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ABSTRACT

Unsteady Reynolds-averaged Navier–Stokes (URANS) equations have been widely used in engineering fields to investigate cavitating flow
owing to their low computational cost and excellent robustness. However, it is challenging to accurately obtain the unsteady characteristics
of flow owing to cavitation-induced phase transitions. In this study, we propose an implicit data-driven URANS (DD-URANS) framework to
analyze the unsteady characteristics of cavitating flow. In the DD-URANS framework, a basic computational model is developed by introduc-
ing a cavitation-induced phase transition into the equations of Reynolds stress. To improve the computational accuracy and generalization
performance of the basic model, the linear and nonlinear parts of the anisotropic Reynolds stress are predicted through implicit and explicit
methods, respectively. A data fusion approach, allowing the input and output of characterized parameters at multiple time points, is pre-
sented to obtain the unsteady characteristics of the cavitating flow. The DD-URANS model is trained using the numerical results obtained
via large-eddy simulation. The training data consist of two parts: (i) the results obtained at cavitation numbers of 2.0, 2.2, and 2.7 for a
Venturi flow, and (ii) those obtained at cavitation numbers of 0.8 and 1.5 for a National Advisory Committee for Aeronautics (NACA) 66
hydrofoil. The DD-URANS model is used to predict the cavitating flow at cavitation numbers of 2.5 for a Venturi flow and 0.8 for a Clark-Y
hydrofoil. It is found that the DD-URANS model is superior to the baseline URANS model in predicting the instantaneous periodic shedding
of a cavity and the mean flow fields.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134992

I. INTRODUCTION

Studies on cavitating flow have received increasing attention
because the performance of equipment and vehicles is affected by its
unsteady development. A phase transition occurs and forms a cavity
when the local fluid pressure decreases rapidly to the saturated vapor
pressure; this process is called cavitation. Cavitation is always accompa-
nied by vibration, noise, and erosion.1,2 In addition, the load fluctuation

caused by the periodic cavity shedding and the pressure pulsation
caused by the bubble collapse are also easy to cause the damage of the
structure.3 Cavitation must be prevented for many applications,4 and
thus, it is necessary to analyze unsteady cavitating flow to optimize and
design equipment and vehicles for engineering applications.5,6

The cavitating flow is closely related to the turbulent flow, and
the cavitation–vortex interaction impacts the cavity evolution
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profoundly.7 In the cavitation inception, the generation of Reynolds
stress in the turbulent boundary layer directly affects the burst process
of near-wall coherent structures.8 Bappy et al.2 studied the pressure
statistics of gas nuclei in homogeneous isotropic turbulence and its
application in cavitation inception. The results have a significant
impact on the modeling of cavitation inception. With the generation
and development of cavitation, the formation of vortex motion will
strengthen the turbulence intensity of the flow, making the interaction
mechanism between turbulence and cavitation more complex.9

The cavitating motion plays a significant role in the turbulence
velocity fluctuation and turbulence anisotropy; therefore, it is challeng-
ing to precisely simulate the unsteady characteristics of cavitating
flow.10–13 Large-eddy simulation (LES) is one of the most effective
approaches for analyzing multiscale vortices and directly solves large-
scale vortices by filtering while modeling small-scale vortices. Wang
and Ostoja-Starzewski14 used the LES approach to analyze the
National Advisory Committee for Aeronautics (NACA) 0015 hydro-
foil and obtained details regarding the shedding of the cavity. Ji et al.15

obtained the evolution laws of a cavity during the oscillating process
by using the LES approach, which results were in good agreement
with the experimental results. They also found that the development
and collapse of the cavity complicate the numerical computations.
Considering the influence of the unresolved pressure fluctuations at
the sub-grid scale (SGS) level computed by LES on cavitation incep-
tion prediction, Bappy et al.4 proposed a SGS model of cavitation
inception, which took into account the unresolved SGS pressure fluc-
tuations and successfully predicted the initial pressure and cavitation
rate in the flow. Yu et al.7 utilized the LES approach to predict the cavi-
tating flow around a Delft Twist-11 hydrofoil. They refined the nodes
near the Delft Twist-11 hydrofoil surface to guarantee the capacity to
capture the cavitating flow details. It is found that the numerical results
showed a reasonable agreement with the experimental data, and the
cavitating motion plays a significant role in the turbulence anisotropy.
Wu, Wang, and Huang16 investigated the influence of mesh resolution
on the results using the LES approach with two sets of grids. In this
work, the numerical simulation results based on the coarse grid
showed that the predicted cavity length and cavity shedding periodic
were different from the experimental results. Considering the influence
of cavity length and velocity of reentry jet on the shedding frequency,
and the sensitivity of the reentry jet in spanwise direction to the pres-
sure gradient and spanwise resolution of the mesh, the grid setting was
further optimized. They captured the reentry jet in the spanwise direc-
tion by setting more spanwise nodes and then predicted the cavity
length, cavity shedding period, and cavitation mode, which in good
agreement with the experimental results. Yu, Feng, and Tang17 used
the refined meshes optimized in the spanwise to capture the intrinsic
vortex structure around a mini cascade and revealed the interaction
between vortex dynamics and turbulence–cavitation. As mentioned
above, a high grid resolution and large computational cost are required
to simulate cavitating flow using the LES approach, and this limits the
application of the LES approach in engineering fields.18

Unsteady Reynolds-averaged Navier–Stokes (URANS) equations
have been widely used in engineering fields to investigate cavitating
flow owing to their low computational cost and excellent robustness.
In the traditional URANS approach, the standard k� e model treats
turbulent viscosity as a function of the turbulent kinetic energy and
dissipation rate and is used to analyze the development of

turbulence.19 This approach shows better computing stability and
independence in terms of computing resources compared to LES.20

