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A B S T R A C T   

The scatter in fatigue data is commonly characterized by probability distributions for constructing the proba
bilistic S-N curves. However, there is notable estimation bias under distribution misspecification. In this paper, 
we proposed a quantile regression framework for modeling S-N curves. The quantile regression model can be 
built directly on the experimental data without any distribution assumption. Extensive simulations and two 
experimental datasets are used to illustrate the usefulness of the proposed model. The results demonstrate that 
the quantile regression model is exempt from the problem of incorrectly specifying the potential fatigue life 
distribution and is robust to the non-constant scale problem.   

1. Introduction 

Engineering systems often fatigue and fail catastrophically when they 
are subjected to repeated stress over a long time [12,29,44,37]. Fatigue 
life, defined as the number of stress cycles under cyclic loading [15], is an 
important indicator to evaluate the fatigue rule, and then applied for 
reliability design in engineering [24,21,6,40,36]. The S-N curve is an 
important criterion to depict the relationship between cyclic stress and 
fatigue life [20,5,13]. However, fatigue in materials mainly originates from 
microscopic material flaws to grow into a macroscopic crack under cyclic 
stress conditions, so the fatigue test results usually exhibit large dispersion 
due to the fluctuation of microscopic imperfections in distributions and 
sizes [12,30,34]. Therefore, it is virtual important for evaluating the 
dispersion of fatigue life by extending the median S-N curve into the p 
quantile S-N curves, namely probabilistic S-N (P-S-N) curves, a general
ization that relates the p quantile of fatigue life to the applied stress [6]. 

The variability in stress-life datasets is usually described by proba
bility distribution to enable the construction of the P-S-N curves for 
design. Some early research assumed a normal distribution for fatigue life 
[9,31]. Most of the previous studies in probability S-N assumed that the 
fatigue life follows a log location scale distribution, where the lognormal 
and Weibull distributions are the two most commonly used distributions 
for the analysis of the probabilistic behavior of fatigue failure [28]. 

For example, ISO 12107:2003 assumed that the fatigue life followed 
a lognormal distribution to derive the P-S-N curves [15]. However, the 

variances of fatigue lives at all stress levels are considered the same. Xie 
et al. converted all data on fatigue into equivalent stress values and the 
lognormal distribution was used for P-S-N curves [39]. A hierarchical 
Bayesian model integrated with Hierarchical Bayesian data augmenta
tion was proposed to deal with sparse data problem for fatigue S-N 
curves, where the fatigue life was assumed to follow a lognormal dis
tribution with heteroscedasticity at different stress levels [6]. Chen and 
Liu proposed a probabilistic physic-guided neural network for P-S-N 
curve estimation by modeling both the mean and variance of fatigue life 
with a lognormal assumption [7]. Zu et al. proposed a novel S-N curve 
modeling method with uncertainty theory, and the logarithm failure life 
was assumed to follow normal uncertainty distribution [42]. 

Since the Weibull distribution was put forward in 1939 [35], 2- 
parameter or 3-parameter Weibull distributions have been frequently 
used to analyze fatigue life data [41,4,33,17,14]. For instance, Júnior 
and Belísio associated the Weibull probability equations with the usually 
applied formula when constructing the S-N curves for composite mate
rials, which are the power law and the exponential equation and their 
generalizations [16]. The lognormal distribution, the 2-parameter 
Weibull, the Gumbel, and the 3-parameter Weibull modes were adop
ted by Mohabeddine et al. to assess the fatigue behavior of fiber rein
forced polymer retrofitted specimens [22]. 

It is worth noting that a major limitation of most existing stress-life 
models is that they have assumed a specific distribution for fatigue life 
data. However, life quantiles, which are of interest to engineering 
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applications, may differ significantly between a hypothetical distribu
tion and the actual distribution [25]. In addition, most previous works 
considered a constant dispersion parameter at all stress levels, which has 
been found inappropriate in many applications, for example, metal fa
tigue and many electronic wear-out failures. 

