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Active learning to overcome exponential-wall problem for
effective structure prediction of chemical-disordered materials
Xiaoze Yuan1,2,3, Yuwei Zhou 1,2,4✉, Qing Peng 3,5✉, Yong Yang1,2, Yongwang Li1,2,4 and Xiaodong Wen 1,2,4✉

Chemical-disordered materials have a wide range of applications whereas the determination of their structures or configurations is
one of the most important and challenging problems. Traditional methods are extremely inefficient or intractable for large systems
due to the notorious exponential-wall issue that the number of possible structures increase exponentially for N-body systems.
Herein, we introduce an efficient approach to predict the thermodynamically stable structures of chemical-disordered materials via
active-learning accompanied by first-principles calculations. Our method, named LAsou, can efficiently compress the sampling
space and dramatically reduce the computational cost. Three distinct and typical finite-size systems are investigated, including the
anion-disordered BaSc(OxF1−x)3 (x= 0.667), the cation-disordered Ca1−xMnxCO3 (x= 0.25) with larger size and the defect-
disordered ε-FeCx (x= 0.5) with larger space. The commonly used enumeration method requires to explicitly calculate 2664, 1033,
and 10496 configurations, respectively, while the LAsou method just needs to explicitly calculate about 15, 20, and 10
configurations, respectively. Besides the finite-size system, our LAsou method is ready for quasi-infinite size systems empowering
materials design.
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INTRODUCTION
Chemical-disordered materials are widely used in many areas
including semiconductors, high-temperature superconductors, Li-
ion batteries, metal alloys, ceramics, and heterogeneous catalysts
due to their special properties and performances1–6. Here, the
term ‘chemical-disordered materials’ stems from the semi-ordered
materials whose lattice is periodic (thus crystal) but the occupying
atom species are non-periodic in space. From the point view of
chemical compositions, the chemical-disordered materials can be
classified into anionic, cationic, and defected counterparts, which
can be simply considered as the anions, cations and defects
occupy the non-periodic sites. For example, the RbBrxCl1-x
(x= 0.4)7, SrNb(OxN1-x)3 (x= 0.667)8, and BaSc(OxF1−x)3
(x= 0.667)9 in anion-disordered materials, the La(CaxZr1−xO3)
(x= 0.5)10, Ba(MgxTi1−x)12O19 (x= 0.5)11, and β-(AlxGa1-x)2O3

(0 ≤ x ≤ 1)12 in cation-disordered materials, and the
Ti1-x□xO1.11F0.89 (x= 0.22)13, [La8Sr2(SiO4)6]4+(O2-x□x)4−

(0 < x ≤ 2)14, and Na2−x□xMn3O7 (0 < x ≤ 2)15 in defect-
disordered materials, where □ stands for the vacancy defect. In
fact, the above systems are also alternatively called as fractional
occupation, substitutional doping, and vacancy defect, which
commonly used in both experimental characterizations and
theoretical simulations.
Chemical-disordered materials have received substantial atten-

tion varied from experimental to theoretical research in many
aspects. Among them, the determination of the structures, more
exactly called as the atomic arrangements or site-occupied
configurations, is one of the most important and challenging
problems. The precise atomic structures with thermodynamic
stability are crucial not only to the structural properties,
characterization, and integrity, but also to the understanding of

underlying mechanism, the construction of relationship between
structures and properties, and further the discovery and design of
new materials. A variety of experimental methods have faced
great challenge in determining the atomic structures/configura-
tions of chemical-disordered materials due to uncertainties for the
atomic occupying on lattice sites. The most commonly used X-ray
diffraction (XRD) can only provide the averaged information of
materials. Therefore, it can hardly obtain valuable data about the
configurations. Some other methods that can provide local site
information, such as nuclear magnetic resonance (NMR) and X-ray
adsorption near-edge structure (XANES). However, they are still
difficult to directly correlate with the configurations16,17. Apart
from the experimental approach, the computational approach can
obtain the atomic structures more directly and efficiently. Many
computational methods have been used to deal with chemical-
disordered materials and determine the atomic structures and
properties, such as virtual crystal approximation (VCA)18, coherent
potential approximation (CPA)19, special quasirandom structures
(SQS)20,21, and supercell approximation, etc. The supercell
approximation is one of the simplest and well-studied methods,
while it has a huge obstacle in low-efficiency sampling and high
computational cost even for a finite-size system. The grand
challenge for structure determination is that the number of
possible configurations increase exponentially with the number of
atoms for N-body systems22. This is the notorious ‘exponential-
wall’ problem of many-body systems, which becomes intractable
with respect to the increase of system size and space size.
Many computational methods and programs have been

