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ABSTRACT: The shale revolution has provided abundant shale
oil/gas resources for the world, but the efficient, sustainable, and
environmentally friendly exploitation of shale oil/gas is still
challenging. Kerogen is the primary hydrocarbon source of shale
oil/gas. The research on the kerogen chemo-mechanical properties
significantly influences the development of shale oil/gas extraction
technology. Rapid reconstruction of the kerogen molecular models is
the most effective way to study the generation mechanism of shale
oil/gas from the bottom-up molecular level. However, due to the
combinatorial explosion problem, the reconstruction complexity of
kerogen increases sharply because of the kerogen’s characteristics of
complex origin, large molecular weight, and diverse functional
groups. The traditional kerogen molecular reconstruction methods
require professionals to comprehensively analyze various experimental information to approximate the actual kerogen molecular
models through trial-and-error. So, the traditional methods are time and material-consuming and extremely inefficient. These
shortcomings make researchers spend too much strength on the reconstruction of kerogen molecular models and cannot focus on
the study of kerogen chemo-mechanical properties. For the past few years, state-of-the-art machine learning (ML) methods have
been applied to intelligently reconstruct the kerogen molecular models through high-throughput and predict shale oil/gas
production mechanisms. Although the current work is still in the infancy stage, ML methods are believed to be the most promising
way to solve the drawbacks of traditional methods and reconstruct kerogen in reliable and large molecular weight. Hence, mechano-
energetics is proposed to study the efficient development and utilization of energy based on mechanics and ML. This paper briefly
reviews the development history of kerogen molecular model reconstruction methods and the research of ML in the fields of kerogen
reconstruction and shale oil/gas exploitation. Some recommendations for further ML-based work are also suggested. We are
convinced that the ML methods will accelerate the research of kerogen and promote the significant development of unconventional
oil/gas exploitation technologies.

1. INTRODUCTION
With the development of horizontal drilling and hydraulic
fracturing technologies, the shale revolution occurred in the
United States. The shale oil/gas can be extracted from
previously inaccessible reservoirs and play an essential role in
the field of energy.1−4 However, the sustainability and
environmental risks of shale oil/gas have prompted researchers
to develop new extraction technologies continuously.5−7

Kerogen is the insoluble macromolecular organic matter in
sedimentary rocks, formed by the degradation of ancient algae,
plankton, higher plants, etc., through geological sedimentary
diagenesis. As the parent material of shale oil/gas, more than
half of the hydrocarbons in shale are adsorbed in kerogen.
Therefore, research on the chemo-mechanical properties of
kerogen, such as oil/gas migration, maturation, in situ ripening,
pyrolysis, etc., are the basis for increasing the production and
extraction efficiency of shale oil/gas.8−10 And the information
on the environment, climate, and biota in ancient geological

times can also be provided by kerogen.11−13 Bottom-up
simulation analysis of kerogen from the molecular level is the
most direct and effective way.14,15 Thus, the rapid
reconstruction of qualified kerogen molecular models is the
cornerstone of the research on the chemo-mechanical
properties of kerogen.16 Since the 1940s, research on the
kerogen formation, molecular model reconstruction, and
pyrolysis evolution mechanism is out to predict the sweet
spots distribution and production of the reservoirs, then
achieve the in situ ripening, low-cost extraction, and environ-
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mental protection of shale oil/gas. But there is an intractable
problem because of the combinatorial explosion in the
molecular structure reconstruction.17 The obstacle of molec-
ular reconstruction will be sharply increased with molecular
weight. Kerogen has the complex origin, significant molecular
weight, and various types of functional groups. The problem of
the combinatorial explosion is particularly prominent. So, the
combinatorial explosion problem is the essential reason for the
tedious of reconstructing kerogen molecular models.
Researchers have almost exhausted all the molecular

structural experimental measurement methods to detect the
molecular structure of kerogen. By using element analysis
(EA), nuclear magnetic resonance (NMR), Fourier transform
infrared (FTIR) spectroscopy, X-ray photoelectron spectros-
copy (XPS), etc., the information on chemical elements,
functional groups is analyzed and then used to reconstruct the
entire kerogen structural models. With the advancement of
experimental technology, the determination of the molecular
structure information on kerogen is more and more accurate.
The three-dimensional (3D) kerogen molecular models are
reconstructed with molecular dynamics (MD) simulations.
However, the traditional reconstruction methods need to
adjust the molecular structures repeatedly based on the
experiment/simulation to approach the actual molecular
structures. There are two inherent drawbacks to the traditional
trial-and-error reconstruction methods. First, the experimental
data require a comprehensive analysis by experienced
professionals, which is not conducive to engineering
promotion and application. Second, tremendous time and
material resources are consumed during the repeated trial-and-
error process, and the reconstruction efficiency will be
extremely low. The two inherent drawbacks have greatly
limited the progress of studying kerogen chemo-mechanical
properties from the molecular level. Consequently, it is
imperative to develop an intelligent kerogen reconstruction
method and liberate researchers from the predicament of
kerogen molecular models.18

Recent years have witnessed the rapid blossom of machine
learning (ML). And ML-based methods have achieved
remarkable success in geological exploration, medical health,
natural language processing, and so forth.19−24 Artificial
intelligence ML methods have powerful analysis capability of
big data and can adapt to various high-complexity problems.
Therefore, ML technology is a promising way to address the
problem of intelligent and high-throughput reconstruction of
kerogen molecular models. Researchers have developed some
ML-based methods to predict the kerogen molecular models
and properties. But the relevant work is still in the infancy
stage. There are still many tasks that should be further solved.
Zhao proposes the concept of “mechano-energetics” to address
the further challenges for shale oil/gas exploration (Figure 1).
The mechano-energetics is coined to study the efficient
development and utilization of energy based on mechanics,
coupling with a force field, radiation field, temperature field,
and electric field by theory, experiment, simulation, and
artificial intelligence methods.25 This review briefly introduces
the fundamental importance of kerogen molecular models for
shale oil/gas research, the development history of kerogen
molecular model reconstruction methods, and the application
of ML methods in kerogen molecular model reconstruction
and shale oil/gas production. Finally, some challenges and
directions of developing ML to reconstruct molecular models
of the kerogen macromolecule are also summarized.

2. NECESSITY OF KEROGEN MOLECULAR MODEL
Kerogen was named by Alexander Crum Brown in 1906 to
describe the substance that can produce waxy oil from Scottish
oil shale. In Greek, “keros” means “waxy oil”, while “-gen”
means “birth”.26 According to the formation sources, kerogen
can be divided into three types: lacustrine shale, marine shale,
and terrestrial shale, is the most abundant form of organic
matter on the earth.27 The carbon in the form of kerogen on
the earth is about 1016 tons, compared to only 1012 tons in
living organisms.28 With the change of pressure and temper-
ature during deposition, the structures of kerogen will undergo
degradation, isomerization, aromatization, etc., accompanied
by the generation of oil/gas. The mechanical and chemical
properties of kerogen also change, such as chemical structure,
molecular density, maturity, and organic pore distribution.
Therefore, kerogen structure models play an essential role in
studying the mechanism of shale oil/gas generation and
efficient exploitation, which is attractive to various fields such
as geology and petroleum. Further research on kerogen’s
mechanical and chemical properties can effectively promote
the development of in situ ripening of oil shale, optimization of
pore network, and oil/gas migration technologies.29

2.1. Formation of Kerogen. It is widely recognized that
kerogen is formed due to the geological evolution of ancient
algae, plant, and animal remains in the anaerobic sedimentary
environment. The chemical structures of kerogen vary
significantly with the precursor and sedimentary environment.
Generally, the biological organic matter preserved in
sedimentary rocks accounts for only about 0.1−1%, and 90%
of the source rocks are contained in strata with the warm
climate and high water table. There are four explanations for
kerogen formation: selective preservation, degradation-recon-
densation, natural sulphurization, and sorptive protection.30

Figure 1. Schematic of mechano-energetics. It is coined to study the
efficient development and utilization of energy based on mechanics,
coupling with a force field, radiation field, temperature field, and
electric field by theory, experiment, simulation, and artificial
intelligence methods.25 Reproduced with permission from ref 25.
Copyright 2021 Springer Nature.
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Selective preservation assumes that kerogen is the
compound with anti-degradation properties in ancient
organisms, such as microbial cell walls. And the anti-
degradation organic matter is selectively preserved and
enriched during geological evolution.31 Morphological obser-
vations of the kerogen microstructure provide direct evidence
for selective preservation. Tegelaar and co-workers observed
the biological structures (debris of spores, pollen, plant, etc.)
contained in kerogen through transmission electron micros-
copy. Compared with the biomacromolecular structures, they
concluded that kerogen can be formed from a small amount of
specific, insoluble, nonhydrolyzable, and resistant degradation
macromolecular structures during sedimentary diagenesis. The
corresponding relationships between the initial and expected
kerogen molecular structures are given. Although the initial
content of these macromolecular structures is low, it can be
increased by two to three orders of magnitude during
enrichment.32 The homogeneity of the carbon isotope analysis
of kerogen pyrolysis products also supports this opinion.33

