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Abstract
Benefiting from ultra-high angular resolution, differential wavefront sensing (DWS) technique is widely used in gravitational 
wave detection missions for suppressing the laser pointing jitter as well as sensing jitter of the test mass. However, the zero-
offset property of the DWS which leads to absolute angular measurement error is rarely mentioned in previous researches. In 
this paper, we describe the mechanisms causing the DWS zero-offset with an analytical model as well as numerical method. 
With the analytical results, we analyze the static pointing error of the gravitational wave detection satellite induced by the 
DWS. As the error is far larger than the requirement of 10 nrad magnitude, a zero-offset reduction scheme is proposed. We 
also construct an experiment system for verifying the theoretical results. The experimental results show that the DWS zero-
offset can be effectively suppressed with the proposed scheme.

Keywords  Differential wavefront sensing · Laser pointing · Gravitational waves detection

Introduction

LISA (Laser Interferometer Space Antenna) Danzmann and 
Rüdiger (2003), Taiji Luo et al. (2020), Hu and Wu (2017), 
Luo et al. (2021) are the most representative space-based 
gravitational wave detection missions aiming at signals in 
the frequency band from 0.1 mHz to 1 Hz . Compared with 
the ground-based programs, an inter-satellite laser link con-
stellation has to be constructed before science measurement. 

Because of the imperfect telescope, the satellite jitter caused 
by complex space environment will cause laser pointing jit-
ter noise even with a dedicated drag free system. For achiev-
ing arm-length variations measurement of picometer preci-
sion, the laser pointing jitter need to be suppressed to 10 
nrad∕

√

Hz (1 mHz-1 Hz) Bender (2005). Traditional angu-
lar measurement methods can hardly fulfill the requirement.

Differential wavefront sensing (DWS) technique provides 
an effective method for precision angular measurement in 
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laser interferometers Morrison et al. (1994a, b). The DWS 
signal can be generated from the phase difference between 
different quadrants of the quadrant photo diode (QPD), 
which can be written as,

where, �1,�2,�3,�4 are the phase of the interference signal 
of each quadrant. The DWS signal is approximately propor-
tional to the angle between two interfering beams. Benefit-
ing from high achievable phase measurement sensitivity and 
great common mode rejection effect, nano-radian angular 
resolution can be obtained Dong et al. (2014). As a result, 
the DWS technique is the preferred solution for the laser 
pointing system as well as the test-mass attitude monitor of 
LISA and Taiji Heinzel (2004).

So far, a considerable amount of literature has been 
published on the DWS. The linearity performance of the 
technique is well discussed with ideally derived analytical 
expressions Hechenblaikner (2010). Moreover, the impact 
of beam property, aberration and alignment to the linearity 
range has also been focused on based on numerical method 
Yu et al. (2015). Obviously, the non-linearity characteristic 
decreases the angular resolution of the DWS. As a result, the 
linearity range, to a great extent, dominates the jitter attenua-
tion level of the laser pointing system. Methodological dem-
onstration experiments are also carried out on ground as well 
as on the LISA Pathfinder satellite Lennart et al. (2017) for 
verifying the feasibility of the technique.

However, taking LISA as an example, for decreasing the 
laser pointing jitter noise, the static pointing error should 
also be suppressed to 10 nrad besides pointing jitter Bender 
(2005). Traditionally, assembly error between the optical 
bench and the telescope is considered to be the major contrib-
utor. The attitude of the satellite, which is adjusted based on 
the DWS read out, actually influences the direction of both the 
transmitting and the receiving optical axis. Thus, the absolute 
angular measurement error of the DWS will induce additional 
static pointing error. Ideally, the receiving beam is considered 
parallel with the local beam when the DWS signal equals to 
zero. However, residual angle between the interfering beams 
may exist with zero DWS value, which can be described as 
the zero-offset property. The absolute angular measurement 
accuracy is mainly determined by the offset value. To our best 
knowledge, there has been little quantitative analysis of this 
topic. Only Enrico Massa Massa et al. (2019) mentioned that 
mismatches and aberrations may induce fake tilt of the DWS. 
Further researches is still needed to quantify the influence of 
the zero-offset to the laser pointing system.

