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Steady nonlinear flexural-gravity hydraulic falls on the interface of a two-layer density stratified flow past a submerged
obstruction on the bottom of a channel are considered. The fluid is assumed to be ideal, and the flow is irrotational.
We extend the previous works13,46 by including the effect of hydroelasticity. The interface is modeled as a thin elastic
shell with the Cosserat theory. The boundary integral equation techniques are employed to find steady solutions by
numerically solving the full Euler equations. New solutions characterized by subcritical flow upstream with different
depth ratios (thick upper layer, thick bottom layer, or critical depth) are found, and the effects of the aspect ratio of
obstruction are investigated. By introducing a second obstruction downstream, solutions characterized by a train of
trapped waves are sought with wavelength coherent with the prediction of the linear dispersion relation. In addition,
solutions with a soliton-like form and oscillatory decaying tails are found when the sheet rigidity is small and the second
obstruction is placed upstream.

I. INTRODUCTION

The problems of hydroelasticity, which bring together hy-
drodynamics and elastic theories, are essential in many indus-
trial applications such as biology, medicine, polar engineer-
ing, and the like28,42. The dynamics of a system of hydroelas-
ticity are coupled, which means the deformations of the elas-
tic body respond to hydrodynamic excitations, and simultane-
ously, the excitations are modified by the deformations. The-
ories and numerical methods for these problems with coupled
fluid motion and elastic deformations are still under develop-
ment and draw growing attention.

Most existing works focus on a single-layer system cov-
ered by an elastic plate or membrane. The elasticity mod-
els evolved, and different types of steady wave solutions were
investigated, representing the hydroelastic waves in the pres-
ence of thin ice sheets in cold polar regions or large floating
structures35,42,43. For small deformations, the linear theory of
elastic plate has been widely used. However, it fails when
the moving load is near the critical speed where the group
velocity is equal to the phase velocity, and the nonlinear ef-
fects should be considered. Moreover, considering the impact
of global warming, the linear theory became more limited42,
and the Kirchhoff-Love plate theory, the simplest nonlinear
elastic model, was developed. Traveling-wave solutions, in-
cluding periodic waves, solitary waves with oscillatory de-
caying tails, and generalized solitary waves, were numeri-
cally found in this model18,19,32,38,45. Due to the lack of en-
ergy conservation in the Kirchhoff-Love model, Toland44 used
the special Cosserat theory of hyperelastic shells to model
the coupling between the elastic body and the fluid motion,
which features a clear Hamiltonian structure. Guyenne and
Părău24 derived the cubic nonlinear Schrödinger (NLS) equa-
tion for small-amplitude wavepackets in deep water based on
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the Toland model. Elevation and depression wavepacket soli-
tary waves were obtained by computing the fully nonlinear
equations. Wang et al.48 complemented the results in Ref. 24
with new elevation solitary waves by using an efficient com-
putation method to trace the bifurcation path. Guyenne and
Părău36 considered the same problem in finite depth. They de-
rived two weakly nonlinear models: a fifth-order Korteweg-de
Vries (KdV) equation and a cubic NLS equation for long and
short waves, respectively, and comparisons between fully non-
linear results and weakly nonlinear solutions were discussed.
Xia and Shen49 also derived the fifth-order KdV equation un-
der the shallow-water approximation. Gao et al.21 computed
a new family of asymmetric solitary waves and investigated
their stability subject to longitudinal perturbations. In addi-
tion to solitary waves, Page and Părău35 found steady flexural-
gravity hydraulic falls past an obstruction on bottom topogra-
phy by a boundary integral equation method and investigated
trapped waves between two successive obstacles. They also
compared their numerical results with previous experiments.

Other physical problems and applications in which an elas-
tic plate separates two fluids are also worth attention. Several
analogous examples include flat-type fuel assemblies used in
the cooling systems of nuclear reactors27 and flapping flags
or flaps in a channel flow2,25,26. An elastic plate under water
can also be applied to wave energy devices as a wave carpet.
Hot topics have recently focused on using submerged flexi-
ble plates or membranes instead of floating or vertical ones
as breakwaters or wave barriers. That is because they can
be designed with a higher wave-blocking efficiency and do
not hamper the passage of ships and currents8,33. In this sit-
uation where the elastic plate plays a role as a wave barrier
or attenuator, the influence exerted by an obstruction on bot-
tom topography can be important and might need to be con-
sidered. Furthermore, it is also mentioned by Părău39 that
on the icy moons of Jupiter and Saturn, oceans with layered
structures separated by ice shells are hypothesized to exist.
Therefore, there has been a growing interest in interfacial hy-
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draulic waves in a two-layer fluid system. The well-posedness
of two-dimensional hydroelastic waves in a thin elastic sheet
(with or without mass) placed in potential flow has already
been proved3,30. Akers et al.1 used a global bifurcation the-
orem to find the periodic travelling interfacial hydroelastic
waves under the assumption of infinite depth. Other works
consider cases where the free surface and interface exist at the
same time. Wang et al.47 computed interfacial bright solitary
waves and generalized solitary waves under a flexible elas-
tic sheet, which models the stratified structure under an ice-
covered ocean. Nonlinear travelling waves on a sheet of fluid
between thin infinite elastic plates and the corresponding tem-
poral evolution have been studied6,12. Părău39 computed inter-
facial hydroelastic solitary waves in different configurations:
the upper layer of infinite extent, the upper layer bounded by
a rigid wall, or a second elastic plate. Comparisons among
these configurations have been investigated and discussed.

The present work is concerned with a two-layer fluid sys-
tem separated by an interface over the bottom topography.
Hydraulic fall solutions of interfacial waves, which represent
flow passing gradually from one depth to another and from
subcritical to supercritical (or in reverse), are mainly consid-
ered. These solutions can also be regarded as critical states
where they jump on a solitary wave solution and have a form
of half solitary wave. Following the previous results on steady
interfacial gravity waves4,5,13,14,16,17,22,29,40,41,46, we have ex-
tended the configuration by including hydroelasticity on the
interface using the nonlinear Toland beam theory. Boundary
integral equation techniques are implemented, and different
regimes divided by the depth ratio with subcritical flow up-
stream in the lower layer are considered. The formulation
of the problem, including linear analysis and the numerical
scheme, is presented in §2. Steady hydraulic fall solutions
and trapped waves between successive obstructions are thor-
oughly investigated in §3. We finally conclude with a sum-
mary of the results and discussions on perspectives in §4.

