction for the uniform plasma density profile at B0 = 100 G and Prf = 400 W. The
plasma density at r= 0 is n0 = 1.3× 1017 m−3 and the electron temperature is Te0 = 2 eV. The heat flux qr for the fluid model without heat
conduction is estimated by numerically differentiating the temperature profile with equation (10). q0 = n0Te0c0 is the reference of the heat
flux, with =c T m0 e0 i .

Figure 6. Different density profiles and corresponding power absorption in the radial direction at B0 = 100 G and Prf = 400 W. The plasma
density and the electron temperature at r= 0 are n0 = 1.3× 1017 m−3 and Te0 = 2 eV, respectively.
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the influence of the heat flux, equation (26) is modified to
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Combining equation (10), it is further derived as
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Due to the smooth condition of temperature at r= 0 as
dTe/dr= 0, and the expression of k⊥ given in equation (12), this
relation also can be written as the density n0 multiplied by a
function of Te0. Hence, the power deposition is balanced by

= -¯ [ ( ) ( )] ( )p n H T Y T 36abs 0 e0 e0

This equation shows that the power deposition in the center also
has a linear relation with the plasma density and is mainly
consumed by particle collisions and axial diffusion. However, it
is compensated by the heat conduction of electrons in the center.
This is the reason why the higher electron temperatures at r= 0
for the heat model are achieved at low magnetic fields. In order
to evaluate the influence of the heat flux, the contribution of the

conductive heat to the power deposition is defined as

h =
( )

¯
( )n Y T

p
. 370 e0

abs

Thus, the percentages of the conductive heat η for different
magnetic fields and input power have also been given in
figures 4 and 5. It is shown that η decreases evidently with
increasing B0. The contribution of the conductive heat is higher
than 20% at B0= 0 and less than 1% when B0 is larger than 200
G. This is because the radial heat conductivity k⊥ is inversely
proportional to wce

2 (ωce? νe) shown in equation (12) and tends
to be zero when B0 is large. Therefore, the results of n0 and Te0
for the two models in figure 4 becomes consistent when B0 is
large. For the variation in the input power, η is almost a constant
because of the invariant magnetic field.

In summary, the local power deposition is mainly balanced
by collisional processes and axial diffusion. It is compensated by
the heat conduction in the bulk region and consumed near the
wall. The conductive heat plays a relatively important role in the
local power balance for helicon plasmas when the magnetic field
is small. The power deposition in the center is proportional to n0
and dependent on a function of Te0. With magnetic fields, the
increasing input power mainly applies in the processes of

Figure 8. Distribution of plasma parameters in the r direction for the parabolic plasma density profile at B0 = 100 G and Prf = 400 W. The
plasma density at r= 0 is n0 = 1.3× 1017 m−3 and the electron temperature is Te0 = 2 eV. The heat flux qr for the fluid model without heat
conduction is estimated by numerically differentiating the temperature profile with equation (10). q0 = n0Te0c0 is the reference of the heat
flux, with =c T m0 e0 i .
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collision to ionize the neutral gas and hardly contributes to
heating electrons.

3.2. Non-uniform power deposition

In this part, different density profiles and uniform electron
temperatures in the radial direction are chosen to be the
initial conditions of the wave model in order to obtain the
non-uniform power depositions, which are applied to the fluid
model as the input data. Still, we are not solving the self-
consistent solutions. A comparison between different fluid
models is carried out to investigate the influence of heat
conduction. Here, the uniform and parabolic density profiles,
which are commonly used in helicon plasma simulations
[7, 17], are considered to be the initial conditions of the wave
model.

The density profiles and power absorptions in the r
direction are shown in figure 6. It is concluded that the
influence of density profiles on the power deposition is evi-
dent and it leads to different power density profiles in the r
direction. Therefore, the fluid model is expected to be affected
by the large difference in power deposition. Figures 7 and 8
show the plasma parameters in the radial direction for dif-
ferent density profiles. It is observed that the trends of

parameters using uniform density profile in figure 7 are
similar with previous results from the uniform power density
profile. However, the electron temperature Te increases gra-
dually in the bulk region due to the increment of power
density and the local peak is narrow. This is because the
electron temperature Te is affected by the power deposition
profile. It is further confirmed by the results obtained from the
parabolic plasma density profile shown in figure 8. The var-
iation in Te is highly relevant to the power density distribution
and it also influences the density nr. With the fluctuation of
Pabs, the electron temperature Te has similar trends and a
wider local peak is achieved. The profile of the heat flux in
the radial direction also reflects the variation in temperature.

