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The integration of stiff ordinary differential equation (ODE) systems associated with
detailed chemical kinetics is computationally demanding in practical combustion sim-
ulations. Despite the various approaches in expediting the computational efficiency, it
is still necessary to optimise the cell-wise calculation in operator-splitting type sim-
ulations of reactive flow. In this work, we proposed an improved stiff-ODE solver
framework targeting to speed up the simulation of reactive flow in OpenFOAM.
This framework combines the Radau-IIA and backward differentiation formula (BDF)
ODE-integration algorithms, the pyJac-based fully analytical Jacobian formulation,
and dense-based LAPACK and sparse-based KLU sophisticated linear system solvers.
We evaluate the performance of the efficient solver framework on various benchmark
combustion problems across a wide range of chemical kinetic complexities. A com-
prehensive investigation of the key elements of stiff ODE solvers is conducted in the
homogeneous reactor, focusing respectively on the influences of error tolerance, inte-
gration time interval, Jacobian evaluation methodology, and linear system solver on
the accuracy and efficiency trade-off. More realistic simulation results are presented
regarding the one-dimensional laminar flame and three-dimensional turbulent flame.
The results indicate that the Radau-IIA is more preferable in both efficiency and accu-
racy compared with the widely used BDF and Seulex methods for large integration
interval, whereas the differences between three methods diminish as the integration
time interval decreases. In all cases, it is found that the full analytical Jacobian is
more advantageous for small mechanisms of species number around 50–100 while the
approximated formulation of Jacobian is recommended for larger ones. Furthermore,
the more robust linear system solvers provide significant improvement on computa-
tional efficiency with the dense-based LAPACK solver being more suitable for small
to moderate-scale mechanisms while sparse-based KLU being superior for large-scale
mechanisms. The proposed efficient solver framework in its optimal configuration
obtains more than 2.6 times speedup in realistic high-fidelity flame simulation with
a 57 species combustion mechanism.

Keywords: reacting flow simulation; detailed chemistry; stiff ODE; Jacobian;
linear system solver
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1. Introduction

Recently, accurate and affordable numerically predictive tools for chemical reactive flows
become indispensable in the design and optimisation of combustion devices [1]. Com-
monly, numerical simulations of reactive flows employ an operator-splitting approach to
solve chemistry in a fractional step within which the temporal evolution of composition is
only dependent on the local thermochemical state. Those chemistries can be described by
stiff and nonlinear ordinary differential equations (ODEs), where the stiffness stems from
the huge disparities between the characteristic chemistry timescales of different reactive
species [2]. Correspondingly, in high-fidelity simulations involving finite rate chemistry,
chemistry evaluation comprises the most computationally demanding part of the simula-
tions [3]. Despite the development of techniques to accelerate the computation such as
the chemistry mechanism reduction or dynamic adaptive chemistry [4,5], storage/retrieval
tabulation [6,7], cell-clustering method [8,9], hardware-based acceleration [10], and com-
binations of these approaches [11], all these acceleration strategies still require accurate
yet efficient stiff ODE solvers tailored for cell-wise calculations.

To be specific, in finite-rate chemistry approach, the computational cost associated with
the chemistry solution originated from three major aspects, including the ODE-integration,
Jacobian evaluation, and linear system solution. The numerical algorithm of an ODE inte-
grator decisively determines the order of accuracy and computational efficiency. Owing to
the better efficiency and stability, chemistry systems are commonly solved using implicit
integration methods, among which the multi-step, backward differentiation formulation
(BDF) method [12,13] is the most widely used one for combustion simulations [14].
Despite its high-order of accuracy, BDF method suffers from the re-initialisation problem
and is prone to accumulation error, since it always starts with low-order approximation
and builds up higher order successively [15,16]. To alleviate the concentration of compu-
tational cost at the beginning of every iteration, Imren and Haworth [15] resorted to an
extrapolation-based method namely Seulex. The Seulex algorithm applies semi-implicit
Euler method on the recursively partitioned sub-intervals and successively improves the
solution accuracy through high-order projection [17]. As a one-step method, Seulex
requires less information to reinitialise integration and achieves better performance than
BDF method [15].

As it stands, the Seulex method is also a variant-order method like BDF, while the
cost of reaching high order of accuracy through the increasing number of sub-intervals
would somehow become a bottleneck for highly stiffed chemistry ODEs. These deficien-
cies inspire the exploitation of the implicit Runge–Kutta method (IRK) with fixed-order
of accuracy. With this type of algorithm, the startup overhead is lower and the maximum
order of accuracy is available immediately on the first iteration with a relatively larger
internal time step. However, to the authors’ knowledge, only a few showcases have been
made with relatively simple configurations [16,18], and applications of the IRK method in
reactive flow simulations associated with detailed chemistry still remain insufficient.

Generally, the implicit integration algorithms form non-linear systems whose roots are
found iteratively by variant Newton methods hence systems of linear algebraic equations
have to be solved. Nevertheless, OpenFOAM’s native stiff ODE solvers employ basic
method of LU decomposition, which is generally expensive because the computational
cost scales cubically with respect to the size of the system [19]. To expedite the matrix
operation, Morev et al. [20] made use of the standard linear algebra library (LAPACK) and
gained an order of magnitude calculation speedup for small-scale chemistries. However,
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with dense matrix representation, their implementation is more suitable for solving small
matrix (< 500 × 500) and its performance may deteriorate for large and sparse matrix
associated with detailed chemistries. On the contrary, for large-scale chemistry systems,
sparse representation was found to be more efficient than the dense one, whose computa-
tional cost could achieve linear dependence on the size of the system [21]. Unfortunately,
Morev et al.’s observations were made based on two relatively small-scale skeletal mech-
anisms comprising 21 and 54 species respectively, whereby the high-performance linear
system solvers leveraging sparse matrix algebra, are still lacking.

As for the evaluation of Jacobian matrix J involved in the Newton iteration, it con-
tributes to another important part of the computational budget. Conventionally, J is
obtained by the finite differencing method, which may be an expensive operation depend-
ing on the scale of the chemical mechanisms. Lu et al. suggested that the computational
cost of evaluating J scales quadratically with respect to the number of reactions [2].
In order to cope with the increasing computational demand of these operation with the
increase in mechanism size, a variant of chemical Jacobian approaches have been devel-
oped aiming at either preconditioning or approximating the chemical Jacobian matrix
[14,21–23]. For steady-state reacting flows simulations, the diagonal approximation has
been frequently invoked [24–26], which eliminates the expense of inverting the large block
matrices that arise when species conservation equations are involved. This is accomplished
by replacing the chemical Jacobian matrix by a diagonal matrix that is tailored to account
for the fastest reactions in the chemical system. Nevertheless, they were argued to be inap-
propriate for time-accurate simulation of unsteady flows [25]. Many previous efforts have
shown that sparse analytical Jacobian is more preferred when solving the ODE system with
tight error tolerances [27–29].

