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Abstract: Ti and V were bonded together and subjected to high-temperature treatment at 1000 or 1100 ◦C
for 16 h to study the microstructural evolution and interfacial behavior of Ti–V diffusion interfaces. The
samples were prepared by electro-polishing and analyzed using scanning electron microscopy, electron
probe microanalysis, electron back-scattered diffraction, and nano-indentation. The results indicated
that Ti–V diffusion bonding interfaces comprises a martensite Ti zone, a body-center-cubic Ti (β-Ti) zone,
and a V-based alloy zone. They are divided by two composition interfaces with V contents of ~13.5%
and ~46%. The original interface between the pure Ti and the V alloy substrate falls within the β-Ti zone.
The observation of acicular-martensite rather than lath-martensite is due to the distortion caused by the
β-to-α phase transformation in the adjacent pure Ti. The recrystallization of β-Ti is distributed along
the interface direction. The hardness varies across the Ti–V interface bonding zones with the maximum
value of 7.9 GPa.

Keywords: Ti–V interface; diffusion bonding; interface migration; martensite transformation;
recrystallization

1. Introduction

Ti and its alloys have excellent properties, including high strength, low density, good
biocompatibility, and superior corrosion resistance [1–3]. V and its alloys have superior
thermophysical properties, excellent elevated-temperature mechanical properties, and
irradiation-swelling resistance [4–6]. Accordingly, Ti and V assemblies that exhibit the
superior properties of both metals simultaneously show promise for a range of applica-
tions. For example, Ti/V bilayers are used in the Li/V blankets of nuclear reactors [7] to
insulate the AlN coating and V matrix, limiting the invasion of Li into the V alloy substrate.
Furthermore, V is the optimal candidate for joining steels to Ti alloys by virtue of its contin-
uous solid solutions with Ti and similar melting temperature to that of Fe [8,9]. However,
V alloys absorb impurities generated during smelting and hot work processing [10,11].
Thus, pure Ti is often used as a canning and sealing material to protect the V matrix from
impurities. Thus, Ti–V interface bonding zones need to be thoroughly studied in terms of
their physical and chemical properties, microstructures, and mechanical properties [12].

Zhang et al. [7] first studied the microstructural characteristics of Ti–V diffusion
interface zones, revealing that it consisted of a Widmanstatten structure zone and body-
center-cubic Ti phase band-structure zone. Its maximum hardness value of 332 HV was
measured in the Widmanstatten structure zone. Li et al. [13] studied the microstructural
evolution and hardness variation of a Ti–V interface zone before and after irradiation
with ferric ions at 450 ◦C for 13 h. The density of irradiation defects at the Ti–V diffusion
zone was low, while the irradiation defects were large. For two substrates, the irradiation
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defects were of high density and showed extensive entanglement. The hardness increases
in the Ti–V diffusion zone after irradiation was smaller than those of the two substrates,
indicating the superior resistance to irradiation hardening of the Ti–V diffusion zone.
Banerjee et.al. [14] reported that the scale and morphology of the microstructural features
in a 3D-printed Ti–V gradient structure going from pure Ti to Ti–25at%V varied with
V content.

The above studies on Ti–V interface zones provided little crucial information about
microstructural evolution and interface behavior. In fact, the diffusion interface zones
consist of a Ti–V alloy zone and a V–Ti alloy zone, which are thin and difficult to observe.
This critical interface information was missing. In addition, three kinds of metastable
phases [15,16] including martensite Ti (α’-Ti), distorted hexagonal phase (α”-Ti), and omega
Ti (ω-Ti) can coexist in Ti–V interface zones. The nanosizedω-Ti is hard to distinguish, but
it has a non-negligible effect on mechanical properties. Two kinds of equilibrium phases
including hexagonal close-packed (HCP) Ti (α-Ti) and body-center cubic Ti (β-Ti) exist in
Ti–V bonding joints. α’-Ti also has an HCP structure.