In this paper, we describe the mechanisms causing the 
DWS zero-offset property. In "Analytical Expression of DWS 
Zero-offset Value", we firstly derive the analytical expression 

(1)
DWSrl =

�1 + �4 − �2 − �3

2
, DWSud =

�1 + �2 − �3 − �4

2
,

of the zero-offset with the model of practical application. In 
"Numerical Results and Discussion", numerical method is 
introduced to verify the analytical expressions. With the theo-
retical results, we calculate the static pointing error induced 
by the DWS and propose an approach to suppress the offset 
value. In "Experimental Results", an experiment is also car-
ried out for verifying the theoretical results and the zero-offset 
reduction scheme, followed by a summary in "Conclusion".

Analytical Expression of DWS Zero‑offset 
Value

We start by deriving the analytical expression of the zero-
offset value in practical application with the model illustrated 
in Fig. 1. Where, (xQ, yQ, zQ) is the QPD coordinate, (x0, y0) is 
the emission coordinate of two beams. In order to improve the 
common mode rejection performance of the interferometer, 
both the local and the receiving beams are designed to propa-
gate the same distance s on the optical bench. The alignment 
errors and the flat top feature of the receiving beam, which 
are usually ignored in previous researches, are considered 
here. For simplifying calculation, a square QPD is assumed 
and the influence of aberration is ignored. Moreover, only 
the alignment errors in the horizontal direction are taken 
into account. Because of the symmetric distribution of the 
wavefront in the top and bottom quadrants, the offset of the 
beams will only influence the DWS signal of left and right 
quadrants. Same conclusions can also be obtained with the 
beam offset in the vertical direction.

Fig. 1   Coordinate systems of the interferometer. Where, (xQ, yQ, zQ) 
is the QPD coordinate, (x0, y0, z0) is the emission coordinate of two 
beams, s is the beam propagation distance, (xgs,�gy) denotes the posi-
tion and angular offset of the local Gaussian beam, (xfs,�fy) denotes 
the position and angular offset of the receiving flat top beam and r is 
the half length of the QPD
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In local laser coordinate (xg, yg, zg) , the Gaussian beam 
can be expressed as,

With the waist radius denoted as �0 , the beam size �z 
and the wavefront curvature radius Rz can be written as,

where, zR = ��
2

0
∕� is the Rayleigh distance.

After a few million kilometers propagation, the receiv-
ing beam clipped by the telescope has the properties of a 
flat top beam, whose coordinate is denoted as (xf , yf , zf ) . 
Assuming that the size of flat top beam is far larger than 
the QPD, we can write the flat top beam as,

In practical applications, alignment errors including 
beam center mismatch and beam tilt can not be ignored. 
We define xgs∕xfs and �gy∕�fy as the position and angular 
offset of the Gaussian and the flat top beam generated 
from alignment errors. Hence, the complex amplitude of 
the beams on the QPD E�

g
∕E

�

f
 can be obtained with the 

transformation formula,

where, i can be replaced by g or f.
Then, the interference pattern on the right and left half 

of the QPD can be respectively denoted as,

Thus, the DWS signal in the horizontal direction can be 
written as,

As beam offset values are of 10 �m∕10�rad magnitude 
after calibration, both the two beams propagate approxi-
mately the same distance, that is zg = zf = s . After substi-
tuting formulas (2)-(6) into (7), we can achieve that

(2)Eg = Ag ⋅ exp(−
x2
g
+ y2

g

�2
z

)exp(−ik(
x2
g
+ y2

g

2Rz

− zg)).

(3)�z = �0

√

1 + (z∕zR)
2, Rz = z[1 + (zR∕z)

2],

(4)Ef = Af ⋅ exp(−ik(−zf )).