However, this method overestimates the turbulent viscosity;18,21–23

thus, the details of unsteady behaviors cannot be simulated accurately
in a complex cavitating flow.24–26 To avoid the viscosity over-prediction
observed using the traditional URANS model, Coutier-Delgosha, Patella,
and Reboud27 and Li et al.28 proposed a density-based URANSmodel by
introducing a mixing density function into the traditional turbulence vis-
cosity. Wang et al.29 carried out numerical simulations to analyze a cloud
cavitating flow in a revolving body. Their results showed that the modi-
fied URANS roughly described the shapes of the cavity compared to the
results obtained using the LES approach. Although the modified
URANS model improves the prediction performance in cavitating flow,
the unsteady characteristics of this flow are not accurately obtained rela-
tive to the LES approach. However, the URANS turbulence model still
plays an important role in engineering applications.30 Consequently,
novel turbulence models should be developed to further enhance the pre-
diction performance of the URANSmodel in cavitating flow.

Recently, data-driven (DD) techniques in machine learning algo-
rithms have been widely used in turbulence closure modeling to
enhance predictive capabilities and computational accuracy.31–41

Among them, the tree-based methods,42 support vector machine Ling
and Templeton,43 and artificial neural network44,45 are the main data-
driven technologies. In the turbulence modeling framework, regression
functions are obtained via the data-driven technique based on datasets
and are used to develop Reynolds stress closures. The traditional
RANS model is modified based on the predicted Reynolds stress clo-
sure, and this modification is based on the certain fundamental physi-
cal principles and closure tenets incumbent.31 Ling et al.45 proposed a
specific network structure based on the framework of a higher-order
eddy-viscosity model and used base tensors to ensure Galileo invari-
ance. Subsequently, the strategy used to ensure Galileo invariance was
applied to different types of flows such as channel flows, back steps,
and periodic mountain flows.46–51 The above-mentioned studies
showed that data-driven RANS models are superior to the traditional
RANS model. In these studies, the Reynolds stress was predicted
explicitly, while the other terms in the momentum and transport equa-
tions remained unchanged.

However, the explicit treatment of the Reynolds stress led to ill-
conditioning of the RANS equations, inducing a low prediction accu-
racy of the posterior flow. Wu, Xiao, and Paterson52 proposed an
implicit treatment method based on physical information. In this
method, the linear and nonlinear parts of the Reynolds stress are
trained separately to improve the prediction accuracy. Wu et al.53

introduced a local condition number function to evaluate the condi-
tional characteristics of the turbulence model. The local condition
number was used to quantitatively explain the improvement in the
implicit treatment of Reynolds stress. Zhang et al.54 developed a semi-
implicit treatment of an anisotropy discrepancy model of Reynolds
stress based on a higher-order tensor basis. Their results showed that
the prediction accuracy in the posterior flow was improved
significantly.

As mentioned above, while steady flows have been predicted pre-
cisely via the data-driven RANS model, studies on the prediction of a
cavitating flow have rarely been carried out owing to a variety of com-
plex phenomena such as turbulence, phase transition, and unsteady
characteristics. In the present study, an implicit data-driven URANS
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(DD-URANS) framework is proposed to analyze the unsteady charac-
teristics of cloud cavitating flow. In this framework, the effects of cavi-
tation are considered by introducing the rate of phase transition into
the URANS equations. The anisotropic Reynolds stresses are decom-
posed into linear and nonlinear components, which are trained using
implicit and explicit treatment methods, respectively. Training data
are obtained using the LES wall-adapting local-eddy viscosity (WALE)
model Nicoud and Ducros.55 Moreover, to improve the calculation of
the unsteady characteristics of cavitating flow, we developed a multi-
time data fusion method using a temporal distribution to construct
the dataset. Our numerical results indicate that the DD-URANSmodel
is superior to the traditional URANS model for predicting unsteady
characteristics in a cavitating flow. Furthermore, the developed DD-
URANS exhibited excellent generalization ability. The structure of the
present study is as follows: Sec. II describes the implicit DD-URANS
model and training dataset. Section III discusses the prediction results
of the DD-URANS model. The findings of this study are finally sum-
marized in Sec. IV.

II. METHODOLOGY

In the typical cloud cavitation regime, the development process
of the cavity is periodic, and the reentry jet formed by the attached
cavity tail is the main reason for the cloud cavity shedding.25 Shedding
by the mechanism of reentry flow is regarded as a three-part process
involving the development of the reentry flow, cavity shedding, and
cavity growth, as shown in Fig. 1.

(1) Development of reentry flow.
(a) The flow behind it separates when the cavity stops growing.

The liquid from this separation zone is drawn into the cav-
ity by the prevailing pressure gradient and forms a reentry
jet at the rear edge of the cavity.

(b) The reentry jet migrates upstream from the rear edge of the
cavity to the front edge of the cavity.

(2) Cavity shedding.
(c) At a certain point, the jet will intersect the cavity wall,

break through the cavity wall, and flow downstream as a
bubble vortex.

(d) The jet opposite to the flow direction brings considerable
vorticity to the downstream foam, and the truncated cavity
simultaneously regrows.

(3) Cavity growth.

(e) The cavity grows steadily downstream with clear boundaries.
(f) The cavity reaches the maximum attached cavity length

and enters the next period.
Considering the inaccuracy in URANS models for unsteady

behaviors as a critical bottleneck in improving the prediction accuracy
of numerical simulations for cavitating flow, the present study utilizes
the renormalization group (RNG) k� e model with a modified
turbulent eddy viscosity as the baseline URANS model and proposes a
DD-URANS model to enhance the prediction performance of the
aforementioned baseline model.