However, selective preservation is lacking in identifying
amorphous components of kerogen.
The degradation-recondensation assumes that the organic

matter is decomposed into small molecular structures
(monosaccharides, amino acids) during evolution. The tiny
units are recondensed as the precursors of humic substances
and kerogen: melanoidins.34 It is generally believed that
degradation-recondensation is responsible for the amorphous
aliphatic structure of kerogen. But why degradable organic
molecules are preserved has puzzled researchers until the
sorptive protection of minerals is discovered.35 In the pyrolysis
study of North American kerogen, the products of kerogen
exhibit high aliphatic and phenolic characteristics. These
substances are not found in plant structures and come from
the polymerization and transformation of animal tissues.36

Poirier and co-workers analyzed the refractory organic matter
of an ancient soil near Pointe Noire in Congo and found that
the degradation of organic matter in deep soil under natural
conditions is significantly different from that in the
laboratory.37 Unstable organic molecules are adsorbed on
minerals and retained during degradation, then undergo
subsequent condensation reactions to form kerogen.38−40

Natural sulphurization refers to the reaction between the
inorganic sulfur element and the biomolecules in the early
diagenesis stage. This opinion explains the source of the sulfur
element in sulfur-rich kerogen.41,42 The structure and content
of sulfur in macromolecular organic matter such as kerogen can
be determined by flash pyrolysis. It is speculated that the sulfur

moieties in kerogen come from the abiogenic sulfur.43 The
process of incorporating inorganic sulfur into organic matter is
affected by the reactive iron element in the sedimentary
environment. It is generally believed that the reactivity
between iron and sulfur is higher than the organic matter.44

Therefore, in the environment where the reducing sulfur
content is higher than the active iron, organic molecules can
extensively react with inorganic sulfur to generate such sulfur-
rich macromolecular organic matter. Most kerogen with high
sulfur content occurs in marine sedimentary environments that
are rich inorganic sulfur but less in lake environments.45 In
addition, the polysulfides are generated during the reduction of
iron hydroxides and react with organic matter. So, some
organic matter of lacustrine mines may also be rich in sulfur.46

2.2. Structural Transformation during Kerogen
Maturation. Since the oil/gas production properties of
kerogen attracted researchers in the 1940s, the maturation
and pyrolysis mechanisms of kerogen have been the focus of
petroleum.47−50 It is necessary to explore kerogen structure to
promote oil/gas production. The kerogen structure is also the
basis for studying kerogen origin, type, and maturity. The
maturity and type are important indicators of kerogen.
Combining the maturity and type of kerogen, the development
stage and the oil/gas extraction potential of the reservoir can
be analyzed. The commonly used kerogen maturity models are
summarized in Table 1. The Vitrimat was established based on
the analysis of a large number of experimental data.51,52 The
maturity can be calculated by the atomic ratio of O/C and H/
C in the kerogen molecular structure. The Vitrimat maturity
index is extremely terse, which is beneficial for application in
engineering. Wang et al. proposed the kerogen molecular
maturity index (MMI) through thermal evolution experiments,
then established a dynamic model of kerogen thermal maturity
evolution through MMI.53 The MMI is positively correlated
with the vitrinite reflectance %Ro and can accurately reflect the
loss rate of kerogen weight during thermal evolution. Ma et al.
suggested the orbital hybridization maturity index (OrbHMI)
based on the hybrid orbital of atoms in the kerogen molecular
model.54 Compared with other maturity models, OrbHMI can
be more helpful in understanding the underlying mechanism of
kerogen maturity evolution. Thus, maturity is closely related to
the kerogen molecular structure and can be applied to guide
kerogen ripening studies.
During the burial, immature kerogen would be recombined

into more stable structures with temperature and pressure
changes. In the early stage of diagenesis, the original molecule
removes N, S, and O heteroatom functional group structures.

Table 1. Comparison of Various Kerogen Maturity Models

model expressiona advantages limitations

Vitrimat51,52 %Ro = 12 exp [−3.2(H/C)] − 1.2(O/C) easy to be calculated with initial composition not a rigorous mechanistic model
MMI53 MMI = 1/(1 + H/C + O/C N/C + S/C) based on the change in molecular structure cannot explain functional groups’ evolution

OrbHMI54

r r

r

r

OrbHMI 1/(2.85 1.1 0.1 )

C /(C C )

O /(O O )

C O

C sp sp sp

O sp sp sp

2 2 3

2 2 3

= +

= +

= +
closer to the physical bottom mechanism challenging to obtain hybridization

information

Easy %Ro55 %Ro = exp (−1.6 + 3.7F) can compute vitrinite maturation with time and
temperature

unsuitable for experiments with short
heating times

Basin %Ro56 %Ro = %Roo exp (3.7F(t)) uncertainty of thermal reconstruction is considered insensitive to inconsistent calibration data
aF is the fraction of reactant converted; H/C is the hydrogen/carbon atomic ratio; O/C oxygen/carbon atomic ratio; N/C is the nitrogen/carbon
atomic ratio; S/C is the sulfur/carbon atomic ratio; % Roo is the vitrinite reflectance of immature vitrinite; F(t) is a function of time; Csp2, Csp3 are
sp2, sp3 hybridized carbons, respectively; and Osp2, Osp3 are sp2, sp3 hybridized oxygens, respectively.
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After that, aliphatic carbon structures are stripped or
transformed during the catagenesis stage.57 This is also the
main stage of oil/gas generation, and the maturity of kerogen
gradually increases. Finally, the aromatic ring structures evolve
into larger, closer-packed groups during metagenesis.11 Hou
and co-workers58 showed that lacustrine Type-II kerogen
removed O-functional groups and short aliphatic chains when
%Ro was below 0.6. The peak of hydrocarbon production is
reached in the maturity range of 0.6 < %Ro < 1.09, after which
the highly aromatic kerogen residue structure is formed.
In 1950, Hubbard et al.59 heated the Colorado oil shale from

623 to 798 K under anaerobic conditions. They proposed the
empirical mechanism of kerogen pyrolysis products. Kerogen
produces oil/gas in the form of eq 1 during pyrolysis.

kerogen bitumen oil gas char+ + (1)

In subsequent studies, the oil/gas types and yield were
established by multistage pyrolysis of oil shale kerogen.60 On
the basis of hydrolytic reactivity in hot water an explanation
has been proposed for the formation and decomposition
mechanisms of natural kerogen.61 And a comprehensive
pyrolysis mechanism is mentioned based on analyzing the
structural transformation of products during pyrolysis. In the
opinion of Lai et al., the oil/gas products in the pyrolysis
process are mainly derived from aliphatic structures, while the
aromatic structures are converted to carbon residue. As is
shown in Figure 2, the partial aliphatic carbon chains in
kerogen are cracked into small fragments, then aromatized and
condensed with the original aromatic carbon skeleton. After
the first-order reaction, the residual aliphatic and partial
aromatic carbon experienced coking and cracking. The
mechanism systematically described the chemical structure
transformation process of oil shale pyrolysis at the molecular
level.62

The above kerogen pyrolysis mechanism is only the
empirical summary based on experiments. Since the thermal
transformation process of kerogen involves several reactions, it
is troublesome to observe the details through experiments.
Therefore, the pyrolysis mechanism of kerogen needs to be
elucidated by simulation based on the molecular model. The
pyrolysis order of the kerogen structure is related to the
dissociation energy of local bonds.63 The density functional
theory (DFT) was used to analyze the order of breaking
chemical bonds in the molecular structure of kerogen. The
result is exhibited in eq 2:

C S C N C O C C C H C C< < < < <
(2)

The pyrolysis behavior was simulated at 300−3000K based on
the Siskin Green River Type-I kerogen molecular model.64