Motivated by the fact that a lower quantile of the fatigue life distri
bution under service conditions is of particular interest in fatigue 
problems, this study proposes a quantile regression (QR) framework for 
fatigue data analysis. Firstly, we establish an QR model for P-S-N curves, 
which can effectively estimate the conditional quantile of the distribu
tion of fatigue life, and no specific distribution assumption for the fa
tigue life data is required. This means that our approach is robust to the 
underlying distributions. Secondly, we readily dealt with the hetero
scedasticity in the framework via allowing the dispersion parameter to 
be a function of the stress. Thirdly, multiple probabilistic S-N curves can 
be simultaneously obtained by stepwise quantile regression estimation 
with non-crossing constraints. 

2. Preliminaries on quantile regression 

Regression is applied to quantify the association between a depen
dent variable and some independent variables. The QR approach pro
posed by Koenker and Basset [18] is a vital progress in regression 
analysis, which is more appropriate for asymmetric and long-tailed 
distributions or when the tails of the underlying distributions are of 
interest for modeling extreme behavior [18]. A great number of research 
and applications indicate that the QR has a lot of advantages. One of the 
most attractive merits is its ability to estimate full conditional quantile 
effects that depict the impact of independent variables not only on the 
median but also on the tails of the distribution of the dependent variable. 

Let yi denotes the i-th observation of the dependent variable and xi 
represents the corresponding independent variable vector. The linear 
QR model with p-th quantile (0 < p < 1) for the dependent variable yi 
given xi as. 

yi = xT
i βp + εi, i = 1, 2,⋯, n, (1)  

where βp is the regression coefficient vector, εi is the error term whose p- 
th quantile is assumed to be zero. 

The conditional median and other quantile functions can be esti
mated by minimizing asymmetrically weighted absolute residuals. That 
is, βp can be estimated by minimizing the following loss function: 

1
n
∑n

i=1
ρp(yi − xT

i βp) . (2)  

where ρp(⋅) is the check (or loss) function, which satisfies ρp(u) = pu if 
u > 0 and ρp(u) = (p − 1)u ifu⩽0. An illustration of the check function 
with several distinct values of p is shown in Fig. 1. Although the check 
function is not differential at the points with zero residuals, it has 
directional derivative in all directions. Therefore, the standard linear 
programming can be used for minimizing Eq. (2). 

3. Methodology 

For n specimens, they are performed in the fatigue life test at m stress 
levels, in whichS1 < S2 < ⋯ < Sm, and there are ni fatigue data obtained 
at the i-th stress level. Then the fatigue data is{(Si,Nij), i = 1,2,⋯,m, j =

1, 2, ⋯ni}, where Nij expresses the fatigue life of the j-th specimen at 
stress level Si and

∑m
i=1ni = n.. 

The fatigue properties of products or materials are determined by 
testing a set of specimens over different stress levels to construct a fa
tigue life relationship as a function of stress. In engineering applications, 
a linear stress-life curve (on a log–log scale) is generally assumed [43], i. 
e., the Basquin relation [3]: 

Nij = AS− B
i , (3)  

where A > 0 and B > 0 are the fatigue curve coefficients which are 
shared across stress levels. 

The linear expression is obtained by taking the logarithm trans
formation of Eq. (3), 

logNij = logA − BlogSi . (4) 

Denotexi = logSi, yij = logNij, α0 = logA, α1 = − B, Eq.(4) can be 
rewritten as. 

yij = α0 +α1xi . (5) 

Scattering is inherent to fatigue data due to several sources related to 
the experimental variability and the discrepancy of product quality. 
Hence, the fatigue life is random in nature. Consider the logarithm fa
tigue life y and the logarithm stress level x following the general 
relationship. 

yij = α0 +α1xi + σ(xi)⋅εij , (6)  

where σ(xi) > 0 is a deterministic scale function, and εij is an arbitrary 
random variable which determines the distribution ofyij. Next, the 
quantile regression is firstly constructed under the constant assumption, 
namely,σ ≡ σ(xi) > 0, then we extend it to the case with non-con
stantσ(xi).. 

3.1. Derivation of P-S-N curves with constant scale function 

We firstly assume the scale σ is a constant. Let Qyij |xi (p) and Qεij (p)
denote the p quantile of yij and εij givenxi, respectively. Based on Eq. (6) 
and the equivariance property [19], we have. 

Qyij |xi (p) = α0 + α1xi + σ⋅Qεij (p) . (7) 

In contrast to regression model that focuses onE(yij) = α0 + α1xi, 
quantile regression aims to describe the quantile relationship shown in 

Fig. 1. Illustration of the check function.  