(5)
⎛

⎜

⎜

⎝

xis
yis
zis

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

cos�iy 0 sin�iy

0 1 0

−sin�iy 0 cos�iy

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

xQ − xis
yQ

zQ − s

⎞

⎟

⎟

⎠

,

(6)

Fright = ∫
r

−r ∫
r

0

E
�

g
E

�∗
f
dxQdyQ, Fleft = ∫

r

−r ∫
0

−r

E
�

g
E

�∗
f
dxQdyQ.

(7)DWSrl = arg(Fright) − arg(Fleft) = arg(
Fright

Fleft

).

(8)DWSrl = arg{

erf i[
√

C1(r +
C2

2C1

)] − erf i(
C2

2
√

C1

)

erf i[
√

C1(r −
C2

2C1

)] + erf i(
C2

2
√

C1

)
}.

where,

As the offset values xis and �iy are small enough, 
C2

2C1

 approx-

imately equals to zero. On the other hand, 1
w2
z

≫
k

2Rz
 in most 

cases. Therefore,

We neglect terms of second order or higher of xis,�iy as 
well as any cross-terms. After expansion of the error func-
tion to first order, we can also get,

Make � = k�2
z
∕2Rz , then

We make �i = �fy − �gy
 denote the included angle of two 

interfering beams. Assuming the alignment errors are much 
smaller than 

�i
 , it can be given that,

Then, we substitute formulas (11) and (14) into (8). Thus,

After expanding the formula (15) to first order in xis and 
�iy , we find

where

(9)C1 = −(
ik

2Rz

+
1

w2
z

),

(10)C2 =
2(xgs + s�gy)

�2
z

+ ik(
xgs + s�gy

Rz

+ �fy − �gy).

(11)

erf i[
√

C1(r +
C2

2C1

)] ≈ erf i[
√

C1(r −
C2

2C1

)] ≈ i ⋅ erf (
r

wz

).

(12)erf i[
C2

2
√

C1

] ≈
C2

√

�C1

.

(13)
1

√

�C1

=
−i�z
√

�

�

1 − i�

1 + �2
.

(14)
C2

√

�C1

≈ k�z[
xgs

Rz

+ (
s

Rz

− 1)�gy + �fy]

�

1 − i�

1 + �2
.

(15)DWSrl ≈ arg(1 + i
2�

√

�erf (
r

�z

)
).

(16)DWSrl ≈ C3(�i + Δ�) + O(x2
is
,�2

iy
),

(17)C3 =
k�z

erf (
r

�z

)

�

2

�

1 +
√

1 + �2

1 + �2
,

(18)Δ� =
xgs + s�gy

Rz

.
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Traditionally, the non-linearity of the DWS denoted as 
O(x2

is
,�2

iy
) is regarded as the major contributor to the angular 

measurement error. However, from formula (16) it can be 
found that an additional zero-offset error is induced by the 
factor Δ� . That is to say, the included angle of two beams 
will be controlled to a nonzero value −Δ� based on the DWS 
technique. We can also learn from formula (18) that the 
zero-offset actually comes from the beam alignment errors 
and its value increases linearly with the increase of the local 
Gaussian beam alignment errors. As a large receiving flat 
top beam is assumed, its alignment error will not appear in 
the zero-offset factor.

Numerical Results and Discussion

To verify the validity of the above analytical results, we adopt 
numerical method. We first build an interferometer model  
as illustrated in Fig. 1 with practical beam features based on 
the MATLAB platform. Then, the phase of the heterodyne 
signal within the four quadrants of the QPD is obtained by 
calculating the argument of the interference signal. With the 
help of formula (1), we can get the numerical results of the 
DWS. Compared with the analytical derivation, the ignored 
high-order terms in xis and �iy

 are taken into account here. 
On the other hand, a circular QPD which is usually used in 
practical applications replaces the square one.

