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Abstract
We propose a novel and simple method for obtaining the giant longitudinal spin Hall effect
(SHE) of the reflected light beam when the elliptically polarized light (instead of the linearly
polarized light) at the telecommunication wavelength is obliquely incident on a prism–sodium
interface excited by surface plasmon resonance. By introducing the spatially averaged Stokes
parameter S̄3 for a non-uniformly polarized reflected light field, understanding the generation
mechanism of the giant longitudinal SHE from a new perspective is realized. The giant
longitudinal SHE under the elliptically polarized light reaches 60.28 µm by the optimal
parameter setup, and the spin splitting direction of the SHE can be switched by adjusting the
amplitude ratio angle and phase difference of the incident elliptically polarized light. These
findings open the way for the precise measurement of the ellipticity of the elliptically polarized
light and the design of novel fiber-optic devices.
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1. Introduction

When a spatial bounded light beam with horizontal or ver-
tical polarization impinges onto a plane interface between two
media with different refractive indices, reflected and transmit-
ted beams, a transverse symmetric spin splitting (TSSS) in
the direction perpendicular to the plane of incidence occurs
[1, 2]. From the perspective of light–matter interaction, the
TSSS of light originates from the spin angular momentum
to extrinsic orbital angular momentum conversion [3]. It is

∗
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also known as the spin Hall effect (SHE) of light [1, 2, 4],
which has attracted widespread attention owing to its potential
application in spatial differential operation [5], edge imaging
[6], and probing topological quantum phase transitions [7].
Interestingly, an anomalous photonic SHE caused by signi-
ficant destructive interferences between normal and abnormal
modes has recently been reported [8–10]. Besides, there also
exists a longitudinal symmetric spin splitting (LSSS) of light
in the direction parallel to the plane of incidence, which is
equally important for enriching the concept of spin photonics
[11]. However, the TSSS or LSSS is generally so small com-
pared to the wavelength that it is difficult to directly observe in
the experiment. There have been several methods to amplify
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the TSSS or LSSS among the weak amplification techno-
logy (including isotropic and anisotropic interfaces) [2, 12–
14], near Brewster incidence [15], surface plasmon resonance
(SPR) [16, 17], and so on [18–21]. It is worth noting that all
the incident light chosen to achieve larger TSSS or LSSS is lin-
early polarized. Since the angular longitudinal SHE of linearly
polarized light is relatively large, the transverse or longitudinal
SHE can be enhanced by intrinsic orbital angular momentum
(IOAM) [14] and transmission distance of the light beam [22],
respectively.

Interestingly, the properties of the elliptically polar-
ized light have attracted the attention of many research-
ers due to potential applications in high-harmonic gener-
ation enhancement [23], measurement of complex optical
susceptibility [24], photoelectron holography, and forward
scattering [25]. However, the precise measurement of ellipt-
icity is a key issue that affects the application prospects of
elliptically polarized light [26]. Achieving giant TSSS or
LSSS based on incident elliptically polarized light is expected
to open up a new way to solve the precision measurement of
the ellipticity for the elliptically polarized light. A method to
quantitatively identify TSSS and transverse asymmetric spin
splitting of arbitrarily polarized light reflected under weak
spin–orbit coupling conditions have been proposed by intro-
ducing a spin splitting factor [27]. Nevertheless, there are still
some problems that need to be solved urgently about the TSSS
or LSSS of the elliptically polarized light. For example, its
size is too small to be directly observed, only occurs in the
transverse direction, and the spin-independent shift is not very
small relative to the TSSS or LSSS. We put forward a new and
important question now: can the spatial TSSS or LSSS of the
reflected light be amplified directly without the aid of IOAM
and transmission distance?

In this work, we rigorously derive the analytical expression
of the spatial longitudinal spin splitting for arbitrarily polar-
ized light reflected through a plane interface based on the oper-
ator formalism. We reveal the generation mechanism of the
LSSS in reflection of arbitrary elliptically polarized light from
two perspectives: the analysis of asymmetric spin splitting
factor and the spatially averaged Stokes parameter S̄3, which
provides a novel and simple way to generate the giant longit-
udinal SHE when an elliptically polarized light at the telecom-
munication wavelength is reflected on a prism–sodium inter-
face excited by SPR. It is worth emphasizing that this giant
longitudinal SHE of elliptically polarized light is realized for
the first time to our knowledge.