A. Baseline URANS approach

In this study, the homogeneous equilibrium flow model is used
for numerical computations; that is, the mixture of vapor and liquid
phases is regarded as a homogeneous medium, and there is no relative
velocity or pressure between the phases. Considering the transition
rate between the phases, the baseline URANS equations in incom-
pressible flows are obtained by taking the average values of the
Navier–Stokes equations over time, which, in their form without body
forces, are written as

@qm
@t

þ @qm�uj

@xj
¼ 0; (1)

@qm�ui

@t
þ @qm�ui�uj

@xj
¼ � @�p

@xi
þ @

@xj
l 2�Sij � 2

3
@�uk

@xk
dij

� �
� sij

� �
; (2)

where �ui is the ith component of the mean velocity, that is,

�uiðtÞ ¼ 1
2T

ðt�T

t�T
uiðtÞdt; (3)

in theory, T should be � resolved time scale.56 qm ¼ qlal þ qvav is
the mixture density, l ¼ llal þ lvav is the mixture dynamic viscosity,
ql is the liquid density, qv is the vapor density, al is the liquid fraction,

FIG. 1. Schematic illustration of cavity shed-
ding caused by a reentry jet.25 (a) and (b)
Development of reentry flow, (c) and (d) cavity
shedding, and (e) and (f) cavity growth. Light
green represents the vaporous cavity, and the
black arrows represent liquid streamlines.
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av is the vapor fraction, ll is the liquid dynamic viscosity, lv is
the vapor dynamic viscosity, �p is the mean pressure, and �Sij
¼ 1=2ð@�ui=@xj þ @�uj=@xiÞ is the mean strain rate tensor. Compared
with the form of the Navier–Stokes equation, there is an additional
term sij in the URANS model, which is called the Reynolds stress and
is written as

sij ¼ qmu
0
iu

0
j : (4)

The Reynolds stress tensor sij is a symmetric tensor that can be
decomposed into an isotropic tensor 2

3 qmkdij and an anisotropic tensor
aij

sij ¼ 2
3
qmkdij þ aij; (5)

where k is the turbulent kinetic energy and dij is the Kronecker delta.
Therefore, it is essential to combine these equations with an appropriate
turbulence model to form a complete model. The direct modeling of the
Reynolds stress tensor is based on the Boussinesq hypothesis,57 which in
analogy with Newtonian flows assumes the Reynolds stress isotropic ten-
sor to be a linear function of the mean velocity gradients such that

aLij ¼ �2lt �Sij � 1
3
@�ui

@xi
dij

� �
; (6)

where lt is the turbulent viscosity closed by the RNG k� emodel.
The mass fraction equation for vapor is as follows:

@qvav
@t

þ @qvav�ui

@xi
¼ Re � Rc; (7)

where Re is the evaporation rate, which indicates the mass of liquid that
changes from liquid to vapor over a unit of time during the evaporation
process, and Rc is the condensation rate, which can be simulated in the
Zwart–Gerber–Belamri (ZGB) model established by Zwart et al.58

Re ¼ Ce
3anuc 1� av � ancgð Þqv

RB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

max psat � p; 0ð Þ
ql

s
; (8)

Rc ¼ Cc
3anucavqv

RB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

max p� psat ; 0ð Þ
ql

s
; (9)

where anuc is the nucleation volume fraction, RB is the bubble diame-
ter, Psat is the saturated vapor pressure, P is the local fluid pressure, Ce

is the evaporation rate coefficient, and Cc is the condensation rate
coefficient.

When phase transition phenomena occur, the divergence of the
mean velocity @�ui

@xi
is no longer equal to zero in the incompressible flow,

which is denoted as Sp and is expressed as follows (more details of the
numerical procedure for solving the mean velocity divergence are
detailed in the Appendix):

Sp ¼ @�ui

@xi
¼ 1

ql
� 1
qv

� �
ðRc � ReÞ: (10)

Therefore, Eq. (6) is finally expressed as

aLij ¼ �2lt �Sij � 1
3
Spdij

� �
: (11)

To calculate the turbulent viscosity lt , the transport equations of
the turbulent kinetic energy and dissipation rate are solved using the
RNG k� emodel

@qmk
@t

þ @qmk�uj

@xj
¼ @

@xj
akðlm þ ltÞ

@k
@xj

" #
þP� qme; (12)

@qme
@t

þ @qme�uj

@xj
¼ @

@xj
aeðlm þ ltÞ

@e
@xj

" #

þ Ce1
Pe
k

� Ce2qm
e2

k
; (13)

where ak and ae are the reciprocals of the effective Prandtl numbers,
and their empirical values are both 1.393. The model constants Ce1

and Ce2 are 1.42 and 1.68, respectively.P is the generation term of the
turbulent kinetic energy caused by the mean velocity gradient and is
defined as follows:

P ¼ �sij
@�ui

@xj
: (14)

For an ordinary case, the turbulent viscosity is calculated by
lt ¼ Clk2qm

e , which is overestimated in the mixed region. Therefore, a
modified turbulent viscosity is defined, which significantly improves
cloud-shedding simulations. The turbulent viscosity is previously
modified27 as follows:

lt ¼ f ðqmÞ
Clk2qm

e
; f ðqmÞ ¼ qv þ

ðqm � qvÞn
ðql � qvÞn�1 ; n ¼ 10: (15)

B. Data-driven scheme

Higher-order eddy-viscosity models can be constructed for
incompressible complex flows. The general expression of the higher-
order eddy-viscosity model is determined as the sum of the linear and
nonlinear components

aij ¼ sij � 2
3
qmkdij ¼ aLij þ aNLij

¼ �2lLt �Sij � 1
3
Spdij

� �
þ aNLij ¼ �2lLt

e
k
Ŝij þ aNLij ;