With s = 2 m, r = 0.6 mm,   �0 = 0.5 mm , we firstly 
assume that there is only angular alignment error of the 
Gaussian beam, that is xgs = 0 . Figure 2(a) presents numeri-
cal results of the relationship between the included angle �i 
and the corresponding DWS signal with various �gy values. 
It can be found that the zero-offset apparently exists. We 
record the offset Δ� as the �i value when DWS equals to 
zero. Then, we can draw the relation curve of �gy and Δ� 
as illustrated in Fig. 2(b). With the help of formula (18), 
analytical results are also presented in the same figure. After 
comparison, it can be found that the numerical and analytical 
results matches very well.

Then, we assume that there is only translation offset of the 
Gaussian beam. Figure 3(a) and (b) present the DWS signal 
and Δ� with different xgs . It comes to the same conclusion. 
Thus, the square QPD assumption in "Analytical Expression 
of DWS Zero-Offset Value" has little impact. The slight devi-
ation mainly comes from the first order approximation we 
made in the analytical derivation. Therefore, it is reasonable 
to estimate the zero-offset value with formula (18).

Then, we try to estimate the static pointing error caused 
by the DWS. Taking the Taiji program as an example, a 
static pointing error of 10 nrad is required. With the 400× 
magnification of the telescope and the imaging system, the 
pointing precision at the QPD should reach 4 �rad . As a 
result, the zero-offset value of the DWS should be smaller 

than 0.4 �rad after considering some redundancy. With the 
best achievable alignment level, the Gaussian beam offset 
can be limited to xgs = 10 �m,  �gy = 10 �rad . After substi-
tuting the above system parameters into formula (18), Δ� 
is calculated as large as 13.2 �rad , which is far larger than 
the requirement. Therefore, a zero-offset reduction scheme 
must be considered.

From formula (18), it can be found that Δ� is in reverse 
proportion to the Gaussian beam radius curvature Rz

 . If Rz 
tends to infinite, which can be fulfilled at the beam waist 
position, the zero-offset is eliminated in theory. Therefore, 
we propose to adopt a dedicated imaging system and place 
the QPD on the conjugate plane of the waist position. As 
given in the formula (3), Rz is a function of the beam propa-
gation distance from the beam waist position. Thus, Fig. 4 
presents the relationship between s and Δ� . We can draw 
the conclusion that Δ� decreases with the decrease of s. 
Moreover, Δ� can meet the static laser pointing require-
ment of Taiji when the beam waist propagation distance is 
smaller than 2 cm . The requirement can be easily fulfilled 
after assembling the imaging system as well as calibrating 
the waist position.

Experimental Results

We have learned from formula (18) and the numerical results 
that Δ� is proportion to xgs and �gy and inversely proportion 
to Rz . If we can image the beam waist to the QPD surface, the 
zero-offset can be eliminated theoretically. For further verify-
ing the conclusions, an experimental system is constructed.

Experimental Setup

The experimental setup is illustrated in Fig. 5. The receiv-
ing flat top beam from FC1 is simulated by a 20× beam 
expander and an aperture of 1.2 mm radius. As the radius 
of the QPD is 0.6 mm , the size of the receiving beam is 
far larger than the QPD size, which is consistent with the 
assumption in "Analytical Expression of DWS Zero-offset 
Value". The local Gaussian beam whose waist radius is 0.5 
mm is transmitted from FC2. Two acousto optic modulators 
(AOMs) are used to generate the heterodyne signal of 1.6 
MHz beat frequency. FSM1 and FSM2 are two fast steering 
mirrors driven by PI S-330 piezo actuator, whose angular 
resolution is 0.02 �rad . The FSMs are used to change the 
angle of the interference beams. Lens2 is an afocal imag-
ing system making the rotation center of FSM1/FSM2 and 
the QPD position form a conjugate plane pair. It can not 
only eliminate the influence of beam walk to the DWS, but 
also examine the performance of the zero-offset reduction 
scheme. For keeping the flat top feature of the receiving 
beam, Lens1 is used to eliminate the diffraction effect by 
imaging the aperture center to the rotation center of FSM1. 
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Phasemeter calculates the DWS signal based on the interfer-
ence signal detected by the QPD.