2. Theoretical model for the LSSS of arbitrarily
polarized light by the SPR

A novel Kretschmann configuration with a sodium thin film
coated on a glass prism is adopted, as shown in figure 1.
In general, the Kretschmann configuration for enhancement
of photonic SHE, silver and gold are chosen as plasmonic
materials owing to their relatively low loss, but their optical
loss is still not commercially acceptable and has been the
primary limiting factor for the widespread applications of the

Figure 1. Schematic illustration of the longitudinal SHE of an
arbitrarily polarized light beam in the Kretschmann configuration,
∆x
T,σ=+1 and ∆x

T,σ=−1 represent the LSSSs for the left- and
right-handed circularly polarized components of the reflected beam
on the interface, respectively, where ∆x

T,σ =∆T,σ/cosθr
θr = arccos(ẑr · ẑ).

SPR [28, 29]. Sodium, which is also regarded as an ideal
plasmonic material, has been predicted for many years. How-
ever, manufacturing sodium-based structures by conventional
metal deposition techniques are still full of great challenges
due to its high chemical reactivity. Fortunately, Wang et al has
recently demonstrated a method of fabricating high-quality
sodium films [30]. It is shown clearly that its superior per-
formance at telecommunications wavelengths is very obvious
by comprehensive comparison with the previously reported
devices based on noble metals.

In this model, the relative permittivities of glass, sodium,
and air are represented by ε1, ε2(ω) (ω being the angular
frequency of the incident light beam), and ε3, respectively.
Now, a monochromatic polarized light beam of wavelength
λ0 and the waist w0 propagates along the central wave vector
kic impinging upon the glass prism–sodium interface (z = 0),
where

∣∣kic∣∣= 2π
√
ε1/λ=

√
ε1ω/c (c being the velocity of the

incident light beam in vacuum). The geometry of beam reflec-
tion is also depicted in figure 1, and θi = arccos(ẑi · ẑ) is the
incident angle. The incident and reflected beams are denoted
by the superscripts a = i, r, respectively, and the basics of the
central Cartesian coordinate frame for ath beam is represented
by x̂a, ŷa and ẑa, respectively. The momentum representation
of the electric field for the incident light beam is expressed as:

∣∣Ẽi〉= w0
2

2π

S∑
ρ=P

ai,ρ |ẽi,ρ⟩exp

[
−
(kix)

2
+(kiy)

2

4w0
−2

]
, ρ ∈ {P,S},

(1)

where kix = ki · x̂i, kiy = ki · ŷi with
∣∣ki∣∣= ∣∣kic∣∣= ki, |ẽi,P⟩=

(1,0)†LPB and |ẽi,S⟩= (0,1)†LPB, the superscript † and subscript
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LPB are conjugate transpose operator and two-dimensional
row vector in a linear polarization basis respectively. aP =
cosα, aS = sinαexp(i∆ϕ), where α denotes the amplitude
ratio angle, and ∆ϕ is the phase difference between P and S
components of the electric field of the incident light beam.

In order to apply the Fresnel equation exactly to each plane
wavelet, the polarization of the incident light field is trans-
formed from the incident laboratory coordinate system to the
local coordinate system, which can be expressed as∣∣Ẽiloc〉=R̂i

∣∣Ẽi〉 , (2)

with R̂i =

(
1

kiy
ki cotθi

− kiy
ki cotθi 1

)
.