(16)

where

Ŝij ¼ k
e

�Sij � 1
3
Spdij

� �
(17)

is the dimensionless mean strain rate tensor and aNLij represents the sum
of the nonlinear terms. According to Zhang et al.,54 the form of the non-
linear terms aNLij can also be expressed in the generalized form of Pope59

aNLij ¼ k G1 þ 2lLt
e
k2

� �
Ŝij þ kG2ðŜikR̂kj � R̂ikŜkjÞ

þ kG3 ŜikŜkj � 1
3
dijŜmnŜnm

� �
þ G4 R̂ikR̂kj � 1

3
dijR̂mnR̂nm

� �
þ � � �: (18)
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Let G1 ¼ G1 þ 2lLt
e
k2; Eq. (18) can then be expressed as

aNLij ¼ kG1Ŝij þ kG2ðŜikR̂kj � R̂ikŜkjÞ

þ kG3 ŜikŜkj � 1
3
dijŜmnŜnm

� �
þ G4 R̂ikR̂kj � 1

3
dijR̂mnR̂nm

� �
þ � � �; (19)

whereGn is a function of the invariants ki, defined as

k1 ¼ ŜmnŜnm; k2 ¼ R̂mnR̂nm; � � � : (20)

The linear term is treated implicitly to enhance conditioning when
solving the URANS equations. To compute lLt , the optimal eddy viscos-
ity introduced byWu, Xiao, and Paterson52 is chosen as follows:

lLt ¼ arg min
lt

��������aij � �2lLt
e
k
Ŝij

� ���������; (21)

whichminimizes the discrepancy between the anisotropy Reynolds stress
tensor and its linear component. k � k denotes the Frobenius norm of a
matrix. The optimal eddy viscosity lLt can be computed by projecting
the anisotropic stress tensor onto the strain rate tensor as follows:

lLt ¼ � k
e

aijŜij
kŜijkkŜijk

; (22)

where aijŜij represents the double dot product of tensors.
In this study, data-driven techniques and high-fidelity data are used

to construct the regression functions that predict the optimal eddy viscos-
ity lLt and nonlinear part a

NL
ij of the anisotropic Reynolds stress tensor.

1. Parameter selection and regression function
construction

From Eqs. (19) and (20), it can be seen that

aNLij ¼ f ðk1; k2; � � �Þ: (23)

It can be found that there is a lack of information about cavitating flow
in this hypothesis. First, the mixed-phase density qm is an important
physical quantity in cavitating flow because it determines the prediction
accuracy of the turbulent viscosity component. Second, the URANS
model has also been improved based on density in many modification
methods. Similarly, the phase transition term Sp is crucial and determines
the mass conservation equation of the vaporliquid flow. Therefore, the
mixed-phase density term qm and the phase transition term Sp are also
included in the input, leading to the following functional mapping:

aNLij ¼ f ðk1; k2;…; q̂m; ŜpÞ; (24)

where q̂m ¼ qm
ql
; Ŝp ¼ SpL

u1
, L is the characteristic scale of the flow field,

and u1 is the incoming flow velocity. To compute the optimal eddy
viscosity, a mapping relationship is established as follows:

lLt ¼ f2ðk1; k2;…; q̂m; ŜpÞ; (25)

2. Training strategy for multi-time data fusion

To improve the prediction accuracy of the baseline URANS
model for unsteady cavitating flow, a multi-time data fusion method

for a temporal distribution is developed, as shown in Fig. 2. First, the
flow field data are generated via the numerical simulation of a cavitat-
ing flow. Second, as shown in Fig. 2(b), the period of cavity shedding
is calculated based on the fast Fourier transform (FFT) results obtained
via the monitoring data. The flow field data in a single period can
clearly represent the process of cavity development (t1 represents cav-
ity initiation, t2 and t3 represent reentry flow growth, and t4 indicates
that cavity shedding is completed). Therefore, to capture the unsteady
characteristics of the flow field, the dataset needs to be composed of
data of multiple time frames. Wr�oblewski et al.60 selected the numeri-
cal simulation results of ten time frames in one period to describe the
cavity shedding of the Clark-Y airfoil. Considering the dependence of
data-driven technology on dataset,61,62 the data from 20 time frames
(t1; t2; t3;…; t20) are selected between t1 and t4 for fusion to more fully
capture the time evolution of the cavity. Finally, the corresponding
neural networks are constructed for training based on the regression
function relationship and the dataset established above.

As shown in Fig. 2(c), a combined neural network is employed to
train the model. A fully connected neural network is composed of vari-
ous neurons. The neurons are laid out in layers. The leftmost layer is
called the input layer and is responsible for receiving input data. The
rightmost layer is the output layer. We obtain neural network output
data from this layer. The layers between the input and output layers
are called hidden layers because they are invisible to the outside. There
is no connection between neurons in the same layer. Each neuron in
layer l is connected to all neurons in layer l–1 (this is the meaning of
the phrase fully connected), and the output cjðl � 1Þ of the neurons in
layer l–1 is the input of the neurons in layer l. Each connection
between the two layers has a weightW, which is the model parameter
that the neural network must learn. Considering the ith neuron node
of the lth layer as an example, the value of this neuron is

ziðlÞ ¼
Xn
j¼1

WijðlÞcjðl � 1Þ þ biðlÞ: (26)

ziðlÞ is then applied to the activation function to obtain the final result
ciðlÞ

ciðlÞ ¼ f ziðlÞ½ �; (27)

where biðlÞ are the bias and f is the activation function. The activation
function in this network is a leaky rectified linear unit (leaky ReLU)63

and is expressed as

f ðxÞ ¼ ax; x < 0;
x; x � 0;

�
(28)

where a is taken as 10�8.
To minimize the error between the predicted and true values,

gradient descent backpropagation is used to obtain the error of each
layer, and the error of each layer is then used to update the weight of
each layer to fit the model. The loss function is given by the root mean
squared error (RMSE). The details of the optimized network architec-
ture used in this study are listed in Table I.