II. FORMULATION

A. Descriptions of problem

A system composed of two superposed inviscid and incom-
pressible fluids separated by a massless elastic plate is con-
sidered in two-dimensional space. The fluid in each layer
has a finite depth and a constant density. The heavier fluid
with density ρ1 occupies the lower layer, whose properties
are designated with subscript 1. Meanwhile, the lighter fluid
with density ρ2 occupies the upper layer, and its properties
are analogously assigned with subscript 2. Flows in both lay-
ers are assumed to be irrotational. The system is bounded
above and below both by rigid walls of infinite horizontal ex-
tent, and the change in bottom topography is locally confined
(see a sketch in Fig. 1). We introduce a Cartesian coordi-
nate system such that the x-axis is parallel to the flat top wall
and the y-axis is in the opposite direction of gravity. At infin-
ity, the velocities denoted by U j upstream (and likewise by Vj
downstream, j = 1,2) are uniform, and the depth of each layer

Figure 1. Sketch of two-layer channel flow past an obstacle at the
bottom. The fluids are separated by a thin, massless elastic plate
modeled as a hyperelastic shell.

marked by H j upstream (and correspondingly by h j down-
stream) is constant. Then the upper boundary is represented
by y = H1+H2 = h1+h2, the bottom topography is expressed
as y= b(x), and the interface is designated y=H1+ζ (x). The
massless elastic plate of flexural rigidity D is assumed to have
negligible thickness and is modeled according to the special
Cosserat theory of hyperelastic shells (see Ref. 44).

The velocity potential functions denoted as φ j are intro-
duced, which satisfy the governing equations of irrotational
motion

φ1xx +φ1yy = 0 , for b(x)< y < H1 +ζ (x) ,
φ2xx +φ2yy = 0 , for H1 +ζ (x)< y < H1 +H2 .

(1)

The impermeability conditions at the top and bottom walls are
written as

0 = φ2y , at y = H1 +H2 ,

φ1xbx = φ1y , at y = b(x) .
(2)

For steady states, the kinematic boundary conditions at the
interface can be written as

0 = φ1y−φ1xζx = φ2y−φ2xζx , at y = H1 +ζ (x) , (3)

which means the normal velocity is continuous across the
elastic plate. Using the Bernoulli constant at infinity, the con-
tinuity of pressure across the interface leads to the dynamic
boundary condition

1
2
[
ρ1
(
φ

2
1x +φ

2
1y
)
−ρ2

(
φ

2
2x +φ

2
2y
)]

+
D
2
(
2κss +κ

3)
+gζ (ρ1−ρ2)−

1
2
(
ρ1U2

1 −ρ2U2
2
)
= 0 ,

(4)

where κ is the curvature of the interface and s is the arclength
parameter. We remark that the special Cosserat theory is ap-
plied here, and this nonlinear elastic model was first proposed
by Toland44. The explicit expression of κ in the Cartesian co-
ordinate system can be written as κ = ζxx

(1+ζ 2
x )

3/2 . In addition,

the conservation of mass leads to

U1H1 =V1h1 , U2H2 =V2h2 . (5)
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Equations (1)-(5) form a closed system for the problem of in-
terfacial hydroelastic hydraulic falls. Finally, for the clarity
and convenience of discussion, we introduce property ratios

R =
ρ2

ρ1
, Θ =

H2

H1
,

β =
U2

U1
, β1 =

V1

U1
, β2 =

V2

U2
,

(6)

where R is the density ratio, Θ is the depth ratio, and β , β1,
β2 are velocity ratios. The upstream and downstream Froude
numbers are defined as

F1u =
U1√
gH1

, F2u =
U2√
gH2

,

F1d =
V1√
gh1

, F2d =
V2√
gh2

.

(7)

Finally, the dimensionless parameter describing the flexural
rigidity reads Eb =

D
ρ1gH4

1
.

B. Linear analysis

In the following section, we explore the linear theory of
this model. The whole system is disturbed around the trivial
solution φ j = U jx and ζ = 0 under the smallness assumption
on wave amplitude and bottom topography, i.e., ζ/H1 ∼O(ε)
and b/H1 ∼ O(ε2), where ε � 1 is introduced as a small pa-
rameter. By considering perturbations of the form eikx, we can
drop the nonlinear terms in Eqs. (1)-(5), and after some al-
gebra, derive the linear solutions and the dispersion relations.
One first obtains

ζ = ε
α

iU1
sinh(kH1)eikx ,

φ1 =U1x+ εα cosh(ky)eikx ,

φ2 =U2x− εαβ
sinh(kH1)

sinh(kH2)
cosh(kH1 + kH2− ky)eikx .

(8)

Similar derivation can be applied to the quantities down-
stream. Then, substituting the expressions of φ j and ζ into
the linearized dynamic boundary condition (4) yields the lin-
ear dispersion relations

F2
1u =

(1−R+K4Eb) tanh(K) tanh(ΘK)

K tanh(ΘK)+Rβ 2K tanh(K)
,

F2
1d =

(1−R+K4Eb) tanh
(

K
β1

)
tanh

(
ΘK
β2

)
K
β1

tanh
(

ΘK
β2

)
+Rβ 2 β 2

2
β 3

1
K tanh

(
K
β1

) ,

(9)

where K = kH1 is the normalized wavenumber. In later dis-
cussions, these linear dispersion relations will be used to pre-
dict the wavelength of trapped waves for the flow past two
successive obstacles. It is worth noting that the parameter
Eb shows up, representing the effect of hydroelasticity. The
fourth-order derivative in the Cosserat theory leads to the ad-
ditional term K4, which changes the behavior of linear disper-
sion relations (shown later in section §3). Similar to the dis-
persion relation of single-layer flexural-gravity waves, there

is always a point at which the phase velocity is equal to the
group velocity, which occurs at the minimum of the Froude
number. With an upstream Froude number below this mini-
mum, there exist no waves. The dimensionless wavenumber
at which F1u reaches the minimum is denoted by Kmin. In
the vicinity of Kmin, the wavenumber predicted by linear the-
ory might no longer adapt, and nonlinear analysis is therefore
necessary. As we can see in Ref. 24, at Kmin, nonlinear anal-
ysis shows that no solitary waves exist. Moreover, even if the
obstruction on bottom topography is not present in linear dis-
persion relations, it influences the Froude numbers by varying
the parameter β1 or β2. We remark that β1 and β2 are related
through the conservation of the fluid in the far field with Θ and
β fixed. As a result, with different obstructions, i.e., other β1
values, the linear dispersion relation for F1d changes while the
one for F1u remains the same. The critical Froude number for
the lower fluid upstream is defined by taking the limit K→ 0,
and we have F∗1u

2 = Θ(1−R)
Θ+Rβ 2 .