With the temperature increasing, the pyrolysis process is
divided into three stages: cleavage of weak bonds, generation
of long-chain hydrocarbons, and formation of hydrogen-
containing gases.65 Wang et al. studied the pyrolysis
mechanism of the Erdos Type-III and Songliao Type-I
kerogens with the hybrid molecular dynamics/force-biased
Monte Carlo method. And the bond dissociation energy in the
molecular structure was found to be the main reason affecting
the pyrolysis products. As for the Type-III kerogen, the
products are less at low temperatures, and the production of
methane (CH4) increases at high temperatures.66 Furthermore,
the kinetic equation expressing the relationship between
activation energy and maturity is established based on
molecular pyrolysis simulation. Then the maturation mecha-
nism of kerogen at different temperatures can be clarified.53

Thus, the pyrolysis simulation with the kerogen model plays a
crucial role in studying the intrinsical mechanism of oil/gas
production at the molecular level, further illustrating the
necessity of the kerogen molecular model in shale oil/gas
research. Recently, the ML methods are also proposed to
reduce the computational complexity of pyrolysis simulations
and estimate the product yields.67

2.3. Kerogen Structure and Mechanical Properties.
The structural changes during maturation directly affect the
mechanical properties of kerogen, such as microscopic pores
and fracture mechanisms, and play a vital role in establishing
oil/gas transport channels in shale oil/gas reservoirs.68−73

However, kerogen exists at the nanoscale, and the mechanical
properties through experiments are challenging to be
measured. Therefore, molecular simulation is widely used to
the mechanical properties of kerogen. It is significant in
guiding oil/gas extraction and is one of the key directions of
kerogen research.74−76

There are a large number of organic pores in the kerogen,
and the pores form the channel for oil/gas migration during
evolution.77 However, due to the adsorption, many oil/gas
molecules are confined in the pores, obstructing the oil/gas
migration fracture network.78−82 Zhu et al. explained the
influence of size and curvature effects of nanopores on CH4
adsorption, then established the state equation of CH4
adsorption phase based on the simulation.83 Lin et al.
proposed the CH4 displacement kinetic equation by
investigating the angle of nitrogen (N2), water (H2O), and
carbon dioxide (CO2) in displacing adsorbed CH4.

84 The
displacement mechanism of CO2, N2, and H2O was
determined by studying entropy and enthalpy. The results

Figure 2. Carbon transformation during the process of kerogen pyrolysis.62 Reproduced with permission from ref 62. Copyright 2017 Elsevier.
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show that CO2 is driven by both entropy and enthalpy, and N2
is driven by entropy. Moreover, H2O is driven by reducing the
partial pressure of CH4. The mechanism explains the
distinctions in displacement efficiency in different supercritical
fluids.85 An in situ adsorption simulation of CH4 is carried out
to study the adsorption state of shale oil/gas under natural
geological conditions based on the scanning electron micro-
scope (SEM) images of shale pore structure. The mechanism
of excess adsorption isotherm crossing and desorption
hysteresis is clarified.86 Research on shale oil/gas adsorption
properties has been carried out with the development of
kerogen molecular models. The adsorption of shale oil in
kerogen slits was simulated by MD. It was found that the
adsorption capacity of heavy components (e.g., asphaltene)
was greater than that of light components. And the absorption
density of hydrocarbons reached a maximum value of 2 nm
aperture.87 With increasing water content, the pores of kerogen
matrix volume and CH4 desorption amount decreased based
on the Ungerer kerogen model. It is not conducive to the
transportation of oil/gas in kerogen.88

The pore network formation and characteristics of kerogen
under confined volume reservoir conditions are studied
through reactive force field-molecular dynamics (ReaxFF-
MD) simulation, and the features of pore networks are affected
by kerogen maturity and pyrolysis temperature.89 The
establishment and maintenance of shale oil/gas migration
channels in microscopic pores are influenced by the kerogen
mechanical behavior. So, the research of kerogen mechanical
properties is widely concerned. Zeszotarski and co-workers
measured the hardness and reduced modulus of Woodford
Type-II kerogen by atomic force microscope and nano-
indenter. They concluded that the isotropic mechanical
behavior is exhibited in kerogen. The hardness is about 550
MPa higher than that of common polymers (about 200 MPa).
Since there is no Poisson’s ratio for kerogen, Zeszotarski only
obtained an indentation modulus of about 10−11 GPa. And
they proved that kerogen has both viscoelasticity and
plasticity.90 Jakob et al. demonstrated that the aromaticity of
kerogen is positively correlated with the local mechanical
modulus of the surrounding inorganic matrix by peak force
infrared microscopy. Their work improves the understanding
of the effect of kerogen heterogeneity on the mechanical
properties of source rock.91

Currently, the research on the mechanical properties of
kerogen with experiments can only be roughly estimated. The
detailed characteristics of kerogen under stress can only be
calculated on the basis of the kerogen molecular models. The
structure and mechanical properties of 3D kerogen molecules

during pyrolysis were studied by Spiro. They thought aliphatic
molecular function groups with weak covalent bonds are first
decomposed. Then the aliphatic fragments and adsorbed oil/
gas molecules are lubricated in the planar aromatic molecular
groups. Finally, the molecular cross-linking and intermolecular
van der Waals interactions are inhibited, resulting in the
thermoplastic behavior of kerogen.92 Bousige et al. applied MD
to calculate kerogen’s bulk, shear, and elastic modulus with
different maturity. They observed an exponential increase of
these mechanical parameters with kerogen density, and the
fracture behavior is determined by the sp2/sp3 ratio.93 The
elastic modulus increases with the increase of pressure through
molecular simulation of the kerogen model. The Mohr−
Coulomb failure criterion and tensile strength criterion are
used to describe the fracture behavior of the kerogen matrix.94

Wang et al. obtained the stress−strain dynamic response
curves under different strain rates via tensile simulation. And
the hyper-viscoelastic constitutive model is established to
describe the mechanical behavior of kerogen.95 The extensive
application of molecular simulation in the study of the kerogen
chemo-mechanical mechanism further illustrates the necessity
of the kerogen molecular model in shale oil/gas research.

3. TRADITIONAL RECONSTRUCTION METHODS OF
THE KEROGEN MODEL

The determination experiment of kerogen is the basis for analyzing
the macroscopic and microscopic structure, exploring the compo-
nents, and constructing the molecular models. Due to the high
compositional complexity, there is no fixed molecular structure of
kerogen and no repeating simple molecular units like polymers.
Almost all the experimental methods have been used to characterize
macroscopic and microscopic structural characteristics. The methods
include transmitted and fluorescent light microscopy, SEM, EA,
pyrolysis-gas chromatography−mass spectrometry (Py-GC/MS),
FTIR, and NMR experiments.96−98 Furthermore, kerogen structural
models based on experiments and statistics are constructed to study
kerogen’s mechanical properties and transport network. Therefore,
the kerogen model can effectively promote the production research of
shale oil/gas.
3.1. Kerogen Monomer and Kerogen Matrix. Generally, the

reconstruction methods of kerogen structural models have undergone
a development process from rough to detailed. And the reconstructed
kerogen models are from skeleton to complete structure, from two-
dimensional (2D) to 3D. Dozens of various mining areas’ kerogen
molecular models have been reconstructed in different ways up to
now. In accordance with the reconstruction ideas, these models can
be roughly divided into two categories: kerogen monomer99 and
kerogen matrix (a group of kerogen molecules).87 The kerogen
monomer is based on the assumption that kerogen is formed from the
self-polymerization of molecular structures. So, a kerogen monomer is

Figure 3. Sample of (a) kerogen monomer66 and (b) kerogen matrix.95 Panel b was reproduced with permission from ref 95. Copyright 2021
Elsevier.
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an average structure of a batch of kerogen molecular components
measured simultaneously in the experiment and can represent the
mechanical and chemical properties of the whole kerogen (Figure 3a).
The kerogen matrix points out that kerogen is aggregated from many
molecules of different scales (Figure 3b). This opinion is relatively
consistent with the actual situation in the natural environment. Both
methods try to contain more functional groups while reconstructing
the kerogen structural model to make the kerogen models have more
stable statistical characteristics. In this way, the molecular models can
better reflect kerogen’s properties through MD simulation.