In order to examine the zero-offset value, we need to 
measure the absolute angle between two interfering beams 
to sub-�rad magnitude. Thus, a collimator combined with a 
beam profiler are introduced in the experiment. The structure 
of the measurement system is illustrated in the right part of 
Fig. 5. Both of the two beams enter the entrance of the col-
limator and reflected by a concave mirror whose focal length 

is f = 4 m . The beam profiler is a CCD camera. It is sited 
at the focal plane of the concave mirror. Then, the included 
angle can be calculated as Δ� = fΔx , where Δx denotes the 
distance between two laser spots on the CCD surface. With a 
dedicated centroid method Gao et al. (2020), the spot center 
positioning precision is better than 0.1 pixel . As the pixel size 
of the profiler is 5 �m , the corresponding measurement accu-
racy of Δx is 0.5 �m . Therefore, the angular measurement 
precision is 0.125 �rad theoretically. After considering some 

Fig. 2   a The relationship 
between the included angle 
and the corresponding DWS 
signal. Where, x

gs
= 0 �m and 

�gy various from −100 �rad 
to 100 �rad . b Comparison 
between the analytical results 
and the numerical results of the 
zero-offset with different �gy
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redundancy, the readout precision of the collimator system 
is evaluated as �col = 0.5 �rad . Moreover, the measurement 
accuracy of the experimental system is also influenced by the 
readout precision of the DWS under atmosphere environment 
�DWS and the ground vibration �vib because the optical system 
and the collimator system are placed on different tables. As 
a result, the measurement accuracy of the experimental sys-
tem can be calculated as �exp =

√

�
2

col
+ �

2

DWS
+ �

2

vib
 . �exp 

is evaluated as 1 �rad magnitude, which is enough for the 
verification experiment.

Verification of the Relationship Between Zero‑offset 
and Lateral Alignment Error

We firstly study the influence of xgs to Δ� with the 
experimental system. The position without beam offset 
can hardly be determined exactly. However, the linearity 

Fig. 3   a The relationship 
between the included angle 
and the corresponding DWS 
signal. Where, �gy

= 0 �rad and 
x
gs various from −100 �m to 

100 �m . b Comparison between 
the analytical results and the 
numerical results of the zero-
offset with different xgs



Microgravity Science and Technology (2023) 35:6	

1 3

Page 7 of 9  6

performance can still be verified with the variation of xgs 
and the variation of Δ� . As the flat top beam radius is 
far larger than the QPD size, the QPD position variation 
xs is equivalent to the Gaussian beam position offset xgs . 
For shifting the relative position conveniently, the QPD is 
placed on an one-dimensional precision translation stage. 
For each QPD position, the attitude of FSM1 is adjusted 
to make the DWS signal equals to zero, while FSM2 
stays still. Then, the included angle of the two interfer-
ence beams is read out by the collimator system as �e . 
Here, �e is the estimation of Δ� . To verify the zero-offset 
reduction scheme, we carry out the process with the beam 
waist of the Gaussian beam near and far from FSM2 center 
respectively. The nominal value of the waist position is 
about 200 mm from the fiber coupler head. We check the 

value by searching for the position with the least spot size 
with the help of a beam profiler. As the QPD is placed on 
the conjugate plane of FSM2 rotation center, the zero-
offset can be theoretically eliminated when the beam waist 
is near FSM2 center. As illustrated in Fig. 6, data1 and 
data2 presents the experimental results of the relationship 
between the position offset and the DWS zero-offset value. 
The yellow line and the green line are the corresponding 
linear fitting curves.

