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A B S T R A C T   

Ablative materials are always seriously damaged under the shear force induced by the hypersonic airflow when 
used in thermal protection systems. An effective method to improve the shear strength of the low-strength fragile 
material by composite lattice structures, has been presented in the present study. The reinforcement mechanisms 
of the lattice structures were then revealed both experimentally and theoretically. The experimental results 
showed that there exists an interaction effect between the fragile material and the lattice. The integrated shear 
strength was obviously higher than the sum of the fragile material and the lattice. A theoretical model was also 
developed to investigate the interaction effect. It was found that the interfacial bonding between the lattice and 
the matrix plays a significant role in reinforcement mechanism. Finally, the effect of geometrical parameters 
(such as topological configurations, relative densities, and cell size) on the shear strength of the fragile material, 
is thoroughly discussed.   

1. Introduction 

The heat-resistant bottom of the return capsule encounters extreme 
conditions during reentry. The designers of this capsule require a 
structure that can meet the requirements of light weight, reliability, re- 
usability and high load-bearing performance [1–4]. There are nowadays 
honeycomb reinforced ablative heat-resistant bottoms, and fiber woven 
pre-fabricated body-impregnated ablative heat-resistant bottom de-
signs, that have successfully achieved re-entry [5,6]. Honeycomb rein-
forced ablative heat-resistant bottom is a two-dimensional ordered 
honeycomb structure that functions as the reinforcing phase of the 
ablative material. There are two main problems for the foam reinforced 
types thermal protection systems. At first, the shear resistance of the 
two-dimensional honeycomb structures is relatively weak, so it is prone 
to an aerodynamic spalling behaviour [7]. Secondly, the preparation 
process is complicated. The foreign single-hole infusion technology 
takes five months to form, while the Chinese vacuum-integrated infusion 
technology has high requirements for the ablative material [8]. 

Lattice is a light-weight multifunctional material with excellent 
properties, such as high porosity, ultra-light weight, highly specific 
stiffness and specific strength, and high-energy absorption [9–12]. 
Moreover, the lattice, as the tensile-dominated structure, has a higher 

shear strength than a bending-dominated structure (such as the honey-
comb) [9]. Lattice spaces filled with ablative materials may have more 
advantages than honeycomb spaces filled with conventional ablative 
materials. The open cell configuration makes it easier for the ablative 
material to flow and become infused into the mold. In addition, the use 
of a lattice as the reinforcing phase of the ablative material, enhances its 
shear strength and makes it more resistant to aerodynamic spalling. 
Furthermore, the three-dimensional lattice structures make the lattice- 
reinforced composite more designable compared with traditional two- 
dimensional structures. However, the mechanism of lattice enhance-
ment in addition to the main control parameters is still unclear and 
corresponding research works are imperative. 

Current research on these types of problems has mostly been per-
formed experimentally with lattice webs to reinforce the foam structures 
[13–16]. Yan et al. [13] proposed to reinforce polyurethane foam with 
lattice webs made of glass fibers. They found that the lattice webs could 
significantly improve the load-bearing capacity and energy-absorbing 
properties of the structure under quasi-static axial loading. In contrast 
to Yan’s approach, Shi et al. [14] used continuous trapezoidal lattice 
webs as the reinforcing phase for closed-cell polyvinyl chloride (PVC) 
foam. They found that, by performing compression experiments, the 
lattice webs changed the damage modes of the foam. Tao et al. [15] 

* Corresponding author. 
E-mail address: yuanwu@imech.ac.cn (W. Yuan).  