Table 1 
Summary of simulation scenarios.  

Distribution of fatigue life N Location parameter Scale parameter σ(x)

Lognormal α0 = 12, α1 = − 3 σ(x) = 0.5 
Lognormal α0 = 12, α1 = − 3 σ(x) = 0.5 − 0.15x 
Weibull α0 = 12, α1 = − 3 σ(x) = 0.5 
Weibull α0 = 12, α1 = − 3 σ(x) = 0.5 − 0.15x 
Log-Logistic α0 = 12, α1 = − 3 σ(x) = 0.5 
Log-Logistic α0 = 12, α1 = − 3 σ(x) = 0.5 − 0.15x  
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Eq. (7). The Eq. (7) can be rewritten as. 

Qyij |xi (p) = β0(p)+ β1(p)xi , (8)  

where β0(p) = α0 +σQεij (p) andβ1(p) = α1. 
Given the logarithm fatigue data{(xi,yij),i = 1,2,⋯,m,j = 1,2,⋯ni}, 

the parameter vector θ(p) = (β0(p), β1(p))
T can be estimated as. 

θ̂n(p) = argmin
θ

∑m

i=1

∑ni

j=1
ρp(yij − β0(p) − β1(p)xi) . (9) 

With the estimated parameter vectorθ̂(p), the p quantile of the log
arithm failure life at the applied logarithm stress x can be predicted 
asQ̂y|x(p) = xT θ̂n(p), wherex = (1, x)T. Under some regularity conditions 
which can be found in [19], 

̅̅̅
n

√
(θ̂n(p) − θ(p)) converges to a normal 

distribution with zero mean and covariance matrix. 

∑

θ(p)

= lim
n→∞

nσ2p(1 − p)
f 2(F− 1(p))

[
∑m

i=1
nixixT

i

]− 1

, (10)  

wherexi = (1, xi)
T, f(⋅) and F(⋅) are the probability density function and 

cumulative distribution function of random variable ε, respectively. Ac
cording to the theory for convergence of transformed random sequences, 
the forecasted quantile Q̂y|x(p) is consistent and asymptotically normal 
[19]. With the delta method, its asymptotically variance is as follows. 

Var(Q̂y|x(p)) =
1
n
xT

0

∑

θ(p)

x0 . (11)  

3.2. Derivation of P-S-N curves with non-constant scale function 

When the stress not only impacts the location parameter but also 
impacts the scale parameter of the distribution of y, unequal scale 
function σ(x) is required. In addition, for the majority of engineering 
materials, the standard deviation of fatigue life commonly decreases 
with increased cyclic stress levels [8,32,10]. Therefore, we assume σ(x)
is a linear function ofx, i.e.,σ(x) = a0 + a1x. According to Eq. (6), the p 
quantile of yij can be written as. 

Qyij |xi (p) = β0(p)+ β1(p)xi , (12)  

where β0(p) = α0 +a0Qεij (p) andβ1(p) = α1 + a1Qε(p). After this refor
mulated, we can see that Eq. (12) is same as the Eq. (8), which is appealing 
since we do not need to judge whether the scale parameter is constant in 
advance. Hence, the parameter vector θ(p) is also estimated by Eq. (9). 
Like the constant scale case, the estimator θ̂n(p) is consistent and 
asymptotic normal. However, the asymptotic covariance matrix shown in 
Eq. (13) differs slightly from Eq. (10) because of the heterogeneity. 

∑

θ(p)

= lim
n→∞

nσ2p(1 − p)
f 2(F− 1(p))

[
∑m

i=1

nixixT
i

a0 + a1xi

]− 1[
∑m

i=1
nixixT

i

][
∑m

i=1

nixixT
i

a0 + a1xi

]− 1

.

(13) 

In practical application, the explicit solution of Eq. (10) and Eq. (13) 
may not be available due to the unknown distribution ofε. As an alternative, 
we can employ the bootstrap to compute the standard deviation for θ̂n(p)
and also no need to know whether σ depends on the stress or not. 