C. Weakly nonlinear analysis

In this part, weakly nonlinear analysis is performed, assum-
ing that the thickness of both layers is small compared to the
horizontal characteristic wavelength. The characteristic wave-
length is denoted by l, and the typical amplitude of interfacial
waves is designated as a. Small parameters ε = a/H1 and
µ2 = (H1/l)2 are defined with ε = µ2 to balance the disper-
sion and nonlinearity. Boussinesq scaling is applied for nondi-
mensionalization:

x = lx′ , y = H1y′ , ζ = aζ
′ ,

b = ε
2H1b′ , φ j =

√
gH1F1ulx′+

agl√
gH1

φ
′
j.

(10)

Notably, the obstruction is assumed to be b ∼ ε2H1, and the
velocity potentials are separated into two parts: a background
flow and its perturbation. We will show that the flexural ef-
fects only exist in the higher order terms in the forced KdV-
type model unless the parameter Eb has a significant value so
that Eb ∼ ε−1.

Dropping the apostrophes of dimensionless variables, the
field and boundary equations can then be expressed as

εφ1xx +φ1yy = 0 , for 0 < y < 1+ εζ ,

εφ2xx +φ2yy = 0 , for 1+ εζ < y < 1+Θ ,

φ1y = ε
2F1ubx + ε

3
φ1xbx at y = ε

2b ,
φ2y = 0 , at y = 1+Θ.

(11)

The kinematic conditions at y = 1+ εζ are recast to

φ1y = εF1uζx + ε
2
φ1xζx ,

φ2y = εF1uζx + ε
2
φ2xζx .

(12)

We remark that the governing equations, the boundary condi-
tions, and the kinematic conditions at the interface presented
above are the same as the two-layer pure gravity case in Ref.
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46. However, the dynamic condition at the interface becomes
different as the hydroelastic term is involved:

ζ (1−R)+F1uφ1x−RβF1uφ2x +
1
2
(φ 2

1y−Rφ
2
2y)

+
ε

2
(φ 2

1x−Rφ
2
2x)+ ε

2Ebζxxxx = 0.
(13)

Substituting the asymptotic expansions of velocity poten-
tials up to O(ε3) satisfying Eq. (11) into the kinematic and
dynamic conditions (Eqs. 12 and 13) yields three equa-
tions. Solvability of the first-order problem indicates that
F1u = F∗1u+ελ . More details of this procedure can be referred
to Refs. 13 and 46. After some algebra, one single equation
retaining the terms valid up to O(ε) writes

bx−
2λ

F∗1u

Θ+Rβ 2

Θ
ζx +

1
3
(1+ΘRβ

2)ζxxx +3
(

1− Rβ 2

Θ

)
ζ ζx

+ε [F (b,ζ )+S (b,ζ )+Ebζxxxxx] = 0,
(14)

where F (b,ζ ) contains terms related to bx, ζx, ζxxx, and ζ ζx,
appearing in the traditional forced Korteweg de-Vries (fKdV)
equation, and S (b,ζ ) includes terms associated with bxxx,
bζ , ζxζxx, ζ ζxxx, and ζ 2ζx, presenting in the general form of
the forced fifth-order KdV equation along with ζxxxxx.

In Eq. (14), at O(1), the forced KdV equation in the pure
gravity case is recovered. The flexural effects only appear
in the next-to-leading order (O(ε)). As a result, unless the
rigidity parameter is large enough (Eb∼ ε−1), the higher order
of the dispersive term will not be found in the leading order.

D. Numerical scheme

The fully nonlinear problem is numerically solved using the
boundary integral equation method with the arclength param-
eterization of the interface. This scheme was first proposed by
Forbes and Schwartz in Ref. 20 and is widely used to solve
the steady solutions of nonlinear water-wave problems with a
free surface. The numerical scheme will be briefly introduced,
and more details are referred to Refs. 5, 16, and 20. H1 and

H1U1 are the units of length and velocity potential for non-
dimensionalization. The fluid interface is first parametrized
by

x = X(s) , y = ζ (x)+1 = Y (s) , (15)

so that the parametric equation is satisfied on the interface:(
dX
ds

)2

+

(
dY
ds

)2

= 1 . (16)

The dynamic boundary condition (4) is then rewritten as

1
2
(
φ
′2
1 −Rφ

′2
2
)
− 1

2
(1−Rβ

2)+
1

F2
1u
(1−R)(Y (s)−1)

+
Eb

F2
1u

(
k′′+

1
2

k3
)
= 0 ,

(17)

where κ = Y ′′X ′−X ′′Y ′ is the parameterized curvature of the
interface, and the prime denotes differentiation with respect to
the arclength parameter s.

Following Belward and Forbes5, Cauchy’s integral formula
is applied to the complex velocity potential w j(z) = φ j(x,y)+
iψ j(x,y) for both upper and lower layers, where z = x+ iy is
the independent complex variable and ψ j is the stream func-
tion. Thus, the complex velocity can be defined as

χ j =


dw j

dz
−1 = φ jx− iφ jy−1, j = 1 ,

dw j

dz
−β = φ jx− iφ jy−β , j = 2 .

(18)

For the lower layer, the integration path is shown in Fig.
2(a), which consists of the interface, channel bottom, and ver-
tical lines joining them at x =±L and L→ ∞. Since we focus
on the hydraulic fall solutions which approach constant states
on both sides at infinity in the present work, the numerical
computations can only be performed in a truncated domain,
and the truncation error is taken into account in integration.
On the other side, the integration path for the upper fluid is
shown in Fig. 2(b) with a modification to avoid setting mesh
points on the top wall since we are only interested in the values
on the interface. A symmetric extension is applied to satisfy
the impermeability boundary condition. Denoting the veloc-
ity potential at the interface by Φ j and the horizontal velocity
at the channel bottom by u, the Cauchy integral formula gives

π(Φ′1X ′(s)−1) =
∫

∞

−∞

(Φ′1(σ̂)−X ′(σ̂))(Y (σ̂)−Y (s))+Y ′(σ̂)(X(σ̂)−X(s))
(X(σ̂)−X(s))2 +(Y (σ̂)−Y (s))2 dσ̂

−
∫

∞

−∞

(u(σ̂)(1+bx(σ̂)2)−1)(b(σ̂)−Y (s))+bx(σ̂)(σ̂ −X(s))
(σ̂ −X(s))2 +(b(σ̂)−Y (s))2 dσ̂ ,

(19)
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(a) (b)

Figure 2. Sketch of integration paths: (a) integration path of the lower fluid; (b) integration path of the upper fluid.