According to the Fresnel Equation, the momentum rep-
resentation of the reflected optical field in the reflected local
coordinate system can be given by

|Ẽrloc⟩= F̂ r|Ẽiloc⟩, (3)

where F̂ r =

(
r̃P 0
0 r̃S

)
, which is the reflection Fresnel mat-

rix operator. In order to obtain the analytical solution of longit-
udinal spin splitting, it is necessary to make a first-order Taylor
expansion of r̃p and r̃S at kix = 0, kiy = 0 (i.e. the central incid-
ence angle) [31]

r̃P = r̃P(k
i
x = 0,kiy = 0)+

∂r̃P
∂(kix/ki)

kix
ki
, (3a)

r̃S = r̃S(k
i
x = 0,kiy = 0)+

∂r̃S
∂(kix/ki)

kix
ki
, (3b)

where r̃P(kix = 0,kiy = 0) = rP, r̃S(kix = 0,kiy = 0) = rS,

∂r̃P/∂( kix/k
i) = ∂rP/∂θi, ∂r̃S/∂(kix/k

i) = ∂rS/∂θi,. Then, F̂r

can be further expressed as

F̂r=

(
rP+

∂rP
∂θi

kix
ki 0

0 rS+
∂rS
∂θi

kix
ki

)
. (3c)

For the Kretschmann configuration, the reflection coeffi-
cients can be written as [32]:

rP/S =
r12P/S+ r23P/Se

2ikz2d

1+ r12P/Sr
23
P/Se

2ikz2d
, (3d)

where r12P = (ε2kz1 − ε1kz2)/(ε2kz1 + ε1kz2), r23P = (ε3kz2−,
ε2kz3)/(ε3kz2 + ε2kz3), r12S = (kz1 − kz2)/(kz1 + kz2), r23S =,
(kz2 − kz3)/(kz2 + kz3) with kz1 = ki

√
ε1 cosθi, kz2 =

ki
√
ε2 − ε1sin

2θi, kz3 = ki
√
ε3 − ε2sin

2θi are the z compon-
ents of the wave vectors of the incident light beam.

Considering the convenience of observing the reflected
light field, a mirror-symmetry reflection operator with respect
to the xi-axis M̂r, which is introduced to transform the reflec-
ted light field from coordinate (kix,k

i
y) to coordinate (krx,k

r
y).

The mirror-symmetry reflection operator satisfies the rela-
tion: M̂r

∣∣Ẽ(kix,kiy)〉= ∣∣Ẽ(−krx,kry)〉. Finally, using the trans-
formation matrix of the reflection local coordinate system to

the reflection laboratory coordinate, the reflection light field
momentum representation in the reflection laboratory coordin-
ate system can be written as∣∣Ẽr〉= (R̂r

θr 7→π−θi

)† ∣∣Ẽrloc〉 . (4)

Through the above detailed description of the reflection
process of the paraxial polarized light field, the whole reflec-
tion process experienced by the paraxial light field can be
described by a scattering operator Ŝr. The scattering oper-
ator Ŝr satisfies the following relationship:

∣∣Ẽr(krx,kry)〉=
Ŝr
∣∣Ẽi(kix,kiy)〉, where Ŝr = (R̂r)†M̂r⊗ F̂rR̂i. Furthermore,

from equations (1) to (4), it follows that

∣∣Ẽr〉= w0
2

2π

S∑
ρ=P

br,ρ |ẽr,ρ⟩exp

[
−
(krx)

2
+(kry)

2

4w0
−2

]
, (5)

where br,ρ is replaced by brP for ρ= P and brS for ρ= S,
respectively. The brP and brS can be given as

br,P = rPaP

(
1− krx

ki
∂rP
rP∂θi

+
kry
ki
rP+ rS
rP

aS cotθi
aP

)
, (5a)

br,S = rSaS

(
1− krx

ki
∂rS
rS∂θi

−
kry
ki
rP+ rS
rS

aP
aS

cotθi

)
. (5b)

By using the relation: |ẽr,P⟩= (|ẽr,+1⟩+ |ẽr,−1⟩)/
√
2,

|ẽr,S⟩=−i(|ẽr,+1⟩− |ẽr,−1⟩)/
√
2, where |ẽr,+1⟩= (1,0)†CPB

and |ẽr,−1⟩= (0,1)†CPB, the sub-script CPB is a two-
dimensional row vector on circular polarization basis. Then,
from equation (5) it readily follows that