The analytical Jacobian formulation exploits the functional forms of chemical reactions
and thermodynamic properties to perform analytical differentiating. The constructing pro-
cess is thus dependent on the treatment of different reaction types. Apparently, Jacobian
formulation regarding elemental reaction dictated by Arrhenius kinetic law is relatively
straightforward, whereas for more complex reaction behaviours such as third-body and
pressure-dependent reactions, the evaluation of analytical Jacobian becomes challenging.
In order to cope with the issue which leads to dense lines in the Jacobian matrix for each
species participating in third-body reactions, several approximation approaches [14,21]
were devised to ensure better computational efficiency and matrix sparsity. Specifically,
in OpenFOAM version 7 [30], an approximation approach proposed by Schwer et al. [31]
was implemented to maximise the computational efficiency of analytical Jacobian, by cre-
ating high sparsity at the expense of embedding numerical inaccuracies in the Jacobian.
However, we have found that this approximation is more suitable for large-scale mecha-
nisms with sparse Jacobians but fails to gain a fast solution for small- to medium-scale
mechanisms featuring dense Jacobians. Consequently, the extent to which Jacobian eval-
uation formulation would influence the overall computational accuracy and efficiency is
still elusive.

In the present work, we devise a new stiff chemistry solving methodology tailored for
accurate yet efficient reactive flow simulations in OpenFOAM by targeting the afore-
mentioned three major issues. First, an IRK integration algorithm, namely Radau-IIA,
is implemented to improve the computational performance of the stiff ODE-integration
algorithm in OpenFOAM. Second, we exploit standard linear algebra libraries, including
both dense-based and sparse-based methods to further expedite the ODE calculation proce-
dure by replacing the native LU decomposition and back substitution operating algorithm
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in OpenFOAM standard library. Third, we introduce a fully analytical Jacobian (FAJ) for-
mulation using the pyJac library, and demonstrate its efficacy in the fast calculation of
chemistry problems and the trade-off between efficiency gain and numerical accuracy in
various combustion layouts.

The remainder of this paper is arranged as follows. In Section 2, the numerical method-
ologies regarding the ODE-integration algorithms, the Jacobian evaluation formulations,
and the linear system solvers as well as their numerical implementation are briefly pre-
sented. Then, we demonstrate the correctness and computational efficiency of the new
integral chemistry solving framework against benchmark combustion problems and a well-
established experimental configuration (Sandia Flame D) and discuss the implications of
the results in Section 3. Finally, the conclusions are given in Section 4.

2. Numerical methodologies and their implementation

2.1. Principles of solving stiff ODEs

For combustion flow simulations using an operator-splitting method, the evolution of
chemistry in the reacting fractional step is governed by the ODEs:

dφ

dt
= f (φ) (1)

where φ = [T , Y1, Y2, . . . , YNs ]
T is the local thermochemical state, Ns is the number of

species and f (φ) = ∂φ

∂t = [Ṫ , Ẏ1, Ẏ2, . . . , ẎNs ]
T is the chemical source term. Essentially,

chemistry is solved by integrating Equation (1) over a computational time step �tCFD:

φ(t0 + �tCFD) = φ(t0) +
t0+�tCFD∫

t0
f (φ(t))dt (2)

The nonlinear initial-value problem given by Equation (2) can be obtained using
Newton iteration, where a succession of linear equations is solved whose solution even-
tually converges to the solution of the nonlinear problem. Correspondingly, to advance
the solution over a subinterval (�tODE) of the computational fluid dynamic (CFD) time
step �tCFD from time tn to tn+1, the problem can be linearised as follows by neglecting
higher-order terms of O(�t2

ODE):

(I − αJn�tODE)(φn+1 − φn) = G(�tODE, f n) (3)

where α and G(�tODE, f ) are respectively the model coefficient and modified source term.
Solving Equation (3) from Equation (2) requires an efficient stiff ODE solving frame-
work comprising three major components: (1) ODE-integration algorithm, (2) Jacobian
evaluation formulation, and (3) linear system solver. Subsequently, the efficient numer-
ical framework proposed in the present work will be briefly summarised in the three
aforementioned aspects.

2.2. Time-integration algorithms

Three different ODE-integration algorithms are considered: an implicit Runge–Kutta
method (Radau-IIA), an extrapolation method (Seulex), and the BDF method, wherein
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the Radau-IIA method will serve as the main workhorse while the other two are used for
comparison. The general form of s-stage Runge–Kutta method reads:

Gi = f

⎛
⎝φn + �tODE

s∑
j=1

aijGj

⎞
⎠ , i = 1, . . . , s (4)

φn+1 = φn + �tODE

s∑
i=1

bif (Gi(tn + ci�tODE)) (5)

in which aij and ci are model coefficients [17]. In the present work, the 3-stage fully implicit
Runge–Kutta method, namely Radau-IIA, is employed. This method was first established
by Ehle [32] based on the Radau quadrature [17]. As an implicit method, Radau-IIA is
L-stable and of relatively high order (with a fixed order of 5), which means that this method
could handle problems with extreme stiffness. Moreover, a method of this high order indi-
cates that large integration steps can be taken for stringent error tolerance conditions. An
automatic time step size control strategy is adopted using a combination of theoretical and
heuristic relations to achieve the prescribed error tolerance.