π(u(x)−1) =
∫

∞

−∞

(Φ′1(σ̂)−X ′(σ̂))(Y (σ̂)−b(x))+Y ′(σ̂)(X(σ̂)− x)
(X(σ̂)− x)2 +(Y (σ̂)−b(x))2 dσ̂

−
∫

∞

−∞

(u(σ̂)(1+bx(σ̂)2)−1)(b(σ̂)−b(x))+bx(σ̂)(σ̂ − x)
(σ̂ − x)2 +(b(σ̂)−b(x))2 dσ̂ ,

(20)

and

π(Φ′2X ′(s)−β ) =
∫

∞

−∞

−(Φ′2(σ̂)−βX ′(σ̂))(Y (σ̂)−Y (s))−βY ′(σ̂)(X(σ̂)−X(s))
(X(σ̂)−X(s))2 +(Y (σ̂)−Y (s))2 dσ̂

−
∫

∞

−∞

−(Φ′2(σ̂)−βX ′(σ̂))(2+2D−Y (σ̂)−Y (s))−βY ′(σ̂)(X(σ̂)−X(s))
(X(σ̂)−X(s))2 +(2+2Θ−Y (σ̂)−Y (s))2 dσ̂ ,

(21)

where σ̂ represents the value of arclength at the varying point
on the path, the evaluation point s is placed on the interface
and x on the bottom.

The mesh grids on which the corresponding unknowns
(Φ′1,Φ

′
2,X

′,Y ′) need to be solved are equally distributed on
the interface and on the bottom, denoted respectively as s j
( j = 1, ...,M) and x j ( j = 1, ...,N). The other two sets of mesh
grids, defined as middle points,

sm
j =

s j + s j+1

2
, j = 1,2, ...,M−1 ,

xm
j =

x j + x j+1

2
, j = 1,2, ...,N−1 ,

(22)

are introduced to avoid the singularities in the computations
of the Cauchy integrals. Different grid sizes have been ap-
plied to verify the grid convergence and to find the appro-
priate spacing ensuring the computation accuracy: (ds,dx) =
(s j+1− s j,x j+1− x j) = (0.05,0.1),(0.1,0.2),(0.2,0.4). Low
resolution (ds,dx) = (0.2,0.4) can lead to the divergence
of Newton’s iterative method. The convergence is ob-
tained with (ds,dx) = (0.1,0.2), and increasing the resolu-
tion of mesh grids does not contribute to an apparent change
in wave profile. The domain size is decided by (M,N)
with a fixed mesh resolution. Test cases with (M,N) =

(401,201),(601,301),(801,401) are performed to ensure that
the influence of domain length on wave profile can be ig-
nored. In the present paper, the settings (ds,dx) = (0.1,0.2)
and (M,N) = (401,201),(601,301) are used for numerical
simulations.

Boundary conditions and conservation of the total fluid
height in the far-field give additional equations

1+Θ =
1
β1

+
Θ

β2
, β1 =

1
Y (sM)

, (23)

substituting which into the dynamic boundary condition
yields

1
2

F2
1uRβ

2 (1−β
2
2
)
+

1
2

F2
1u
(
β

2
1 −1

)
+(1−R)

(
1
β1
−1
)
= 0 .

(24)
F1u,β1, and β2 are thus solved as part of the solution. To
solve the whole system formed by the Cauchy integral equa-
tions (19)-(21), the parameterized dynamic boundary condi-
tion (24), and the parametric equation (16), we need three
more equations for the Newton iteration. These equations can
vary with the form of solution to be found or be decided ac-
cording to the convergence of the solution in iteration. Note
that these additional equations can make the numerical sim-
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ulations diverge even if they have reasonable forms. For ex-
ample, Y ′(1) = 0,u′(1) = 1 and Φ′2(1) = β are used for hy-
draulic fall solutions (see Refs. 15, 16, and 46). Other typi-
cal conditions can also be chosen as Y ′(1) = 0,Y ′(2) = 0 and
Y ′(M− 1) = 0, used in the present work, so that the far-field
condition can be approximately satisfied.

III. RESULTS

Following Refs. 34, 35, and 46, the bottom topography fea-
tures a combination of separated half-period cosine-type pro-
files. Specifically, b(x) can be defined as

b(x)=



A1 cos2
(

π(x− x1)

L1

)
, − L1

2
< x− x1 <

L1

2
,

A2 cos2
(

π(x− x2)

L2

)
, − L2

2
< x− x2 <

L2

2
,

0 , |x− x1|>
L1

2
, |x− x2|>

L2

2
,

where A j and L j are the height and width of the obstacle, re-
spectively. Two obstacles are centered at x = x1 and x = x2.
The obstacle’s height may be positive or negative, correspond-
ing to convex and concave. We remark that no solutions con-
sidered in this paper have A1 and A2 equal to zero (i.e., there
is always bottom topography).

From the weakly nonlinear analysis in §2, the hydroelastic-
ity only adds a fifth-order derivative term to the higher-order
part and some characteristics of the lower-order equations are
preserved. The analyses of the low-order equations, i.e., the
fKdV equation and the modified fKdV equation, are similar
to those in Ref. 46, where pure gravity interfacial hydraulic
falls can be divided into six regimes in line with the upstream
Froude number and depth ratio. For example, the sign of the
quadratic nonlinear term depends on Θ−

√
β 2R, which deter-

mines the elevation or depression of the downstream level of
the interface. With the upstream flow chosen to be subcritical
with F1u < F∗1u, only three regimes considered here can be de-
fined, namely (I) ‘thick upper layer’ for Θ>

√
β 2R, (II) ‘thick

bottom layer’ for Θ <
√

β 2R, and (III) the critical case for
Θ =

√
β 2R. We remark that the elevation or depression of the

downstream level in critical case depends on the convexity-
concavity property of the bottom topography. In this paper,
the parameter β is fixed as β = 1, and the density ratio is
specified as R = 0.6. We select the depth ratio Θ = 2 for thick
upper layer cases and Θ = 0.5 for thick bottom layer cases.
Thus, the critical upstream Froude numbers can be fixed as
F∗1u = 0.55, 0.43, and 0.475 for regimes (I), (II), and (III).