Both methods have their own pros and cons, and they have been
used in reconstructing the kerogen molecular models of mining areas
until now. The benefit of the kerogen monomer is that it can better
characterize the polymer properties of kerogen due to its considerable
molecular weight. Nevertheless, the combinatorial explosion problem
leads to an exponential increase in construction intricacy with
increasing molecular weight. This is also the fundamental reason for
the challenge of constructing a kerogen structure model with a
significant molecular weight. So, the methods of the kerogen
monomer always require lots of labor and material resources. The
giant Erods Type-III kerogen monomer molecular model
(C861H750O124N8S8) constructed by Wang et al. based on experiments
is a typical representative of this method.66 Unlike kerogen monomer
models, the kerogen matrix aims to represent true kerogen through a
group of interacting multimolecular mixtures rather than sizable
molecular weight. Thus, it is only necessary to construct a series of

small kerogen molecular structures based on the experimental data.
These kerogen submolecules are relatively easily reconstructed but
cannot effectively reflect the polymer properties of kerogen. The most
famous kerogen matrix is the Green River kerogen model created by
Siskin et al.100 The chemical formula of the Sisken kerogen model is
C645H1017O17N19S4. The smallest molecule in the group is C18H30,
while the largest is C367H547O10S2. In fact, it is unrealistic and
unnecessary to construct a molecular model that is entirely consistent
with the real kerogen. Depending on the research goals, several
properties such as elemental/molecular composition and pyrolysis
products are traded off while reconstructing a kerogen molecular
model. Consider the physical/chemical information comprehensively
to build a molecular model that meets the research needs.27

3.2. Qualitative Reconstruction Methods of the Kerogen
Skeleton Model. The study of the kerogen molecular model draws
on the reconstruction method of coal in the early stage.101 In fact,
many of the kerogen chemo-mechanical properties testing and
characterization methods are based on previous studies on coal
minerals, such as the classification of kerogen. Initially, the kerogen
molecular model is constructed by analyzing residues, products, and
small molecule extracts (e.g., bitumen) in source rocks during
degradation. The residue molecules are used as a kerogen skeleton,
and the low molecular weight hydrocarbon products are integrated
into the skeleton to reconstruct cross-linked macromolecular
structures.102 With the advancement of experimental technology,
the detection accuracy of unknown molecular structures has become

Figure 4. Initial two kerogen molecular structure conjecture models of the Green River formation. (a) Schematic diagram of the kerogen structure
of the Green River shale inferred from the oxidative cracking of CrO3 by Burlingame et al.103 (b) Schematic diagram of the 3D kerogen structure
conjecture model of the Green River formation is given by Young et al.106 Panel a was reproduced with permission from ref 103. Copyright 1969
Elsevier. Panel b was reproduced with permission from ref 106. Copyright 1977 Elsevier.

Figure 5. Molecular models of the Green River Formation kerogen with detailed structure. (a) Molecular model constructed by Yen.107 (b)
Molecular model constructed by Siskin.100 Panel a was reproduced with permission from ref 107. Copyright 1976 Elsevier. Panel b was reproduced
with permission from ref 100. Copyright 1995 Springer Nature.
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higher, but the way of constructing kerogen macromolecules is still
used today.

In 1969, Burlingame et al. combined high-resolution mass
spectrometry with organic debris in shale, and proposed the possible
cross-linking model of Green River kerogen skeleton.103 The content
and form of organic fatty acids in Green River kerogen were
determined. They deduced that these organic matters are connected
to the kerogen skeleton as easily degradable functional groups.104

Subsequently, the degradation products of chromic acid oxidation via
high-resolution mass spectrometry are determined. The result exhibits
that the Green River kerogen is a highly cross-linked polymer
composed of random C4−C25 aromatic nucleus, heteroatoms, and
long aliphatic side-chains.105 The kerogen molecular models of the
Green River formation are shown in Figure 4a. Although Burlingame’s
kerogen model is rough without specific molecular structures, it
indicates kerogen composition and specific cross-linking form. Further
research on kerogen molecular models is mainly carried out according
to the reconstruction idea of this model. Young and Yen prevented
the generation of intermediates during the degradation of kerogen by
mild stepwise oxidation. They applied gas−liquid chromatography,
gas chromatography−mass spectrometry, and proton-NMR experi-
ments to determine the straight-chain aliphatic structures in Green
River kerogen. On the basis of this, the conjectured model of the
Green River kerogen is given as Figure 4b.106 Compared with the
aliphatic structure polymerization model, this model focuses on cyclic
organic molecular groups, such as fused-ring aliphatic and aromatic
structures. A large number of branched structures during the
oxidation are attached to the “core” of the kerogen model. In
addition, Young’s model also considers the 3D structural information
of kerogen.

Yen constructed a kerogen skeleton model of the Green River
formation based on the molecular structure of coal tar pitches. It is a
3D kerogen molecular model with the detailed structure containing
20 small molecules. The largest molecular structure is C32H58 and the
smallest is CO2 (Figure 5a). Yen’s model explains the structure of
chemically degraded compounds and matches the results of chemical
analysis such as X-ray diffraction, FTIR, etc.107 Meanwhile, this work
indicated that some free asphaltic molecules may be contained in the
kerogen. In addition to covalent bonds, hydrogen bonds also exist
between molecules, which cause folding cross-links in the kerogen
model. The solid-state NMR is used to analyze the molecular
structure of kerogen without degradation. The elements and
functional groups are determined via 13C and 29Si NMR spectra.

Siskin et al. then combined mass spectrometry with the pyrolysis
products to construct the final kerogen molecular model (Figure 5b).
The kerogen molecular models of Green River oil shale in the United
States and Rundle Ramsay Crossing oil shale in Australia are
successfully constructed by this method.100 Both models fit well with
the experimental results on elemental components, aromaticity, chain
length distribution, hydrocarbon/heteroatom functional groups, etc.
The advantage of the Siskin method is innovatively applying the solid-
state NMR for characterizing the molecular structure to reconstruct
the kerogen model without destruction. And the reconstructed
structural models are successfully matched with the original
information on the products and residues during degradation.
Therefore, the kerogen models reconstructed by this method are
closer to the actual state of kerogen.

All in all, the reconstruction methods of the kerogen molecular
model in the initial half-century were mainly started from the
following four aspects: (1) Degradation of kerogen molecules by
physical and chemical methods. (2) Determination of kerogen
degradation products. (3) Quantitative analysis of kerogen degrada-
tion residues and products. (4) Kerogen combinatorial reconstruction
with residue molecules (core) and degradation products.

The constructed accuracy of the above methods depends upon the
precision of experimental technology directly. The understanding of
kerogen structure is evolved with the development of experimental
methods. However, the reliance on experiments makes the
reconstruction of the kerogen molecular structure inherently flawed
in the method. Since original morphological structures will be
destroyed during the determination experiments, there is no way to
verify the constructed kerogen model effectively. Hence, the kerogen
models reconstructed with the above-mentioned methods are the
molecular structures that are random combinations and cross-linking
between kerogen pyrolysis products and residues. This process relies
heavily on the builder’s experience of the determination experiments
of the organic matter molecular structures. Therefore, these methods
can be described as empirical methods, and the reconstructed
structure’s accuracy and rationality are challenging to verify. To solve
this problem, simulation calculation methods based on DFT, MD,
etc., are developed with the improvement of computers. The
computer-based techniques are widely applied in reconstructing and
verifying kerogen molecular structural models.
3.3. Quantitative Digital Reconstruction Methods of the

Kerogen Model. In 1977, the computer-assisted molecular structure
construction (CAMSC) program was designed to rapidly construct

Figure 6. Part of the basic structural units in (a) CAMSC108 and (b) Xmol.109 Panel a was reproduced with permission from ref 108. Copyright
1977 Elsevier. Panel b was reproduced with permission from ref 109. Copyright 1990 Elsevier.
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the coal molecular structural model.108 The process of this program to
build a molecular structure can be divided into three steps. First, the
elemental components and the ratio of each functional group are
obtained via elemental analysis and NMR spectroscopy experiments.
Second, a set of building blocks consistent with the experimental
information was selected from the assigned ten aromatic and 24
aliphatic basic structures. Finally, these structural units are manually
combined to form the molecular structure of coal. This computer-
assisted method is extremely simple and can only screen the basic
structural units from a minimal structural database (Figure 6a). It is
rough to deal with the conditions that complex functional groups
need to be combined into molecular models. However, this work is a
practical attempt to apply computer technology to reconstruct the
molecular model of coal and kerogen. The design idea of this method
can be expressed as eq 3:

molecule model basic structural units bonds= + (3)

Faulon and co-workers developed the kerogen molecular
construction software Xmol based on this idea. And Xmol has
evolved significantly. On the one hand, the basic structural units used
by Xmol are simpler and can adapt to the needs of more functional
groups during the reconstruction process (Figure 6b). On the other
hand, the molecular structural units and the types of bonds are
parametrized. The reconstruction process can be transformed into an
equation based on the parametrized basic structural units and bonds
as eq 4:

s M x s g y s b( ) ( ) ( )
i

G

i i
j

B

j j
1 1

= +
= = (4)

where s(M) represents the final constructed kerogen molecule, s(gi)
represents the basic structural unit groups, s(bj) represents the basic
bonding type of the basic groups, xi is the number of each basic unit,
yj is the number of each bond type, G and B are the total number of
basic structural units and bonds, respectively. The atomic information
is obtained from experiments, and the basic structural units are preset.
Thus, only yj needs to be calculated. Then, the basic structural units
are randomly combined by the calculated bonds via Xmol. Finally, the
coordinates of each atom are determined through molecular
mechanics (MM) and computational geometry.109 Therefore, the
method can directly reconstruct the kerogen molecular models based
on the experimental information, and the 3D molecular structure also
can be given. However, the combination of substructural units in the
reconstruction process is still random. The reconstructed molecular

models are matched with the chemical bonding mechanism and
experimental information. But it is unlikely to reflect the pyrolysis
properties of kerogen, and the information, such as porosity and
density, that is obtained from 3D models is also inaccurate.