The formation process of Ti–V diffusion interface zones is quite complex. First, the
frequency with which Ti atoms move away from their equilibrium positions in a V sub-
strate is much lower than that with which V atoms move away from their stable positions
in Ti substrates, meaning the diffusion coefficient of Ti in a V substrate is much lower
than that of V in a Ti substrate. This inequality of diffusion leads to defect accumula-
tion near diffusion interface zones and the interface migration of prior welded surfaces
(the original interface). Second, different V contents in the interface lead to variation in
the temperature at which β→α phase transformation occurs. With a decrease in V con-
tent, the temperature of the β→α transformation increases from ambient temperature to
882.5 ◦C [17]. The β→α transformation that occurs in zones with low V contents affects the
allotropy transformation of Ti–V interface zones in areas with high V contents, which can
greatly affect the microstructural evolution of Ti–V interface zones.

In this study, three characteristic zones of Ti–V diffusion interfaces were enlarged
by high-temperature heat treatments and investigated by electron backscatter diffraction
(EBSD) and electron probe microanalysis (EPMA). The interface migration and microstruc-
tural evolution of the Ti–V interface zones were analyzed. To identify the original interface,
a V alloy substrate containing inert Y2O3 particles as markers was used. The sequential
transformation in two interface zones is discussed. In addition, the hardness variation
across the Ti–V interface zones from pure Ti to V alloy was measured.

2. Materials and Methods

The base metals for diffusion bonding were a V alloy and high-purity Ti (99.999%).
Diffusion bonding is suitable for joining dissimilar materials [18]. The chemical compo-
sitions of the V alloy was 3.58 wt.% Cr, 4.08 wt.% Ti, and 0.32 wt.% Y with the rest being
V. Samples were prepared with 10 mm × 10 mm × 5 mm pieces of V alloy and pure Ti.
The mating surfaces (10 mm × 10 mm) of the metals were ground with sandpaper from
400# to 2000# and then electrochemically polished to a mirror finish. Then, the samples were
cleaned in acetone and ethanol before diffusion bonding at 1000 ◦C under 2 MPa uniaxial
load for 1800 s in a (3–5) × 10−3 Pa vacuum. After the joining operation, the samples were
quenched with argon. After welding, samples of the diffusion bonding joints were sealed
in several quartz tubes under high vacuum (less than 10−5 Pa) to prevent oxidation during
subsequent high-temperature heat treatments. The quartz tubes containing samples were
isothermally held at 1000 or 1100 ◦C for 16 h, respectively, and subsequently quenched
in water.

Cross-sections of Ti–V diffusion bonding joints were cut, ground, and mirror polished.
Next, samples of Ti–V diffusion interface zones were first electro-polished in an acetic
solution (1000 mL) of perchloric acid (50 mL) at a voltage of 60 V for 60 s. Subsequently,
they were etched with a mixture of HNO3 (10 mL), HF (10 mL), and glycerol (30 mL) for
10 s to expose their microstructures and grain boundaries. Scanning electron microscopy
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(SEM) with EBSD was carried out to with a ZEISS ULTRA-55 field-emission scanning
electron microscope (Zeiss Ltd., Oberkochen, Germany) (operated at 20 kV) to study the
microstructures and crystallographic orientation in the samples. Nano-indentation tests
across the diffusion interfaces were carried out at room temperature using an MTS nano
indenter with a load of 300 nN. EPMA (JEOL-JXA-8230, JEOL Ltd., Tokyo, Japan) was used
to identify the alloy elements and determine their distribution across the Ti–V diffusion
zones. A Don Levin Sigmoid (DLS) fit function [19] that provides the lowest sum of squared
absolute error was introduced to eliminate point-to-point concentration fluctuations of the
raw EPMA data. The mathematical formula is given as follow:

Y = a1/(1 + exp (−(X − b1)/c1)) + a2/(1 + exp (−(X − b2)/c2))
+ a3/(1 + exp (−(X − b3)/c3)),

(1)

with a1, b1, c1, a2, b2, c2, a3, b3, and c3 as constants. X represents the distance
(µm) in the Ti–V diffusion zones, and Y represents the normalized mass fraction of the
compositions.