Contents lists available at ScienceDirect 

Composite Structures 

journal homepage: www.elsevier.com/locate/compstruct 

https://doi.org/10.1016/j.compstruct.2022.116562 
Received 19 September 2022; Received in revised form 8 November 2022; Accepted 2 December 2022   

mailto:yuanwu@imech.ac.cn
www.sciencedirect.com/science/journal/02638223
https://www.elsevier.com/locate/compstruct
https://doi.org/10.1016/j.compstruct.2022.116562
https://doi.org/10.1016/j.compstruct.2022.116562
https://doi.org/10.1016/j.compstruct.2022.116562
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2022.116562&domain=pdf


Composite Structures 306 (2023) 116562

2

reinforced rigid polyurethane foam with a lattice and found that the 
lattice had a significant effect on the stress dissipation and fracture form 
of the structure. Both compression and bending performance tests were 
used in that study. Zhao et al. [16] fabricated conical lattice stitched 
foam sandwich structures by weaving, and found that the shear and 
flexural strengths of the hybrid structure were almost twice that of the 
foam sandwich structure. All researches at present are still limited to 
lattice webs, and there is less research on lattice reinforced soft material. 

Theoretical models for these issues include root-reinforced soil 
models and composite interface failure mechanisms. The theoretical 
basis of the mechanical model of root-reinforced soil is the Mohr- 
Coulomb strength theory. Wu et al. [17–20] obtained the shear- 
reinforced strength of soil by using orthogonal and oblique roots 
through mechanical analysis. Pollen et al. [21,22] suggested that the 
external loads were carried by parallel root bundles and once a root 
break occurs, then the loads were redistributed among the remaining 
roots. Schwarz [23] did further optimize the fiber bundle model to 
obtain the root bundle enhancement model. Fan [24] considered the 
increment of shear strength of the soil as the sum of the enhancement 
capacity of the roots for various deformation modes. Ekanayake [25,26] 
suggested that the energy consumed by the root-soil composite under 
load, was proportional to the shear strength. Furthermore, Zhou et al. 
[27,28] derived the incremental shear strength of the composite by 
analyzing the contribution of various energies to its fracture toughness. 
However, all the above models consider the root system as a flexible 
material, and only consider the effect of the tensile of the root system on 
shear. 

The theoretical study of interfacial failure of composites started with 
the work by Cox et al. [29–31] They concluded that the shear stress at 
the interface is largest at the end of the fiber and least in the middle. 
Kelly and Tyson [32] argued that the shear stress at the interface was 
uniformly distributed. Hiller Borg et al. [33] proposed an elastic soft-
ening cohesion model. The model assumed that the shear stress at the 
interface first increased linearly, and then decreased as the interface 
displacement increased. When the damage became accumulated to a 
certain level, the interface became deboned. In contrast to the bilinear 
model, Zhao [34] argued that the interface entered the yield state after 
the elastic state, and deboned when the yield region disappeared 
completely. 

Based on the root-reinforced soil principle of trees, this study has 
presented a matrix combined with a three-dimensional lattice to build a 
lattice-reinforced composite (LRC). Firstly, this study reported on the 
fabrication of three composites with different configurations (pyrami-
dal, tetrahedral, and Kagome) of the lattice as the reinforcing phase. 
Their shear strength under in-plane shear loading was measured 
experimentally. Then, an analytical formula was derived for the effec-
tive shear strength of the LRC under in-plane shear loading. Finally, the 
effect of topological parameters on the shear strength of the LRC, was 
investigated. 

2. Experimental study 

2.1. Materials and manufacture 

The schematic diagram of the LRC is shown in Fig. 1. The LRC of 
three configurations (pyramidal, tetrahedral, and Kagome) were 

prepared, and their shear response was investigated at different relative 
densities (5 %, 8 %, and 11.5 %). The fabricated LRC specimen, with a 
relative density of 11.5 %, is shown in Fig. 2. Comparative experiments 
with the lattice specimen and the matrix specimen, were also examined. 
The LRC was manufactured by using additive manufacturing. All spec-
imens were printed with the Stratasys objet30 pro printer. The failure 
mechanism of 3D printing has been studied by scholars [35–38], and this 
paper focused on shear failure of the LRC. The specific material pa-
rameters are shown in Table 1. The material used for printing the lattice 
was Vero White Plus (RGD835). The material used for printing the 
matrix was SUP706, which is a quite brittle material. As shown in 
Table 2, the rod length l0, single core length L, rod width t, and angle 
between the rods and the bottom surface ω, were the key parameters 
describing the LRC. The lengths of the nodes were b = 0.5 t andc =
̅̅̅
2