Fig. 2. Probabilistic characteristics of three distributions at the stress level 200 MPa. (a & b) The probability density function with different scale parameters: (a) σ =
0.5, (b) σ = 0.5–0.15x; (c & d) The cumulative distribution functions with different scaling parameters: (c) σ = 0.5, (d) σ = 0.5–0.15x. 
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3.3. Non-crossing and monotonicity constraints 

According to definition, for any given fixed values of the stress levels, 
conditional quantile regression functions are increasing functions in 
terms of quantiles p. However, separately estimated QR functions 
commonly cross each other, especially when the samples are small to 
moderate. It is annoying and undesirable for further utilization and 
interpretation of theses QR functions. In addition, each survival proba
bility S-N curve should be non-increasing over stress (strain) levels. 
Motivated by Wu and Liu [38], we incorporated the above two points 
into QR models by imposing several linear inequality constraints to 
obtain reliable estimates of quantiles. For the convenience of expression, 

denote pk0 as the start quantile, and the shorthand notation β0,k 
forβ0(pk), β1,k forβ1(pk), respectively. The detailed algorithm as follows: 

Step 1: Initialize: While any percentile could be chosen as the starting 
point, some references [38,23] suggest using the p = 0.5 as the starting 
quantile since usually it has the lowest variance, therefore, the estimated 
quantile function is relatively more accurate. Here, we also start from the 
middle. The linear programming based on Barrodale and Roberts algo
rithm [1] can be applied to obtain parameter estimates β̂0,k0 

andβ̂1,k0
. 

Step 2: For k = k0 +1,⋯, k0 +K (‘higher’ quantiles), we consider the 
estimation of β0,k+1 and β1,k+1 based on β̂0,k and β̂1,k by solving. 

Fig. 3. Boxplot of the prediction errors at 10% failure probability under four applied stress levels. 50 samples are drawn at each stress level. Two different scale 
parameter scenarios are considered: (a, c, e) the homogeneous scenario, (b, d, f) the heteroscedasticity scenario. And three different underlying distributions: (a, b) 
the lognormal distribution; (c, d) the Weibull distribution, (e, f) the log-logistic distribution. 
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min
β0,k+1 ,β1,k+1

∑n

i=1
ρpk+1

(yi − β0,k+1 − β1,k+1xi)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

β0,k+1 > 0, β1,k+1 < 0,

β0,k+1 + β1,k+1xmin > β̂0,k + β̂1,kxmin,

β0,k+1 + β1,k+1xmax > β̂0,k + β̂1,kxmax.

(14) 

Step 3: For k = k0 − 1,⋯, k0 − K (‘lower’ quantiles), we consider the 
estimation of β0,k− 1 and β1,k− 1 based on β̂0,k and β̂1,k by solving. 

min
β0,k− 1 ,β1,k− 1

∑n

i=1
ρpk− 1

(yi − β0,k− 1 − β1,k− 1xi)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

β0,k− 1 > 0, β1,k− 1 < 0,

β0,k− 1 + β1,k− 1xmin < β̂0,k + β̂1,kxmin,

β0,k− 1 + β1,k− 1xmax < β̂0,k + β̂1,kxmax.

(15)  

Fig. 4. Boxplot of the prediction errors at 10% failure probability and 15 samples are drawn at each stress level. Two different scale parameter scenarios are 
considered: (a, c, e) the homogeneous scenario, (b, d, f) the heteroscedasticity scenario. And three different distributions are given as: (a, b) the lognormal distri
bution; (c, d) the Weibull distribution, (e, f) the log-logistic distribution. 
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4. Simulated data experiments 

In this section, the performance of the QR is compared with some 
existing parametric regression approaches, such as the regression model 
with Weibull distribution assumption (WBR) and the regression model with 
the lognormal distribution assumption(LNR), by using several simulation 
studies based on the Eq. (6). Three different distributions (Lognormal, 
Weibull, and Log-logistic) are simulated to demonstrate the property 
of distribution-free, and both the constant (σ = 0.5) and non-constant (σ =

0.5–0.15x) variances are considered for demonstrating the robustness of 
the proposed model to heteroscedasticity. The different scenarios, a total of 
3x2 = 6 combinations of simulation conditions, are summarized in Table 1. 
The visual simulation distributions at the stress level 200 MPa are shown in 
Fig. 2. The distributions of the probability density function (Pdf) are shown 
with considering the homogeneous scenario in Fig. 2a and the hetero
scedasticity scenario Fig. 2b, respectively. Fig. 2c and d are the distri
butions of the cumulative distribution function (Cdf) with considering the 
homogeneous scenario and the heteroscedasticity scenario, respectively. 