For the EBSD (Oxford Instrument, Oxford, UK) measurements, Ti alloys with three
kinds of crystal structures were used: α-Ti, an HCP structure with the space group P63/mmc
and lattice parameters a = b = 2.950 Å, c = 4.730 Å, α = β = 90◦, γ = 120◦ [20]; β-Ti, a
body-centered cubic (BCC) structure with the space group Im-3m and lattice parameters
a = b = c = 3.190 Å, α = β = γ = 90◦ [20]; and α”-Ti, a face-centered orthorhombic (FCO)
structure with the space group Cmcm and lattice parameters a = 3.561 Å, b = 4.386 Å,
c = 4.467 Å, α = β = γ = 90◦ [21].

3. Results
3.1. Microstructural Evolution of Ti–V Diffusion Interface Zones Subjected to High-Temperature
Heat Treatment

Figure 1a shows an SEM micrograph of an as-welded Ti–V interface bonding zone.
The corresponding composition curve acquired by EPMA is represented in Figure 1b. The
Ti–V diffusion interface zones comprise a Ti–V alloy zone and a V–Ti alloy zone, which
are defined based on the major component. The V content of the Ti–V alloy zone varies
between 0.5% and 46% (0.5% < V < 46%) and between 46% and 92% for the V–Ti alloy zone
(46% < V < 92%). The width of the Ti–V alloy zone (60 µm) is much larger than that of
the V–Ti alloy zone (4 µm). No macro-defects, such as voids or cracks, are observed. In
addition, Y2O3 particles are distributed in the V matrix (Figure 1a). Upon heat treatment
at 1000 ◦C for 16 h, the width of the Ti–V alloy zone increases to 260 µm, while that of the
V–Ti alloy zone only increases to 10 µm (Figure 1d). No defects but several Y2O3 particles
are observed in the interface bonding zones (Figure 1c). Upon heat treatment at 1100 ◦C for
16 h, a mass of Kirkendall voids are observed in the Ti–V alloy zone close to the position
with a V content of 46% (Figure 1e), and some voids are joined together. The Cr content in
this study is lower, and the diffusion coefficient of Cr in V is low [22]. Thus, the effect of Cr
on the microstructural and interfacial evolution of Ti–V can be neglected, as reported for
previous Ti–V systems [7].

Figure 2a shows the microstructure of as-welded Ti–V diffusion interface zones. The
corresponding EPMA composition profile is shown in Figure 2b. The Ti–V alloy zone
comprises a series of substructures with different V contents, including BCC structure Ti
zone (13.5% < V < 46%, β-Ti, zone II), martensite Ti zone (2% < V < 13.5%, α′-Ti, zone III),
and a near-pure α-Ti zone (0.5% < V < 2%, α-Ti). By virtue of the identical microstructures
and similar mechanical properties of near-pure α-Ti and pure Ti, the near-pure α-Ti zone is
not considered in this study. The V content of the V–Ti alloy zone increases dramatically
from 46% to 92% in a narrow planar grain (4-µm width). The β-Ti zone consists of two or
three planar grains with a total width of ~19 µm, and its V content increases from 13.5% to
46%. The microstructure of the martensite Ti zone (zone III) is significantly different from
that of the planar grains in the β-Ti zone (zone II) and the V–Ti alloy zone (zone I). Figure 2c
shows the two types of microstructures in the martensite zone with various V contents,
namely, lath-martensite and acicular-martensite [23]. The lath-martensite is observed in