√
t/2, and the width of the nodes wast0 =

̅̅̅
2

√
t/4. For the LRC of the 

three configurations, l0 was 4.2 mm and ω was 45◦. Table 2 also presents 
the dimensionless relative densities of the lattice for the three different 
configurations. The dimensionless parameters are L = (l0cosω + t)/t 
andl = l0/t. The thicknesses of the rods at three relative densities for the 
three configurations of the lattice are listed in Table 3. 

The shear response of the LRC is dependent on the shear direction. 
Hence, the effect of shear direction on shear strength has also been 
investigated in the present study. The definition of shear direction is 
shown in Fig. 3. For the lattice shown in Fig. 3a, the shear direction was 
determined by the angle α. The shear direction α of the applied shear 
stresses s13 and s23 in Fig. 3b were 0◦ and 90◦, respectively. Unless 
otherwise specified, all measurements in this study were performed at α 
= 0◦. 

2.2. Experimental method 

The shear strength of the LRC was measured according to the in- 
plane shear test standard for composite materials: ASTM D7078M-05 
[39] (Standard test method for shear properties of composite materials 

Fig. 1. Schematic of the LRC.  
Fig. 2. The fabricated specimen: (a) the unfilled Tetrahedral configuration, (b) 
the Tetrahedral LRC, (c) the Pyramidal LRC, (d) the Kagome LRC. 
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by V-notched rail shear method)) (see Fig. 4). In order to reduce the 
influence of size effect, the LRC of three configurations had at least 7 
lattices in the shear direction. All experiments were conducted on a 
universal testing machine (SUST CMT5205) with a nominal displace-
ment rate of 1 mm / min. The failure process was captured by a CCD 
camera, with a sampling frequency of 60 Hz and a resolution of 1600 ×
1200 pixels. 

2.3. Experimental results 

The damage process of the tetrahedral LRC with a relative density of 
11.5 % under shear loading is shown in Fig. 5. The LRC was initially in 
an elastic state under in-plane shear loading, followed by a gradual 
cracking of the matrix. The cracks became finally too large, the lattice 
slipped or became fractured, and the LRC was finally damaged. 

Fig. 6 presents the shear strengths of the LRC with three lattice 
configurations under in-plane shear loading. The experimental results 
show that the shear strength of the LRC with three lattice configurations 
did gradually increase with an increasing relative density. For a constant 
relative density, the shear strength of the LRC with the Kagome 
configuration was the largest, followed by the tetrahedral and pyramidal 
configurations. 

Typical stress–strain curves for the tetrahedral LRC with a relative 

density of 11.5 %, are shown in Fig. 7. Also, the stress–strain relationship 
for the lattice alone, and for the matrix alone, has been compared under 
in-plane shear loading (see Fig. 7). It is clear from Fig. 7 that the shear 
strength increment has resulted in a significantly higher force level in 
the in-plane shear for the tetrahedral LRC, as compared with the com-
bined effect of just the matrix alone and the lattice alone. This would be 
referred to as the interaction effect. The shaded area in Fig. 7 represents 
the incremental shear strength caused by the interaction effect. This 
latter type of effect can also be represented by the images on the right 
side of Fig. 7, and certainly by Eq. (1). 

τcomposite > τlattice + τmatrix (1)  

where τcomposite is the shear strength of the LRC, τlattice denotes the shear 
strength of the lattice, and τmatrix indicates the shear strength of the 
matrix. 

3. Theoretical modeling 

To study the mechanism of interaction and the influencing factors, a 
theoretical model was developed. 

Table 1 
Mechanical properties of materials used for printing the lattice and matrix.  