1. Single obstacle

We first consider the cases where A2 = 0 so that y = b(x)
describes a uniform channel bottom with only one obstacle.
As the initial guess is essential for Newton’s iterative method,
here we use the pure gravity hydraulic fall solutions found

in Ref. 46 as the initial condition. We then add the hydroe-
lasticity based on a standard numerical continuation method
(namely, gradually increasing the flexural rigidity D from
zero).

Considering Regime (I): subcritical flow upstream with a
thick upper layer, Fig. 3 shows typical hydraulic fall pro-
files over a convex obstacle with different sizes and values
of parameter Eb. By increasing the obstacle’s height or width,
the upstream Froude number decreases while the downstream
Froude number increases (see Fig. 3a). This result is compa-
rable to pure gravity interfacial hydraulic falls with subcritical
flow upstream and a thick upper layer. Furthermore, it is co-
herent with the single layer case in the same flow regime up-
stream in Ref. 35 as it can be considered a particular case of
a thick upper layer. Figure 3(b) shows wave profiles with dif-
ferent rigidity values for Eb = 0.5,0.2,0.1. A slight elevation
shows up right before the hydraulic fall, a similar phenomenon
observed in single-layer flexural-gravity or gravity-capillary
hydraulic falls. As the size of the obstacle or the value of
the parameter Eb decreases, the upstream Froude number ap-
proaches the minimum of the linear dispersion relation, which
means the potential of having an intersection point with the
linear phase speed and hence generation of a train of waves
upstream. In Fig. 3, the elevation before hydraulic fall grows
with the upstream Froude number and becomes part of a de-
caying wave train. On the contrary, with a larger obstacle,
the elevation becomes less noticeable, and the steepness of
the fall is weakened. The underlying mechanism is, in fact,
different: (i) the decrease of the size of obstruction (A1,L1)
contributes to the increase of the upstream Froude number,
and the minimum of F1u given by linear dispersion relation
remains invariant; (ii) the decrease of the rigidity parameter
Eb mainly leads to a lower minimum of F1u as it changes the
linear dispersion relation. It is worth noting that we did not
manage to find the solutions to concave obstacles in Regime
(I). The main reason is that a higher upstream Froude num-
ber which might intersect with the linear dispersion relation
and a small jump-up at the obstacle’s position (see Ref. 46)
resulting from the concavity of obstruction, can lead to long
oscillatory waves upstream. To satisfy the radiation condi-
tion, which requires decaying waves upstream without energy
coming from infinity, we need an extremely long domain for
the solution to be physically relevant, leading to high compu-
tational costs. Solutions past a concave obstacle with a large
size and a small surface tension parameter may exist accord-
ing to the single-layer gravity-capillary case in Ref. 23. In this
case, the capillary effects are much smaller compared with the
influence of bottom topography.

It can be observed that small-amplitude spurious periodic
waves may exist downstream where the flow is supercritical,
in that the downstream truncation of the computation domain
acts as a source of disturbance downstream. And the down-
stream Froude number intersects the linear dispersion curve in
Fig. 4 (see also Ref. 35). As we look for steady hydraulic fall
solutions, no wave should exist in the far-field downstream
(otherwise, the solution becomes generalized hydraulic fall).
As explained in §2, the numerical scheme considers the trun-
cation error in the integration. These spurious waves are due
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Figure 3. Interfacial hydroelastic hydraulic falls over a convex obstacle in Regime (I). (a) Wave profiles with Eb = 0.1 and: (A1,L1,F1u,F1d) =
(0.06,5,0.426,0.819) (solid line); (A1,L1,F1u,F1d) = (0.02,5,0.487,0.690) (dotted line); (A1,L1,F1u,F1d) = (0.06,3,0.445,0.778) (dashed
line); (A1,L1,F1u,F1d) = (0.2,8,0.291,1.183) (dash-dotted line). (b) Wave profiles with A1 = 0.1, L1 = 5, and different flexural rigidities:
(Eb,F1u,F1d) = (0.5,0.381,0.924) (solid line); (Eb,F1u,F1d) = (0.2,0.376,0.936) (dotted line); (Eb,F1u,F1d) = (0.1,0.377,0.935) (dashed
line).
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Figure 4. The downstream dispersion relation for the solid-line case
of Fig. 3(b) (i.e., Eb = 0.5). The curve is the linear dispersion rela-
tion F1d(K) in Eq. (9) with parameters β1 and β2 found by solving
the fully nonlinear problem. The horizontal line corresponds to the
downstream Froude number solved for the case.

to the additional equations which provide other limits on the
boundary of the computational domain. Appropriate far-field
conditions downstream can be applied to reduce the amplitude
of the spurious waves so that the wave amplitude becomes
negligible and the solutions become physically relevant. For
example, Y ′(M) = 0 instead of Y ′(M−1) = 0 might give rise
to more obvious oscillations downstream.

The solution branches in the F−Eb plane for 0.1 < Eb < 5
with different geometrical parameters of the submerged ob-
stacle (A1 = 0.06,0.1,0.16) are plotted in Fig. 5(a). These

curves are obtained by varying the value of parameter Eb and
solving for the Froude number (equivalently the interfacial
wave solution), which is a function of Eb with other param-
eters fixed. Overall, the upstream Froude number augments,
and the downstream Froude number decreases, along with
the growth of the parameter Eb. The opposite trend of vari-
ation for upstream and downstream Froude numbers has been
found as a prominent feature in the pure gravity case for the
same regime. However, the interpretation of the upstream and
downstream Froude numbers is not monotone due to the addi-
tional flexural effects. The existence of turning points shows
that the solution is not unique for a critical range of the Froude
numbers. For example, the solution branch with (A1,L1) =
(0.1,5) has a turning point E∗b ∈ (0.1,0.2) (see the dotted line
in Fig. 5a). The corresponding solutions with Eb = 0.1 and
Eb = 0.22, which have the same Froude number, are shown
in Fig. 5(b). Similarly, the solution branch shows two turning
points near the bifurcation point with (A1,L1) = (0.16,5). An
example of solutions having the same Froude number is also
given in Fig. 5(b), with Eb = 0.68,0.38,0.221. We remark
that the phenomenon discussed here is not bistability in the
traditional case as the difference of Eb represents a different
rigidity, lower depth upstream, or equivalently different fluid
speed. The linear dispersion relations in Eq. (9) can explain
the existence of multiple solutions. The introduction of the
rigidity parameter allows for dispersion curves for the same
Froude number, which gives rise to various solutions. A sim-
ilar analysis for the single-layer gravity-capillary case can be
found in Ref. 39.