Metals 2022, 12, 2032 4 of 15

the lower-V-content zones (2% < V < 5%), and the acicular-martensite appears in higher-V-
content zones (5% < V < 13.5%). Both types of martensite are HCP structure Ti (α′-Ti) [23].
In addition, a mass ofω-Ti is observed in the retained β-Ti strip of the acicular-martensite
zone (Figure 2d), which is generated by β-Ti decomposing upon quenching. This nanosized
athermalω-Ti has a much higher hardness [24] and is dispersed in the retained β-Ti strip.
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Figure 1. SEM micrographs and corresponding EPMA composition curves for Ti–V diffusion interface
zones: (a,b) as-welded; (c,d) 1000 ◦C for 16 h; (e,f) 1100 ◦C for 16 h. Scanning traces are marked as
dotted yellow lines. The circles are the raw EPMA data, and the profile curves are the DLS fits.

Figure 3a shows an SEM micrograph of Ti–V diffusion interface zones after heat
treatment at 1000 ◦C for 16 h. The corresponding EPMA composition curve is shown in
Figure 1d. The width of the β-Ti zone and martensite Ti zone are increased to 75 and
115 µm, respectively. The boundary (46% V) between the zone I and zone II could not be
revealed by chemical erosion. The BCC structure region including zone I and zone II only
has coarse grains. Moreover, some Y2O3 particles are observed in the β-Ti zone close to the
46% V boundary, shown as red arrows in Figure 3a. Some small voids are observed at the
phase interface between oxide particles and β-Ti alloy owing to the generation of vacancies
through high-diffusivity migration at the phase interface. Figure 3b is a magnified SEM
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micrograph of the martensite zone after heat treatment at 1000 ◦C for 16 h. A mass of thin
acicular-martensite is distributed parallel in the lower-V-content region (2% < V < 5%),
which is significantly different from the lath-martensite observed in the as-welded sample.
In the higher-V-content region (5% < V < 12%), more directional acicular-martensite is
generated through nucleation on the boundary of the preexisting acicular plate, growing
perpendicular to that plate to minimize overall elastic strain and forming a Widmanstatten
microstructure. Figure 3c shows that the parallel acicular-martensite lines are separated
by the retained β-Ti plate. In addition, the volume fraction of nano-sized ω-Ti in these
retained β-Ti plates is higher than that in the as-welded sample.
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Figure 4a shows the microstructure of Ti–V diffusion interface zones after heat treat-
ment at 1100 ◦C for 16 h. The corresponding EPMA composition curve is depicted in
Figure 1f. The widths of the V–Ti alloy zone, β-Ti zone, and martensite Ti zone are
25, 210, and 230 µm, respectively. A mass of voids with an average diameter of 20–30 µm
are observed in the β-Ti zone close to the V 46% composition boundary. Furthermore,
oxide particles are observed in the center of several voids. These voids are located along a
line (marked as a red dotted arrow) in the β-Ti zone. Only acicular-martensite is observed
in zone III (Figure 4b). There are several growth directions for these acicular bundles,
which are much thinner than those observed for the sample heat treated at 1000 ◦C for 16 h,
forming the martensite basket-weave microstructure (Figure 4c). The volume fraction of
ω-Ti in retained β-Ti plates increases to a maximum, and the granular ω-Ti phase coarsens
significantly (Figure 4d).
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The critical V contents among these characteristic zones (zone I, zone II, and zone III) for
various treatment conditions are 2%, 13.5%, and 46%, respectively. Furthermore, the width of
the Ti–V diffusion interface zone increases with increasing heat-treatment temperature. The
width of the Ti–V alloy zone is much larger than that of the V–Ti alloy zone for all conditions,
confirming that the diffusion coefficient of V in the Ti–V alloy zone is much higher than that of
Ti in the V–Ti alloy zone. Therefore, a large number of vacancies are generated by V migration
and then gather in the Ti–V alloy zone after higher temperature heat treatment, forming
Kirkendall voids because the concentration of vacancies exceeds the material’s saturability.