proposed to deal with the aforementioned challenges. For the
sampling, unlike the simply random methods (e.g. Monte Carlo
algorithm), several enumeration methods and programs of
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SOD23, enumlib24–26, Supercell27, and disorder28 can enumerate
all the inequivalent structures/configurations for the finite-size
systems in a high efficient way. It should be noted that the
enumerated structures usually generated with the combinatorics
and crystal symmetries, hence it can be regarded as a ‘brute
force’-based approach, which is still very difficult for the
complex or quasi-infinite size systems. For the computational
cost, the large amount of enumerated structures then usually
calculated by first-principles methods or empirical potential
functions. The first-principles methods can give accurate and
reliable results after expensive calculations. The empirical
potential functions are much faster, but the results are often
inaccurate. Therefore, advanced algorithms are desirable for
both high speed and accuracy in evaluating the substantial
structures from the large phase spaces. The cluster expansion
(CE) is an affordable and practical method, which is widely used
to calculate the energies and properties, and construct phase
diagrams of alloy systems29–34. CE evaluates configuration
energy using an expansion based on the effective cluster
interactions (ECIs), which are fitted to the results of first-
principles calculations upon a few configurations. However, CE
has disadvantages in describing the complex systems with long-
range interactions35. It also degrades the reliability of energies
and properties when there is a significant lattice deformation36.
Recently, an alternative approach, namely the machine learning
(ML) or data-driven interatomic potential, has been attracted a
great deal of attention37–46. It successfully carried out many
chemical-disordered materials, such as Au-Li39, Ni-Mo40, Ti-Al41,
MgAl2O4

42, and (CoxMn1-x)3O4
43. To date, machine learning

methods have received great success in material researches,
especially in materials modeling, discovery and design44–46.
Generally, most of the machine learning interatomic potentials
strongly depend on a large number of datasets (samples) to
support the model training and validation. The problem of
machine learning modeling with no data or with few data, also
known as ‘small sample size problem’, is a major challenge47,48.
In brief, one should prepare as many highly reliable, diverse, and
massive samples as possible before model construction, while it
is apparently hard for the unexplored or unknown systems.
Meanwhile, the machine learning-based potentials are usually
constructed in an offline way. It means that a model is generally
trained and validated only once, and the performance is strongly
relied on the pre-prepared datasets.
In present work, we introduce an approach that combines

first-principles calculations and active-learning algorithm to
accelerate the prediction of thermodynamically atomic struc-
tures/configurations of the chemical-disordered materials. Here,
machine learning interatomic potential has a good combination
of speed and accuracy: it is much faster than first-principles
methods with the accuracy comparable to the first-principles
results, and much more accurate than empirical functions. It
also overcomes the shortcomings of CE method. The active-
learning algorithm is suitable for the situations with few labeled
data (samples), which is frequently encountered in ‘small
sample size problem’49–52. With the assistance of machine
learning interatomic potential and the active-learning algo-
rithm, it can significantly enlarge the sampling space and
dramatically reduce the first-principles calculations. Based on
these features, our method is called as Large space sampling
and Active labeling for searching (LAsou, sou means searching
in Chinese). For demonstration, three distinct finite-size systems
are investigated, including the anion-disordered BaSc(OxF1−x)3
(x= 0.667), the cation-disordered Ca1−xMnxCO3 (x= 0.25) with
larger size and the defect-disordered ε-FeCx (x= 0.5) with larger
space. It should be noted that a large size of dataset is not a
prerequisite for the LAsou method. Furthermore, the ML
potential model will be re-trained/re-validated and improved
on-the-fly. Compared with the enumeration approach, LAsou

method can remarkably reduce the first-principles computa-
tional cost and significantly accelerate the structure/configura-
tion prediction of chemical-disordered materials.