The computer-assisted methods in the early stage for the kerogen
molecular model are essentially digital simulation of the artificial
reconstruction process. Structural analysis methods such as MM are
added, the reconstruction efficiency is improved, and the 3D
molecular models can be constructed. However, due to the lack of
verification methods, the results are still doubtful to be regarded as
reliable in various chemo-mechanical property analyses. In 2003, a 2D
kerogen molecular model of the Estonian kukersite oil shale was
reconstructed by combining oxidation pyrolysis and 13C magic-angle
spinning nuclear magnetic resonance (MAS NMR). During the
reconstruction process, the software ACD/CNMR was used
repeatedly to calculate the molecular 13C MAS NMR spectra. A
molecular model is obtained, compared, and adjusted with the
exper imenta l spect ra , and the molecu lar formula i s
C421H638O44S4NCl.110 The structural model with a verification
process during reconstruction is more reasonable than that obtained
by random combination of small molecular units based on the
experimental spectra. The reliability is improved with the develop-
ment of computer simulation and its successful application in
reconstructing kerogen molecular models. Meanwhile, the improved
reliability of molecular model building also brings a challenging
problem. Comparing and adjusting the molecular structure
information with the simulation results in the reconstruction process
is necessary. And this trial-and-error process is particularly
cumbersome while reconstructing a large molecular structure because
of the combinatorial explosion problem, which makes the
reconstruction methods being time- and materials-consuming and
labor-intensive.
3.4. Quantitative Reconstruction Methods to Approximate

the Actual Kerogen Model. The trial-and-error methods based on
experiments and simulations are still the primary choice for
reconstructing the 2D kerogen molecular models. The addition of
the verification process solves the reliability problem of the 2D
kerogen molecule. However, the actual molecule is cross-linked and
folded in 3D space, and there are interactions between molecules and
functional groups. The chemo-mechanical properties of the kerogen
are also affected by the 3D folded form. The folded 3D kerogen
molecular structure was obtained based on the 2D Siskin Green River
model using an annealing algorithm with ab initio and MM methods.
The solid-state NMR spectroscopy and pair distribution function of

Figure 7. 3D kerogen molecular models reconstructed by (a) Wang et al.66 and (b) Bousige et al.93 Panel a was reproduced with permission from
ref 66. Copyright 2019 Wiley. Panel b was reproduced with permission from ref 93. Copyright 2016 Springer Nature.
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the 3D molecular model are calculated. And the 3D kerogen models
are in good agreement with the experiments.111 The work
demonstrates the feasibility of obtaining a 3D molecular structure
of kerogen by minimizing molecular energy through the annealing
algorithm. This method can be used not only to verify the accuracy of
the 3D kerogen molecular models during the reconstruction process
but also as a general method for developing existing 2D models into
3D models. With the development of MD simulation technology,
Wang et al. developed a physicomechanical inversion method
(PMIM) for kerogen molecular reconstruction based on ReaxFF-
MD.53 PMIM is a modification and extension of the traditional
reconstruction methods introduced above. On the basis of experi-
ments, the kerogen molecular skeleton is built according to the NMR
spectroscopy, XPS, and pyrolysis information. The experimental
spectra are compared with the ReaxFF-MD pyrolysis simulation
results. And the possible cleavage sites are adjusted by trial-and-error
according to the bond dissociation energies. Finally, the kerogen
molecular model that conforms to each experiment is determined
(Figure 7a). Therefore, compared with the previous methods, the
kerogen molecular model constructed by PMIM has a more
reasonable distribution of chemical bonds and higher reliability.
Obviously, increasing the reliability of the kerogen molecular model
by continuously adding verification items is very effective. But the
amount of trial-and-error will dramatically increase in the kerogen
reconstruction process. Naturally, the costs of labor and material will
also be greatly increased, and the reconstruction efficiency will
become lower. Thus, the traditional kerogen reconstruction methods
are unsustainable for improving the reliability of molecular models.
Repeated trial-and-error is required by traditional methods. And this
process directly leads to the inherent disadvantages of traditional
methods: low reconstruction efficiency and high cost.

Many novel methods have been explored to eliminate the demerits
of traditional methods. Bousige et al. developed a molecular
dynamics-hybrid reverse Monte Carlo (MD-HRMC) reconstruction
method based on MD simulation.93 Unlike the conventional methods,
only three elements and the density are taken as the input to
reconstruct the kerogen structure. The atoms are automatically
combined to form macromolecular structures by the MD-HRMC
method with ReaxFF. The annealing algorithm is used to screen out
the molecular model that matches the density information (Figure
7b). The merit of the MD-HRMC method is that there is no need to
construct a 2D molecular structure as the intermediate model and
then obtain the 3D target molecule. Thus, the repeated trial-and-error
process is avoided. And they believe this strategy can be used to
model the molecular structure of any heterogeneous and disordered
material. The basic idea of the MD-HRMC method can be considered
to hand over the trial-and-error process to the high-performance
simulation algorithm, and only the simple constraint conditions are
relied on to construct a set of candidate molecules. Finally, the target
molecule is searched reversely to avoid the cumbersome trial-and-
error process according to the additional experimental information.
The MD-HRMC method has high requirements for computing power
and simulation comparison methods. Due to the limitation of the
ReaxFF and the quality of the phase space sampling, there are
chemical structural defects (about 0−10%) in the molecular model

constructed by MD-HRMC, and the function groups in reconstructed
molecular models cannot be accurately indicated.29

All in all, during the development of the reconstruction method
from conjectured kerogen skeleton models to refined 3D molecular
models, researchers have made remarkable efforts to develop more
efficient and reliable reconstruction methods (Table 2). At present,
the reconstruction method of the kerogen molecular model is overall
developing in two directions: more reliable and more significant in
molecular weight, which are complementary but incompatible with
each other. Reconstructing a more reliable molecular model requires
repeated trial-and-error, so the molecular weight is challenging to be
achieved on a large scale. The method based on MD simulation can
quickly reconstruct a sizable molecular weight kerogen model, but the
functional group structure is doubtful to match with the actual
sample. ML-based methods have powerful analysis capabilities for
complex problems and can be efficient and accurate. The kerogen
molecular models can be reconstructed based on experimental data
with high-throughput by ML. Therefore, we believe that the ML-
based method is most likely to integrate the benefits of the two major
directions of kerogen reconstruction and makeup shortcomings of
each other.

4. ML RECONSTRUCTION METHODS OF KEROGEN
MODEL

In accordance with the above statement, it can be seen that the
kerogen molecular model occupies the most effective pathway for the
study of kerogen’s chemo-mechanical properties. The researchers
have been working hard to explore reconstruction methods that are
more reliable, simple, and effective. However, because of the
complexity of the kerogen structure, current molecular model
reconstruction methods are still too complicated. The dilemma is
mainly manifested in the following two aspects: on the one hand,
determining the kerogen structure generally requires many experi-
ments such as NMR, XPS, FTIR, and pyrolysis. The comprehensive
analysis of the experimental information is required to reconstruct
organic molecules by experienced professionals. On the other hand,
the traditional reconstruction methods are time- and material-
consuming and labor-intensive because of the trial-and-error
processing. For these reasons, the kerogen in each mining area has
different structural characteristics due to the various origins and
geological evolution conditions. But only the kerogen models of a few
mining areas, such as Green River, are reconstructed. Almost all the
studies that have been carried out are based on these few kerogen
models. It is exceptionally unfavorable for exploring shale oil/gas
reserves and developing oil/gas in situ ripening technology.
Therefore, more intelligent and effective methods are urgent to be
developed for reconstructing the kerogen molecular models. In the
past decades, ML methods have grown rapidly and obtained
outstanding achievements in many fields.114 This novel method
makes it possible to realize the intelligent and high-throughput
reconstruction of kerogen. ML methods can automatically extract the
target features from massive training samples and establish the
implicit connection between input and target in the application. Of
course, a lot of time and material resources are required during the
process of labeling enormous samples. But once the ML neural