Interfacial hydraulic falls in Regime (II), i.e., subcritical
flow upstream with a thick bottom layer, with a concave obsta-
cle, are shown in Fig. 6. These wave profiles present a more
significant depth of the lower fluid downstream and a smaller
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Figure 5. (a) Downstream solution branches in the F1−Eb plane for hydraulic falls over a convex obstacle in Regime (I). The obstruction is
characterized by: (A1,L1) = (0.06,5) (solid line); (A1,L1) = (0.1,5) (dotted line); (A1,L1) = (0.16,5) (dashed line). Upstream solution branch
for (A1,L1) = (0.06,5) (dash-dotted line) is presented for comparison. (b) Hydraulic fall profiles for the same Froude number and different
values of Eb. Top: (A1,L1,F1u,F1d) = (0.1,5,0.377,0.934) with Eb = 0.1 (solid line) and Eb = 0.22 (dashed line); Bottom: (A1,L1,F1u,F1d) =
(0.16,5,0.307,1.132) with Eb = 0.68 (solid line), Eb = 0.38 (dashed line), and Eb = 0.221 (dotted line).
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Figure 6. Interfacial hydroelastic hydraulic falls over a concave obstacle in Regime (II). (a) Wave profiles with Eb = 0.1 and:
(A1,L1,F1u,F1d) = (−0.08,5,0.366,0.293) (solid line); (A1,L1,F1u,F1d) = (−0.04,5,0.381,0.317) (dotted line); (A1,L1,F1u,F1d) =
(−0.04,3,0.389,0.330) (dashed line). (b) Wave profiles with A1 = −0.08, L1 = 5, and different flexural rigidities: (Eb,F1u,F1d) =
(0.5,0.373,0.304) (solid line); (Eb,F1u,F1d) = (0.2,0.369,0.297) (dotted line); (Eb,F1u,F1d) = (0.1,0.366,0.293) (dashed line).

downstream Froude number than upstream. We remark that
the flow downstream is still supercritical as F1d > F∗1d . With
larger values of the parameters |A1| and L1, the lower layer
ultimately reaches a higher level downstream, and the differ-
ence between the Froude numbers upstream and downstream
becomes larger. In the same vein, by decreasing the size of
the obstacle or the value of Eb, the small depression right be-
fore the fall becomes more apparent, and a train of decaying
waves exists upstream. Thus for the same reason explained
for Regime (I), we only consider the concave obstacle here.

Solution branches in the F −Eb plane presented in Fig. 7
demonstrate similar trends in general: the upstream and down-
stream Froude numbers increase with the parameter Eb. How-
ever, unlike the result of Regime (I), the variation trend is
monotone, and there are no turning points in the three cases
shown in Fig. 7.

The results of Regime (III) - subcritical flow upstream with
a critical depth - over a convex or a concave obstacle are pre-
sented in Figs. 8 and 9. The convex obstacle leads to ’jump-
downs’. In contrast, the concave obstacle leads to ‘jump-ups’.
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Figure 7. Solution branches in the F1−Eb plane for hydraulic falls over a concave obstacle in Regime (II). The obstruction is characterized by:
(A1,L1) = (−0.04,5) (solid line); (A1,L1) = (−0.08,5) (dotted line); (A1,L1) = (−0.12,5) (dashed line). (a) Upstream solution branches. (b)
Downstream solution branches.
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Figure 8. Interfacial hydroelastic hydraulic falls over a convex obstacle in Regime (III). (a) Wave profiles with Eb = 0.1 and: (A1,L1,F1u,F1d)=
(0.06,5,0.397,0.813) (solid line); (A1,L1,F1u,F1d) = (0.1,5,0.356,0.936) (dotted line); (A1,L1,F1u,F1d) = (0.06,3,0.412,0.767) (dashed
line). (b) Wave profiles with A1 = 0.06, L1 = 5, and various flexural rigidities: (Eb,F1u,F1d) = (0.5,0.405,0.788) (solid line); (Eb,F1u,F1d) =
(0.2,0.399,0.806) (dotted line); (Eb,F1u,F1d) = (0.1,0.397,0.813) (dashed line).

In both cases, the jump condition decided by the forcing term
must be satisfied by the upstream flow. Figure 8 shows that the
behavior of hydraulic falls over a convex obstacle is similar to
Regime (I) for various parameters of the obstruction. More-
over, bifurcation branches in the F−Eb plane akin to Regime
(I) are shown in Fig. 10(a). On the other side, hydraulic falls
over a concave obstacle have similar behavior and bifurcation
profiles to Regime (II) (see Figs. 9 and 10b). We also remark
that turning points E∗b may appear on the bifurcation curve if
the size of the obstacle increases.

2. Two successive obstacles

In this section, we consider the effect of adding a second
obstacle to the bottom topography. The convexity-concavity
property of this additionally introduced obstacle can be arbi-
trary. For clarity, we reaffirm that the direction of fluid motion
is from left to right, and the first obstruction is always placed
at the origin (x1 = 0). We elucidate the position of the second
obstacle: being placed upstream (respectively, downstream)
means on the left (respectively, right) of the first obstruction.
We search for solutions characterized by a train of trapped
waves between two obstacles while the hydraulic fall induced
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Figure 9. Interfacial hydroelastic hydraulic falls over a concave obstacle in Regime (III). (a) Wave profiles with Eb = 0.1 and:
(A1,L1,F1u,F1d) = (−0.06,5,0.437,0.318) (solid line); (A1,L1,F1u,F1d) = (−0.1,5,0.427,0.300) (dotted line); (A1,L1,F1u,F1d) =
(−0.06,2,0.449,0.343) (dashed line). (b) Wave profiles with A1 = 0.06, L1 = 5, and various flexural rigidities: (Eb,F1u,F1d) =
(0.5,0.444,0.332) (solid line); (Eb,F1u,F1d) = (0.2,0.440,0.323) (dotted line); (Eb,F1u,F1d) = (0.1,0.437,0.318) (dashed line).
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Figure 10. Solution branches in the F1−Eb plane for hydraulic falls over one obstacle in Regime (III). (a) The obstruction is characterized by
(A1,L1) = (0.06,5): upstream (solid line); downstream (dotted line). (b) The obstruction is characterized by (A1,L1) = (−0.06,5): upstream
(solid line); downstream (dotted line).

by the first obstruction is retained. Consequently, the same nu-
merical method is used and the hydraulic fall solutions com-
puted in the precedent section are used as the initial guess.
The intersection between the Froude number and the linear
dispersion relation is a necessary condition for the generation
of trapped waves. In the pure gravity case, the second obsta-
cle should be placed upstream to produce trapped waves (see
Ref. 46) when the upstream flow is subcritical. In the pres-
ence of an elastic sheet, unless the size of the first obstacle
and the rigidity is small enough so that the upstream Froude
number might intersect with the linear dispersion relation, a
train of trapped waves only exist when the obstacle is added

downstream. In this paper, we place the additional obstacle
downstream.

