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Abstract. This paper studies the effect of mixed plasticity mode (combined with isotropic and 

kinematic hardening law) on the cyclic contact between an elastic-plastic sphere and a rigid flat. 

Assuming power-law hardening with different levels of mixed plasticity for the sphere, we 

derived a semi-analytical expression of load versus interference during the first loading and 

unloading process. During cyclic loading, our results indicate that the isotropic plasticity model 

shows no variation of residual interference, while kinematic plasticity has the cyclic effect on 

the residual interference, and this effect is bigger for the material with a higher hardening 

exponent. In addition, we provided the semi-analytical expression for the evolution of  residual 

interference, which is accurate for the strain hardening exponent from 0.1 to 0.5. 

1. Introduction 

Contacts between two bodies are widely found in engineering applications, such as bearings, 

mechanical seals, and joint structures. The prior studies on contact have been focused on the elastic 

sphere. For the small deformation (strain less than 1%), the well-known Hertz theory [1] can be used 

effectively. However, a large discrepancy would exist for the large deformation contact behavior of an 

elastic sphere. To partly overcome this limitation, Tatara [2] included forces on the opposite part of the 

sphere to accurately describe the contact with large deformation of the elastic sphere.  

The subsequent studies extend from the elastic contact to the elastic-plastic contact. The prior 

studies have forced on analytical analysis to smooth the transition between elastic and plastic 

deformation. For example, Chang [3] used a linear interpolation method and Zhao et al. [4] used 

mathematical techniques. Apart from the analytical approach, the finite element method (FEM) offers 

an effective way to solve complex contact problems. Yan and Li [5] employed FEM to obtain the 

evolution of contact force, interference, and contact radius during cyclic oading conditions for elastic-

perfectly plastic contact. Furthermore, Kogut and Etsion [6] derived the dimensionless expressions of 

contact load, contact area versus contact interference by using the FEM results.  

The aforementioned researches have focused on elastic or elastic-perfectly plastic contacts, while 

the strain hardening effect of the deformable material has not been considered. Under this 

circumstance, Etsion et al. [7] studied an elastic-linear hardening sphere in contact with a rigid flat 

during the unloading process by analytical analysis. Later, this elastic-linear hardening contact was 
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extended to the multiple loading-unloading by Kadin et al. [8]. In their study, the elastic deformation 

after the first loading-unloading was appeared, which would be due to the assumed isotropic hardening. 

The other strain hardening type studied in the sphere contact is power-law hardening. For instance, the 

frictionless normal contact of two power-law hardening spheres was investigated by Mesarovic and 

Fleck to consider the effects of strain hardening rate, the relative size of the spheres and relative yield 

strength [9]. In addition, Olsson and Larsson [10] studied these two spheres’ contact for the adhesive 

bodies. Their proposed analytical force-displacement relations were close to the FE results. In addition 

to the two spheres’ contact, the power-law hardening has also been applied to the contact between a 

deformable sphere and a rigid flat. Zhao et al. [11] presented the relationship between contract load 

and contact interference for a large range of strain hardening exponent. It should be noted that those 

constitutive models used for the deformable materials have been assumed idealized isotropic 

hardening.  

However, for the multiple loading-unloading conditions, we need to consider kinematic hardening 

in the elastic-plastic spherical contact. In the previous studies [12], the assumed pure isotropic 

hardening leads to the plastic shakedown phenomenon after the first loading-unloading cycle, which 

contradicts the real situation. Thus, Kadin et al. [8] indicated a hardening model that includes 

kinematic elements would be more realistic for the multiple loading-unloading contacts. In fact, the 

inelastic strain would be accumulated with the asymmetrical stress-controlled cycles. This 

phenomenon is called ratcheting. The first kinematic hardening model to describe ratcheting is the 

Armstrong-Frederick (AF) model [13]. However, this model overestimates the ratcheting strain. Due 

to this fact, the type of Chaboche model has been developed [14]. For example, by using the Chaboche 

model, Pual et al. [15] predicted the ratcheting behavior of SA333 C-Mn steel under different loading 

conditions. In the literature, all those kinematic hardening models have been focused on no-contact 

deformation behavior. To the authors’ knowledge, no work has been used those kinematic hardening 

models in the spheric contact mechanics to describe the spheric multiple loading-unloading.  