∣∣Ẽrσ〉= w0
2rPaP

2
√
2π

−1∑
σ=+1

cr,σ |ẽr,σ⟩exp

[
−
(krx)

2
+(kry)

2

4w0
−2

]
,

σ ∈ {+1,−1},

(6)

where cr,σ = (1− iσb2)(1− ikrxXr,σ − ikryYr,σ), with Xr,σ =

−i (aP∂rP/∂θi− iσaS∂rS/∂θi)/(rPaP− iσrSaS)/ki, Yr,σ =
(rP+rS) (iaS−σaP)cotθi/(rPaP− iσrSaS)/ki, b2 =
rsas/rp/ap. By performing the inverse Fourier transform of
equation (6), the coordinate representation of the electric field
for the reflected light beam in circular polarization basis can
be written as

|Erσ⟩=
rPaP√

2

(
1+

krXr,σxr
zR+ izr

+
krYr,σyr
zR+ izr

)
·

× exp

[
−1

2
kr
(xr)

2
+(yr)

2

zR+ izr

]
dr,σ |er,σ⟩ , (7)

where zR = krw2
0/2, dr,σ = 1− iσb2, kr = ki.

The expression of the longitudinal spin splitting for the
reflected light beam using the defined spin splitting formula
∆T,σ = ⟨Erσ|xr |Erσ⟩/⟨Erσ|Erσ⟩ (zr = 0) can be derived as fol-
lows:

∆T,σ =∆GH,σ + δσ, (8)

3
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Figure 2. ∂ |rP|/∂θi as functions of the sodium film thickness d and
the incident angle θi. The inset picture shows the results near the
SPR angle.

with

∆GH,σ =
|aP|2 Im(rP∗∂rP/∂θi)+ |aS|2 Im(rS∗∂rS/∂θi)

Mki(1+σg)
,

(8a)

δσ = σ
Re[(aPaS∗rS∗∂rP/∂θi)− (aP∗aSrP∗∂rS/∂θi)]

Mki(1+σg)
, (8b)

whereM= |rP|2|aP|2 + |rS|2|aS|2 + [(|Cy|2 + |aP|2|∂rP/∂θi|2 +
|aS|2|∂rS/∂θi|2)/(kiw0)

2], g= 2Im(rP∗rSaP∗aS)+ 2Im[aP∗·
aS(∂rP∗/∂θi)(∂rS/∂θi)+ aP∗aS|Cy|2]/(kiw0)

2/M, with Cy =
(rP+ rS)cotθi. The g is the asymmetric spin splitting factor.

The relative permittivity of sodium film selected as the SPR
excitation metal is expressed as [30]:

ε2(ω) = εb−
ω2
p

ω2 + iωγp
+

f1ω2
1

ω2
1 −ω2 − iωγ1

. (9)

The fitting parameters of the sodium film are given:
εb = 0.500, ωp = 5.414 eV, ω1 = 2.945 eV, f1 = 0.280,
γ1 = 2.706 eV and γp = 0.010 eV [30]. Figure 2 shows that
the ∂ |rP|/∂θi as function of the incident angle and the thick-
ness of the sodium film. In the numerical simulations, the
parameters were chosen as follows ε1 = 1.4462 [33], ε3 = 1,
λ0 = 1310 nm. ∂ |rP|/∂θi is equal to zero at d = 94 nm and
θi = 44.66◦ (where the SPR is excited, the angle of incid-
ence corresponding to the SPR excitation is represented by
θi

SPRE).
Interestingly, the value of g corresponding to incident

light of the arbitrary state of polarization (SOP) tends to
zero when the SPR is excited, as shown in figure 3. This
means that the reflected arbitrary polarized light beam can also
obtain the LSSS (including two extreme cases: longitudinal

Figure 3. (a) g varying with incident angle θi, (b) g varying
with the amplitude ratio angle α and (c) g varying with the phase
difference ∆ϕ , when the SPR is excited. λ0 = 1310 nm,
w0 = 300λ0/π = 125 µm.