RESULTS AND DISCUSSION
We utilize the LAsou method in combination with high accurate
first-principles density functional theory (DFT) calculations to
search and predict three categories of structures/configurations in
chemical-disordered materials, including the anion-disordered
BaSc(OxF1−x)3 (x= 0.667), the cation-disordered Ca1−xMnxCO3

(x= 0.25), and the defect-disordered ε-FeCx (x= 0.5). We have
calculated all the enumeration structures of BaSc(OxF1-x)3
(x= 0.667) and Ca1-xMnxCO3 (x= 0.25) with DFT as the bench-
marks, and the DFT results of enumerated ε-FeCx (x= 0.5) are
provided by Liu et al.,53 in which the thermodynamically most
stable structure and the lowest energy are used as the ground-
truth data. All the enumeration structures are employed here as
the sampling space for testing.

Anion-disordered BaSc(OxF1−x)3 (x= 0.667)
S. Hariyani and J. Brgoch54 reported an Eu2+ doped BaScO2F
perovskite material for highly efficient cyan emission. The refined
crystal structure data showed that O atoms and F atoms are co-
occupied with the fraction of 0.667 and 0.333, which can be
represented as BaSc(OxF1−x)3 (x= 0.667). In order to obtain the local
structure and electronic properties, the authors firstly studied the
thermodynamically stable structure/configuration of O and F site-
sharing. They constructed a 2 × 2 × 2 supercell containing 40 total
number of atoms, and then used the Supercell program to generate
all possible distributions of O and F atoms. After finishing the DFT
calculations for all 2664 inequivalent enumeration structures, they
obtained the most stable (lowest energy) structure with the
formation of Ba-F tetrahedral chains, then the most stable structure
was used to calculate the substituted model of Eu2+ and other
properties. Here, we use the LAsou method to search and predict the
anion-disordered BaSc(OxF1−x)3 (x= 0.667) system. Following the
article’s approach, we also construct a 2 × 2 × 2 supercell containing
16 O atoms and 8 F atoms on the 24 co-occupied sites, then 2664
inequivalent structures are enumerated by using Supercell
program27.
Figure 1a shows the complete ‘brute-force’ DFT results of total

energy and the most stable structure within all the 2664 structures.
Then, the LAsou method was applied to search and predict
iteratively until ten generations of runs reached. Figure 1b shows
the searching process of total DFT energy against with the
generation, in which the red line exhibits the best structure evolved
in history. Clearly, the LAsou method has successfully predicted the
target (most stable) structure with lowest energy in the third
generation and kept the goodness till to the end of the task. The
number of structures for labeling and DFT relaxation is 5, which
means we only spent about 15 DFT relaxed calculations to obtain
the same results of 2664 enumeration DFT calculations in this task.
The minimum in the first two generations is very close to the goal,
which is mainly attributed to the sampling from large (enumeration)
space. With more efficiently sampling, the LAsou method can
rapidly obtain the most stable structure, and thus greatly reduce the
first-principles DFT computational cost and time demanding. The
detailed performances of the machine learning (ML) potential
within ten generations can be seen from Supplementary Figs. 1 and
2. With the increase of generations and datasets under the active
learning algorithm, the ML model will be re-trained on-the-fly and
get more reliable results for selection and labeling.

Cation-disordered Ca1−xMnxCO3 (x= 0.25)
Wang, Grau-Crespo and de Leeuw55 have studied the thermo-
dynamics of the disordered solid solution Ca1-xMnxCO3, which
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mixed from calcite (CaCO3) and rhodochrosite (MnCO3) in the full
range of compositions (0 ≤ x ≤ 1). The arrangements of Ca2+ and
Mn2+ can be simply modeled as the substitutional doped of Ca2+