Table 2. Comparison of Different Kerogen Reconstruction Methods

methods refs advantages limitations

qualitative skeleton
reconstruction

103−106 indicates kerogen skeleton and cross-linking form unsuitable for molecular simulation

random
cross-linking

100,107−109 reconstruct the complete molecular model in the early stage of kerogen
research

depends upon precision of experimental
technology and lacks verification; the results are
difficult to be reliable

trial-and-error 53,110−112 more reasonable and higher reliability high cost but low reconstruction efficiency
MD-HRMC 93 repeated trial-and-error process is avoided chemical structural defects may occur
ML-based 113 high-throughput, intelligent and efficient, expected to reconstruct

macromolecular models that conform to functional groups directly
in the initial stage, and the reconstructed
molecules are still smaller than common big
kerogen monomer

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.2c03307
Energy Fuels 2023, 37, 98−117

106

pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c03307?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


network is trained, it can be used directly as an analysis tool without
the operator’s experience or theoretical and simulation skills.
4.1. Synopsis of ML Methods. The essence of ML is to capture

implicit rules from massive labeled samples and apply the predictive
capabilities for similar unknown problems. Therefore, the labeled
sample dataset is the essential prerequisite for the training of the ML
model. The designed ML neural network is the computational
framework, and the dataset can be regarded as the soul of the ML
method. The neural network model can be trained successfully only
when the two parts work together. During the training process, it is
necessary to input more than tens of thousands of qualified samples.
However, establishing a qualified database for the training of ML is an
extremely challenging project. Generally speaking, more than 80% of
the effort is spent on building the database while solving practical
problems by ML.

Generally, solving practical problems through ML methods is
mainly divided into three parts, data collection, feature engineering,
and suitable ML model design. Currently, many methods with
different characteristics are developed, such as support vector machine
(SVM), reinforcement learning (RL), fully connected neural network
(FCNN), convolutional neural network (CNN), recurrent neural
network (RNN), etc. The appropriate ML models are designed ML
model according to the characteristics of the research target.115,116 As
is exhibited in Figure 8, except for the reconstruction of kerogen
molecular models, the works of well completion designs and

mechanism of oil/gas production are also carried out based on ML
methods directly or indirectly. Therefore, ML methods have broader
application prospects in shale oil/gas research.
4.2. Feature Engineering and Database of ML. Feature

engineering in ML refers to the process of extracting the features from
the original sample information and reconstructing the selected
features to the form that can be used by the ML model.117,118

Reconstructing the original data through feature engineering is the
most critical part of the ML method. If the key sample features are
missing during the feature engineering, the performance of the trained
ML model will decrease or even fail. On the contrary, the
computational complexity will increase significantly if the redundant
features are contained in the processed samples. Therefore, the better
feature engineering scheme can effectively reduce the amount of
computation and improve the performance of ML algorithms.119

Since ML methods require large batches of labeled samples for
training, the following three characteristics should be considered: (1)
can be collected and labeled quickly with low cost, (2) can be
processed digitally, and (3) the rules between sample features and the
training targets are universal.

First of all, easy to be collected and labeled is the premise of
establishing ML datasets. The samples that can only be obtained
through experiments are often strenuous in large quantities. With the
development of simulation technology, more and more samples can
be obtained by simulation. The basis of ML model designing and

Figure 8. Application of ML methods in reconstructing kerogen model and extracting shale oil/gas.

Figure 9. Schematic diagram of two-dimensional equidistant folding and reconstruction of the NMR spectrum.
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training is that sample features can be processed digitally. Finally, the
ML methods refer to the deduction based on the training dataset. The
universal laws implied in the training dataset are learned and taken to
predict the unknown samples. But ML methods are powerless if there
are special cases in the problem.

NMR spectroscopy is the primary sample information for
reconstructing kerogen molecular models via ML. It is one of the
most commonly used tools for chemical structural analysis, as it
contains information on nuclei’s chemical shifts and peaks. The
chemical shifts of atoms are only affected by the adjacent functional
groups. The peak position represents the functional group type in the
molecule. The peak value denotes the content of a certain structural
unit.120−122 In general, only the sequential input feature information
on the same dimension can be entered into the ML models. And the
location of input features is practical for ML. Hence, Kang et al.
developed the one-dimensional (1D) and 2D reconstruction methods
of NMR spectral features according to the properties of NMR
spectra.123 As shown in Figure 9, the original NMR spectrum is
normalized and discretized into a 1D array. The information on the
abscissa is implicit in the position index of the sequenced NMR
spectra. Combined with the physical meaning of the NMR spectra, it
can be known that in the processed array, the index and the
corresponding value represent the structure and content of different
molecular functional groups, respectively. The merits of this NMR
spectral reconstruction method are the clear physical meaning, no
redundant features, and ease to be stored. The processing of unifying
NMR spectral features through discretization and sampling also
results in the loss of original sample information. However, this is an
inevitable process to support the NMR spectral features from different
sources successfully learned by neural networks.

The 1D reconstituted NMR spectra is suitable for the extraction of
simple molecular structural information but cannot meet the needs of
building the whole kerogen molecular model. The dimension of the
1D reconstructed NMR spectra is too large for the CNN. It is a
barrier for CNN to obtain correlation information between the distant
peaks in the NMR spectra. The convolution kernels are set in the
CNN to identify local parts of input features by sliding according to
different step size parameters. The computational cost of neural
network model training is significantly reduced. And the strong local
feature analysis capability of CNN is provided by the convolution
kernels. However, the connection of the extracted local information
can only be expressed in the deeper neural network layer because of
the limited receptive field, which weakens the ability to extract the
remote contact between features. So, if the target problem is affected
significantly by the relationship between the farther apart features, the
CNN is arduous to achieve the desired effect. And inferring molecular
structure from NMR spectra is one of these problems. In the analysis
of NMR spectra, information is processed at multiple levels as it
passes from the shallow CNN layer to the deep. Part of the NMR
spectral information will be lost, and it is thin for the deep network to
obtain the predictive ability of the entire molecular model from the
incoming information. Therefore, a method to fold the 1D sequence
of the NMR spectra into 2D is developed, as shown in Figure 9.113

The local and distant features of NMR spectra will be simultaneously
extracted by the 2D convolution kernels during the training process.
Thus, the connection between features will be reflected in the shallow
CNN layers, and information loss will not occur prematurely. The
better prediction accuracy of the trained ML model is performed
when reconstructing the molecular structural models.

Figure 10. Composition of sample molecular information in ML database.
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In section 3, various molecular information characterization
experiments are analyzed comprehensively in the traditional models
to improve the accuracy of reconstructed kerogen structural models.
Similarly, the multi-NMR spectra method can also be designed
through feature engineering to analyze different spectra comprehen-
sively. Kang et al. designed an input method and ML model for
combining 13C and 1H NMR spectra based on 2D NMR
reconstructed spectra. The prediction performance beyond any single
input spectral type is obtained. Theoretically, this spectral NMR
reconstruction method is suitable for other 2D spectra such as XPS,
FTIR, etc. Therefore, compared with the single-input form, the multi-
spectra way has more outstanding expansion capabilities and
potential.

Researchers have explored the exploitation, exploration, and
maturation of unconventional oil/gas reserves through ML
methods.124−127 However, there is no database of kerogen molecules
that can be directly applied to ML until now. The knots of building a
database are mainly manifested in three aspects. First, it is
complicated to obtain samples from mining areas. Shale oil/gas
reservoirs are mainly buried hundreds to thousands of meters
underground. Collecting sampling is laborious and expensive.
However, constructing a ML database requires many samples from
different mining areas, which is unrealistic. Second, the purification
and experimental determination of kerogen samples are expensive.
Current methods for determining unknown molecular structures
include FTIR, NMR, XPS, and Py-GC/MS. The manpower and
material resources to repeat tens of thousands of experiments are too
outrageous to estimate. As an amorphous substance, kerogen has a
complex molecular structure and various functional groups, which
often take much time to reconstruct a single kerogen molecular
model. Therefore, it is impossible to reconstruct tens of thousands of
qualified kerogen models to build the database by traditional
methods.