In addition, the comparison of the two fluid models is
consistent with the previous analysis. Due to the influence of
heat conduction, the temperature difference causes the heat
flux to move toward the central area in the bulk region, which
makes the central area obtain the compensation of energy.
This leads to variation in the local energy balance and the
density of the heat model is generally lower than the results of
the model without heat conduction. Moreover, the corresp-
onding temperature is higher than that of the model without
heat conduction in the bulk region and the local peak of Te is
generally lower.

Figure 9. Self-consistent solutions of plasma parameters in the r direction for the parabolic plasma density profile at B0 = 75 G and Prf = 400
W. The plasma density at r= 0 is n0 = 5.7× 1017 m−3 and the electron temperature is Te0 = 2 eV. The heat flux qr for the fluid model
without heat conduction is estimated by numerically differentiating the temperature profile with equation (10). q0 = n0Te0c0 is the reference
of the heat flux, with =c T m0 e0 i .
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3.3. Self-consistent results

Finally, the self-consistent results for two models coupled
together are compared and discussed. The parabolic plasma
density and uniform electron temperature profiles are used to be
the initial conditions in the wave model and the fluid model is
calculated by applying the results from the wave part. Then, the
iteration process is carried out until convergence is achieved.

Figures 9 and 10 show the self-consistent results for dif-
ferent magnetic fields. It is clearly shown that the strength of
applied magnetic field determines the effect of the radial heat
conduction. At B0= 75 G, the radial heat conduction plays a
relatively important role in helicon plasmas and influences the
plasma parameters moderately. The plasma density is reduced
and higher normalized plasma velocity is achieved in the heat
model. The electron temperature Te is raised in the bulk region
and has a lower and wider local peak than that of the model
without heat conduction near the boundary. The local energy
equilibrium is varied if the heat conduction is taken into
account. At B0= 200 G, the confinement is strengthened and
causes the radial heat conduction to become weaker. The heat
flux qr is much smaller than B0= 75 G and the results obtained
from the two models are almost consistent except that the local
peak of Te is slightly lower.

Therefore, the self-consistent results for non-uniform
plasma density profiles further confirm that heat conduction
has a moderate effect in the low magnetic field range. How-
ever, the importance depends on the application. In space
propulsion, the differences in the plasma density and the
electron temperature due to the radial heat conduction for the
helicon plasma thruster are not large enough to clearly
influence the thrust and efficiency [16]. However, plasma
etching and material surface treatment require high uniformity
and precise parameter control [34]. Radial heat conduction
plays a significant role and cannot be neglected in these areas.
Meanwhile, the trends of both the heat model and the model
without heat conduction are consistent when B0 is large
enough. However, the model without heat conduction misses
the details of the variation in electron temperature near the
wall and the local energy equilibrium is improved in the heat
model by considering conductive energy variation.

4. Conclusion

A 1D radially self-consistent model, which couples a 1D
radial fluid model to the corresponding plasma–wave inter-
action model, has been established in this paper. Two

Figure 10. Self-consistent solutions of plasma parameters in the r direction for the parabolic plasma density profile at B0 = 200 G and
Prf = 400 W. The plasma density at r= 0 is n0 = 5.7× 1017 m−3 and the electron temperature is Te0 = 2 eV. The heat flux qr for the fluid
model without heat conduction is estimated by numerically differentiating the temperature profile with equation (10). q0 = n0Te0c0 is the
reference of the heat flux, with =c T m0 e0 i .
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different fluid models, with and without considering con-
ductive heat, have been taken into account to investigate the
influence of the heat conduction. The steady-state profiles of
the plasma properties and the power absorption have been
obtained and discussed for different values of the magnitude
of the applied magnetic field. It is concluded that radial heat
conduction plays an moderate role at low magnetic fields and
the necessity depends on the application of the helicon source.
The power deposition is mainly balanced by collision pro-
cesses and axial diffusion. Heat conduction tends to unify the
electron temperature profile. In practice, this means that it
increases the electron temperature near the axis, and it
decreases the peak that appears in the vicinity of the lateral
wall. The heat losses to the walls are naturally enhanced too.
Therefore, the plasma density is reduced and the electron
temperature becomes smoother accordingly. Furthermore, the
local peak of the electron temperature near the wall is lower
and wider.