It can be found that �e has good linear relationship with 
xs . It is consistent with the theoretical results. The root mean 
square error (RMSE) value are introduced to evaluate the 
deviation between experimental data and related linear fit-
ting results. The RMSE value of data1 and data2 are calcu-
lated as 9.8 �rad and 2.3 �rad. Therefore, the small deviation 

Fig. 4   The relationship between 
the beam waist propagation 
distance and the zero-offset 
value. Where, s = 2 m, r = 0.6 
mm, �0 = 0.5 mm,  xgs = 10 
�m and �gy

= 10 �rad

Fig. 5   Diagram of the experi-
mental system for verifying the 
zero-offset reduction scheme. 
Where, FC is the fiber collima-
tor, LP is the linear polarizer, 
FSM is the fast steering mirror
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mainly comes from the angular measurement error of the 
experimental system. As xs denotes the variation of the QPD 
position rather than the exact value of xgs , the linear fitting 
curves do not pass through the origin. By comparing data1 
with data2, we can find that the slope of the green linear fit-
ting curve is far less than the yellow one. That is to say, the 
DWS zero-offset induced by the beam position offset can be 
effectively suppressed when the QPD is placed on the con-
jugate plane of the waist position. However, there is slight 
uplift of the green curve. This is mainly because both the 
position offset of the local beam and the receiving beam are 
changed when the QPD position is shifted. Theoretically, the 
flat top beam position offset has no impact on Δ� . However, 
small truncation ratio and residual diffraction in the experi-
ment make the receiving beam a non-ideal flat top beam.

Verification of the Relationship Between Zero‑offset 
and Angular Alignment Error

In the next step, we pay attention to the Gaussian beam 
angular offset, which can be easily changed with the help  
of FSM2. FSM2 angular variation is denoted as �s . It is half 
of the variation of �gy . For each angle of FSM2, the attitude 
of FSM1 is adjusted to make the DWS signal equals to zero, 
while the QPD position stays still. The zero-offset value is 
also estimated by �e . Similarly, the process is repeated twice 
with the local beam waist near and far from FSM2 respec-
tively. The experimental results are shown in Fig. 7.

It can be found that the zero-offset value has good linear 
relationship with the beam angular offset. The RMSE value 
of data1 and data2 are calculated as 5.8 �rad and 7.6 �rad . 

Fig. 6   The experimental results 
of DWS zero-offset value with 
various QPD position offset. 
Where, data1 is recorded when 
the Gaussian beam waist is far 
from FSM2, data2 is recorded 
when the beam waist is near 
FSM2. The yellow and green 
line are the corresponding linear 
fitting curves

Fig. 7   The experimental results 
of DWS zero-offset value with 
various FSM2 angular offset. 
Where, data1 is recorded when 
the Gaussian beam waist is far 
from FSM2, data2 is recorded 
when the beam waist is near 
FSM2. The yellow and green 
line are the corresponding linear 
fitting curves
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The angular measurement error of the experimental system 
is also the main contributor. Therefore, the theoretical results 
are further verified. Moreover, as only the angle of the local 
beam is shifted this time, the non-flat top properties have 
little impact on the results. As a result, the slope of the green 
curve is very close to zero. Therefore, it is apparent that the 
DWS zero-offset induced by the �gy can also be effectively 
suppressed with the proposed scheme.

Conclusion

This paper has provided a deeper insight into the DWS tech-
nique. We analyse the DWS zero-offset property, which is 
ignored in previous researches. Zero-offset will decrease 
the absolute angular measurement precision rather than the 
angular resolution. The latter one is mainly influenced by the 
non-linearity property. We firstly describe the mechanisms 
causing the DWS zero-offset with an analytical model. The 
analytical results indicate that the zero-offset mainly comes 
from the alignment errors of the local Gaussian beam, and 
the offset value increases linearly with increase of the align-
ment errors. The correctness of analytical results is verified 
by the numerical method. Then we study the static pointing 
error induced by the DWS zero-offset in LISA-like programs 
with the analytical expression. Even with the best achievable 
alignment level, the zero-offset value is still as large as 10 
�rad magnitude, which is far beyond the requirement. As 
a result, we propose to adopt a dedicated imaging system 
and place the QPD on the conjugate plane of the waist posi-
tion. Theoretically, the zero-offset can be eliminated with the 
scheme. We build an experimental system for verification. 
The experimental results are well coincident with the theory, 
while the zero-offset reduction scheme is fully validated. 
The results we obtained here will improve the absolute angu-
lar measurement precision in future laser pointing systems.
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