To evaluate the numerical accuracy of the implemented Radau-IIA method, we resort to
the BDF method as in the CVODE package [33]. In the BDF method, chemistry integration
is linearised as a multi-step relation:

j∑
i=0

αiφn+1−i = �tODEβf (φn+1) (6)

where φn+1−i are the known state vectors evaluated at the past integration steps and j
is the number of previous steps included to construct the current approximation, which
determines the accuracy order p. φn+1 is the state vector to be evaluated at the current
integration, and αi and β are the coefficients of BDF method [34,35]. BDF method is A-
stable only for p ≤ 2, and A(α) stable for p ≤ 6 [17]. For this reason, the BDF method
usually takes a maximum order no larger than 6 (typically 5). Furthermore, in the BDF
method, a low order approximation with very small �tODE is used at the beginning of
each �tCFD and then builds its highest order of accuracy. Such character leads to signif-
icant cost concentration at the beginning of each integration, which causes considerable
efficiency deterioration when the CFD time step �tCFD is relatively small. Furthermore,
the BDF method in CVODE package uses the direct solvers for the linear systems, which
requires more accurate Jacobian formulation than the iterative preconditioned methods
[14]. This hinders its computational speedup potential under approximated Jacobian for-
mulations, wherein more internal iterations are needed for the integration based on less
accurate Jacobians.

As the BDF method is introduced by coupling with external CVODE package, hence
the computational efficiency comparison between Radau-IIA and BDF methods is not
straightforward. Hence, the Seulex method shipped with the OpenFOAM standard ODE
solver library is taken as the benchmark mainly for efficiency assessment. The Seulex
method is an extrapolation-based algorithm that uses a sequence of lower-order solutions
to project high-order approximation of φ(t0 + �tODE). This method splits the integration
step �tODE into several sub-intervals hk = �tODE/nk , where nk is defined by a sequence
[17]: n1 < n2 < n3 < . . . nk (i.e.: 2, 3, 4, 6, 8, 12, . . . ). Afterward, in each sub-interval, a
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first-order semi-implicit Euler method is used to solve Equation (3) using the sub-interval
size hk . The low-order solution is then used to successively build higher-order approxi-
mations via the Aitken-Neville Algorithm [15,17]. As Imren and Haworth suggested that
the Seulex method offers significant advantages in accuracy and computational efficiency
compared to the BDF method [15], it has become the most preferred stiff ODE solver in
the OpenFOAM platform nowadays [36].

2.3. Jacobian evaluation methods

The Jacobian matrix J is filled with partial derivatives of energy and species equations
as J1,1 = ∂Ṫ

∂T , Jk+1,1, = ∂Ẏk
∂T , J1,j+1 = ∂Ṫ

∂Yj
and Jk+1,j+1 = ∂Ẏk

∂Yj
, where k = 0, . . . , Ns and j =

0, . . . , Ns. The first three entries are dense, while the remaining part of the Jacobian matrix
Jk+1,j+1 contains the species mass fraction temporal derivatives with respect to species
mass fractions. As a matter of fact, sparsity of the Jacobian formulation descends from the
sparsity of the stoichiometric coefficients matrix ν ′ and ν ′′. However, when third-body and
pressure-dependent reactions are considered, the involvement of more colliding partners
leads to dense lines in the Jacobian matrix for each species participating in such complex
reactions.

To improve the computational efficiency, two main approximations are assumed in the
present work. First, since the analytical Jacobian formulation in pyJac [29] is mass fraction
based, it is typically dense because all thermo-chemical variables are coupled through the
following relation.

Jk+1, j+1 = Wk

ρ

(
∂ω̇k

∂Yj
− ω̇k

ρ

∂ρ

∂Yj

)
(7)

wherein ρ denotes the density of the mixture, while Wk and ω̇k are the molecular weight
and overall production rate of the kth species. Correspondingly, the approximation was
made by keeping ρ fixed to increase the sparsity of the Jacobian. Recently, Imren [36] has
conducted a comparative study on this approximation with the molar and molar concentra-
tion based Jacobians, in which comparable solution accuracy was achieved by these three
approaches.

Second, because species can be coupled through third body in pressure-dependent reac-
tions, any species involved as a reactant or product in a third-body reaction has a dense
row for chemical Jacobian. Since the number of species having enhanced third-body
molecularity coefficients is usually limited, the approximation proposed by Schwar et al.
[31] was employed. In this approach, a more efficient storage of the molecularity coef-
ficient βj,k = 1 − αj,k was devised. Thus, only the nonzero entries of βj,k corresponding
to the species, which has an enhancing behaviour toward modifying the average collision
frequency, need to be stored and considered in computing the effective molecularity val-
ues. Subsequently, the row in Jacobian matrix related to the species, which participates
in third-party reactions are almost completely removed, and only the columns contain-
ing derivatives with respect to species with enhanced molecularity coefficients remain
nonzero. This approximation results in a much sparser matrix layout and maximises the
computational efficiency of the analytical Jacobian.

Although, Equation (3) ensures that the accuracy of J does not influence the accuracy
of the converged solution, the convergence rate of Newton iterations is dictated by the
accuracy of Jacobian and an over-simplified J may cause failures in convergence. The



Combustion Theory and Modelling 63

Newton iteration would encounter step rejection and the ODE integrator may use a reduced
internal integration step, which adversely affects the total efficiency of the ODE solvers.
Additionally, providing more accurate J is also favourable for time-integration algorithms
to reduce the frequency of evaluating J . In Morev et al.’s recent work [20], they also
found that the native AAJ formulation fails to deliver a fast solution to stiff ODE with tight
ODE convergence tolerances. In this regard, a full analytical Jacobian (FAJ) formulation
introduced by Niemeyer et al. [29] as pyJac library is utilised for comparison in the present
work. With both FAJ and AAJ formulations, we will demonstrate in the following sections
that the accuracy of J requires a judicious balance between the convergence of Newton
iteration, the Jacobian sparsity as well as linear equation solving.

2.4. Linear system solvers

Each iteration requires solving a linear system, hence linear algebra can dominate the
computational cost if unsuitable methods are employed. In the original implementation of
OpenFOAM, the system of linear equations is solved by the native Gaussian elimination
method with LU decomposition and back substitution (referred to as native linear solver,
NLS), which is found to be inefficient for solving dense matrix of small-scale chemistry
[20]. Correspondingly, we replaced the native LU decomposition and back substitution
operations with more robust subroutines in the LAPACK library [37].

However, as the size of the chemical mechanisms increases, the inherent sparsity of the
combustion chemistry suggests that a sparse matrix representation should be preferred.
As a result, for large-scale chemical kinetics, sparse matrix representation with associ-
ated sparse matrix algebra is implemented in the present framework. Following Imren and
Haworth [15], the advanced sparse matrix algebra is realised by the latest version of the
KLU library which is a part of the SuiteSparse package [38]. It should be noted that for high
fidelity simulation with detailed chemistries as we are concerned, the involved chemical
mechanisms may span a wide range in the number of species and reactions. As a matter of
fact, the question here is to determine suitable combinations of ODE-integration algorithm,
Jacobian evaluation formulation, and linear system solver for a certain level of chemistry
complexity, which is one of the main concerns for the present study.