by Mn2+. The authors employed the SOD program23 in several
supercells of the hexagonal calcite structure to enumerate a large
number of structures for each composition. Owing to the large
number of structures, they used GULP program incorporated with
empirical potential to calculate the thermodynamics properties.
The most stable structure with lowest energy has been used to
analyze and understand the homogeneity and heterogeneity of
cation within and across layers. Here, we take x= 0.25 for
Ca1-xMnxCO3 as a test case and employ first-principles DFT
calculations to verify the efficiency and reliability of the LAsou
method for the cation-disordered systems. We adopt the disorder
program28 to enumerate 1033 inequivalent structures under the
2 × 2 × 1 supercell of CaCO3, in which 6 Ca atoms of 24 Ca sites are
replaced by 6 Mn atoms. Notably, it is much larger size for that
there are 120 total number of atoms in the supercell, the system
with larger size is very difficult for the first-principles DFT
relaxation and searching.
Figure 2a shows the complete ‘brute-force’ DFT results of total

energy and the most stable structure within all the 1033 structures.
Then, the LAsou method was carried out to iteratively search until
ten generations of runs reached. Figure 2b shows the searching
process of total DFT energy against with the generation. The
LAsou method also rapidly predicted the target structure with
lowest energy in the fourth generation. We only spent 20 DFT
relaxed calculations that can obtain the same results of 1033
enumeration DFT calculations. The rapid decline of the minimum
in the first three generations may be raised from the increasing

accuracy of ML model. This is a clear demonstration of the
efficiency, accuracy, and robust of the LAsou method. The detailed
performances of the ML potential within ten generations can be
seen from Supplementary Figs. 3 and 4. With the increase of
generations and datasets, the same behavior of ML model that
occurs in the BaSc(OxF1−x)3 (x= 0.667) system can be obtained
and get more reliable results for selection and labeling.

Defect-disordered ε-FeCx (x= 0.5)
Iron carbides are the active phases of industrial catalysts in
Fischer-Tropsch synthesis to produce liquid fuel. Among them, the
phase identification of the ε-Fe2C and the ε‘-Fe2.2C has been
debated for half a century. Theoretically, Liu and coworkers53 used
SOD program23 coupled with DFT calculations to investigate the
equilibrium (most stable) structures and thermal stabilities of the
ε-FeCx phases. Starting from ε-FeCx (x= 1.0) phase in a
2 × 2 × 3 size of supercell, the authors built the ε-Fe2C and ε‘-
Fe2.2C structures with substitution the C atoms with vacancies,
then enumerate all the independent configurations with the total
number of 10496 and 9551 with SOD program. The results shown
that ε-Fe2C and ε‘-Fe2.2C are thermodynamically stable phases as
observed in the experiment. Here, we take x= 0.5 for ε-FeCx
(namely ε-Fe2C phase) as a test case coupled with DFT calculations
to verify the efficiency and reliability of the LAsou method for the
defect-disordered systems. Following the article’s approach, we
also construct a 2 × 2 × 3 supercell for ε-FeCx (x= 1.0) containing
24 octahedral sites (C atoms), and then employ the Supercell
program27 to enumerate all the inequivalent structures (config-
urations) with substitution the C atoms by 12 vacancies. Notably, it
is much larger space for that there are 10496 total number of
structures. The authors have successfully carried out all the 10496

Fig. 1 The performance of enumeration method and LAsou
method for BaSc(OxF1−x)3 (x= 0.667). a The scatter plot of total
energy of 2664 enumerated structures and the most stable
structure. (The blue circles represent the energy for each structure,
the red dashed circle represents the best structure with lowest
energy.) b The searching process of LAsou method for the total DFT
energy against with generation. (The red triangles represent the
lowest energy structures searched in history).

Fig. 2 The performance of enumeration method and LAsou
method for Ca1−xMnxCO3 (x= 0.25). a The scatter plot of total
energy of 1033 enumerated structures and the most stable
structure. b The searching process of LAsou method for the total
DFT energy against with generation.
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DFT relaxed calculations, we quote the most stable structure with
lowest energy as the ground-truth data.
Figure 3a shows the results of the complete ‘brute force’

calculated total energy and the most stable structure within all the
10496 structures via DFT calculations, which provided by Liu
et al.53. Then, the LAsou method was used to iteratively search
until ten generations of runs reached. Figure 3b shows the
searching process of total DFT energy against with the generation.
The LAsou method has successfully predicted the target structure
with lowest energy in the second generation. We spent about 10
DFT relaxed calculations that can obtain the same results of 10496
enumeration DFT calculations. It should be noted that there are
some differences in the DFT running parameters used in present
work and Liu et al., we get more lower energy for the same
structure. As we can see from Fig. 3a, the energy of most stable
structure is significantly lower than that of other structures, the
target can be easily distinguished. Hence, the LAsou method can
find the target with great efficiency.