3.2. Interface Characteristics and Recrystallization of Ti–V Diffusion Interface Zones

Figure 5a shows the inverse pole figure (IPF) of the HCP phase and BCC phase across
Ti–V diffusion interface zones after heat treatment at 1000 ◦C for 16 h. The V substrate
is coarse grained. Furthermore, an undetected zone (noise point) exists in the acicular-
martensite zone close to the boundary between the martensite and β-Ti zones. The band
contrast map (Figure 5b) shows the inferior contrast information in these noise point zones.
Figure 5c shows the SEM micrograph corresponding to the EBSD microstructure. The
sample surface of these Ti–V diffusion interface zones after electrochemical polishing is
smooth without mechanical scratches. Therefore, it may be inferred that the acicular-
martensite zone has the higher inner stress.
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Figure 5d shows two types of lattice structure distributions. Red indicates the HCP
structure phase, comprising α-Ti and α′-Ti. Blue indicates the BCC structure phase, com-
prising β-Ti, V–Ti, and the V alloy substrate. The difference in lattice parameters between
the β-Ti and V alloys (V–Ti alloy and V alloy substrate) is minor at only ~0.16 Å [16] and
thus difficult to identify by EBSD. However, the contrast (gray) between β-Ti (zone II) and
V–Ti (zone I) alloy is significantly different despite the lack of grain boundary (Figure 5a,b).
This illustrates the different quality of diffraction patterns between β-Ti and V–Ti alloy,
which is due to the compositional difference of the two types of alloys (Ti–V alloy and V–Ti
alloy) by virtue of the higher quality of diffraction patterns corresponding to the higher
atomic number of the materials [25]. Figure 5h,i show the compositional distribution of V
and Ti, respectively, across the Ti–V diffusion interface zones. V is distributed over all the
diffusion interface zones, while no Ti is detected in the V matrix.

Four BCC structure grains (named A, B, C, and D in Figure 5a) in the diffusion
interface zones were selected to study the orientational evolution and recrystallization
during the diffusion process. The corresponding 3D crystallographic representation is
shown in Figure 5g. Consistent with the SEM observations in Figures 3a and 4a, the BC map
(Figure 5b) shows that some Y2O3 particles are located at the interface boundary between
grain C and grain D, and no particles are observed on the left side of this boundary. The
Y2O3 particles cannot be dissolved by pure Ti [26]. The Y2O3 particles in the electropolished
surface of the V alloy substrate before diffusion bonding are inert markers that identify
the original interface between the pure Ti and V alloy substrate before bonding. Thus,
the interface boundary between grain C and grain D is the original interface. It migrates
into the V alloy matrix by virtue of the inequal diffusion of V and Ti, shown by the red
arrow in Figure 5b. The orientation of the interface layer where grain C is located is
very similar to that of the V alloy substrate (grain A) except for some minor deformation
(Figure 5f). This indicates that the lattice structure and the pattern of crystal arrangement
of the Ti–V interface zone located in the original V alloy substrate do not change during the
diffusion process.

Recrystallization mainly occurs at the interface boundaries of β-Ti grains and at
the martensite transformation zone (Figure 5e). The martensite shear transformation
produces higher inner stress, leading to an amount of deformed lath-martensite with some
recrystallized plates. The deformed and recrystallized grains along the boundaries of the
β-Ti grains reveal the stress distribution along the interface boundaries. It can be inferred
that the interface boundaries of β-Ti grains accumulate lattice distortion and crystal defects
during the diffusion and cooling process. In addition, the original boundary between β-Ti
(grain D) and the original V alloy substrate (grain C) is a high-angle grain boundary (26.9◦),
which accumulates more distortion energy, resulting in the recrystallization of grain B
through nucleation at the original boundary and growth into the slightly deformed original
V alloy substrate zone (Figure 5a,d).