In this study, we first carry out FE solutions for a power-law hardening elastic-plastic sphere with 

different strain hardening exponents. In addition, different strain hardening modes are employed. Then, 

the analytical relation between contact load and the contact interferences during cyclic loading 

contacts are presented based on the FE results.  

2. Definition of contact model  

The contact condition of a deformable sphere with a rigid flat is presented in Figure 1. The dash lines 

and solid lines represent the profile of the deformable sphere before and after contact, respectively. In 

Figure 1(a),   is interference, r  is contact radius and P  is contact force during loading. The 

unloading parameters are presented in Figure 1(b), where 
max

  is maximum interference and 
res

  

residual interference.  

Under the frictionless contact condition, the critical interference can be calculated by [3]: 

 
2

( )
2

c

KH
R

E


 =  (1) 

where H is hardness, K is a coefficient related to the Poisson ratio, and E is the elastic modulus. The 

detailed expressions of H, K, and E can be found in [6].  
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(a) (b) 

Figure 1. The demonstration of contact geometry between a deformable sphere and a rigid flat in: (a) 

the loading condition and (b) the unloading condition.  

3. Finite element model  

3.1. Material constitutive model  

In this study, we assume the deformable sphere to be elastic-plastic; and the plastic behavior follows: 

 2 03 ( ) (1 ) 0f J m m R= − − − − =   (2) 

where   is the stress tensor,  is the back stress tensor, 2 ()J  is the second invariant of a tensor, 0 is 

the initial yielding stress, and R donates the isotropic hardening with respect to the accumulated plastic 

strain. The parameter m represents the strain hardening mode: 0m =  and 1m =  represent isotropic 

hardening and kinematic hardening, respectively, and 0 1m   represents combined hardening.The 

evolution of   is represented by the classic Chaboche model [14]. The strain hardening is considered 

under a power hardening law. Under the uniaxial condition, the relation between the stress   and the 

strain   is given by: 

 
0

1/

0 0 0

/
=

( / )( / ) n

E

E

  


    





 (3) 

where n gives the strain hardening exponent. 

3.2. Finite element model 

An axisymmetric FE model was built up with the commercial software ABAQUS 6.14. As shown in 

Figure 2, only a quarter of the sphere was used due to the symmetric feature. In the model, the quarter 

sphere was divided into two zones with different mesh sizes: fine mesh in the zone I (inside 0.1R) and 

coarse mesh in the zone II (outside of 0.1R). The typical mesh size in the zone I was 0.028 cr  

(
1/2( )c cr R= ), and the mesh size was gradually increased in the Zone II. A rigid flat was used, and the 

contact was set to be frictionless. After a convergence study, we found out that the current model, 

consisting of about 27000 four-node axisymmetric elements, could provide results with sufficient 

accuracy. Also, we have used Hertz solution to verify the accuracy of this model.  
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Figure 2. The finite element model 

4. Results and discussions 

4.1. Plastic contact effect on the loading process 

In this section, the loading behavior is analyzed by considering the effect of strain hardening exponent 

n and strain hardening mode m. First, the contact load / cP P and the contact interferences / c   are 

calculated under isotropic hardening and kinematic hardening with strain hardening exponent n equal 

to 0.1, 0.3 and 0.5, respectively. The corresponding results are shown in Figure 3. As expected, the 

contact load increases with the strain hardening exponent for the fixed strain hardening mode. While 

for the different strain hardening modes, the discrepancy between isotropic hardening and kinematic 

hardening is minimal at n = 0.1. Furthermore, this difference increases with increasing hardening 

exponent, as shown in the amplification part of Figure 3.  