For each simulation model, we firstly simulate 50 samples at 4 stress 
levels which are 150 MPa, 250 MPa, 350 MPa, and 450 MPa, respec
tively. The fatigue life and stress levels are logarithms transformed with 

Table 2 
Fatigue life data of aluminum alloy 2524-T4 [27].   

Stress level (MPa)  

371.7 411.7 451.7 490.3 530.3 550.3 

No. Cycles life to failure given stress 

1 213,100 131,800 78,400 51,100 31,700 27,200 
2 218,900 133,900 79,200 53,200 32,400 27,600 
3 222,500 136,700 79,800 53,500 33,200 28,900 
4 234,000 137,100 82,300 54,200 33,700 29,300 
5 241,500 139,300 85,800 55,000 35,500 29,900 
6 246,800 140,100 86,000 57,000 35,700 30,100 
7 248,600 140,400 86,600 57,000 35,900 30,600 
8 251,200 145,700 88,100 57,200 36,000 30,700 
9 251,300 145,900 88,500 57,700 36,500 30,800 
10 252,700 146,000 88,700 58,400 36,800 30,900 
11 255,600 146,900 89,300 58,500 37,000 30,900 
12 261,600 148,600 90,300 59,200 37,000 31,000 
13 261,600 148,600 90,800 59,300 37,200 31,200 
14 262,400 148,800 92,200 59,800 37,500 31,200 
15 262,900 149,400 92,500 59,800 37,500 31,700 
16 265,300 152,500 93,200 60,900 37,600 31,800 
17 265,700 153,600 93,400 61,400 37,600 31,900 
18 268,700 154,200 93,700 61,400 37,900 32,100 
19 274,000 155,000 94,100 61,600 38,200 32,400 
20 280,500 155,800 95,300 62,500 38,600 32,400 
21 282,100 156,200 95,500 62,900 39,400 34,900 
22 284,800 156,700 95,600 63,000 39,600  
23 287,900 157,100 96,300 63,100 40,300  
24 289,300 159,200 96,600 63,300 40,500  
25 306,200 160,900 96,700 63,400 40,700  
26 310,100 161,000 99,200 63,600 40,800  
27 323,600 163,900 99,500 63,900 40,900  
28 326,200 164,300 107,500 66,700 41,000  
29 340,200 168,400 107,700 67,700 41,300  
30 343,200 183,200 110,600 70,000 42,700   

Fig. 5. Predictability to the probability S-N curves derived by two different models in log–log coordinate. (a) QR model, (b) ISO method.  

Table 3 
Variations of logarithm fatigue life.  

Stress levels 371.7 411.7 451.7 490.3 530.3 550.3 

Variations 2.84e− 3 1.01e− 3 1.35e− 3 1.01e− 3 1.04e− 3 0.58e− 3  

Table 4 
List of experimental durability data for the S420MC steel [45].  

Sj nj Nj Sj nj Nj 

204 1 946,200 232 6 488400, 380500, 
567000, 
701800, 553000, 
630,000 

207 1 1,851,500 248 6 286700, 376900, 
488300, 
650100, 585900, 
698,500 

210 1 1,281,700 250 6 313700, 256900, 
238800, 
323500, 213700, 
389,000 

211 1 1,215,000 267 3 199400, 194000, 
224,800 

214 8 628100, 1307600, 1316000, 
1410600, 851900, 1566600, 
959900, 1,159,400 

268 6 120800, 139800, 
159100, 
187100, 219600, 
238,600 

219 2 1095800, 1,499,200 271 3 259500, 313000, 
346,100 

221 1 1,926,800 286 9 61600, 119400, 81600, 
132000, 130000, 
104300, 
97400, 175600, 136,500 

224 2 1999500, 997,600 295 3 136800, 129900, 
151,400 

229 6 690600, 730500, 1009600, 
1555800, 1358000, 
1,447,200     
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base 10. For the LNR model, parameters α0 and α1 are estimated by least 
square estimation, and the scale parameter σ is estimated based on the 
sum of squares error [15]. For the WBR model, the parameters are 
estimated by maximum likelihood. It should be noted that both above 
two regression models assume a constant parameter over all stress 
levels. For the proposed QR model, conditional quantile functions are 

estimated from 0.01 to 0.99, step by 0.01. The performance of QR, LNR, 
and WBR are compared by 5000 repetitions. 