spin-dependent splitting disappears completely and only
longitudinal spin- independent shift occurs, i.e. ∆T,σ =∆GH;
longitudinal spin-independent shift disappears completely and
only longitudinal spin-dependent splitting occurs, i.e. ∆T,σ =
δσ). Thus, when the SPR is excited, equation (8) can be
simplified as

∆T,σ =∆GH + δσ, (10)

with

∆GH =
|aP|2 Im(rP∗∂rP/∂θi)+ |aS|2 Im(rS∗∂rS/∂θi)

Mki
,

(10a)

δσ = σ
Re[(aPaS∗rS∗∂rP/∂θi)− (aP∗aSrP∗∂rS/∂θi)]

Mki
. (10b)

The first term of equation (10) represents the spin-
independent shift, which is essentially the Goos–Hänchen
(GH) shift [34–37], and the second term of equation (10) is
the spin-dependent splitting, which is the focus of the follow-
ing discussion.

3. Giant longitudinal SHE for elliptically polarized
light under SPR

The Stokes parameter S3 of the non-uniformly polarized
reflected light field depends on the spatial coordinates. To
reveal the physicalmechanism of the LSSS of arbitrarily ellipt-
ically polarized light, the average of the reflected light field
Stokes parameter S3 is defined by:

S̄3 =
⟨Er|S3(x,y) |Er⟩

⟨Er| Er⟩
. (11)

4
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where |Er⟩= [(ErR+ErL) |er,P⟩+ i(ErR−ErL) |er,S⟩]/
√
2, with

ErR,E
r
L are the right-handed circularly polarized basis compon-

ent and the left-handed circularly polarized basis component
of the reflected light field expressed by equation (7), respect-
ively. S3(x,y) = ⟨ErJ| σ̂2 |ErJ⟩, σ̂2 is the Pauli operator, |ErJ⟩ is
the Jones space representation of the SOP of reflected light
field. σ̂2 and |ErJ⟩ is represented as:

σ̂2 =

(
0 −i
i 0

)

|ErJ⟩=

 rPaP
(
1− i ∂rP

rP∂θi
xr
zR
+ i rP+rSrP

aS cotθi
aP

yr
zR

)
rSaS

(
1− i ∂rS

rS∂θi
xr
zR
− i rP+rSrS

aP cotθi
aS

yr
zR

)
 .

According to equation (11), S̄3 can be further calculated as:

S̄3 =
2(|rPaP|2 + |rSaS|2) Im(rP∗aP∗rSaS)+B

|rPaP|2 + |rSaS|2 +A
(12)

with,

A=
1

(kiw0)
2

[
|rPaP|2

(∣∣∣∣ ∂rPrP∂θi

∣∣∣∣2 + ∣∣∣∣ rP+ rS
rP

aS
aP

∣∣∣∣2cot2θi
)

+ |rSaS|2
(∣∣∣∣ ∂rSrS∂θi

∣∣∣∣2 + ∣∣∣∣ rP+ rS
rS

aP
aS

∣∣∣∣2cot2θi
)]

;

B=
4

(kiw0)
2

{
Re

[
rS

∗aS
∗rPaP

(
∂rP
rP∂θi

− ∂rS∗

rS∗∂θi

)]
×
[
|rPaP|2 Im

(
∂rP
rP∂θi

)
+ |rSaS|2 Im

(
∂rS
rS∂θi

)]
−Re

[
rS

∗aS
∗rPaP

(
− rP+ rS

rP

aS
aP

− rP∗ + rS∗

rS∗
aP∗

aS∗

)]
cot2θi

×
[
|rPaP|2 Im

(
rP+ rS
rP

aS
aP

)
+ |rSaS|2 Im

(
rP+ rS
rS

aP
aS

)]}
.