Parameters Relative density 
ρ (g/cm3) 

Young modulus 
E (MPa) 

Yield strength 
σ (MPa) 

RGD835  1.175 1574 74 
SUP706  1.096 0.36 0.12  

Table 2 
Schematics of the LRC with three types of truss core configurations.  

The LRC Truss core Relative Density 

Pyramidal configuration 

ρ ≈
2

l2sinω(cos2ω + 1)

Tetrahedral configuration 

ρ ≈
4

̅̅̅
3

√
l2sinω(cos2ω + 1)

Kagome configuration 

ρ ≈
3

L2sinω  

Table 3 
The width, t, of the rod of three configurations of the LRC.  

Parameters Pyramidal LRC Tetrahedral LRC Kagome LRC 

ρ = 5 %  0.56  0.53  0.37 
ρ = 8 %  0.7  0.66  0.47 
ρ = 11.5 %  0.85  0.79  0.59  
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3.1. Shear response of the LRC 

The shear strength of the LRC has here been assumed to be the sum of 
the shear strength of the matrix, shear strength of the lattice enhanced 
phase, and shear strength due to the interaction effect. It can be 
expressed by Eqs. (2) and (3). 

τcomposite = Δτ+ τmatrix (2)  

Δτ = τl + τi (3)  

where Δτ represents the total shear strength increment caused by the 
addition of the lattice reinforcement phase. Furthermore, τcomposite, 
τmatrix, τl and τi are the in-plane shear strength of the composite, matrix, 
lattice reinforcing phase, and interaction effect, respectively. 

The essence of the lattice enhancement mechanism of the matrix was 
that the presence of the lattice made the matrix more resistant to 
cracking. Compared with the matrix, the LRC can absorb more energy 
for shear damage to occur. The strengthening effect of the lattice as the 
reinforcing phase to the matrix was mainly reflected in three aspects: (i) 
the lattice could prevent the generation and expansion of microcracks in 

Fig. 3. Schematic of shear direction: (a) schematic diagram showing a single core with shear direction, and (b) top view of a single core.  

Fig. 4. Measurement of the in-plane shear strength of the LRC.  

Fig. 5. Shear damage process of tetrahedral LRC: (a) tetrahedral LRC was in elastic stage; (b) cracks appeared first in the matrix at the structural weakness; (c) the 
shear load gradually increased and the damage occurred in the lattice; (d) the cracks through the structure and the tetrahedral LRC was completely damaged. 

P. Yang et al.                                                                                                                                                                                                                                    



Composite Structures 306 (2023) 116562

5

the matrix; (ii) the lattice as the reinforcing phase could increase the 
shear strength of the matrix; (iii) when cracks appeared in the matrix, 
the rods of the lattice could cross the cracks and bear the load, so that the 
LRC had a certain ductility. 

When subjected to external loads, the matrix, and the lattice in the 
LRC were deformed in a coordinated manner. The elastic modulus of the 
lattice was much larger than the elastic modulus of the matrix. When the 
load increased, there was a mutual motion, or movement, of the lattice- 
reinforced phase and the matrix, and this motion resisted on the inter-
facial bond strength between the lattice and the matrix. Therefore, 

during the deformation of the matrix, a tangential force parallel to the 
interface was generated between the lattice-reinforced phase and the 
matrix. In order to achieve the coordination of the deformation, a 
constraint was created by the deformation of the lattice-enhancement 
phase, and this constraint produced an additional pressure acting on 
the matrix. Conversely, the matrix applied a tensile force on the lattice- 
reinforced phase. This is illustrated in Fig. 8. 