The 0.10 quantile and 0.05 quantile, that is 90 % and 95 % survival 
probability, under four stress levels (200 MPa, 300 MPa, 400 MPa, and 
500 MPa) are obtained from the estimated models. To evaluate model 
performance, prediction errors between the true quantile value and 

Fig. 6. Reliability of the 2024-T4 aluminum alloy at different stress levels. (a) Reliability results from the QR model (solid lines) and the K-M model (dotted lines). (b) 
Reliability results from the ISO model (solid lines) and the K-M model (dotted lines). 

Fig. 7. 99% probability of survival P-S-N curve with 95% confidence tolerance bound with two different models in log–log coordinate. (a) QR model, (b)ISO method.  

Fig. 8. P-S-N curves derived by the QR and ISO in log–log coordinate. (a) QR, (b) ISO.  
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estimated quantile value are computed. Fig. 3 displays the boxplot of the 
prediction errors at 10 % failure probability under distinct simulation 
scenarios. Fig. 3a, c, and e show the prediction errors with three under
lying distributions (Lognormal, Weibull, and log-logistic distributions in 
order) at the same constant scale parameter, i.e., σ is 0.5, and Fig. 3b, d, 
and f show the results at the non-constant scale parameter σ = 0.5–0.15x. 
The boxes symmetric with respect to the zero value mean the estimations 
are unbiased. In the homogeneous variance simulation scenario, the LNR 
model and the WBR model are unbiased only when the underlying dis
tribution is lognormal and Weibull, respectively. In contrast, the pro
posed QR model generally obtains unbiased estimations under all 
underlying distributions. In the heteroscedasticity simulation scenario, 
we can see that the proposed QR model still performs satisfactorily under 
all underlying distributions. However, the prediction errors of the two 
parametric models are all seriously biased. We further explore the 
robustness of the QR model for extreme value behavior, such as 5 % and 
2.5 % failure probability. The boxplots of the prediction errors at 5 % and 
2.5 % failure probability under distinct simulation scenarios are shown in 
Figs. A1 and A2. We can see that the QR model also shows satisfactory 
performance in comparison with the other two models. 

Due to the fatigue test usually being time-consuming and costly, it is 
difficult to carry out plenty of experiments. Therefore, we also simulate 
the scenario where only 15 samples are drawn for each stress level, and 
the estimation errors at 10 % failure probability are shown in Fig. 4. 
Similarly, the QR model gives the most satisfactory and almost unbiased 
estimation results for any underlying distributions. The predictability of 
the QR model at the two extreme failure probability conditions (5 % and 

2.5 %), which is commonly concerned in engineering, is then checked 
and shown in Figs. A3 and A4. The above simulation results clearly 
reveal that the QR model is more appropriate to robustly estimate the P- 
S-N when the underlying distribution of failure life is unknown. In 
addition, it is also robust to heterogeneous variance. 

5. Verifications 

In order to further verify the performance of the QR model, we 
compared it with the ISO method [15] on two widely used real datasets, 
aluminum alloy 2024-T4 [27] and S420MC steel [45] in this section. The 
detailed experimental data are listed in Table 2 and Table 4. 

5.1. 2024-T4 aluminum alloy data 

The dataset of the fatigue life of aluminum alloy 2524-T4, as listed in 
Table 2, totally contains 171 experimental data points with 6 applied 
stress levels. Fig. 5a and b show the predicted probability S-N curve from 
the QR model and the ISO method, respectively. The median S-N curve 
(blue line in Fig. 5) for depicting the relationship between stress and 
cycle life, which means 50 % failure probability S-N curve, obeys well 
the Basquin relation in Eq. (3). We also show 5 % (black dotted line) and 
1 % (red dotted line) failure probability S-N curve in Fig. 5. They both 
show the linear relationship in log–log coordinate predicted from the QR 
model in Fig. 5a and the ISO method in Fig. 5b. We observed in Fig. 5a a 
slight difference of the slope of the S-N curves at different failure 
probabilities. Namely, the QR model reveals the stress level-related 

Fig. 9. Reliability of the S420MC steel at different stress levels (a) QR reflected by the solid line, and dash dot denotes K-M. (b)Solid lines are ISO and dash dot are K-M.  