With increasing magnetic field, the contribution of the
conductive heat to the energy balance becomes negligible and
the difference between the two models is trivial. It is shown
that two 1D models are both appropriate to describe the radial
variation of helicon plasmas in large magnetic field ranges,
but the local power balance is improved in the heat model by
considering the variation in heat conduction.

In the future, a 2D self-consistent model considering both
the perpendicular and the parallel heat conduction in helicon
sources should be established to investigate the conductive
heat flux in the whole region. The parallel heat conduction
along the magnetic field will strongly influence the energy
transfer in plasma transports and the effects of heat conduc-
tion in the perpendicular direction should be discussed in non-
uniform magnetic fields. In addition, the anomalous transports
perpendicular to the magnetic field and the instability
affecting heat conduction are worth analyzing.
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Appendix A. Collision frequency and power loss

The collisional parameters considered in this work are given
in this part. First, the collision frequencies including ioniz-
ation and electron–neutral, ion–neutral and electron–ion col-
lisions are written below, respectively [15, 34]:
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where ng represents the density of neutral gas, Eion is the first
ionization energy, and σion and σen are the collisional cross
sections for ionization and electron–ion collision, respec-
tively. k1 and k2 are the corresponding coefficients in ion–
neutral collisions. All parameters mentioned above are
dependent on the type of gas and summarized in table A1.
Additionally, uin= |ui− un| is the relative velocity between
ions and neutrals. In electron–ion collisions, Λ is the para-
meter depending on the electron density and temper-
ature [15].

In equation (5), the effective frequency νw, which is
related to the ionization and axial diffusion, is applied to
implement the continuity equations. The expression of νw is
derived as [12, 17]
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The second term of the right side of equation represents the
axial diffusion. f̄ is the average density in the z direction and
can be equal to 1 if the variation of the axial density is
assumed to be small. =u T ms e i and fs are the velocity and
the normalized density at the axial sheath. In low-pressure gas
discharges, the expression of fs is obtained as [17, 36]
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where λi is the mean free path of ions.
Next, the power loss due to collisions is discussed to

satisfy the local energy balance of plasmas. According to the
collision processes, it can be written as [34, 37]
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where the E series is the energy loss of each electron and the
subscripts represent ionization, excitation, metastable creation

Table A1. Values of gas-dependent parameters for argon [34, 37].

Parameter Value

Cross section for ionization σion 3× 10−20 m2

Cross section for e–n collision σen 15× 10−20 m2

Cross section for excitation σex 1× 10−20 m2

Cross section for metastable creation σme 0.9× 10−20 m2

Cross section for elastic collision σel 20× 10−20 m2

Coefficiency of i–n collision k1 1.67× 10−10 m
Coefficiency of i–n collision k2 10.5× 10−10 m
Energy loss for ionization Eion 15.75 eV
Energy loss for excitation Eex 12 eV
Energy loss for metastable creation Eme 14.1 eV
Energy loss for elastic collision Eel 3Teme/mi
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and elastic collisions, respectively. The K series is the
corresponding rate of collisions and depends on the electron
temperature. The expression is written as [34, 37]
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The parameters σx and Ex are dependent on the gas type. For
argon, they are shown in table A1. To average ploss over z and
consider the energy loss in the diffusion,

ò
ò

n= + +⎡
⎣⎢

⎤
⎦⎥( )

( )p
f z z

p T n
q

z
z

1

d

5

2

d

d
d A.9

L

L
z

c

0
0

loss e ion

where qz is the heat flux in the axial direction. The second
term of integration is obtained from the left side of
equation (3). Substituting equation (A.7) and considering the
conductive energy of electrons at the axial sheath,
equation (A.9) can be further simplified to [17]
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where Ew is the conductive energy of the electron flux
deposited at the sheath edge.