3. Data-driven URANS model

In data-driven terminology, the flows used to construct the
regression functions are the training flows, and the flow to be
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predicted is the test flow. The procedure of the proposed DD-URANS
model is illustrated in Fig. 3.

The LES approach is an effective and mainstream numerical simu-
lation method for predicting cavitating flow that can accurately predict
the unsteady characteristics of the flow.64 Therefore, this study uses the
LES approach to generate the target dataset and applies the modified
RNG k� emodel mentioned above to obtain baseline dataset.

A combined neural network is constructed as shown in Fig. 2(c),
in which the output of neural network 1 [tensor basis neural network
(TBNN)] is aNLij ¼ aLESij � aURANSij , and the output of neural network 2
lLt [eddy viscosity neural network (EVNN)] is the eddy viscosity
obtained via LES. The two artificial neural networks correspond to
regression functions f1 and f2, respectively.

After the simulation data are obtained, the 3D LES data are span-
wise averaged and then linearly interpolated to correspond to the sim-
ulated 2D URANS data obtained under the coarse grid. The neural
network is then trained based on the above dataset.

(1) Perform baseline URANS operations on both the training and
test flows to obtain the input features and aURANSij .

(2) Compute the discrepancy fields aNLij ¼ aLESij � aURANSij for the
training flows and train the regression function f1 and f2.

The obtained regression relationship is then used to modify and
predict the cavitating flow. A detailed description of the DD-URANS
model is provided in Algorithm 1.

FIG. 2. Model training strategy. (a) Numerical simulation for flow field data. (b) Dataset selection. The graph containing red and black lines represents the FFT results of the
flow field data. The graph with black and light blue lines represents the variation of the flow field data with time. The variation curve from t1 to t 20 represents 20 time points
within a single cycle of the flow field. (c) The upper image indicates tensor basis neural network (TBNN), and the lower image indicates the eddy viscosity neural network
(EVNN).

TABLE I. Neural network hyperparameters.

Parameters TBNN EVNN

Number of hidden layers 5 3
Number of nodes per layer 10 6
Activation function Leaky ReLU Leaky ReLU
Optimization Adam Adam
Regularization coefficient 0.005 0.005

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 015134 (2023); doi: 10.1063/5.0134992 35, 015134-6

Published under an exclusive license by AIP Publishing

 08 April 2024 03:25:06

https://scitation.org/journal/phf


C. High-fidelity data for the data-driven model

1. High-fidelity LES numerical simulations

The LES approach is used in this study to obtain the required high-
fidelity data. The LES equations are spatially Favre-filtered as follows:

@qm
@t

þ @qm~uj

@xj
¼ 0; (29)

@qm~ui

@t
þ @qm~ui~uj

@xj
¼ � @~p

@xi
þ @

@xj
l 2~Sij � 2

3
@~uk

@xk
dij

� �
� sij

� �
; (30)

where ~ui is the filtered ith velocity component, ~p is the filtered pres-
sure, ~Sij ¼ 1=2ð@~ui=@xj þ @~uj=@xiÞ is the filtered strain-rate tensor,
and sij ¼ qmðguiuj � ~ui~ujÞ are the SGS stress, which are modeled
using the wall-adapting local-eddy viscosity (WALE) model.55

FIG. 3. Data-driven framework. (a) Governing equations and transport equations for baseline URANS simulations. (b) DD-URANS model. The trained regression functions f1
and f2 are applied to modify the baseline URANS equations. (c) Monitor the simulation results predicted by the DD-URANS model.

ALGORITHM 1: Data-driven URANS method.

Input: Computational domain X 2 ðx; yÞ, number of meshes N,
point coordinates ½ðx1; y1Þ; ðx2; y2Þ;…; ðxk; ykÞ;…; ðxN ; yNÞ�
(k 2 ½1;N�), initial conditions, boundary conditions, turbu-
lence model, cavitation model, and iteration steps Tn for
baseline URANS model.

Output: Instantaneous and mean flow field results.
1 for step¼ 1 to Tn do
2 for k¼ 1 to N do
3 Perform baseline URANS on the test flow to obtain the

input features k1; k2; q̂m; Ŝp, and aURANSij of point (xk, yk)
[see 3(a)];

4 Apply the trained regression function f1 to predict the non-
linear terms aNLij of point (xk, yk) [see 3(b)];

5 Apply the trained regression function f2 to predict the opti-
mal eddy viscosity lLt of point (xk, yk) [see 3(b)];

6 Substitute the predicted aNLij and lLt values in the URANS
equations for the anisotropy stress tensor aij of point (xk,
yk), as shown in Eq. (16);

7 Solve the developed DD-URANS model to update the
velocity field and pressure field by PISO algorithm;

8 end
9 Predict the flow fields and output the instantaneous flow and

mean flow field results [see 3(c)].
10 end

FIG. 4. Computational domain of a (a) Venturi-type convergentdivergent nozzle
and (b) NACA66 hydrofoil.
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2. Case setup

In this study, a Venturi tube with a shrink-diverging nozzle and a
NACA66 hydrofoil are selected as the basic cases. These two cases
exhibit a typical separation flow and cavity shedding mechanism, and
the related experimental verification results are obtained in greater
detail. The saturated vapor pressure used is set according to the water
temperature (24�).