The details of code implementation covering the three aforementioned aspects are sum-
marised in Appendix 1. In the present work, all source codes are compiled using GCC-4.85
complier with optimisation flag-O3 enabled and all simulations were executed on Intel
Xeon X5670 2.93 GHz CPU. Besides, to preclude the influence of load imbalance due
to parallel computing, all simulations were performed using a single core. To eliminate
any variability caused by cache warmup or other processes, five repeated calculations will
be performed to obtain the average execution time when comparing the computational
efficiency.

3. Results and discussion

3.1. Homogeneous ignition problem

The performance of the new ODE solvers is firstly investigated in the constant-pressure
adiabatic ignition problem. All simulations are performed with the chemFOAM solver.
Three major aspects, namely the ODE-integration algorithm, Jacobian evaluation formu-
lation, and linear system solver are comprehensively evaluated.
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Table 1. Simulation condition and numerical configuration of ethylene-air auto-ignition problem.

Initial temperature [K] 1200
Pressure [atm] 1.0
Equivalence ratio φ 1.0 for C2H4 and Air
CFD time step (�tCFD) [s] 10−6

End time (tend ) [s] 10−3

Absolute error tolerance (εa) ε1
a = 10−14, ε2

a = 10−16

Relative error tolerance (εr) 10−3–10−8

Linear system solver NLS
Jacobian evaluation method AAJ

3.1.1. Integration algorithm

Auto-ignition simulations of the stoichiometric ethylene-air mixture are performed using
the 57-species, 269-reactions UCSD mechanism [39] with an initial temperature of 1200 K
under atmospheric pressure. Most ODE solvers require the specification of two conver-
gence criteria, i.e. an absolute tolerance (εa) and a relative tolerance (εr), to determine
when the nonlinear problem has been solved to sufficient accuracy. However, because of
the differences in the order of accuracy of the ODE solvers, the usage of the tolerances
internally in each solver and the accumulation in round-off errors, it cannot assume that all
solvers will yield a solution of the same global accuracy under the same convergence cri-
teria. Therefore, two absolute tolerance values ε1

a = 10−14 and ε2
a = 10−16 combined with

7 relative tolerance values εr ranging from 10−3 to 10−8 are considered.
The auto-ignition simulations for the ethylene-air mixture was performed with a fixed

CFD time interval �tCFD = 10−6s, which corresponds to a time scale relevant to reactive
flow simulation under engine-relevant conditions, and the total simulation time was set at
1.0 ms. The current comparisons focus more on assessing the ODE-integration algorithms,
hence the OpenFOAM’s native linear system solver (NLS) and approximated Jacobian
evaluation method (AAJ) were employed. The corresponding simulation condition and
numerical configuration can be found in Table 1.

For quantitative comparison, the numerical accuracy has been defined as the average of
relative differences between the calculated results and the reference values over the whole
integration interval and for all the cases.

ER(ϕi) = 1

Ncases

Ncases∑
j=1

1

tend

tend∫
t=0

∣∣∣∣∣
ϕi − ϕ

ref
i

ϕ
ref
i

∣∣∣∣∣ dτ (8)

where ϕi is the i-th component of the evaluated state vector and ϕ
ref
i is that obtained with

very tight tolerances (εa = 10−20, εr = 10−10) for the corresponding ODE-integration
algorithms.

From Figure 1, a general trend is shown that for a larger εa, the numerical accuracy is
less sensitive to εr, whereas using tighter εa incurring more computational cost. Regard-
ing the computational accuracy, with a larger εa, the εr has little influence on the global
prediction accuracy. However, with a tighter εa, influence of the εr is slightly different for
each ODE algorithm. The Seulex and Radau-IIA methods level off at large relative toler-
ance on the global prediction accuracy while BDF method shows a more gradual change
in accuracy with relative tolerance. This suggests that an appropriate combination of εa

and εr should be used to control the solution accuracy to the desired level. Figure 1(a)
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Figure 1. Influence of relative error tolerance εr on (a) the accuracy in temperature prediction and
(b) overall execution time for different ODE-integration algorithms in auto-ignition problem with
�tCFD = 10−6s for physical calculation time 10−3s.

also shows that for the same tolerance condition, the Radau-IIA method obtains the best
numerical accuracy. Regarding the computational efficiency, Radau-IIA again obtains the
best cost-accuracy trade-off among all three methods. Specifically, Figure 1(b) indicates
that the Radau-IIA method achieves this high accuracy while keeping the computational
overhead to a minimum level, obtaining orders of computational saving in comparison
with the Seulex method. When compared to the BDF method, the computational saving by
Radau-IIA is nearly two-fold which is slightly lower.

Furthermore, it can be found from Figure 2 that the order of accuracy of the ODE-
integration algorithms is the most influential factor in the cost-accuracy trade-off. Under
tight tolerance conditions, the higher order integration algorithms perform better as they
are allowed to take much-extended integration steps with comparable accuracy to that
of low-order methods. In the meantime, the larger integration step size further leads to
fewer function calls including both Jacobian evaluation and linear system solving. As
such, the BDF method suffers more from its low order start-up at each new CFD time
step causing a deficiency compared to the other two methods. Figure 2(b) presents the
mean number of Jacobian evaluations required by different ODE-integration algorithms
within each integration step, among which the Radau-IIA requires the least number of
Jacobian evaluations. Comparatively, although Seulex is allowed to take a much higher
order of accuracy (12 in this work), the cost of evaluating Jacobians would impairs its
computational efficiency.

As discussed earlier, the re-initialisation problem is a key issue when stiff ODE solver
is used as part of an operator-splitting strategy in combustion simulations. To this end, the
re-initialisation problem is demonstrated herein with 5 levels of reacting flow integration
interval �tCFD ranging from 10−6 to 10−3s with the total integration time tend being 10−3s.
The operating conditions are the same as that in Table 1 except that the error tolerance
conditions are fixed to be εa = 10−14 and εr = 10−4.