 
Figure 3. Dimensionless contact load ( / cP P ) against dimensionless interference / c  in contact 

loading condition under different strain hardening modes  

 

Then, in order to describe the curves analytically under different strain hardening exponents and 

modes, we express the following relations: 

 2

1( )b

c c

P
b

P




=  (4) 
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where 1b  and 2b  are two coefficients and can be related to hardening exponent n in the range of 

/ 110c   . To consider the influence of hardening mode, the parameter m is introduced in the 

expression of 2b . Fitted with the FE results by using the least square method, these coefficients are 

expressed as: 

 1 1( ) 0.9975 1.8317b f n n= = − +  (5) 

 2 2 ( , ) 0.2978 0.0117 1.2095b f n m n mn= = − +  (6) 

As shown in Figure 3, the FE based Eqs. (4)-(6) can characterize the first loading behavior in the 

range of / 110c    under different hardening modes.  

4.2. Plastic contact effect on the unloading process 

The unloading behavior is another important aspect during the cyclic loading-unloading processes. 

The FE simulations of the unloading process with different strain hardening exponents n and strain 

hardening modes m have been performed. In those simulations, the relations of the contact load / cP P  

and contact interference / c   have been calculated, and the results of max / c   = 110 and 60 are 

shown in Figure 4. To present the analytical expression of those relations clearly, we define 
* / c  = , 

*

max max / c  = , 
* / cP P P=  and 

*

max max / cP P P= . Based on the previous works [7, 11], we 

propose the following new expression:  

 
* *

* *

max * *

max

( ) phres

res

P P
 

 

−
=

−
 (7) 

the exponent of the above equation can be written as: 

 *

max1.5( ) exp(0.6214 )pe

ph mn=  (8) 

where the item exp(0.6214 )mn  includes the influence of hardening mode, pe is a function of n with 

the following expression: 

 2( ) 0.0556 0.058 0.0454p ee f n n n= = − + −  (9) 

Figure 4 presents a comparison between the analytical results by Eqs. (7)-(9) and the corresponding 

FE results. It shows that these dimensionless equations can describe the unloading behavior accurately.  

 

  
(a) (b)  

Figure 4. Dimensionless contact load / cP P  with the dimensionless interference / c   during the 

unloading process: (a) / 60c  = ; (b) / 110c  =  

 

The unloading process can also be featured by the residual interference res  and the maximal 

interference max . However, only isotropic hardening has been considered in a previous study [11]. As 
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shown in Figure 5 (a), the relation between res and max  is also related to the strain hardening mode. 

As a result, we further include the influence of strain hardening mode on this relation:  

 
22 ( 0.1263 )

max

max max

1
(1 ) ( / 5 )

( / )

m nres
cd

c


 

  

−= −  (10) 

where m is introduced by the term 
2( 0.1263 )

max( / 5 ) m n

c  −  to represent this influence. The above equation 

returns to the isotropic hardening mode when 0m = , which is identical to the expression in the 

previous work [11]. Also, d is the function of n and can be expressed as:  

 2( ) 0.0533 0.2383 0.4157d g n n n= = − − +  (11) 

As shown in Figure 5(a), the analytical results can accurately describe the FE results in the 

unloading profile for two hardening modes. For a fixed hardening mode, res max/   increases with 

increasing max / c   and decreasing n. On the other hand, the difference of res max/   between two 

hardening is obvious, especially under the condition of 0.5n =  and max / = 110c  . Thus, we check 

the description capacity of Eqs. (10) and (11) for different values of m under this condition. Figure 5(b) 

shows a good agreement between the analytical and the finite element results.  