Robustness and performances of LAsou method
For the practical structure/configuration prediction of the
chemical-disordered materials, the choices of different parameters
may lead to different results and efficiency for the LAsou method.
Here, we further examine the robustness of LAsou method via
testing several key factors and parameters, including (a) ensemble
algorithm, (b) structure clustering for labeling, (c) structure
relaxation before labeling, (d) other alternative ML models. The
criterion, whether the target structure is successfully predicted
within the maximal generations (e.g., 10 in this work), is employed
to evaluate the performance. The target structure refers to the
most stable structure with lowest energy obtained from the DFT
calculations. On the top of ensemble-LBF/LRR under LAsou
method, we gradually turn off the above factors and other
parameters remain unchanged. The ensemble-NN refers that the
ensemble model is built with the neural network (NN) adopted by
Yang et al.56. The test results are listed in Table 1.
The robustness of LAsou method is evidenced because the

LAsou method can efficiently predict the most stable structure/
configuration within several generations, even if some factors are
turned off. However, we recommend that all factors should be
turned on to ensure the robustness as can be seen from Table 1.
Firstly, using a single ML model instead of ensemble ML model will
lead to slightly worse results. In practice, there are many
unreasonable (unphysical) structures for structure relaxation when
the single ML model is employed. The probable reason lies in the
fact that ensemble ML model is capable to balance bias and
variance well both for single point energy and structure relaxation.
Secondly, structure clustering algorithm may have a significant
impact on the efficiency for some cases. The structure clustering
algorithm can improve the diversity, when the labeled structure
might miss the target structure, and/or the energy difference of
structure space is very small. Thirdly, the structure relaxation by
ML model before labeling seems to have little effect on the overall
efficiency. While after structure relaxation, it gives a much
reasonable lower predicted energy, especially for the systems
with apparently structural changes or distortions. The roles and
performances of ensemble, clustering and relaxation in LAsou
method can be seen in Supplementary Notes of the Supplemen-
tary Information (SI). Furthermore, we have also examined the
performances against with several combinations of the adjustable
parameters on top of Ca1-xMnxCO3 (x= 0.25) system as presented
in Supplementary Table 3. The results show that the adjustable
parameters are insensitive to the overall efficiency. Finally, the
LBF/LRR method used in present work to construct the ensemble
model may not perform well for all systems. We can compatibly
and flexibly use other ML methods to replace LBF/LRR, e.g., KRR,
GPR, NN, and DL-based models, etc. Here we test the ensemble
model built from neural network (NN) method of Yang et al.56. As
expected, the ensemble-NN can also achieve good results with
high efficiency under LAsou algorithm. However, compared with
the essence of linear model for the LBF/LRR method, the nonlinear
NN method requires more training cost and time demanding.
Nevertheless, the time cost of model training is much lower than
that of DFT calculations, which can be seen in Supplementary Figs.
11 and 12.

Fig. 3 The performance of enumeration method and LAsou
method for ε-FeCx (x= 0.5). a The scatter plot of total energy of
10496 enumerated structures and the most stable structure, the DFT
total energies are provided by Liu et al.53. b The searching process of
LAsou method for the total DFT energy against with generation.

Table 1. Performances (found the target structure or not in 10 generations) of ensemble, clustering, relaxation, and alternative ML model under
LAsou method. The number in parentheses is the generation of finding the target structure.