From the comparison in Figure 3(a), it is clear that with increasing the computational
time interval �tCFD, Radau-IIA becomes more efficient than the other two methods.
Figure 3(b) further confirms that this superiority of Radau-IIA is in some sense owing
to the reduced number of internal iterations by taking a larger integration step size. This
phenomenon is very similar to that reported by Stone [16] for the comparison of IRK and
BDF methods which would be attributed to the high order of the Radau-IIA method at the
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Figure 2. (a) The overall execution time under two levels of εa versus the mean normalised error
of computed temperature result; (b) Influence of relative error tolerance εr on the mean number
of Jacobian evaluations for each CFD time step (NJac) for different ODE-integration algorithms in
auto-ignition problem simulated with �tCFD = 10−6s for physical calculation time 10−3s.

Figure 3. Influence of the �tCFD on (a) the overall execution time for 10−3s physical simulation
time, (b) the number of sub-cycle internal iterations within each computational time interval �tCFD
for different ODE-integration algorithms in auto-ignition problem calculated using εa = 10−14 and
εr = 10−4.

start of each integration interval. This advantage shrinks if the size of integration interval
(�tCFD) is reduced. As can be seen in Figure 3(a), no obvious difference is observed for
all the three ODE-integration algorithms when �tCFD < 10−6 s.

Chemical mechanisms that range in size from 10 to 1389 species as summarised in
Table 2 are exploited to assess the performance of ODE-integration algorithms in han-
dling problems with various scales. Furthermore, to cover more thermochemical states,
18 initial value problems (IVPs) are considered for each mechanism, involving two pres-
sure conditions p = 1 and 5atm, three initial temperatures T0 = 800, 1000 and 1200K, and
three initial mixture equivalence ratios φ = 0.5, 1.0 and 1.5. Each case was integrated for
a total time of 3 ms containing the ignition instance with fixed �tCFD = 10−5 and 10−6s
respectively, and error tolerances conditions εa = 10−14 and εr = 10−4. The native linear
system solver (NLS) and approximated Jacobian formulation (AAJ) were employed. The
corresponding calculation conditions are given in Table 3.
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Table 2. Chemical mechanisms used in the present work.

Mechanism Fuel # Species # Reactions

Detailed H2 [40] H2 10 21
Detailed H2–CO [41] H2:CO = 1.0:1.0 in mole fraction 21 62
Skeletal C12H26 [42] C12H26 54 269
Skeletal C7H16 [43] C7H16 126 680
Skeletal C12H26 [44] C12H26 255 1509
Detailed n-heptane [45] C7H16 561 2539
Detailed PRF [46] C7H16 654 2827
Detail Gasoline [47] Gasoline surrogate 1389 5935

Table 3. Calculation conditions for chemistry mechanism size sweep.

Initial temperature [K] 800, 1000, 1200
Pressure [atm] 1.0, 5.0
Equivalence ratio φ 0.5, 1.0, 1.5
CFD time step (�tCFD) [s] 10−5,10−6

End time (tend ) [s] 3 × 10−3

Absolute error tolerance (εa) 10−14

Relative error tolerance (εr) 10−4

Linear system solver NLS
Jacobian evaluation method AAJ

To evaluate the computational efficiency, the speedup factor χ is used to quantify the
computational acceleration, which in defined by the ratio of the execution time of one
integration algorithm over that of the Seulex method:

χ = τ

τSeulex
(9)

As is illustrated in Figure 4(a), the Radau-IIA method maintains best efficiency across all
mechanisms which is further pronounced for more complex chemistries with a large num-
ber of species. Figure 4(b) also confirms the assertion that large �tCFD is favourable for
the Radau-IIA method. Nearly tenfold efficiency improvement over the Seulex method is
achieved by the Radau-IIA with large �tCFD. As a comparison, the BDF method performs
poorly when mechanism size scales up. All these degenerated performances are charac-
terised by a surge in the number of integration steps. However, this situation was found to
be implicitly caused by the approximation in Jacobian evaluations, which will be further
discussed in Section 3.1.2.

Figure 5 shows the profile of the computation budget for various time-integration
algorithms over different mechanisms with �tCFD = 10−6 s. Two major time-consuming
operations are considered: the LU factorisation (decomposition and back substitution)
and Jacobian evaluation. The comparisons suggest that LU factorisation contributes to
a dominant expense in large-scale mechanisms. For mechanisms of moderate size (100 ≤
Ns ≤ 500), the cost of the Jacobian evaluation is also non-negligible. These observations
emphasise the significance of improving the LU factorisation and Jacobian evaluation
subroutines, which will be further addressed in the following sections.
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Figure 4. Scaling of (a) the execution time per CFD time step �tCFD; (b) the speedup factor for
auto-ignition problem calculations with �t1CFD = 10−5 and �t2CFD = 10−6s.

Figure 5. Profiles of computation budget with different mechanisms in auto-ignition calculations
using (a) Seulex and (b) Radau-IIA in the simulation of auto-ignition problems with �tCFD = 10−6s.

3.1.2. Jacobian evaluation methods

The full and approximated analytical Jacobian formulations discussed in section 2.3 are
systematically assessed based on the configurations in Table 3. It is worth noting that to
isolate the influence of the Jacobian evaluation method, the OpenFOAM’s native linear
system solver (NLS) is employed. The �tCFD used in these calculations was set to 10−6 s.

As illustrated in Section 2.3, the effect of Jacobian evaluation methods on the over-
all efficiency of the stiff ODE solver is complicated and varies with ODE-integration
algorithms and complexity of the chemistry. When the chemical mechanism size is small
(Ns ≤ 100), J is essentially dense, thus the extra sparsity obtained with the AAJ method
is marginal, whereas the inaccuracy would be detrimental to the convergence of Newton
iterations. As can be observed in Figure 6(a), a boost in efficiency is observed for all three
integration algorithms if FAJ formulation is provided. However, this trend gradually ter-
minates when the size of the mechanism becomes larger, as it will be more expensive to
construct Jacobians to a theoretically accurate extent. This can be found by comparing
Figure 6(b,c) that the fraction of Jacobian evaluation expands for moderate-to-large scale
mechanisms if FAJ formulation is used.



Combustion Theory and Modelling 69

Figure 6. (a) Comparison of speedup factor versus the mechanism size with FAJ and AAJ formu-
lations. The execution time profiling of the Seulex ODE-integration algorithm with (b) AAJ and (c)
FAJ in the simulations of auto-ignition problem with �tCFD = 10−6 s.