 

  
(a) (b) 

Figure 5. Dimensionless residual interference ( res max/  ) to (a) dimensionless maximum interference 

( max / c  ) and (b) hardening mode (m) at n=0.5 and max / = 110c   

4.3. Multiple loading-unloading processes  

We studied the plastic effect on multiple cycles, in which 25 loading-unloading cycles are performed 

under different strain hardening exponents and modes with the initial maximum dimensionless 

interference around 110. From the numerical simulations, we obtain the relationships between contact 

load / cP P  and contact interference / c  . As shown in Figure 6(a, b, c) for the isotropic hardening 

mode, the shakedown phenomena are observed after the first loading-unloading cycle under all strain 

hardening exponents. However, for the kinematic hardening mode (Figure 6(d, e, f)), the maximum 

interference increases continuously with the cyclic number, and its growth from one cycle to another 

cycle increases with increasing n. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Dimensionless contact load ( / cP P ) against dimensionless interference / c  during 25 

loading-unloading cycles for: (a, b, c) isotropic hardening and (d, e, f) kinematic hardening at different 

strain hardening exponent 

 

Those multiple cyclic behaviors of different hardening modes are related to the involved plastic 

strain. Under the multiple loading-unloading, the plastic strain occurs only near the contact area, as 

shown in Figure 7(a). Thus, the following discussion is mainly focused on this area. Figure 7(b) and (c) 

display the magnification of equivalent plastic strain distribution after 25 multiple cycles for hardening 

exponent 0.5n =  under isotropic hardening and kinematic hardening, respectively. It can be seen that 

the plastic deformed location is similar for both hardening modes. However, the value of equivalent 

plastic strain exhibits a large difference: the maximum value for kinematic hardening is 
25.5 10−  
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while for isotropic hardening is only 
35.5 10− . We also output the evolution of maximum equivalent 

plastic strain with the cyclic number for both hardening modes. As shown in Figure 7(d), for isotropic 

hardening, the maximum equivalent plastic strain remains constant after the first loading-unloading 

cycle. This means no plastic deformation happens for the following cycles. In the meantime, the 

maximum equivalent plastic strain under kinematic hardening continues to increase with the cyclic 

number. This is due to the used kinematic hardening rule. In the multiple loading-unloading conditions, 

asymmetric stress-controlled cycles exist in the deformed region. Under those cycles, the classic 

Chaboche model, used as our kinematic hardening rule, can lead to continuous growing ratcheting 

strain [16, 17]. As a result, continuous plastic deformation occurs under this kinematic strain 

hardening model. In conclusion, the plastic deformation continues with cyclic loading-unloading 

under the kinematic hardening mode and stops after the first cycle under the isotropic hardening mode.  

 

  
(a) (b) 

 
 

(c) (d) 

Figure 7. (a)Illustration of equivalent plastic strain distribution after 25 cycles; magnification of 

equivalent plastic strain distribution for (b) isotropic hardening mode and (c) kinematic hardening 

mode; (d) evolution of maximum equivalent plastic strain against the cyclic number for both 

hardening modes 

 

As the shakedown phenomena are observed after the first loading-unloading cycle for the isotropic 

hardening, the analytical expression for the evolution of maximum interference with the cycles is only 

discussed for the kinematic hardening mode. To predict the evolution of maximum interference, the 

dimensionless maximum interference 1

max max/   can be expressed as: 

 max

1

max

dN



=  (12) 

where 1

max is the maximum interference of the first cycle, d is as the function of n: 
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 2( ) 0.1058 0.1185 0.0078dd f n n n= = − + −  (13) 

As shown in Figure 8, Eq. (12) can be used to characterize the multiple loading-unloading cycles 

under pure kinematic hardening. 

 

 
Figure 8. Ratio of subsequent maximum interference to first maximum interference versus cycle 

number for repeated loading 

5. Conclusion 

The influence of hardening mode (m) and hardening exponent (n) on the frictionless contact behavior 

were studied. The following conclusions are summarized:  

1) The contact load in the first loading increases with the increasing n and decreasing m.  

2) The residual interference after first complete unloading correlates to the maximum loading 

interference.  

3) For the multiple loading-unloading processes, the interference continues to grow under the 

kinematic hardening, while the shakedown phenomenon is observed for the isotropic hardening after 

the first cycle.  

4) Under the kinematic hardening, the maximum interference growth in each cycle increases 

with increasing n.  

It should be noted that phenomenological constitutive models are used in our study. In the future 

work, we could consider the influence of microstructure and develop a physics-informed model to 

study the contact behavior.  
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