Figure 4(a) illustrates the geometry of a convergentdivergent noz-
zle of the Venturi type adopted in the simulations. A sharp ridge is
formed in the throat, causing a greater pressure drop, and the height
of the throat is h. The surface indicated by the green arrow represents
the fluid inlet and outlet. The mean fluid flows from the inlet to the
outlet in the x direction, extending 56.67h downstream. The length
and width of inlet are 2.93h and 2.70h, respectively, and the length and
width of outlet are 2.93h and 6.03h, respectively. The angle of the con-
verging component is 11.3�, and the angle of the diverging section is

7.1�. The inlet velocity is set to ul ¼ 7:4m=s, and at the outlet bound-
ary, the outlet pressure changes with the cavitation number. The cavi-
tation number is defined as r ¼ ðp1 � pvÞ=ð0:5qlu21Þ, where p1 is
the environmental pressure varying with cavitation number, pv is the
saturated vapor pressure, ql ¼ 998:2 kg=m3 is the liquid water density,
and the other boundary conditions are set to no slip. The flow is simu-
lated at a Reynolds number of Re¼ 118 000.

The computational domain of the NACA66 hydrofoil is illus-
trated in Fig. 4(b). The hydrofoil chord length is C¼ 0.15 m, and the

FIG. 5. Comparison of the inflow velocity profile at the velocity measurement plane
with the experiment data from Ganesh, Makiharju, and Ceccio65 and LES data from
Bhatt and Mahesh.66 FIG. 6. Comparison of the mean pressure distribution around the NACA66

hydrofoil.

TABLE II. Datasets used for model training and testing.

Training cases Testing case

Venturi r¼ 2.0, 2.2, 2.7; NACA66 r¼ 0.8,1.5 Venturi r¼ 2.5

FIG. 7. Data sampling distribution.
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foil is fixed within a 1.2-m-long and 0.192-m-wide square test section.
The attack angle is 6�. The inflow velocity is ul ¼ 5:0m=s,
Re¼ 750 000, and the static pressure is adjusted to vary the cavitation
number.

3. Validation of high-fidelity LES simulation results

For the Venturi flow (r ¼ 2:5), the velocity profile along the nor-
mal direction of the wall is compared with the experiment data from
Ganesh, Makiharju, and Ceccio65 and LES data from Bhatt and
Mahesh66 at the mid-line of the plane indicated in Fig. 4(a), and a

comparison of these results is shown in Fig. 5. It is found that the LES
approach used in this study can obtain a more accurate cavity struc-
ture. For NACA66, the mean pressure distribution around the hydro-
foil (r ¼ 1:5) is in good agreement with the experiment data from
Leroux, Astolfi, and Billard,67 as shown in Fig. 6. Therefore, other cases
with different cavitation numbers can be computed based on this LES
approach to obtain high-fidelity data and realize the modification of
the baseline URANS model.

III. RESULTS AND DISCUSSION

The cases used for the model training and testing are listed in
Table II. The cases with cavitation numbers of 2.0, 2.2, and 2.7 for a
Venturi flow and two cases with cavitation numbers of 0.8 and 1.5 for
a NACA66 hydrofoil are used to train the neural network, and the
case with a cavitation number of 2.5 for a Venturi flow is used for test-
ing. However, the multi-time flow field characteristics obtained under
various cases are selected to train the neural network, which resulted
in an abnormally large amount of data. Therefore, this study performs

TABLE III. Datasets used for generalizability of predictions.

Training cases Testing case

Venturi r¼ 2.0, 2.2, 2.7;
NACA66 r¼ 0.8,1.5

Clark-Y hydrofoil
r¼ 0.8

FIG. 8. Contours of the instantaneous periodic shedding obtained via the (a) LES, (b) DD-URANS, and (c) baseline URANS models. The first row shows that cavity begins to
grow, the second and third rows show the development of cavity, and the fourth row shows the maximum length of cavity.
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fixed and random sampling for the flow at the selected time, as shown
in Fig. 7. The fixed domain is shown in red in Fig. 7, and the remain-
der of the domain can be used for random sampling. The random
sampling data comprised 20% of the full flow field data.

The prediction advantages of the DD-URANS model will next be
analyzed and discussed in terms of the following three aspects. First, the
performance of the DD-URANS model is analyzed to predict instanta-
neous periodic shedding. Subsequently, the mean flow fields are dis-
cussed. Finally, the generalizability of the DD-URANS model is further
verified by testing using a Clark-Y airfoil (see Table III for the datasets).

A. Venturi flow—instantaneous periodic shedding

The baseline URANS results are those obtained using the modi-
fied RNG simulations. The data-driven results are denoted as DD-
URANS in the figure legends. The instantaneous periodic shedding of
the divergent section of the Venturi flow computed via the LES, DD-
URANS, and baseline URANS models is shown in Fig. 8. It can be
seen that the cavitation inside of the flow vortices is captured by the
LES simulation results. Figure 8(a) shows that the cavity gradually
grows from the apex of the wedge and flows downstream along with
the detached cloud from the previous cavity as it travels upward. The
cavity then reaches its maximum length and exhibits a stable cavity
interface. When the cavity is further generated, the vapor cloud begins
to collapse and the next cavity begins to grow. Figure 8(c) shows the

FIG. 9. Contours of the instantaneous pressure obtained via the (a) LES, (b) DD-URANS, and (c) baseline URANS models.

FIG. 10. Corresponding FFT results for the instantaneous volume fraction of vapor.
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computational results for the baseline URANS model. It can be
observed that the cavity gradually grows from the apex of the wedge,
the maximum length of the cavity is significantly shorter than the
results of the LES simulation, and no obvious periodic vapor shedding
is captured. In the prediction results of the DD-URANS model [see
Fig. 8(b)], it is found that the cavity experienced three stages: initial
growth, achievement of maximum length, and shedding. The cavity
shedding period is approximately the same as that in the LES simula-
tion results.