The S̄3 essentially reflects the average helicity of the reflec-
ted light field. The blue solid lines in figures 4(a) and (b)
clearly show that the S̄3 is very insensitive to the change of
the phase difference and is close to zero when the SPR is
excited. However, the S̄3 varies significantly with the phase
difference when the SPR is not excited, as shown in the red
solid lines in figures 4(a) and (b). Obviously, S̄3 tends to zero,
which means symmetric spin splitting occurs. Furthermore,
similar to the reflected linearly polarized light beam, the reflec-
ted elliptically polarized light beam with arbitrary phase dif-
ference can also produce the LSSSwhen the SPR is excited. To
give a clear comparison, figure 5 plots the spatial distribution
of the S3(x,y). It can be seen that there is a close connection
between S̄3 and symmetric spin splitting. It is worth emphasiz-
ing that the LSSS value of elliptically polarized light beam is
so small that it is almost negligible for θi = 44.86◦, α= 45◦,
∆ϕ = 28.25◦ as shown in figure 5(b).

One can see from figures 6(a)–(c) Re(rP), Im(rP),
Re(∂rS/∂θi) and Im(∂rS/∂θi) tend to zero, and can be ignored
compared to Re(∂rP/∂θi), Im(∂rP/∂θi), Re(rS) and Im(rS),

Figure 4. (a) S̄3 changing with α at the phase difference ∆ϕ = 90◦,
(b) S̄3 changing with ∆ϕ at the amplitude ratio angle α= 45◦, for
different incident angle θi = 44.66 (solid blue lines), and θi = 44.86
(solid red lines). λ0 = 1310 nm, w0 = 300λ0/π = 125 µm.

Figure 5. Spatial distribution of S̄3 of the reflected elliptical
polarized light field. (a) θi = 44.66◦, α= −70◦,∆ϕ = 90◦;
(b) θi = 44.86◦, α = 45◦, ∆ϕ = 28.25◦; (c) θi = 44.86◦,
α= −70◦, ∆ϕ = 90◦.

when the incident angle is very close to the θi
SPRE. At this

time, as long as α for the linearly polarized light or elliptic-
ally polarized light is not very close to 0◦ and 90◦, ∆GH can
be negligible compared to δσ . Furtherly, equation (10) can be
simplified to

∆T,σ = σ
Re[(aPaS∗rS∗∂rP/∂θi)]

Mki
. (13)

In general, the SHE is the symmetrical splitting of the
intensity distribution of the two spin components of the reflec-
ted or refracted light, so the total spin splitting represen-
ted by equation (13) is an elegant LSSS, which can also be
regarded as a longitudinal SHE, similar to the transverse SHE
[1, 2]. It is worth noting that another view holds that the
SHE is an optical effect in which the beam displacement is
proportional to the spin of the incident light [13]. Accord-
ing to this viewpoint, the transverse SHE associated with
Imbert–Fedorov shift appears. The longitudinal SHE of the
linearly polarized light can be further simplified as ∆T,σ =
σ sin2αRe(rS∗∂rP/∂θi)/(Mki), while the longitudinal SHE of
the elliptically polarized light for ∆ϕ = 90◦ can be reduced
to ∆T,σ = σ sin2α Im(rS∗∂rP/∂θi)/(Mki).

To illustrate that the longitudinal SHE of elliptically polar-
ized light is stronger than that of linearly polarized light,

5



J. Opt. 25 (2023) 025401 Z Chen et al

Figure 6. (a) rP, rS; (b) ∂rP/∂θi; (c)∂rS/∂θi; (d) rS∗∂rP/∂θi
varying with incident angle θi.

Im(rS∗∂rP/∂θi) and Re(rS∗∂rP/∂θi) as a function of incid-
ent angle, are plotted as shown in figure 6(d). It can be clearly
shown that Im(rS∗∂rP/∂θi) corresponding to the elliptically
polarized light with ∆ϕ = 90◦ is significantly larger than
Re(rS∗∂rP/∂θi) corresponding to the linearly polarized light
when the SPR is excited. For the above reasons, the longit-
udinal SHE of the elliptically polarized light with ∆ϕ = 90◦