The compound stereographic projection on {’002} poles of two differently oriented α′-Ti
variants superimposed with {110} pole of β-Ti grain (Figure 6a) shows that the basal (0002)
plane of α′-Ti variant1 and variant2 is parallel to the close-packed (01-1) plane and (−110)
plane of the β-Ti phase, i.e., (0002) α′-Ti variant1//(01-1) β-Ti, (0002) α′-Ti variant2//(−110)
β-Ti. Furthermore, the (11-20) plane for α′-Ti variant1 as well as the (2-1-10) plane of α′-Ti
variant2 are parallel to the (111) plane of the β-Ti grain, as shown in Figure 6b. The 3D
crystallographic maps of the two α′-Ti variants with the β-Ti phase in the sample coordinate
are shown Figure 6c. The crystal direction of these parallel Orientation relationship (ORs) is
indicated by colored arrows in the 3D crystal map. The ORs between the two α′-variants and
β-Ti phase are summarized as {110} β-Ti//{0002} α′-Ti, <111>β-Ti//<11-20>α′-Ti, belonging
to Burger’s orientations relationship [27]. Thus, it could be inferred that the orientation of the
original β-Ti parent phase of these two α′-variants is identical to that of grain D due to the
reduced interface energy.
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Figure 6. Compound pole figures of (a) the {110} planes of β-Ti plus the {0002} planes of α′-Ti; (b) the
{111} planes of β-Ti plus the {11–20} planes of α′-Ti. The parallel planes between β-Ti and α′-Ti are
marked by a dotted box in the pole figures. (c) Three-dimensional crystallographic representations
showing the orientation relationship between the two variants of the HCP structure α′-Ti and the
BCC structure β-Ti. The β-Ti grain and two variants of α′-Ti correspond to β-Ti grain D and the
differently colored lath-martensite in Figure 5a.
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3.3. Mechanical Response to the Microstructural Evolution of Ti–V Diffusion Interface Zones

Figure 7a shows the nanoindentation hardness distribution across the Ti–V interface
bonding zones for the as-welded sample. The average hardness of the V alloy substrate is
~1.17 GPa, close to that of the pure Ti substrate. The average hardness of the Ti–V diffusion
interface zones is significantly higher than that of the two substrates, and the maximum
hardness is 3.5 GPa in the as-welded sample due to the formation of martensite and some
hard ω-Ti phase (Figure 2c,d). After heat treatment at 1000 ◦C for 16 h, the hardness of
the martensite zone is increased from 2 to 5.2 GPa with increasing V content. After heat
treatment at 1100 ◦C for 16 h, the hardness of the martensite zone is increased from 2.5 GPa
to a maximum hardness of 7.9 GPa with increasing V content. The strengthening effect of
martensite in Ti alloy is much lower than that of martensite in steel because supersaturated
interstitial solid solutions of carbon cause more serious lattice distortion [28]. However, the
maximum hardness of the martensite zone after high-temperature heat treatment reaches
a higher level. This is because an increase in V content leads to more β-Ti being retained
in lath-martensite. Thus, more content of hard ω-Ti phase could be obtained through
athermal β→ω transformation in the high-V-content zone. This is consistent with the
EBSD observation showing higher inner stress distribution (Figure 5a,b). Moreover, the
volume fraction and particle size of the hard ω-Ti phase increase with heat-treatment
temperature. Thus, the highest hardness of 7.9 GPa in the acicular martensite zone is
obtained after heat treatment at 1100 ◦C for 16 h. In addition, hardness variation for the
β-Ti zone is obtained after heat treatment at 1100 ◦C for 16 h due to the wider β-Ti zone
(210 µm). Unlike the increase in hardness with increasing V content in the martensite zone,
the hardness decreases with V content in the β-Ti zone (Figure 7c). This is because the
stress-induced martensite transformation has a hardening effect in the low-V-content β-Ti
zone during nanoindentation tests [29]. With increasing V content, the mechanical stability
of β-Ti increases; thus, only a small amount of stress-induced martensite is observed in the
high-V-content β-Ti zone, leading to the relatively lower hardness. The hardness of the
thinner V–Ti alloy zone is identical to that of the V matrix.
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as-welded and 1000 ◦C samples are too narrow to detect.