Accordingly, the time evolution of the pressure distribution pre-
dicted by LES, DD-URANS, and baseline URANS models is shown in
Fig. 9. From the LES results [Fig. 9(a)], it can still be seen that the cav-
ity gradually grows to the maximum length. The prediction results of
DD-URANS model are closer to the LES results than the original
URANS results in capturing the time evolution of cavity, which further
verifies the prediction advantages of the DD-URANS model.

In the numerical computation process, a monitoring surface
is set up in the cavitation area to monitor the instantaneous vapor
volume fraction, and FFT is performed based on the monitored
signal. As shown in Fig. 10, the FFT obtained using the LES
approach exhibits a peak value at f¼ 22.1. The corresponding peak
values of the DD-URANS and baseline URANS models are 26.5
and 57.3, respectively, which further confirms that the URANS
model has limited predictive abilities for instantaneous cavity
shedding, and also verifies the improved predictive performance of
the DD-URANS model.

B. Venturi flow—mean flow field

This section describes the prediction performance of the DD-
URANS model for the mean flow field in the cloud cavitation regime.
Figure 11(a) presents the mean streamline velocity computed by the
LES, DD-URANS, and baseline URANS models. As shown in Fig. 11(a),
the baseline URANS model overestimates the cavity length, whereas the
DD-URANS model is better at simulating the vapor regions. The corre-
sponding profiles for the anisotropic Reynolds stress are shown in Figs.
11(b) and 11(c), respectively, which further verifies that the DD-URANS
model is superior to the URANSmodel.

The contour of the mean vapor volume fraction simulated by the
DD-URANS model is compared with the LES and baseline URANS
results in Fig. 12. The LES results show an obvious closed-loop reentry
jet phenomenon, which is conducive to cavity shedding and is quite
different from the simulation results of URANS. Compared with the
baseline URANS model, the DD-URANS model captures the thick-
ness and length of the cavity more accurately.

To compare the results more clearly, Fig. 13 plots the profiles of
the mean vapor volume fraction extracted at different axis positions
(x=h ¼ 0:5; 1; 2; 3; 4) along the y axis on the surface of the divergent
section. It can be seen from the profiles that the DD-URANS model
predicts the cavity volume more accurately than the other models.
When x ¼ 4h, the cavity predicted by the LES approach has exhibited
shedding (havi ¼ 0:0), and the simulation results of the baseline
URANS model show that the mean vapor volume fraction is still not

FIG. 11. Profiles simulated by LES, DD-URANS, and baseline URANS models. (a) Mean streamline velocity �Ux=�UB, (b) normal stress component a11=k, and (c) shear stress
component a12=k.

FIG. 12. Contours of the mean vapor volume fraction havi from the (a) LES, (b) DD-URANS, and (c) baseline URANS models.
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zero. However, compared with the baseline URANS model, the DD-
URANS model significantly improves the prediction accuracy.

Compared with the baseline URANS model, the DD-URANS
model can more accurately predict the cavity shedding and pressure
evolution of cloud cavitation. Therefore, the DD-URANS model is fur-
ther used to predict the development of small and medium-sized cavity

and obtain the mean vapor volume fraction results as shown in Figs. 14
and 15, respectively. The results show that DD-URANS model is supe-
rior to the baseline URANS model. However, the DD-URANS model
cannot predict the evolution of cavitation inception well, because the
relevant low-pressure structures responsible for cavitation inception are
very small, which lead to inability of predicting the pressure histories

FIG. 14. Small-sized cavity: profiles of the mean vapor volume fraction simulated by the LES, DD-URANS, and baseline URANS models at two locations (x=h ¼ 0:3; 0:6).

FIG. 13. Profiles of the mean vapor volume fraction simulated by the LES, DD-URANS, and baseline URANS models at five locations (x=h ¼ 0:5; 1; 2; 3; 4).
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experienced by nuclei in the uid.4 This may need extra algorithms for
in-depth research, and this will be an interesting topic in future work.

C. Clark-Y hydrofoil—generalizability of predictions

To further explore the predictive performance of the DD-
URANS model, the previously trained model is directly applied to
Clark-Y hydrofoil flows. The computational domain is considered
with the boundary conditions shown in Fig. 16. The chord length is
c¼ 0.07 m, and the attack angle is 8�. The Clark-Y hydrofoil is located
in a channel with a length of 10c and a height of 2.7c.

FIG. 15. Medium-sized cavity: profiles of the mean vapor volume fraction simulated by the LES, DD-URANS, and baseline URANS models at three locations (x=h ¼ 1; 2; 3).

FIG. 16. Computational domain and boundary conditions.
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Considering the boundary conditions, the wall is set at the hydro-
foil surface, and nonslip is imposed at the top and bottom boundaries
of the channel. The velocity at the inlet is u1 ¼ 10m=s with a corre-
sponding Reynolds number of Re¼ 700 000. The outlet pressure is
adjusted according to the cavitation number r ¼ 0:8. The Clark-Y
hydrofoil is simulated using the baseline URANS and DD-URANS
models, and the results are compared with the experimental results of
Huang et al.68 The contours of the instantaneous periodic shedding
are presented in Fig. 17. As observed in the experiments, Fig. 17(a)
shows that a cavity appears in the vicinity of the leading edge, grows to
the maximum length, subsequently is shed, and finally collapses down-
stream. This instantaneous periodic shedding is not captured by the
baseline URANS model [see Fig. 17(c)], while it is captured by the
DD-URANS model [see Fig. 17(b)]. The time evolution of pressure
distribution obtained from DD-URANS and URANS models is shown
in Fig. 18. The time evolution of pressure is consistent with the instan-
taneous periodic shedding of cavity.