Systems Ensemble-LBF/LRR Without ensemble Without clustering Without relaxation Ensemble-Neural Netwok (NN)

BaSc(OxF1-x)3 (x= 0.667) Found (3) Found (8) Found (3) Found (2) Found (2)

Ca1-xMnxCO3 (x= 0.25) Found (4) Found (4) Not Found (>10) Found (2) Found (2)

ε-FeCx (x= 0.5) Found (2) Found (2) Found (2) Found (2) Found (2)

X. Yuan et al.
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There are several thumb-up tips for using the LAsou method. (a)
It is priority to turn on the aforementioned factors and parameters.
Due to the ML potential error and the existence of multiple
structures with energy close to the target structure, our method
has a certain probability of missing the target structure. We’d like
to suggest to run at least twice to avoid missing the target
structure as much as possible. (b) For the much larger or complex
systems, the converged structure may not be the ‘true’ most
stable, but it can be considered to be the ‘putative’ most stable.
We can adjust some running parameters to obtain more reliable
results, for example, the total number of iterations or generations
(Niter), the number of selected and labeled structures (Nsl), and so
on. (c) For the finite-size system as like in present work, the
programs of SOD, Supercell, and disorder can successfully
enumerate the sampling space for many kinds of chemical-
disordered materials. But it is hardly to generate the complete
structures for more complex or quasi-infinite size systems, we can
still take the advantages of LAsou method incorporated with a
variety of sampling operators57 rather than the enumeration
approach. It is worth noting that although the DFT calculations are
applied for demonstration and validation, the energy assessment
is not limited to DFT calculations. It can be performed through
various methods including electronic structure calculations,
empirical (forcefield) methods, and semi-empirical methods.
We have introduced the LAsou method, a simple yet highly

efficient approach that combines the first-principles calculations
and active-learning algorithm to search for the thermodynamically
stable structures/configurations of chemical-disordered materials.
The LAsou method shows great potential to solve the ‘exponen-
tial-wall’ problem for many-body systems. In LAsou method, the
ML potential can largely reduce the DFT calculations via predicting
and filtering from the large sampling space, the ensemble learning
algorithm can significantly improve the stabilities for the
prediction of energy and relaxation, and the active learning
algorithm can gradually improve the accuracy of ML potential on-
the-fly so that one doesn’t have to pre-prepare a large amount of
training data. With these advantages and features, the active
learning-based LAsou method will be helpful for a wide range of
applications for the larger, more complex, quasi-infinite size
systems and the new materials that occurs in nanoparticles,
catalysts, solid solutions, high-entropy alloys and high-entropy
oxides, and so on.

METHODS
The computational technique of structure or configuration
prediction has been widely used in material discovery and design
for many various types of materials, such as zero-dimensional (0D)
clusters and nanoparticles, two-dimensional (2D) layered films,
three-dimensional (3D) bulks and high-pressure materials, etc. A
lot of methods and programs (e.g., USPEX58–61, CALYPSO62, and
XtalOpt63, etc) have been proposed and achieved great success in
these systems. Our developed IMAGE program57 also successfully
predicted the bulk phases of iron carbides (FexCy, 1 ≤ y ≤ x ≤ 7,
0 < y/x ≤ 1) and found the unexpected magnetism properties of
iron atoms. Among the algorithms, the most popular approach of
‘global searching + local relaxation’ is adopted. The global
searching methods mainly include genetic algorithm (GA)64,
simulated annealing (SA)65 and particle swarm optimization
(PSO)66, etc. The local relaxation methods mainly rely on first-
principles calculations with the fact that it can give reliable results
very well. Recently, there have been several reports that attempts
to accelerate structure prediction using machine learning
methods and active learning algorithm67–70.