Appendix B. Radial heat conduction

Here, we consider the stationary heat transport equation in
collisional plasmas to derive the heat conductivities in the
radial direction. It is given as [30, 38]
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It is assumed that the derivatives of Te in the axial and azi-
muthal directions are negligible. Equation (B.1) can be
expanded as
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Substituting equation (B.3) into equation (B.2), the relation
between qr and Te is obtained as
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Therefore, the radial heat conductivity k⊥ is given in
equation (B.4).

Next, the radial heat flux qr at the sheath edge is dis-
cussed to implement the boundary condition of the fluid
model. In references [17, 29], the heat flux qr at the sheath
edge is given as
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where the energy term εe is the total energy of electrons at the
sheath edge. This means that not only conductive energy but
also convective energy is contained in the energy term.

However, the heat flux qr only represents the conductive
energy flux and has to differ from the total energy flux of
electrons. Therefore, we derive the heat flux qr at the sheath
edge (r= rp) from the definition [30]
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where vr is the velocity of electrons in the radial component,
ur is the corresponding fluid velocity and Vs is the cut-off
velocity to rule out the electrons absorbed by the wall. g(vr) is
the distribution function of velocities. It is assumed that
electrons satisfy the Maxwellian distribution function
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Then, the cut-off velocity can be obtained from the electron
velocity at the sheath edge,
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Substituting equation (B.7) into equation (B.8), Vs is given as
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Applying this relation, equation (B.6) can be integrated into
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where Ew is the conductive energy of electrons deposited at
the sheath edge. Considering the relation, mi?me, Ew can be
further simplified to
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Therefore, the heat flux qr at the sheath edge has been
obtained and separates the conductive energy from the total
energy of electrons. It also can be applied to the axial heat
flux qz at the sheath edge in equation (A.9).

References

[1] Boswell R W and Chen F F 1997 IEEE Trans. Plasma Sci.
25 1229

[2] Chen F F and Boswell R W 1997 IEEE Trans. Plasma Sci.
25 1245

[3] Boswell R W 1984 Plasma Phys. Control. Fusion 26 1147
[4] Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
[5] Ahedo E 2011 Plasma Phys. Control. Fusion 53 124037
[6] Ahedo E 2013 Prog. Propul. Phys. 4 337
[7] Shamrai K P and Taranov V B 1994 Plasma Phys. Control.

Fusion 36 1719
[8] Cho S 1996 Phys. Plasmas 3 4268
[9] Mouzouris Y and Scharer J E 1998 Phys. Plasmas 5 4253

14

Plasma Sci. Technol. 25 (2023) 015401 B Tian et al

https://doi.org/10.1109/27.650898
https://doi.org/10.1109/27.650899
https://doi.org/10.1088/0741-3335/26/10/001
https://doi.org/10.1088/0963-0252/24/1/014001
https://doi.org/10.1088/0741-3335/53/12/124037
https://doi.org/10.1088/0741-3335/36/11/002
https://doi.org/10.1063/1.871556
https://doi.org/10.1063/1.873161


[10] Chen G Y et al 2006 Phys. Plasmas 13 123507
[11] Tian B, Merino M and Ahedo E 2018 Plasma Sources Sci.

Technol. 27 114003
[12] Fruchtman A, Makrinich G and Ashkenazy J 2005 Plasma

Sources Sci. Technol. 14 152
[13] Sternberg N, Godyak V and Hoffman D 2006 Phys. Plasmas

13 063511
[14] Ahedo E 2009 Phys. Plasmas 16 113503
[15] Ahedo E and Navarro-Cavallé J 2013 Phys. Plasmas 20 043512
[16] Lafleur T 2014 Phys. Plasmas 21 043507
[17] Cho S and Lieberman M A 2003 Phys. Plasmas 10 882
[18] Curreli D and Chen F F 2011 Phys. Plasmas 18 113501
[19] Bose D, Govindan T R and Meyyappan M 2003 IEEE Trans.