is significantly larger than that of the linearly polarized light,
as shown in figure 7(a). Figure 7(b) further shows that the
incident elliptically polarized light can also produce the giant
longitudinal SHE. The longitudinal SHE value of the reflec-
ted light beam reaches 60.28 µm when the amplitude ratio
angle α is equal to 70◦ and the phase difference ∆ϕ is equal
to 90◦. The spin splitting direction of the giant longitudinal
SHE can be dynamically and flexibly switched by changing
the amplitude ratio angle α and the phase difference ∆ϕ ,
which is quite different from previous reports that the lin-
early polarized light is used to obtain the giant longitudinal
SHE [22, 38]. Even incident circularly polarized light can also
achieve the giant longitudinal SHE, and this interesting optical
effect clearly reveals that achieving giant longitudinal SHE is
essentially determined by the mean SOP of the reflected light
beam. It is interesting to revisit the longitudinal photonic spin
splitting in the incident circular polarization basis. The longit-
udinal spin splitting of arbitrarily polarized light can be viewed
as a superposition of the spin splitting caused by normal and
abnormal modes. In order to clearly show the details of the
superposition of spin splitting caused by these two modes, we
take the longitudinal spin splitting of right-handed circularly
polarized light incidence as an example. The Fresnel coeffi-
cient matrix under the circular polarization representation is a
matrix with cross-Fresnel coefficients as follows:

F̂ r =

(
rRR rRL
rLR rLL

)
, (14)

with rRR = rLL =
rP+rS

2 , rRL = rLR =
rP−rS

2 .

Figure 7. (a) Spin-dependent shifts ∆T,σ for ∆ϕ = 0◦ and
∆ϕ = 90◦ changing with α, (b) spin-dependent shifts ∆T,σ

changing with ∆ϕ for α= 45◦ and α= 70◦, when the SPR is
excited, w0 = 300λ0/π = 125 µm.

Figure 8. Intensity distributions of two spin components of the
reflected beams when an incident elliptically polarized light beam
with ∆ϕ = 90◦ strikes an prism–sodium interface for θi = 44.66◦.
(a) σ = +1, α= −70◦, (b) σ = −1, α= −70◦; (c) σ = +1,
α= +70◦, (d) σ = −1, α= +70◦.

When SPR is excited, ∂ |rP|/∂θi is equal to zero,
at which point Re(rP), Im(rP) is very close to zero,
and Re(∂rP/∂θi), Im(∂rP/∂θi) are much larger than
Re(rS), Im(rS), Re(∂rS/∂θi), Im(∂rS/∂θi), as shown in
figures 6(a)–(c). The key factors causing longitudinal spin
splitting due to the above reasons satisfy the following
relationship:

x̃R =−x̃L, (15)

with x̃R = i
ki

∂rRR
rRR∂θi

= i
ki

∂rP
rS∂θi

, x̃L = i
ki

∂rLR
rLR∂θi

=− i
ki

∂rP
rS∂θi

.
The x̃R is associated with normal mode and the x̃L is

associated with abnormal mode. Therefore, the longitudinal
SHE of right-handed circularly polarized light is caused by
the symmetrical separation of normal mode and abnormal
mode. In the case of arbitrarily elliptically polarized light, the
superposition of spin splitting produced by normal mode and
abnormal mode is more complex, but its essence remains the
same.

To provide a clear physical picture, the intensity distribu-
tions of two opposite spin components of a reflected light beam
when SPR is excited, are shown in figure 8. One can clearly
see that an elegant giant longitudinal SHE exists.
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4. Conclusions

In summary, the giant longitudinal SHE of the elliptically
polarized light beam is achieved by excited of the SPR based
sodium at the telecommunication wavelength. The physical
mechanism of the LSSS is revealed by analyzing the asym-
metric spin splitting factor and the spatially averaged Stokes
parameter S̄3. Remarkably, the direction of spin splitting of the
giant longitudinal SHE of elliptically polarized light can be
dynamically switched by changing the phase difference ∆ϕ
and amplitude ratio angle α. We expect that these findings can
help researchers to deeply understand the photonic spin–orbit
interaction and provide a new approach for designing preci-
sion fiber-optic communication devices.
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