Typical profiles in Regime (I) with an additional convex ob-
stacle centered at x2 = 20 and an additional concave obstacle
centered at x2 = 15 are shown in Figs. 11(a) and 11(b), respec-
tively. Trapped waves exist between two submerged obstacles
with a higher wave crest over the second convex obstacle (see
Fig. 11a). On the contrary, a lower wave trough exists over
the second concave obstacle in Fig. 11(b). Similar to the sin-
gle obstacle case, a small elevation appears upstream before
the fall. The reduction of the amplitude of the second ob-
stacle contributes to a smaller trapped wave amplitude while
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the wavelength remains invariant. Furthermore, the additional
obstacle’s polarization does not affect the wavelength; in both
cases, the first obstacle has the same size, and the numerically
calculated wavelengths are close, with a relative difference of
less than 7%. We, therefore, conclude that the wavelength
of trapped waves between two obstacles depends primarily
on the obstacle at the origin, which is responsible for the hy-
draulic fall, and the additional obstacle can be considered as
a perturbation to the critical state, which makes the solution
jump on a wavy solution temporarily. The same conclusion
was drawn for trapped waves upstream in the pure gravity case
in Ref. 46.

The wavelength of trapped waves can be inferred from the
downstream linear dispersion relation. Figure 12 presents the
dispersion relations of the case shown in Fig. 11 when only
the first obstacle at the center is considered. The theoretical
wavelength of downstream trapped waves can be estimated by
solving for the wavenumber in Eq. (9) with the downstream
Froude number computed. In Fig. 12, there is no intersec-
tion point between the horizontal line of the upstream Froude
number and the upstream dispersion relation, which means
no trapped waves upstream. The wavelength calculated using
the downstream Froude number, denoted by λt , is λt ≈ 5.984
and is very close to the numerical results. This coherence
demonstrates that once the hydraulic fall solution is known,
the wavelength of trapped waves caused by an additional ob-
struction downstream can be predicted by the linear dispersion
relations.

The solution branch in the Eb − F plane (with Eb 610)
is shown in Fig. 13(a) for the channel bottom topography
characterized by (A1,L1,x1) = (0.1,5,0) and (A2,L2,x2) =
(0.05,5,20). Multiple turning points show that the trapped
wave solution is not unique for one bottom configuration. Fig-
ure 13(b) gives five different solutions for F1d = 0.904 for var-
ious values of Eb, namely Eb = 0.166,0.423,0.919,1.790 and
4.600. The wavelength of the trapped wave becomes larger
with the increase of Eb.

When the second obstacle is placed upstream, there are
no trapped waves between the two. The interface features
a soliton-like form, in Fig. 14 right above the second ob-
stacle, akin to the phenomenon in the single-layer flexural-
gravity and gravity-capillary cases34,35. Unlike the pure grav-
ity case with the second obstacle placed downstream in the
same regime described in Ref. 46, the soliton-like form is
an elevation above a concave obstacle and a depression above
a convex obstacle. The structure in the pure gravity case is
the opposite; the obstacle and soliton-like wave above are of
the same phase. The reason for this difference is that the ad-
ditional obstruction is found in supercritical flow in the pure
gravity case and subcritical flow in the flexural-gravity case,
and the local soliton-like solution is opposite based on the
analyses in phase planes. With smaller values of Eb, decaying
oscillations appear in the tails of the soliton-like wave profiles
(see the dotted-line case in Fig. 14b).

Numerical results for Regime (II) are presented in Fig. 15.
Similarly, trapped waves downstream between obstacles are
considered. The existence of trapped waves downstream can
be inferred from Fig. 16, and the theoretical wavelength pre-

dicted agrees well with the numerically calculated values.
The solution branch in the Eb − F plane is shown in

Fig. 17(a) for the bottom topography characterized by
(A1,L1,x1) = (−0.08,5,0) and (A2,L2,x2) = (−0.04,5,20).
The non-uniqueness of solutions is demonstrated in Fig.
17(b), in which different solutions exist for the same down-
stream Froude number F1d = 0.302 and various values of
Eb (Eb = 0.140,0.333,0.655,1.120). The wavelength of the
trapped wave grows with the parameter Eb, which is simi-
lar to the tendency in Regime (I). Here, three main families
of solutions exist in the branch, categorized by the number
of wave crests between two obstacles. Besides being distinct
from the branch shown in Fig. 13, which has four primary
families, in Regime (II), as Eb increases, the transition be-
tween solution families is more natural without any change of
bifurcation point. By increasing the parameter Eb, the down-
stream Froude number decreases overall in Regime (I) while
augments in Regime (II).

The soliton-like wave profiles are presented in Fig. 18 for
cases where the additional obstacle is placed upstream. Akin
to Regime (I), an elevation exists above a concave obstacle,
while depression is found above a convex obstacle.

Similar numerical experiments are carried out for Regime
(III), namely subcritical flow upstream with critical depth past
two successive obstacles of arbitrary polarization. Figures
19 and 20 show typical trapped wave profiles with the sec-
ond obstacle placed downstream. The theoretical wavelengths
are predicted by the linear dispersion relations shown in Figs.
21(a) and 21(b), respectively, close to the computed values.
The soliton-like solutions are plotted in Figs. 22 and 23 when
the second obstacle is located upstream. The results of cases
with a convex obstacle at the center are similar to those in
Regime (I). In contrast, with a concave obstacle at the center,
the results are akin to those in Regime (II).

We remark that we did not manage to find all the possi-
ble solutions for each regime and the cases with supercritical
flow upstream. The computations of these solutions may re-
quire substantial computational costs and possibly slow con-
vergence. The existence and features of these solutions to be
discovered are left for future studies.