4. Discussion

The diffusion process between pure Ti and V alloy was conducted at 1000 and 1100 ◦C.
At these temperatures, both Ti and V atoms are in the BCC phase region (Figure 8), which
has a higher diffusion coefficient. Furthermore, they can dissolve into each other indefinitely
due to their similar lattice parameters. The chemical potential difference between pure Ti
and V alloy is the driving force for mutual diffusion between Ti and V atoms. The diffusion
coefficient of Ti in V alloy (DTi in V substrate) is ~10−3 times that of V in Ti alloy (DV in
Ti substrate) above 1000 ◦C [30,31]. This unequal diffusion leads to the width of the Ti–V alloy
zone being much larger than that of the V–Ti alloy zone. After heat treatment, the interface
with V composition ~13.5% migrates to the pure Ti substrate, while the interface between
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the Ti–V alloy and the V–Ti alloy (V~46%) is still close to that of the V substrate. In addition,
during heat treatment at 1100 ◦C, the V atoms in the Ti–V alloy zone exchange with vacancies
during diffusion and gather in the β-Ti zone, forming Kirkendall voids.
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During the quenching process, V alloy undergoes no allotropy transformation and
keeps its BCC structure at ambient temperature. However, the BCC lattice structure of
pure Ti (β-Ti) first transforms into the HCP lattice structure of pure Ti (α-Ti) when the
temperature is lower than 882.5 ◦C. V is the β-stabilizing isomorphous element in Ti–V
binary alloy [30]. With increasing V content, the temperature of the β→α transformation
gradually decreases from 882.5 ◦C to ambient temperature.

In this study, theβ-Ti shear transforms it into HCP martensite when the V content is lower
than 13.5%, close to the temperature reported for a graded binary Ti–V alloy deposited by 3D
printing [34]. Based on a thermodynamics model [31], martensite starts (Ms) temperatures
of the lath-martensite and acicular-martensite in Figure 2c were calculated as a function of V
content (2%, 5%, and 13.5%). The corresponding Ms temperatures are marked as red points
in Figure 8. The lath-martensite with a lower V content exhibits a high Ms temperature
and a narrow phase transformation temperature region (700–800 ◦C), while the acicular-
martensite with a higher V content shows a low Ms temperature and a widerβ→α′martensite
transformation temperature region (400~650 ◦C). Thus, more nucleation occurs in the lower
β→α′ martensite transformation temperature region, forming a refined acicular-martensite
microstructure. Moreover, athermalω phase is observed in the retained β-Ti plate through
β→ω diffusionless transformation during quenching in the higher-V-content region, which
significantly increases the strength of the acicular-martensite zone.

The factors influencing β→α′ martensite transformation also include the original β-Ti
grain size and strain energy [35,36]. The original β-Ti grains of the martensite zone after
high-temperature heat treatment are coarse, which leads to a higher Ms temperature due to
the decreased strength of the β-Ti phase and decreased number of martensite nucleation
sites [37]. This leads to the formation of lath-martensite with a high phase transformation
temperature. However, in this study, only acicular-martensite was observed in the Ti–V
diffusion interface zones after high-temperature heat treatment (Figures 3b and 4b).