Fig. 10. 99% probability of survival P-S-N curve with 95% confidence tolerance bound in log–log coordinate. (a)QR, (b)ISO.  
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distribution properties from the experimental data. Restricted by the 
same underlying distribution assumption, the slopes of the S-N curves at 
different failure probabilities in the ISO method are the same. 

To verify the stress level-related distribution property, we statistic 
the variations of the logarithm fatigue life at each stress level in Table 3. 
We can see that the variance of the logarithmic life at the highest stress 
level is far lower than that at the lowest stress level. To further deter
mine whether or not the variances between serval stress levels are equal, 
we applied Bartlett’s Test [2] based on a chi-square statistic. In partic
ular, we wish to test the following null hypothesis: 

H0 : σ2
1 = σ2

2⋯ = σ2
k  

against the alternative that variances are not equal for at least two stress 
levels, where k is the number of stress levels. Here, the Bartlett’s chi- 
square value is 18.793, and the p-value is 0.0021 far lower than the sig
nificance level of 0.01. This means we reject the null hypothesis with 
sufficient evidence and conclude that the variances across stress levels are 
heterogeneous. So the performance of the QR model is more reasonable. 

The Kaplan-Meier (K-M) estimator, also known as the product limit 
reliability estimator, is the most widely applied method to estimate the 
reliability function (the survival function) of the product life without 
any assumptions on the underlying distribution. Hence, the K-M esti
mator is applied for the fatigue reliability evaluation. As shown in Fig. 6, 
the reliability of the 2024-T4 aluminum alloy at different stress levels 
based on the QR model and ISO are compared with the K-M estimators. 
Firstly, compared to the K-M, both the QR model and ISO are conser
vative. Secondly, the reliability of the 2024-T4 aluminum alloy gradu
ally decreased with the service cycles, which means that the fatigue 
failure of the 2024-T4 aluminum alloy increases gradually as the service 
time increases. In addition, the higher the stress level, the higher decline 
rate of the fatigue reliability curve. 

When fatigue failure data are limited, the estimation of probabilistic 
S-N curve becomes uncertain [26]. Hence, it is necessary to establish the 
lower tolerance limit of the fatigue life at a given failure probability p. 
Here, we employed a pairwise bootstrap [11] for the lower tolerance 
limit of the P-S-N curve obtained from the QR model. Specifically, a 
bootstrap data set,(x*

1,y*
1),(x*

2,y*
2),⋯,(x*

n,y*
n), is first generated by random 

sampling with replacement from the test data(x,y). Then the bootstrap 
regression coefficient vector. 

β̂
*
(p) = argmin

β(p)

∑n

i=1
ρp(y

*
i − x*

i β(p))

are calculated. Furthermore, the p quantile of fatigue life Q̂(p) can 
estimated. Repeating above process r times we can obtain rQ̂(p), and its 
lower α percentile is approximated as the lower tolerance limit. Fig. 7 
shows the 1 % failure probability S-N curve with 95 % confidence 
tolerance bound in log–log coordinate. It can be seen that the gap be
tween the 95 % confidence tolerance bound and the 50 % tolerance 
bound is very small, which indicates sample size at each stress level is 
enough for the QR model which is quite robust. 

5.2. S420MC steel 

The QR model was also verified on an S420MC steel dataset, and the 
detailed experimental process was described in [45]. A total of 65 spec
imens broken before 2 million load cycles are applied to estimate the 
S420MC S-N curves and its scatter. The experimental data and S-N curves 
with different failure probabilities are described in log–log coordinate 
(Fig. 8). Fig. 8a and b give the predicted probability S-N curves of the QR 
model and the ISO method, respectively. It can be seen that for both 
models, around 50 %, 95 %, and 99 % of the test fatigue failure data are 
above median S-N curve, 5 % failure probability S-N curve, and 1 % 
failure probability S-N curve, respectively. More specifically, the ISO 
model is more conservative than the QR model when the failure 

probability is 1 %. In addition, we can see all the P-S-N curves are parallel. 
According the Bartlett test, the chi-square value is 9.862, the freedom 
degree is 11, and the p-value is 0.5428. This means the null hypothesis 
cannot be rejected that the variances across all the stress levels are ho
mogeneous. In the Bartlett test, at least two observations are required for 
each group, so a total of 60 specimens from 12 stress levels are tested. 