Table IV lists the cavity frequency obtained via the experimental
data from Huang et al.,68 modified partially averaged Navier–Stokes
(PANS), fk¼ 0.8 PANS, fk¼ 0.5 PANS, baseline URANS model, and
DD-URANS model, where fk represents the unresolved-to-total ratios
of the kinetic energy. The shedding frequency predicted by the DD-
URANS model is 26.2, and the error obtained with the experimental

results is 8.62%, which is lower than the prediction results obtained via
the other four models and demonstrates the advantages of the DD-
URANS model for predicting unsteady cavitating flows.

Figure 19 shows the mean velocity profiles obtained at three loca-
tions (x=c ¼ 0:2; 0:4; 0:6) using the experimental results of Wang,
Senocak, and Wei,69 DD-URANS model, and baseline URANS model.
It can be seen that the DD-URANS model yields a better agreement
with the experimental results, whereas the baseline URANS model
overestimates the length of the cavity.

IV. CONCLUSIONS

An implicit data-driven URANS framework is proposed to analyze
the unsteady characteristics of cavitating flow. In this framework, the
velocity divergence is obtained with the rate of the cavitation-induced
phase transition and is used to calculate the anisotropic Reynolds stress
through a high-order turbulence viscosity model. The linear and nonlin-
ear parts of the anisotropic Reynolds stress tensor in this model are
trained and predicted using implicit and explicit methods via two neural
networks to overcome the ill-conditioning of the URANS equations and
improve the computational stability, respectively. The machine learning
model is trained using the numerical results obtained via LES. The train-
ing cases consisted of flows in a Venturi tube at cavitation numbers of
2.0, 2.2, and 2.7, as well as flows around a NACA66 hydrofoil at a

FIG. 17. Clark-Y hydrofoil: contours of the instantaneous periodic shedding obtained via the (a) experimental results of Huang et al.,68 (b) DD-URANS model, and (c) baseline
URANS model.
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cavitation number of 0.8. Furthermore, to improve the ability of this
model to calculate the unsteady characteristics of cavitating flow, a
multi-time data fusion method in a temporal distribution is developed
to construct a training dataset.

FIG. 18. Clark-Y hydrofoil: contours of the
instantaneous pressure obtained via the
(a) DD-URANS model, and (b) baseline
URANS model.

TABLE IV. Comparisons of the flow quantities obtained via different approaches.

Case Frequency (Hz) Error

Experiment Huang et al.68 24.1 …

Modified PANS 30.9 28.22%
fk¼ 0.8 PANS 27.7 14.94%
fk¼ 0.5 PANS 41.5 72.20%
Baseline URANS 27.8 15.45%
DD-URANS 26.2 8.62%

FIG. 19. Clark-Y hydrofoil: profiles of the mean velocity obtained via the experi-
mental results of Wang, Senocak, and Wei,69 DD-URANS model, and baseline
URANS model at three locations (x=c ¼ 0:2; 0:4; 0:6).
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Two cases are used to evaluate the computational accuracy of the
DD-URANSmodel. We analyzed the unsteady development of the cav-
ity, mean velocity, and vapor volume fraction for the flow in
the Venturi tube at a cavitation number of 2.5. The results obtained
with the DD-URANS model are in better agreement with those of the
LES compared with the baseline URANS results. For the flow around a
Clark-Y hydrofoil at a cavitation number of 0.8, the predicted results
are compared with the baseline URANS and experimental results. The
unsteady flow characteristics, such as the appearance, growth, shedding
off, and collapse downstream of the cavity, are accurately obtained
using the DD-URANS model. The error in the shedding frequency of
the cavity predicted by the DD-URANS model is 8.62%, which is lower
than the error of the URANS model relative to the experiment
(15.45%). In addition, the Reynolds numbers of the Venturi tube and
Clark-Y hydrofoil during the testing flow conditions are 118 000 and
70000, respectively, which also shows that the DD-URANS model has
the generalization ability on the Reynolds number distribution.

Overall, the computational accuracy of the DD-URANS model is
much higher than that of the baseline URANS model that is commonly
used for cavitating flow. Furthermore, it is shown that the developed
model exhibits an excellent generalization ability for predicting both
inner and outer flows, as well as flows around objects of different
shapes. The DD-URANS model provides a novel approach for simulat-
ing complex unsteady multiphase flows in engineering applications.
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APPENDIX: MASS TRANSFER MODEL

To accurately capture the phase transition during the cavita-
tion process, the mass conservation equation of the vapor–liquid
flow is expressed as follows:

@qlal
@t

þ @qlal�ui

@xi
¼ Rc � Re; (A1)

@qvav
@t

þ @qvav�ui

@xi
¼ Re � Rc; (A2)

where _m is the mass conversion rate of the cavitation phase transi-
tion. To facilitate the solution of the content equations, Eqs. (A1)
and (A2) are expanded into the transport equation form of the vol-
ume fraction

@al
@t

þ @al�ui

@xi
¼ � al

ql

Dql
Dt

þ Rc � Re

ql
; (A3)

@av
@t

þ @av�ui

@xi
¼ � av

qv

Dqv
Dt

� Rc � Re

qv
; (A4)

where D
Dt represents the material derivative and the volume fraction

satisfies al þ av ¼ 1:0. Therefore, the constraint equation is
obtained by adding Eqs. (A3) to (A4)

@�ui
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Dql
Dt
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þ 1
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� �
ðRc � ReÞ: (A5)

In the incompressible flow, al
ql

Dql
Dt ¼ av

qv

Dqv
Dt ¼ 0, and Eq. (A5)

can therefore be expressed as @�ui
@xi

¼ 1
ql
� 1

qv

	 

ðRc � ReÞ, denoted as

Sp

Sp ¼ @�ui

@xi
¼ 1

ql
� 1
qv

� �
ðRc � ReÞ: (A6)
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