Additionally, different ODE-integration algorithms suffer differently from the less-
accurate Jacobian obtained by AAJ. Clearly, less efficiency attenuation is observed for
the Radau-IIA method with AAJ as compared to FAJ formulation for small-scale chemi-
cal mechanisms, whereas this tendency is inverses for large mechanisms. For the Seulex
method, the efficiency of using FAJ is always superior to that of using AAJ. For the BDF
method, it achieves computational speedup up to two folds for mechanism size smaller than
50, while the computational efficiency deteriorates for relatively larger size mechanism.

Figure 7 reveals how the accuracy of Jacobian would affect different integration algo-
rithms in variant size of mechanisms. It worth noting that all three ODE algorithms display
similar variation with the increasing mechanism size. Therefore, to make the figure con-
cise, only the results of Seulex and Radau-IIA methods are present. Distinctions are
observed not only for the cost of the Jacobian evaluation, but also for solving linear equa-
tions. Specifically, Figure 7(b,c) indicate that by using FAJ, integration algorithms require
more efforts in large-scale mechanisms to evaluate Jacobian but less effort in solving the
linear equation systems. These observations confirm the discussions in Section 2.4 and
Figure 6(a) that the effect of Jacobian evaluation methods is two-fold. Additionally, it is
presented in Figure 7(b) that a large gap of evaluation cost is observed for the Seulex and
Radau-IIA when using the AAJ method. However, this gap shrinks when the evaluation
method is replaced with FAJ. In Figure 7(c), the reduced number of Jacobian updates of
Seulex also leads to computational saving in solving the linear equation systems. These
observations reveal that the Seulex method which suffers more from the massive cost of
integration each step, also benefits the most when the frequency of updating Jacobian is
reduced by using more accurate Jacobians. In summary, the optimal Jacobian evaluation
method for different integration algorithms varies for different mechanisms with a uni-
versal trend that the FAJ is more suitable for simulations with small to medium-sized
mechanisms, while the AAJ formulation is more suitable for large-scale chemistries.

3.1.3. Linear system solvers

In this section, the simulation conditions are the same as in Table 3, except that the linear
system solver is replaced by more advanced linear system solvers LAPACK and KLU.
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Figure 7. (a) The averaged total execution time, (b) time cost of Jacobian evaluation and (c) time
cost of LU function call versus the mechanism size with FAJ and AAJ formulations in simulations
of auto-ignition problem with �tCFD = 10−6 s.

To isolate the influence of the linear system solvers, the AAJ formulation for Jacobian
evaluation was adopted in this section. It should be noted that the profiling performances
are similar for various �tCFD, thus only the results of �tCFD = 10−6 s is displayed for the
sake of concise.

From both Figures 8(a) and 9(a), the improvements are remarkable for both trails using
LAPACK and KLU subroutines, as significantly higher speedup factors are obtained for
all integration algorithms in large-scale mechanisms. Among all three methods, the Radau-
IIA benefits the most by improving the linear system solvers. Nearly 60 times speedup is
achieved by LAPACK (Radau-IIA-LAPACK), while a remarkable 200 times speedup is
obtained by the KLU case (Radau-IIA-KLU) for simulation of the largest mechanism.
However, the Seulex algorithm’s overall performance is more complicated with replaced
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Figure 8. (a) Comparison of speedup factor versus the mechanism size with and without LAPACK
linear system solver. The execution time profiling of (b) NLS and (c) LAPACK for the simulations
of auto-ignition problem with �tCFD = 10−6 s.

Figure 9. (a) Comparison of speedup factor versus the mechanism size with and without KLU
linear system solver. The execution time profiling of (b) NLS and (c) KLU for the simulations of
auto-ignition problem with �tCFD = 10−6 s.

linear solvers. It undergoes slight performance degeneration under small size mecha-
nism, while gains significantly computational speedup when the number of species in the
mechanism exceeds 100.

Figures 8(b,c) and 9(b,c) show that the computational cost of LU factorisation is signifi-
cantly reduced for both cases. It is indicated that the LAPACK solver gains more saving in
moderate-size mechanisms (Ns ∼ 100) compared with the sparse KLU solver. To further
study the effects of the linear system solvers, Figure 10(a) compares the total execution
time obtained by the Seulex integration algorithm with different linear system solvers. For
mechanisms of moderate size, the LAPACK solver outperforms the KLU solver, while for
large-scale mechanisms, the situation reverses. The execution time profiling of linear sys-
tem solvers is shown in Figure 10(b), better efficiency is achieved by KLU solver only in
large scale cases with Ns > 100. As the number of species exceeds this threshold, the spar-
sity of the Jacobian matrix increases to a certain level where the sparse method becomes
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Figure 10. (a) The averaged total execution time, (b) time cost of LU function and (c) time cost
of Jacobian evaluation versus the mechanism size obtained by Seulex method with different linear
system solvers in the auto-ignition problem simulations.

more effective. Additionally, Figure 10(c) shows that solving method of linear systems
should not influence the evaluation of Jacobian.

Further insight into the influence of Jacobian sparsity can be drawn from Figure 11. A
graphical representation of the Jacobian matrix sparsity in two zero-dimensional ignition
cases, comparing the FAJ and AAJ formulations, is shown in Figure 11. The corresponding
Jacobians were evaluated at the instant where the mixture temperature is 400 K above its
initial temperature. As can be seen that, for the FAJ formulation, the Jacobian is almost
dense since it is mass-fraction based [29]. The matrix sparsity is 46% and 41%, for the
H2–CO chemical mechanism [41] and C12H26 skeletal mechanism [42], respectively. In
contrast, for the AAJ formulation, by ignoring derivatives of density to mass fractions and
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Figure 11. Sparsity pattern of the Jacobian matrix for auto-ignition simulation with (a–b) the
H2–CO chemical mechanism [41] and (c–d) for the C12H26 mechanism [42].

invoking a simplified treatment for third-body reactions, the Jacobian sparsity increases to
68% and 57%, respectively. Combing the observations from Figures 10 and 11, it suggests
that the cost of constructing Jacobian is less critical than the cost of solving the linear
system and the sparsity of the AAJ is more important for efficient solution of the stiff ODE
system.