IV. CONCLUSIONS

Most previous studies on steady hydraulic falls focus on
the free-surface/interfacial gravity hydraulic falls over one or
successive obstacles. The effects of hydroelasticity were only
considered for one-layer flow past localized bottom topogra-
phy. We have extended the configuration to a two-layer flow
past a single or two successive obstacles with the interface
modeled as a thin elastic shell. We first derive the correspond-
ing linear dispersion relation. Then following Ref. 46, fully
nonlinear hydraulic fall solutions for three typical regimes,
i.e., (I) thick upper layer, (II) thick bottom layer, and (III) crit-
ical depth, with subcritical flow upstream for different values
of Eb, have been found numerically by a boundary integral
equation method.

The increase in obstruction size contributes to the rise in
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Figure 11. Interfacial hydroelastic hydraulic falls over two obstacles in Regime (I) with (A1,L1,x1) = (0.1,5,0) and Eb = 0.5. The wave
profile for the single obstacle case is presented for comparison (dashed line). (a) Trapped wave solutions between two convex obstacles with
x2 = 20 and various aspect ratios of the second obstacle: (A2,L2,λc) = (0.05,5,5.996) (solid line); (A2,L2,λc) = (0.09,5,5.884) (dotted
line). (b) Trapped wave solutions between two obstacles of different phases with x2 = 15 and various aspect ratios of the second obstacle:
(A2,L2,λc) = (−0.05,5,5.598) (solid line); (A2,L2,λc) = (−0.03,5,5.8) (dotted line).
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Figure 12. Dispersion relations F1d = F1d(K) (solid line) and F1u =
F1u(K) (dotted line) given in Eq. (9) for Regime (I) with Eb = 0.5,
A1 = 0.1, and L1 = 5 (the dashed line case in Fig. 11). The obtained
upstream Froude number (horizontal dash-dotted line) and the ob-
tained downstream Froude number (horizontal dashed line) indicate
that trapped wave exists downstream and the theoretical wavelength
is λt ≈ 5.984 (triangle intersection point).

the difference between the upstream and downstream Froude
numbers. A small elevation immediately before the fall in
Regime (I) (respective depression in Regime (II)) is observed.
With the decrease of the obstruction size and Eb (equivalently
the rigidity), the elevation becomes more apparent and part of
a train of decaying waves upstream. On the contrary, with a
more considerable obstruction, the elevation and the steepness
of the fall are weakened. In Regime (III), with the critical

depth, the wave profiles depend on the convexity-concavity
property of the bottom topography.

When an additional obstruction is placed downstream, a
train of trapped waves is found downstream for all three
regimes. Variation of the size of the second obstruction ex-
erts little influence on wavelength but has an evident effect on
wave amplitude. Numerical computations show that the wave-
length of trapped waves can be predicted using the linear dis-
persion relation and the computed downstream Froude num-
ber. The prediction is overall accurate, with only a few per-
cent relative errors. The solution branches in the Eb−F plane
indicate the non-uniqueness of solutions for one value of the
Froude number. On the other side, waves with a soliton-like
form exist above the additional obstruction placed upstream.
By decreasing the parameter Eb or the size of the second ob-
struction, decaying tails start to appear. If Eb has a value small
enough so that the upstream Froude number intersects with
the linear dispersion relation, trapped waves might exist up-
stream. However, the computation of corresponding solutions
seems challenging to perform.

The numerics for the full Euler equations seem more chal-
lenging when the obstacle is concave in Regime (I) (respec-
tively convex in Regime (II)) and the upstream flow is super-
critical. We did not manage to find solutions in these regimes
for which the computational domain needs to be significant.
These cases are also interesting and merit further investiga-
tion. Furthermore, in the present work, only the interface is
considered an elastic plate, and the top boundary is rigid. Re-
cent studies on computations of solitary waves by including
hydroelasticity in both interface and free surface (see Ref. 39)
stimulate us to find steady fall solutions in the same configu-
ration in the future.
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Figure 13. (a) A solution branch in the downstream Eb−F1 plane for hydraulic falls over two convex obstacles in Regime (I). The obstructions
are characterized by: (A1,L1,A2,L2) = (0.1,5,0.05,5). The horizontal dashed line is F1d = 0.904. (b) Trapped wave profiles for the same
downstream Froude number (F1d = 0.904) and different values of Eb: Eb = 0.166 (solid line); Eb = 0.423 (dotted line); Eb = 0.919 (dashed
line); Eb = 1.790 (dash-dotted line); Eb = 4.600 (bold solid line).
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Figure 14. Interfacial hydroelastic hydraulic falls over two obstacles in Regime (I) with (A1,L1,x1,Eb) = (0.1,5,0,0.5). (a) A soliton-like
solution for (A2,L2,x2) = (0.05,5,−20). (b) A soliton-like solution for (A2,L2,x2) = (−0.05,5,−20) (solid line) and a soliton-like solution
with smaller bottom obstacles (dotted line), namely (A1,L1,x1,Eb) = (0.05,5,0,0.02) and (A2,L2,x2) = (−0.02,5,−20).
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wave solutions between two convex obstacles with x2 = 20 and (A2,L2,λc) = (0.03,5,6.401). (b)Trapped wave solutions between two
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Figure 20. Interfacial hydroelastic hydraulic falls over two obstacles in Regime (III) with (A1,L1,x1) = (−0.06,5,0) and Eb = 0.5. (a) Trapped
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Figure 21. Dispersion relations F1d = F1d(K) (solid line) and F1u = F1u(K) (dotted line) given in Eq. (9) for Regime (III). The obtained
upstream Froude numbers (horizontal dash-dotted lines) indicate that trapped waves only exist downstream. The theoretical wavenumbers can
be predicted with the obtained downstream Froude numbers (horizontal dashed lines) for the cases shown in Figs. 19 and 20. (a) Eb = 0.5,
A1 = 0.06, L1 = 5, and the theoretical wavelength is λt ≈ 6.756 (triangle intersection point). (b) Eb = 0.5, A1 = −0.06, L1 = 5, and the
theoretical wavelength is λt ≈ 8.160 (triangle intersection point).
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Figure 22. Interfacial hydroelastic hydraulic falls over two obstacles in Regime (III) with (A1,L1,x1) = (0.06,5,0) and Eb = 0.5. (a) A
soliton-like solution with (A2,L2,x2) = (0.03,5,−20). (b) A soliton-like solution with (A2,L2,x2) = (−0.03,5,−20).
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Figure 23. Interfacial hydroelastic hydraulic falls over two obstacles in Regime (III) with (A1,L1,x1) = (−0.06,5,0) and Eb = 0.5. (a) A
soliton-like solution with (A2,L2,x2) = (0.03,5,−20). (b) A soliton-like solution with (A2,L2,x2) = (−0.03,5,−20).