Plasma Sci. 31 464
[20] Bose D, Govindan T R and Meyyappan M 2004 Plasma

Sources Sci. Technol. 13 553
[21] Kinder R L and Kushner M J 2001 J. Vac. Sci. Technol. A 19 76
[22] Kinder R L, Ellingboe A R and Kushner M J 2004 Plasma

Sources Sci. Technol. 13 187
[23] Isayama S et al 2019 Phys. Plasmas 26 023517
[24] Chen G Y 2008 A self-consistent model of helicon discharge

PhD Thesis The University of Texas at Austin, ATX, USA
[25] Naulin V, Windisch T and Grulke O 2008 Phys. Plasmas 15

012307
[26] Takase K, Takahashi K and Takao Y 2018 Phys. Plasmas 25

023507

[27] Emoto K, Takahashi K and Takao Y 2021 Phys. Plasmas 28
093506

[28] Zhou J et al 2022 Plasma Sources Sci. Technol. 31
045021

[29] Cho S and Lieberman M A 2003 Plasma Sources Sci. Technol.
12 244

[30] Bittencourt J A 2013 Fundamentals of Plasma Physics 3rd edn
(New York: Springer Science & Business Media) (https://
doi.org/10.1007/978-1-4757-4030-1)

[31] Tian B, Ahedo E and Navarro-Cavalle J 2014 Investigation of
plasma–wave interaction in helicon antenna thrusters In 50th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference
Cleveland (Cleveland, OH: AIAA) (https://doi.org/
10.2514/6.2014-3475)

[32] Chen F F and Curreli D 2013 Phys. Plasmas 20 057102
[33] Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
[34] Lieberman M A and Lichtenberg A J 2005 Principles of

Plasma Discharges and Materials Processing 2nd edn
(Hoboken: Wiley) (https://doi.org/10.1002/047172425)

[35] Chen F F and Arnush D 1997 Phys. Plasmas 4 3411
[36] Godyak V A 1986 Soviet Radio Frequency Discharge

Research (Falls Church: Delphic Associates)
[37] Wu H M, Graves D B and Porteous R K 1995 Plasma Sources

Sci. Technol. 4 22
[38] Ahedo E, Gallardo J M and Martınez-Sánchez M 2002 Phys.

Plasmas 9 4061

15

Plasma Sci. Technol. 25 (2023) 015401 B Tian et al

https://doi.org/10.1063/1.2402913
https://doi.org/10.1088/1361-6595/aaec32
https://doi.org/10.1088/0963-0252/14/1/017
https://doi.org/10.1063/1.2214537
https://doi.org/10.1063/1.3262529
https://doi.org/10.1063/1.4798409
https://doi.org/10.1063/1.4871727
https://doi.org/10.1063/1.1542613
https://doi.org/10.1063/1.3656941
https://doi.org/10.1109/TPS.2003.815475
https://doi.org/10.1088/0963-0252/13/4/001
https://doi.org/10.1116/1.1329122
https://doi.org/10.1088/0963-0252/13/1/c01
https://doi.org/10.1063/1.5063506
https://doi.org/10.1063/1.2829603
https://doi.org/10.1063/1.2829603
https://doi.org/10.1063/1.5015937
https://doi.org/10.1063/1.5015937
https://doi.org/10.1063/5.0053336
https://doi.org/10.1063/5.0053336
https://doi.org/10.1088/1361-6595/ac64bc
https://doi.org/10.1088/1361-6595/ac64bc
https://doi.org/10.1088/0963-0252/12/2/316
https://doi.org/10.1007/978-1-4757-4030-1
https://doi.org/10.1007/978-1-4757-4030-1
https://doi.org/10.2514/6.2014-3475
https://doi.org/10.2514/6.2014-3475
https://doi.org/10.1063/1.4801740
https://doi.org/10.1063/1.872782
https://doi.org/10.1002/047172425
https://doi.org/10.1063/1.872483
https://doi.org/10.1088/0963-0252/4/1/003
https://doi.org/10.1063/1.1499496

	1. Introduction
	2. Model formulation
	2.1. Fluid model with heat conduction
	2.2. Fluid model without heat conduction
	2.3. Boundary conditions
	2.4. Plasma–wave interaction model
	2.5. Numerical procedures

	3. Results and discussion
	3.1. Uniform power deposition
	3.2. Non-uniform power deposition
	3.3. Self-consistent results

	4. Conclusion
	Acknowledgments
	Appendix A.Collision frequency and power loss
	Appendix B.Radial heat conduction
	References