3.2. One-dimensional laminar premixed flame

In this section, we intend to study the performance of the integral stiff ODE solving frame-
work in a more realistic condition. For this purpose, a one-dimensional stoichiometric
methane–air premixed flame at atmospheric condition was simulated with the reacting-
FOAM solver in OpenFOAM. The UCSD mechanism with 57 species and 269 reactions
was used, and the initial condition and computational mesh were specified based on the
flame profile generated by Cantera [48]. The CFD time step size (�tCFD) is constrained
with the maximum Currant number 0.2. Based on the converged result obtained by Cantera,
CFD simulation was performed for another 1000 time steps with error tolerance condition
εa = 10−14 and εr = 10−4. The numerical accuracy is quantified by the relative error at
the last step, with the reference baseline obtained by each individual method using tight
tolerance conditions εa = 10−16 and εr = 10−10.

Figure 12 shows the performance of each integration algorithm (using NLS linear solver
and AAJ Jacobian formulation) along the mesh grid. The observations are generally con-
sistent with the auto-ignition calculations. With less number of internal integration steps
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Figure 12. Spatial distribution of (a) temperature, (b) mass factions of OH, (c) execution time, (d)
number of internal integration steps, (e) number of Jacobian evaluations and (f) number of derivative
(RHS) evaluations in the simulation of methane–air premixed flame.

as in Figure 12(d) and corresponding function evaluations in Figure 12(e,f) required espe-
cially in the vicinity of the flame front, the Radau-IIA method again obtains the best overall
efficiency while the BDF method suffers a lot from more integration steps required in the
reaction zone. Likewise, the Seulex method needs more number of Jacobian evaluations
and an extended spatial range to recover to the state of the non-reactive region.

The overall accuracy of the calculations as the averaged value among all the grid cells
is shown in Figure 13. As seen, the Radau-IIA method pursues the same level of relative
error compared to the Seulex method. In comparison, a much larger error is observed for
BDF method, especially for species in small concertation, i.e. CO and OH, which might be
the consequence of the low-order scheme taken by the BDF to restart each new CFD time
step.

Correspondingly, the averaged execution time obtained with various integral ODE
solvers is listed in Table 4. Clearly, considering both accuracy and calculation efficiency
in laminar flame simulation, the configuration of Radau-IIA algorithm associated with the
LAPACK solver and FAJ formulation would be preferred, which achieves more than 4.5
times efficiency gain compare to the Seulex algorithm with standard NLS solver and AAJ
formulation.

The optimal configuration of stiff ODE solving framework for chemistry with various
complexity is further investigated using three typical scales of chemical mechanisms for
ethylene (57 species) [39], n-heptane (126 species) [43] and n-dodecane (255 species) [44].
The computational speedup only considers the time spent for chemistry solving. The results
in Figure 14 suggest that, for smaller mechanisms with 57 and 126 species, nearly 2.8–
4.6 folds efficiency gain is obtained by the Radau-IIA method with the LAPACK solver
and the FAJ formulation compared to OpenFOAM’s native implementation. However, for
the mechanisms of large size (Ns = 255), it is obvious that the AAJ formulation is more
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Figure 13. (a) Maximum and (b) averaged relative error in temperature, mass fractions of CO,
OH and H2O over all mesh points in the simulation of methane–air premixed flame. The reference
values were obtained by each individual method using tight tolerance conditions εa = 10−16 and
εr = 10−10.

Table 4. Averaged execution time for chemistry solving of various combinations of ODE-integra-
tion algorithm with linear system solvers and Jacobian formulations of methane–air premixed flame
simulations.

Integral ODE Solver AAJ [s] FAJ [s]

Seulex 10.44 9.38
Seulex-LAPACK 10.26 4.51
Seulex-KLU 12.75 12.33
Radau-IIA 5.75 4.87
Radau-IIA-LAPACK 5.22 2.27
Radau-IIA-KLU 6.31 5.78
BDF 8.22 7.37
BDF-LAPACK 5.95 3.05
BDF-KLU 8.51 6.64

efficient. Additionally, the sparse linear algebra method in the KLU begins overtaking the
dense-based LAPACK solver under this mechanism scale.

3.3. Three-dimensional turbulent flame simulation

The optimised integral ODE solving framework is further assessed against a well-
established laboratory jet flame, Sandia Flame D [49], to demonstrate their performance
under realistic turbulent combustion. The Sandia burner has a central fuel pipe of diame-
ter Dj = 7.2mm surrounded by a 4.5mm annulus from where a pilot flame is issued. The
fuel nozzle injects a methane/air mixture (1:3 by volume) at 49.6 m/s, whereas the pilot
stream burns a mixture (equivalence ratio φ = 0.77) with the same nominal equilibrium
composition and enthalpy as methane/air mixture, which is issued at a velocity of 11.4 m/s.

The computational domain is a cylinder with a diameter of 41.67Dj and length of 60Dj

and is discretised by a stretched grid with 86, 48, and 244 cells in the radial, azimuthal and
axial directions (1,042,368 grids in total), respectively. A time-varying boundary condition
is applied for the fuel jet velocity to provide realistic turbulence, and the turbulent inflow
data is generated by a diffusion-based method [50]. A three-dimensional LES simulation
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Figure 14. Speedup factors for chemistry solving obtained by the optimal configuration of three
integration algorithms in the simulation of 1-D stoichiometric fuel-air premixed flame with different
mechanisms: (a) 57 species UCSD mechanism, (b) 126 species n-heptane mechanism and (c) 255
species n-dodecane mechanism, which are detailed in Table 2.

of the flame is performed using reactingFOAM solver with the partially stirred reactor
(PaSR) turbulent combustion model. The chemical reaction rates are evaluated based on
UCSD detailed chemistry [39]. The LES simulation was first run in parallel to reach a fully
developed reactive state, and the performance evaluations for integral ODE solvers were
then performed for another 1.0 ms with the �tCFD being 10−6s in serial to avoided parallel
load imbalance. All simulations were conducted with error tolerance condition εa = 10−14

and εr = 10−4.
For the steady-state flow field, the time-averaged statistics of temperature are collected

for 6 flow-through times. Radial profiles at two axial locations are presented in Figure 15.
The excellent agreement between the numerical predictions and experimental measure-
ments verified the reliability of physical models and numerical setups for the present
simulation, which serves as a prerequisite for the following performance evaluations. From
the discussion of 0-D and 1-D scenarios, we can conclude that for small to intermediate-
scale chemical mechanisms, dense matrix-based LAPACK linear solver associated with
FAJ formulation is preferred. Therefore, we resort to this optimal combination for Flame
D simulation while three ODE-integration algorithms are comprehensively assessed.