The reliability of the S420MC steel at some stress levels are presented 
in Fig. 9. We can see that both models are more conservative than the K- 
M estimator when the reliabilities are high. For 232 and 250 stress 
levels, when reliabilities are between 50 % and 80 %, the service cycles 
estimated by the QR model are similar to the K-M estimators while the 
estimators of the ISO model are more radical than the K-M estimators. 

Fig. 10 shows the 1 % failure probability S-N curve with a 95 % 
confidence tolerance bound in the log–log coordinate. As we can see the 
gaps between the 95 % confidence tolerance bound and the 50 % 
tolerance bound initially decreases when the stress level decreases until 
down to 200 MPa, and then the gap continues to increase as the 
decreasing of the stress level. This means the uncertainty of the quantile 
regression at higher stress levels and the low-stress level outside of the 
range of the experimental data is larger than that at the stress level 
around 200 MPa, which may cause by less arranged tests. For more 
specific, a total of 25 specimens are tested between 204 MPa and 229 
MPa, and 63 specimens are tested between 232 MPa and 295 MPa. 

6. Conclusions and discussions 

In this work, we present a novel framework for the estimation of 
probabilistic S-N curves in fatigue of materials based on the extended 
quantile regression (QR) model. We firstly extended the traditional QR 
model by imposing some linear inequality constraints to ensure some 
physical sounds in applications of fatigue problems of materials, e.g. 
non-crossing and monotonic of the estimated multiple probabilistic S-N 
curves. And the applicability of the extended QR model was then veri
fied with some different conditions: simulation data with different un
derlying distributions, homoscedasticity and heteroscedasticity, and 
experimental datasets with different engineering material types. In 
compared with the currently adopted estimation model of probabilistic 
S-N curves, the QR model can be built directly on the experimental data 
without any distribution assumption for the fatigue life. The massive 
numerical comparisons demonstrate that the QR model is exempt from 
the problem of incorrectly specifying the potential fatigue life distribu
tion, and is robust to the non-constant scale problem. 

To approach the extended QR model using for the estimation of 
probabilistic S-N curves in fatigue of materials, there are several issues 
merit further exploration. The first one is regarding the application 
conditions of the proposed model to the fatigue problems of real engi
neering materials. To address this issue, we investigate the performance 
of the proposed model with different conditions: three distributions 
(Lognormal, Weibull, and log-logistic distributions), two variance sce
narios (homoscedasticity and heteroscedasticity), and two different fa
tigue datasets of metallic materials (the aluminum alloy 2524-T4 and the 
S420MC steel). The proposed model shows great applicability and 
robustness under those conditions. The applicability of the proposed 
model can be further verified by fatigue datasets under more different 
conditions, such as, fatigue operations, engineering materials, etc. Sec
ondly, the extensions in the model may further be explored. In this paper, 
we employed the simplest Basquin model to build the relationships be
tween fatigue life and stress level, and noting that the model has better 
performance effect on medium and large database. Some small sample 
methods can be further explored in the framework of quantile regression 
since the fatigue test usually being time-consuming and costly. 
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Appendix A 

See Figs. A1 and A2, A3 and A4. 

Fig. A1. Boxplot of the prediction errors at 5% failure probability under four applied stress levels, and 50 samples are drawn at each stress level. The left panel shows 
the prediction errors in the constant scale scenario, and the right panel are the prediction errors in the non-constant scale scenario. 
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Fig. A2. Boxplot of the prediction errors at 2.5% failure probability under four applied stress levels, and 50 samples are drawn at each stress level. The left panel 
shows the prediction errors in the constant scale scenario, and the right panel are the prediction errors in the non-constant scale scenario. 
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Fig. A3. Boxplot of the prediction errors at 5% failure probability under four applied stress levels, and 15 samples are drawn at each stress level. The left panel shows 
the prediction errors in the constant scale scenario, and the right panel are the prediction errors in the non-constant scale scenario. 
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Fig. A4. Boxplot of the prediction errors at 2.5% failure probability under four applied stress levels, and 15 samples are drawn at each stress level. The left panel 
shows the prediction errors in the constant scale scenario, and the right panel are the prediction errors in the non-constant scale scenario. 
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