The chemical structural rules between NMR spectral features and
the corresponding molecular functional groups are learned by the ML
model during training. And all the molecules follow the same chemical
rules. Therefore, in the condition without sufficient kerogen molecular
samples, the existing other molecular structures can be selected as
samples to train the ML model. Then the predictive ability for various
spectral features is obtained by ML models. Hundreds of millions of
molecular samples are recorded in the open-source database, such as
PubChem, SuperNature II, etc.128−130 The molecular structures with
kerogen molecular characteristics and the constructed kerogen models
in published literature can be collected in the database by screening.
But the collected molecules cannot be used directly by the ML model
before labeling. In the research of intelligent and high-throughput
reconstruction of kerogen models by ML, more than one million
samples for the training of ML models are labeled by the Zhao group.
The NMR spectra, structural formulas, multimolecular fingerprints,
molecular hybridization information, etc. are included in the database,
as shown in Figure 10. It should be pointed out that the samples need
to be labeled one by one. So, establishing a database should take a lot
of time and patience to accumulate qualified samples. Therefore, it is

meaningful work to collect various information on kerogen through
feature engineering. The database can be used for intelligent high-
throughput reconstruction of the kerogen molecular model and is also
helpful for the study of various kerogen chemo-mechanical properties.
4.3. Kerogen Molecular Model Reconstruction by ML

Methods. With the development of artificial intelligence and
computing power, ML methods have obtained outstanding achieve-
ments in many fields.131 Researchers have tried to apply ML methods
to the reverse reconstruction of molecules.132,133 Due to the inherent
complexity of kerogen molecular models, the research is still in the
initial stage. There are few published works on the reverse
reconstruction of molecular models based on ML. However, it is
believed that the ML methods have broad application prospects and
application value in the intelligent reconstruction of molecular
models.114,132 Duvenaud et al. extracted the ML fingerprints end-to-
end by the CNN model. They demonstrated that these new
fingerprints are more interpretable and have better predictive
performance on various tasks.134 The data-driven molecular character-
ization model based on RNN was established to realize the encoding
and decoding of simplified molecular input line entry specification
(SMILES)135 structural formula and validated on molecular models
with less than nine heavy atoms.136 Winter et al. extended the model
to structures with molecular weights from 12 to 600 Da by training on
7.2 × 107 groups of samples.137 And the conversion between different
SMILES standards is achieved.138 Subsequently, the molecular models
were reconstructed reversely based on extended-connectivity finger-
prints (ECFPs).139,140 Although the work belongs to the reverse
reconstruction of molecules, the molecular fingerprint information
should be obtained through existing molecular models, which seems
to be a paradox.

The above-mentioned molecular characterization models based on
ML laid the foundation for the intelligent reconstruction of kerogen
via NMR spectra. In 2021, Kang et al. analyzed the structural
components of the kerogen molecular skeleton by combining ML
with the 13C NMR spectra and predicted kerogen types.123 The
prediction accuracy of each component is C: 96.1%, H: 94.8%, and O:
81.7%. The prediction accuracy of the three kerogen types can reach
about 90%. Ma et al. extracted the orbital hybridization and chemical
bond information from 13C NMR spectra to predict thermal maturity
via ML. The results showed that the average prediction error for
kerogen maturity was less than 5%. This work proves that the
proportion of sp2 carbons increases while sp3 carbons decrease during
kerogen maturation. Thus, the molecular structure of kerogen
gradually changes from the aliphatic to the aromatic structure (Figure
11). A new maturity index called OrbHMI is proposed based on the
relationship between orbital hybridization and maturity:54

OrbHMI 1
2.85 1.1C /(C C ) 0.1O /(O O )sp sp sp sp sp sp2 2 3 2 2 3

=
+ + +

(5)

Here, Csp2 and Csp3 represent sp2 and sp3 hybridized carbons,
respectively. Osp2 and Osp3 represent sp2 and sp3 hybridized oxygens,
respectively. As a result, the feasibility of ML methods to analyze

Figure 11. Mechanism of kerogen thermal maturation based on orbital hybridization.
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molecular structure information based on experimental spectra is
demonstrated. The ML neural network model was established with
1H NMR and 13C NMR 2D multi-spectra. The comprehensive
analysis of different spectra is realized to solve the combinatorial
explosion in kerogen reconstruction (Figure 12). The correlation
between multi-spectral and molecular models is established in ML
latent space during the training process. Thus, the ability to predict
the kerogen molecular models is obtained by ML neural network.
During the testing and predicting process, the multi-spectral of
unknown molecules are fed into a trained ML model. The input
spectral features are analyzed in latent space through a high-
throughput way. Then the reconstructed molecular SMILES
structures are outputted at the end of the ML model. Neither manual
intervention nor trial-and-error is demanded in the molecular
reconstruction. Finally, the maturity, types, and other chemo-
mechanical properties of kerogen can be acquired from further
analysis and simulations.

The predictive that the performance exceeded any single spectral
input form is learned. The molecular similarity141,142 of 82.51%
reconstructed unknown kerogen molecules is greater than 80%, and
54.78% of the total molecules are matched with the target. The
parameters such as kerogen skeleton components, types, and maturity
are analyzed based on the reconstructed molecular models. The
prediction accuracy is between 92.1% to 99.5%, and the
determination coefficient R2 exceeds 0.932.113 Compared with the
previous models for single structural information, the prediction
accuracy of the new model has been significantly improved. As is
shown in Figure 13, different types of kerogen molecular models can
also be reconstructed by the ML method, which illustrates the
effectiveness of the ML method in reconstructing the kerogen
structure more clearly. The results exhibit wonderful performance for
the intelligent high-throughput reconstruction of kerogen molecules
by the ML method. The molecular weight of the reconstructed model
is about 1/4−1/8 of the commonly used maximum molecule in the

Figure 12. Schematic diagram of using machine learning to construct the kerogen molecular models intelligently.113 Reproduced from ref 113.
Copyright 2022 American Chemical Society.

Figure 13. Different characters of the predicted kerogen molecular structures. (a) Chains of aliphatic carbon. (b) Condensed aromatic ring
structures. (c) Aromatic and aliphatic ring structures. (The gray, white, and red represent C, H, O atoms, respectively.).
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kerogen matrix until now. Still, it is suitable for the asphalt
model143−145 and part of the kerogen molecular matrix. Also, the
predicted molecules can be regarded as the functional groups of the
super-large kerogen monomer molecular model. Then the kerogen
monomer model can be obtained by combining the predicted
functional groups.

The molecular structural model contains all the structural
information of kerogen. Hence, compared with the ML method of
predicting the single kerogen structural parameters, the higher
prediction accuracy, and wider applicability are obtained via the
reconstruction of kerogen structural models based on ML. Even more,
the chemical bonding rules of components are learned by ML models
during the training of reconstructing kerogen models. Under the
guidance of unified laws, the number of atoms, bonds, and the
bonding position of each group will be corrected with each other. The
predictive accuracy of obtaining structural information is improved. It
is an essential reason that the predictive performance of constructing
the whole kerogen models is better than the ML model of predicting
single-parameter.
4.4. Application of ML Methods in Shale Oil/Gas

Exploitation. Researchers have developed various prediction models
based on ML methods to evaluate the impact of oil well properties,
reservoir characteristics, and well production behaviors. With the help
of ML simulation and modeling, the exploitation characteristics of
shale oil/gas reservoirs are quickly analyzed, saving the exploration
cost.146−148 Due to the shale oil/gas production characteristics of
rapid decay and gradual recovery, various parameters such as oil/gas
well location, geological conditions, petrophysics, etc., must be
considered comprehensively.149 Hence, oil/gas production is
challenging to be predicted even with ML-based methods.150 In
addition, the training of ML models requires massive data from shale
oil/gas reservoirs. Collecting and labeling a large number of qualified
training samples is also a very tough task. The well geological
characteristics, well completion design, location of well, shale
wettability, and reservoir quality are often adopted as dataset to
optimize the well design and oil/gas production.151−153 Shahkarami et
al. collected data from more than 800 wells under different drilling
and hydraulic fracturing parameters and normalized the 25 input
characteristics to estimate the production behavior of oil wells.154

Also, the completion and stimulation parameters of nearly 2700 wells
are used to predict the Marcellus shale’s initial production and
optimize the oil wells.155 The SVM algorithm is proposed to evaluate
the oil/gas saturation of the Ordos shale reservoir.156