The force analysis of the LRC is shown in Fig. 9. The rod AB was 
subjected to a tension under the action of an in-plane shear load. When a 
shear damage occurred in the LRC, the lattice would not produce a 
tensile damage if the tensile strength of the lattice was large enough to 
be greater than the interfacial bond strength. It would rather undergo 
debonding and slipping. On the contrary, the lattice would undergo a 
tensile damage if the tensile strength of the lattice was smaller than the 
interfacial bond strength. Under the action of an in-plane shear load, the 
interaction effect would pass two stages [27,28]. The axial force of the 
stretched rods and the interfacial bond strength would balance each 
other, and the lattice would become deboned; As the load further 
increased, the tensile rods of the lattice would undergo a frictional slip, 
at which time the interfacial properties were determined by the inter-
facial friction strength. 

The critical force analysis is shown in Fig. 9b. At the surface of the 
lattice tensile rod, the axial stress and the shear stress at the interface of 
the lattice and the matrix balance each other, we could get 
(

dT
dl

)

dl⋅t2 = τ⋅4tdl (4)  

where T represents the axial force of the tensioned rods, τ represents the 
shear stress between the lattice and the matrix, and t represents width of 
the rod. 

The axial stress of the tensioned rod was gradually decreasing from 
one end to the other, so Eq. (4) could be integrated to obtain Eq. (5). 

T =
4τl
t

(5) 

Zhou et al. [27,28] presented the work required for the root system 
to be presented as Eq. (6). 

Gd =

∫ l
0 T⋅t2dl

A
(6)  

where Gd denotes the energy absorbed per unit area when a stretched 
rod is being deboned, and A denotes the projected area of a single core. 
The process of damage occurring in the composite is equivalent to the 
process of destabilization and expansion of the cracks in the composite. 
Hence, the shear strength of the tetrahedral LRC obtained when the 
stretched rod is being deboned can be expressed as presented in Eq. (7). 

τi =
8τdt

3
̅̅̅
3

√
l0(cos2ω + 1)

(7)  

where τi represents the shear strength of the tetrahedral lattice induced 
by the interaction contribution, τd is the interfacial bond strength, and 
τd = 0.0572 MPa as measured experimentally. 

Fig. 6. Strength of LRC of three configurations under shear load.  

Fig.7. The interaction effect of the LRC.  

Fig. 8. Force analysis of the LRC: (a) the matrix and the lattice in the LRC bear the load to coordinate deformation; (b) misalignment between the matrix and the 
lattice due to difference in elastic modulus. 
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3.2. Validation of the theoretical model 

As presented in Fig. 10, the predicted values of the theoretical model 
were compared with the experimental results for a relative density, ρ, of 
11.5 %. The theoretical predictions and experimental results of the 
tetrahedral LRC were found to match well with the discrepancies of 10.3 
%, 12.6 %, and 8 %, respectively. Fig. 10 demonstrates the contribution 
of the mutually induced shear strength increments to the shear strength 
of the LRC, indicating that it could not be neglected. The three compo-
nents of the shear strength of the LRC under in-plane shear loading, 
where the shear strength of the lattice itself (i.e., dominating contribu-
tion to the shear strength of the LRC), followed by the shear strength of 
the matrix itself, and then the shear strength induced by the interactions. 
There was also a significant increase in shear strength of the tetrahedral 
LRC compared to the specimen with a matrix only. 

3.3. Mechanisms of the interaction effects 

Based on the analytical results of Eq. (7), the variational pattern of 
the dimensionless shear strength versus relative density consisted of 
three components, the LRC, the specimen with a tetrahedral lattice only, 
and the interaction effect between the tetrahedral lattice and the matrix. 
The specific analysis results are presented in Fig. 11. For a constant 
relative density, the dimensionless shear strength of the LRC was the 
largest, followed by the specimen with a tetrahedral lattice only, and then the interaction effect between the lattice and the matrix. This 

showed that after adding the lattice as the reinforcing phase of the 
matrix, the shear enhancement effect of the lattice itself still played a 
key role, but the interaction between the lattice and the matrix could not 
be ignored and had to be considered. When the relative density of the 
lattice increased, the interaction effect was gradually increased. This has 
demonstrated that the enhancement effect of the LRC and the 
enhancement effect of the lattice were similar in magnitude. The 
interaction effect did also gradually increase, but the magnitude of the 
enhancement was not as large as that of the lattice. 