Figure 16 compares the mean execution time and speedup factors for chemistry solving
with three ODE integration algorithms. From Figure 16, Radau-IIA with LAPACK solver
and FAJ formulation obtains the best computational efficiency yielding a speedup by a fac-
tor of 2.66 compared to the NLS solver and AAJ formulation. Furthermore, with LAPACK
linear system solver and FAJ formulation, the Seulex and BDF methods also attain 1.68
and 1.94 folds of computational speedup. This again demonstrated the benefits of using
a more sophisticated linear system solver (LAPACK) and Jacobian formulation (FAJ) in
small to medium-sized chemical mechanisms.

Specifically, the spatially distributed instantaneous performance of the optimal configu-
ration for each integration algorithm is displayed in Figure 17. From Figure 17(a–c), it is
clear that most of the computational costs are concentrated in the vicinity of the reaction
zone near the flame front. This situation is attributed to both more numbers of integration
steps and Jacobian evaluations in this region. For the first factor, Radau-IIA and Seulex
algorithms take almost the same level of steps to integrate one CFD time step, which is
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Figure 15. Time averaged radial profiles of temperature at (a) x/Dj = 15, (b) x/Dj = 30 and (c)
instantaneous temperature contour of Sandia flame D.

Figure 16. The averaged execution time for chemistry solving of the integral ODE solvers with
optimal configuration (FAJ + LAPACK) and their native-implemented competitors (AAJ + NLS)
in the simulation of Sandia Flame D.

much smaller than that of the BDF method, indicating that one step method without suf-
fering from the deficient low-order start-up performs better than the multi-step method.
At the same time, the frequency of Jacobian evaluations required by Radau-IIA is signif-
icantly less than that of the Seulex method, which reduces the computational cost of each
integration step and further contributes to the total efficiency gain of this algorithm.
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Figure 17. The instantaneous contour of (a)–(c) execution time (d)–(f) number of integrating steps
(g)–(i) number of Jacobian evaluations required by integration algorithms using both LAPACK
solver and FAJ formulation in the simulation of Sandia Flame D.

4. Concluding remarks

The current work extends the capability of OpenFOAM for accurate yet efficient solu-
tion of stiff ODEs involved in combustion simulations of hydrocarbon fuels. This efficient
framework consists of three major pillar modules. First, the high-order implicit Runge–
Kutta (Radau-IIA) and multi-step backward differentiation formulation (BDF) algorithms
were implemented and compared against the native Seulex algorithm. Second, the native
approximated analytical Jacobian formulation was replaced by the fully analytical one
provided by the open-source pyJac package, which minimises the inaccuracy in Jaco-
bian evaluation. Last, more sophisticated and robust linear system solvers including the
dense-based LAPACK and sparse-based KLU packages were coupled with the ODE inte-
grators for further efficiency pursue. Performance and accuracy assessment of the proposed
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framework has been conducted for chemical mechanisms ranging in size from 10 to
1389 species, and for three different configurations including the homogeneous reactor,
one-dimensional laminar flame, and three-dimensional turbulent combustion.

The homogeneous ignition results suggest that the Radau-IIA method is the most effi-
cient one for large integration intervals when using either FAJ or AAJ formulation for
Jacobian evaluation. This superiority of the high-order method can be attributed to low
start-up cost, large possible step size and less Jacobian evaluation, whereas the differ-
ences between the Radau-IIA, Seulex, and BDF methods decrease as the CFD time step is
reduced.

As for the Jacobian evaluation formulation, its influence on the overall trade-off between
accuracy and efficiency is two-fold. For small size chemical mechanisms of species about
50–100, the FAJ formulation achieves 2 times computational speedups in calculations
with the Seulex ODE-integration algorithm. However, for large-scale mechanisms, the
AAJ formulation is more advantageous, as it enhances the sparsity of the chemical Jaco-
bian, which facilitates the subsequent linear system solver. Moreover, among all the three
ODE-integration algorithms, Radau-IIA is the most robust one to accommodate AAJ
formulation.

The adoption of more advanced linear system solvers is beneficial for improving the
efficiency of the ODE solvers, wherein dense-based LAPACK solver is more preferred
in small to moderate-scale mechanisms (50 < Ns < 500) while sparse-based KLU solver
is more suitable for large-scale mechanisms (Ns > 500). The Radau-IIA algorithm gains
the most computational saving from the KLU solver, obtaining two orders of magnitude
speedup in the mechanism with 1389 species.

For practical turbulent combustion simulations with relatively small mechanisms (Ns <

200), the combination of the Radau-IIA ODE integration algorithm associated with FAJ
Jacobian formulation and LAPACK linear system solver is optimal in accuracy and effi-
ciency trade-off, whereby a 2.66 speedup can be obtained compared to the standard Seulex
solver. Moreover, it worth acknowledging that the calculation speedup varies under dif-
ferent operating condition, chemical mechanism and ODE solver configuration. However,
the promising results herein indicate that improvements in the ODE solution methodology
offer an avenue for more efficient reacting flow simulations.
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Figure A1. Schematic class diagram of the implementations.

Appendix 1
The efficient stiff ODE solving framework proposed in the present work is implemented in Open-
FOAM 7. As for the ODE-integration algorithms, the Radau-IIA is implemented as a new ODE
solver and is registered to the ODESolver. Since the Radau-IIA algorithm involves complex matrix
operation, a complex version of LU factorisations is implemented in the linear algebra module. For
the BDF method, the CVODE [33], package is linked to OpenFOAM through an interface with
ODESolver. The Seulex method is native to the current version of OpenFOAM.

For linear system solvers, the dense matrix-based LAPACK library (Linear Algebra PACKage)
[37] is employed for the Matrix blocking operations. The MKL [51] library of version 2018 is
selected to provide the basic LAPACK support. Following Imren and Haworth [15], the sparse matrix
algebra is realised by the latest version of KLU which is a part of the SuiteSparse package [38]. Since
the KLU library requires inputs of matrices in sparse representations (CSC format), a matrix format
conversion between OpenFOAM’s dense form to KLU’s sparse form is implemented.

The approximated analytical Jacobian (AAJ) formulation method is native to OpenFOAM
7 implemented by the standardChemistryModel. The full analytical Jacobian (FAJ) method is
implemented by coupling the pyJac library with OpenFOAM. Therefore, a new class, namely
pyJacChemistryModel, derived from the parent class, standardChemistryModel, is introduced to
override the native function of Jacobian evaluation. The corresponding main class diagram of all
the implementations is shown in Figure A1.
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