Various components are contained in the shale, and the
heterogeneous distribution of each component in the shale will affect
its mechanical parameters, permeability, etc. Therefore, it is
challenging to establish a simple mathematical model to describe
the heterogeneous shale. The study of the shale mechanical properties
is helpful in improving the understanding of the formation mechanism
of fracture networks in shale oil/gas reservoirs. ML provides a new
way for oil/gas shale research because of the robust analysis and
modeling capabilities for complex issues.157 Currently, the research on
shale exploration using ML is mainly based on SEM images, and
image analysis is one of the strong fields in ML.158 Thus, selecting
SEM images to study the shale characters is a very convenient and
practical cut-in point. The CNN and conditional generative
adversarial network method are proposed to enhance damaged
shale SEM images. More importantly, the images similar to SEM can
be predicted through nondestructive transmission X-ray microscopy
images. The technique can preserve samples for further tests without
damaging shale samples.159 Pores and mineral composition in shale
SEM images were divided by the ML method.160 The pore
distribution in shale and the transportation capacity of oil/gas
transport channels were further analyzed.161 ML and finite element
simulation were combined to establish a model for predicting the
elastic modulus of shale. It is believed that the ML method could be
extended to predict the elastic modulus of other heterogeneous
materials.162 In addition, image recognition technology was used to
develop a strategy for predicting permeability based on low-resolution
scanning microscope images of porous media.163 And the porous

media can be built via generative adversarial networks, the efficiency is
higher than the traditional numerical methods.164

Besides the shale image-based studies, researchers also apply ML to
establish methane adsorption models in shale.165 The methane
adsorption curve was successfully predicted by ML, which can be
easily applied to optimize the shale gas production curve. It is noted
that the new implicit prediction model based on ML is a new model
that is different from the traditional adsorption models.166 The 352
groups of samples from the literature are analyzed and an explicit
adsorption model is established through gene expression program-
ming, and the correlation coefficient of predicted results is 0.9837.
The parameters of pressure, temperature, water content, and total
organic carbon content are concluded in this model.167 Although
Amar exhibits the mathematical expression of the adsorption model,
the mathematical form of this model is extremely complex. It is still
the forward propagation process of parameters in the ML neural
network. The relationship between the terms is still chaotic to explain,
so it is essentially a ML implicit model.

Compared with traditional experimental and finite element
simulation methods, ML is more efficient with lower labor and
material resources costs. In addition, it can quickly and implicitly
establish a model for complex problems, which is convenient for
promotion in engineering. The benefits have led to the rapid
development of ML methods as a new and powerful tool beyond
experimental and simulation. However, the implicit model established
by ML usually does not have a concise mathematical explanation.
Hence, even if high prediction accuracy is obtained by the trained ML
models, it is challenging to explain the actual physical meaning and
role of each neuron in the ML models. Thus, the ML model may not
be conducive to establishing a model of abstract physical concepts.168

5. CHALLENGES AND PERSPECTIVES
The ML methods provide the novel way for kerogen
reconstruction and oil/gas exploitation. The pros of the trial-
and-error and MD methods can be combined to reconstruct
the kerogen macromolecular model with accurate functional
groups through ML-based methods. It is expected to
completely solve the cons of traditional reconstruction with
the high cost and low efficiency. And there is no need for
professional intervention during the reconstruction process.
So, ML-based methods are more intelligent and conducive to
industrial promotion. Also, the excellent application potential
in complex shale reservoir exploitation and drilling design is
exhibited. Preliminary results of kerogen reconstruction and
shale oil/gas exploration are achieved by ML. However, the
development of ML-based methods in shale oil/gas research is
still in the initial stage. The complex kerogen and other
macromolecules are beyond the ability of the current ML
models. The analysis of in situ maturation of oil/gas reservoirs
and the mechanism of oil/gas generation and migration also
need to be further developed. The key challenges of ML-based
methods are mainly concerned in three directions: database
building, ML model, and feature engineering design.
In terms of the sample database, new simulation tools need

to be developed with high-performance computers to expand
the training samples and types of spectra. With the molecular
scale expansion, the predictive ability of the current models to
reconstruct the unknown molecules completely matched with
the target will decrease gradually. The ability can still be
improved by collecting and labeling more training samples or
adding the spectral types of current samples. However, an
exponentially increased sample number is required and is time-
and cost-consuming under the present experimental and
simulated conditions. Thus, it is necessary to collect as many
training samples as possible through continuous accumulation.
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It should be emphasized that a robust database is a prerequisite
for the realization of ML methods.
In terms of ML model design, as the scale of the molecule

increases, the number of neural network layers in the decoder
will increase accordingly. The gradient disappearance/
explosion may appear in the network’s deep layers, failing
training. There is a lot of research on gradient disappearance/
explosion, which can be alleviated by weight initialization,
gradient clipping, etc. Unfortunately, there is still no effective
method to solve it completely.20 For the result of this, the
SMILES-style character length of the target molecule is limited
to approximately 100 or less. Therefore, the better ML neural
network models must be designed to improve the decoding
length. AlphaFold successfully predicted the 3D protein
structure of the determined amino acid sequence and caused
a considerable sensation in the biological study. Protein has
only 22 amino acids, and each amino acid can only be
connected one-to-one, so it is very different from the
reconstruction of the kerogen molecular structure. However,
the idea of the AlphaFold combining expert system, residual
neural network, and the self-attention mechanism to build the
ML model provides a new idea to reconstruct larger-scale
kerogen molecular models.169,170 Among the developed neural
network models, the authors believe that Transformer171 is the
most promising way for reconstructing larger molecular weight
kerogen molecular models. In Transformer, the multi-head
attention is used to replace the RNN and the sequences are
calculated in parallel, which improves the computing efficiency.
The transformer effectively solves the problem of remote
forgetting of RNN and reduces the risk of gradient
disappearance/explosion. However, the prior information
(such as sequence order) is not taken in Transformer, and
the computational complexity is increased with the sequence
length n by square times (O(n2)). Transformer has significant
sequence prediction ability, but more samples are required
during training. It still needs to be selected according to the
number of collected samples in the application.
The new experimental spectral reconstruction plan in the

design of feature engineering will also be helpful for the ML
methods. One is to compromise on the intelligent index from
the perspective of ease of implementation. The methods
should be developed to divide the NMR spectrum into several
sub-spectra reasonably, according to the characteristics of the
NMR. After the sub-spectra is constructed by the trained
model, the complete structures can be combined with the
original spectrum by traditional methods. The constructed
structures are finally fine-tuned by traditional methods for the
larger molecules according to the relationship between
similarity and structures. The other is to extend the ML-
based technical route completely. However, this way is more
challenging, and the new reconstruction plans may need to be
designed in combination with new ML methods.
As for the complex problems, such as sweet spots prediction,

well completion design, and so forth, that are affected by
multiple factors in the research of shale oil/gas exploitation,
the data-driven supervised ML methods are indeed the best
choice at present. However, there are two different ways in the
mechanism study of the in situ ripening and oil/gas adsorption,
desorption, and migration combined with MD and ML. One is
to combine unsupervised ML methods to analyze the oil/gas
generation behavior, even establish the theoretical model via
ML. This way may be more convenient and effective than the
data-driven supervised ML methods. On the other hand, ML

methods can be used to develop the new MD potential fields
or directly combine with simulation methods to improve the
computational efficiency and accuracy of simulation methods
and then indirectly enhance research on oil/gas extraction.

6. CONCLUSIONS
In this work, the fundamental importance of kerogen molecular
models, the development of kerogen reconstruction methods,
and the application of ML are introduced briefly. Some
recommendations for further research are suggested. Generally,
it is necessary to determine the mechanism of adsorption/
desorption, maturity evolution, and in situ ripening bottom-up
through kerogen molecular models while exploring shale oil/
gas. Thus, the high-efficiency and high-accuracy reconstruction
of kerogen molecular models are the cornerstone of kerogen
chemo-mechanical research. For decades, with the blossom of
simulation and experiment methods, researchers have con-
tinuously extended more accurate reconstruction methods of
kerogen and achieved excellent achievements. However, the
traditional methods require experienced professionals to adjust
the molecular structure through repeated trial-and-error on the
basis of various experimental spectra and approach the
reconstructed kerogen molecular model closer to the actual
sample. Therefore, the reconstruction methods of trial-and-
error not only consume a lot of time and material resources but
also have extremely low reconstruction efficiency. Recent years
have witnessed the rapid development of ML on high-
complexity problems because of the vital analysis capabilities
via big data. Intelligent and high-throughput prediction
without human intervention is the most prominent advantage
of ML methods. The ML-based methods are designed to
predict the kerogen molecular models and the mechanism of
oil/gas generation and exploration. Although the ML research
on unconventional oil/gas is still in the exploratory stage,
superior achievements have been obtained. It is believed that
state-of-the-art ML is the most promising method to realize
intelligent high-throughput reconstruction of kerogen molec-
ular models and can be widely used in oil/gas production
predicting, in situ ripening, etc. Thus, developing ML-based
methods has remarkable significance for the exploration of
shale oil/gas.
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