3.4. Effect of the relative density 

The variational pattern of the dimensionless shear strength versus 
relative density of LRCs with pyramidal, tetrahedral and Kagome con-
figurations, is presented in Fig. 12. When the relative density increased, 
the dimensionless shear strength of the LRCs of all three configurations 
also increased. For a constant value of the relative density, the dimen-
sionless shear strength of the LRCs with a Kagome configuration was the 
largest one, followed by the LRCs with tetrahedral configuration, and 
the LRCs with pyramidal configuration showed the lowest dimensionless 
shear strength. This result can be explained by three configurations of 

Fig. 9. Schematic of the critical state force analysis of LRC debonding: (a) deformation analysis of a lattice tensile rod; (b) debonding occurs when the shear stress on 
the surface of the tensioned rod reaches the interfacial bond strength. 

Fig. 10. Comparison of experimental and theoretical results for lattice, inter-
action effect and the tetrahedral LRC. 

Fig. 11. Variational patterns of the individual components of shear strength 
with relative density. 
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the LRC dimensionless shear modulus have the same tendency, which 
was the largest for the Kagome configuration, followed by the tetrahe-
dral configuration, and the smallest for the pyramid configuration. The 
variational pattern of the shear modulus is represented in Fig. 13. The 
variational pattern of the composites with an increasing relative density, 
coincided with the shear modulus. 

3.5. Effect of the shear angle and the single core size 

Analytical predictions have indicated that the shear strength of the 
pyramid LRC lattice was related to the shear angle, α. This was 
confirmed by the dimensionless shear strength versus relative density 
(as demonstrated in Fig. 14). For the pyramid LRC lattice, the shear 
strength of the LRC was larger for a loading angle α = 45◦. 

Finally, the effect of a single core size on the shear strength incre-
ment of the LRC, has also been investigated in the present study. The 
results of this analysis are shown in Fig. 15. For a constant relative 
density, the effect of the LRC shear enhancement for the three config-
urations did first decrease sharply when the size of the cores increased, 

and then leveled off gradually. Even though the size of the core 
continued to increase, the effect on the LRC shear enhancement was 
small. This indicated that we could design smaller lattices at the outer 
end of the heat-resistant bottom when the effect of LRC shear 
enhancement was significant and could better resist the high-speed 
airflow. 

4. Conclusions 

The three-dimensional lattice reinforced matrix structure was a 
newly developed hybrid structure with high performance and light 
weight. The in-plane shear behavior of this mixed composite structure 
has been investigated by using a combined experimental and theoretical 
approach. Results indicated that the combination of a three-dimensional 
lattice and a matrix could significantly improve the shear strength of the 
composite structure, which was greater than the sum of the contribu-
tions of lattice and matrix structures. The variational patterns of the 
LRCs, with pyramidal, tetrahedral, and Kagome configurations under in- 
plane shear loading, were investigated. The increase in shear strength 
was primarily due to the interaction effect between the rods of the lattice 

Fig. 12. The variation of a dimensionless shear strength versus relative density 
for three configurations of the LRC. 

Fig. 13. The variation of a dimensionless shear modulus versus relative density 
for three configurations the LRC. 

Fig. 14. Variation of dimensionless shear strength, Δτ/τ, versus relative 
density,ρ, for pyramidal LRC and two different loading angles, α. 

Fig. 15. Effect of single core size, l0, on the increment of shear strength, Δτ/τ.  
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and the matrix. The main source of the interaction was the stretching 
debonding in the interface between the lattice rod and the matrix. The 
interaction effect did gradually become enhanced as the relative density 
increased. In addition, the effect of lattice configuration on the shear 
strength was also obtained, with the most significant increase in shear 
strength for the LRC with a Kagome configuration. 
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