The β→α transformation of the pure Ti matrix during quenching is an interface-
controlled diffusional transformation [38]. After heat treatment, the pure Ti matrix consists
of coarseα-Ti grains of millimeter-scale size. During the fast-cooling process, different zones
in the Ti–V diffusion joint can interact. Specifically, when the coarseβ-Ti grains of the pure Ti
matrix transform into coarse HCP structure α-Ti, the Ti–V diffusion interface grains are still
in the BCC phase region. As shown in the schematic in Figure 9, the β→α transformation
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of the pure Ti matrix causes lattice distortion due to the increase in lattice volume, and these
defects (e.g., dislocations) move to the Ti–V diffusion interface zones because there is no
interface barrier for dislocation motion in a coarse α-Ti grain (100–200 µm width). Therefore,
Ti–V diffusion interface zones accumulate phase transformation strain energy to a great
extent, which affects the subsequent β→α′ martensite transformation and recrystallization
behavior in Ti–V diffusion interface zones.
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A total driving force (∆Gβ→ α′

tot ) below zero is a basic criterion for martensitic transfor-
mation [39], as follows:

∆Gβ→ α′

tot = ∆Gβ→α
chem +∆Gβ→ α′

int +∆Gα→ α′
strain (2)

where ∆Gβ→α
chem is the change in chemical energy, ∆Gβ→ α′

int is the change in interface en-
ergy, and ∆Gα→ α′

strain is the change in strain energy. The driving force is a net change in
chemical energy, ∆Gβ→α

chem < 0, but the transformation is retarded by the interface energy

(∆Gβ→ α′

int > 0) and strain energy (∆Gα→ α′
strain > 0) [35]. The lattice distortion increases the strain

energy (∆Gβ→ α′

strain ) as mentioned above. The β→α′ transformation can occur only through
further decreasing the transformation temperature to obtain a large degree of supercooling
to decrease the chemical energy (∆Gβ→α

chem ) significantly. Thus, the martensite formed in this
coarsening region is acicular-martensite. The higher heat treatment temperature, the higher
strain energy due to the coarsening α-Ti grain. This leads to the lower Ms temperature and
forms a thinner acicular-martensite zone after treatment at 1100 ◦C.

In addition, the strain energy for β→α phase transformation of pure Ti in Ti–V diffu-
sion interface zones also leads to the recrystallization of β-Ti grains. The distortion derived
from adjacent martensite transformation during the quenching process also provides a
driving force for the recrystallization of β-Ti grains at the same time.

5. Conclusions

Ti and V, which have large differences in interdiffusional behavior and phase transfor-
mation, were bonded together. The microstructural evolution and corresponding mechanical
properties of the Ti–V interface bonding zones after high-temperature heat treatments were
characterized. Original-interface migration, the recrystallization of β-Ti grains, and the crys-
tallographic orientation relationship between martensite and its parent β-Ti phase in the Ti–V
interface bonding zones were analyzed. The conclusions are summarized as follows.
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(1) Ti–V interface bonding zones consist of a martensite Ti (α′-Ti) zone, a BCC structure
Ti (β-Ti) zone, and a relatively small V–Ti alloy zone. They are divided by two
composition interfaces (V ~13.5% and ~46%) and distinguished by contrasting EBSD
data. The original interface falls within the β-Ti zone, as revealed by inert Y2O3
markers in the original V alloy substrate.

(2) The Ti–V interface bonding zones exhibit two key microstructural evolution processes
during rapid cooling. The first is the β→α′ martensite transformation, which is
affected by accumulated strain energy generated by β-to-α phase transformation
in the adjacent pure Ti. The ORs between martensite variants and β-Ti conform to
Burger’s orientations relationship. The second is the recrystallization of β-Ti, which
is affected by these two successive phase transformations. This is apparent from
the appearance of deformed and recrystallized grains along the boundaries of the
β-Ti grains.

(3) The hardness varies across the Ti–V interface bonding zones from pure Ti to V alloy.
With increasing V content, the hardness of the martensite zone increases due to the
increasing volume fraction of the hard ω-Ti phase. Upon further increasing the
V content, the mechanical stability of the β-Ti increases and depresses stress-induced
martensite transformation, which leads to decreased hardness in the β-Ti zone.
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