The large space sampling and active labeling for searching
(LAsou) method
Here, we employ active learning algorithm coupled with first-
principles calculations to build a simple yet highly efficient
approach to predict the thermodynamically stable structures of
chemical-disordered materials. As we know, machine learning
(ML) potential in general strongly depends on a large size of
datasets (e.g., structures/configurations, and/or properties for
materials) before model construction. It is feasible for the well-
studied systems or the data that can easily be labeled, while it is
quite difficult for the unexplored system or without labeled data
which often occurred in new materials discovery and design.
Active learning (AL) algorithm provides an efficient online (on-the-
fly) way to deal with the model constructed by using minimal size
of labeled datasets. Taking the ML potential construction under
the AL algorithm for example, the potential can be initially trained
with a small number of datasets (structures ~ energies/forces)
with low accuracy, then the AL algorithm will proactively pick out
some favorable samples and add them into datasets. After that,
the potential will be re-trained/re-validated and updated along
with significant improvement of accuracy.
The flowchart of the active learning-based approach for the

structure prediction of chemical-disordered materials is shown in
Fig. 4. In present work, we mainly exhibit the simplest and minimal
process of our approach for the structure prediction of finite-size
systems, in which the sampling space is created by the ‘brute

Fig. 4 Flowchart of the active learning-based LAsou method. An
overview of the proposed approach for the structure prediction of
finite-sized chemical-disordered materials coupled with first-
principles calculations.
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force’-based enumeration method. Meanwhile, we employ a
simply iterative search based on the greedy search (GS) algorithm
and tabu search (TS) strategy.

Step 1: sampling from a large space. For the finite-size system, the
enumerated structures compose the full sampling space for
searching and prediction. Here, we can use the open-source
programs (Supercell27 and/or disorder28) to generate a large space
containing all the inequivalent structures based on the user-
defined size of supercell and the percentage of occupied lattice
sites. However, it is worth noting that the enumeration
approaches are not adequate for the larger, complex, or quasi-
infinite size systems.

Step 2: selecting and labeling. The candidates will be proactively
selected and labeled from the large sampling space, and further
passed to perform the energy assessment. This is a crucial step for
that the selecting and labeling in active learning algorithm will
recommend preferable structures and rapidly guide to the target. In
practice, a considerable efficiency can be achieved with only a small
amount of selected and labeled structures. We employ three criteria
to obtain the candidates, including high thermodynamically stability
with lower energy, high structural diversity with lower similarity, low
sampling repeatability with tabu search (TS) strategy. After sampling
from the large space, the three criteria are applied through the
procedure as below. First, the ML potential will be used to calculate
the energies for all structures, the lowest energy can be ensured
high thermodynamically stability. Second, the K-means clustering
method is used to divide all structures into several distinct classes,
the structure with the lowest energy in each class will be selected
and labeled. The selection from different class can reach high
structural diversity. Third, each selected structure will be judged
whether it has been emerged in the historically selected structures,
the elimination of historical structure can realize low sampling
repeatability. It should be noted that selection and labeling in the
first generation only employs high structural diversity criterion, while
the following generations include all the above criteria.

Step 3: energy assessment. In present work, the selected and
labeled candidates will be performed the structural relaxation
calculations in order to get the local minimum structures and
energies. The structural relaxation calculations were accomplished
by using first-principles density functional theory (DFT) methods,
for that it can obtain reliable results for a wide range of systems.
The details of calculations are described in next section. To
compare with the enumeration approach, we have totally relaxed
all the inequivalent structures, and the most stable structure with
lowest energy is set as the target.

Step 4: building datasets. Again, the ML potential strongly
depends on enormous datasets. Obviously, such a prerequisite is
very difficult for the unexplored or unknown systems. With the
advantages of active learning algorithm, here we adopt the online
(on-the-fly) scheme to extract the dataset from the results of DFT
calculations. Several frames of data are collected (i.e., structures ~
energies/forces) from each DFT relaxed trajectory with intermedi-
ate equal intervals. Such data explicitly takes into account the
changes of structure, which is necessary to construct the ML
potential and may be helpful for the improvement of structural
relaxation. Furthermore, the datasets are continuously updated
and enlarged after DFT calculations in each generation.

Step 5: machine learning model training and validation. Machine
learning model will be used to construct the ML potential in this
step. Generally, the total energy Etot of a system containing N
atoms can be expressed the summation of atomic energy Ei based
on the additive model, Etot ¼

PN
i¼1 Ei . Then the atomic energy can

be fitted by ML model Ei ¼ f ðXðfRgÞ;wÞ, where X({R}) is the

structural features (also known as descriptors) associated with the
structure or configuration, w is the model parameters, and f is the
ML model. The total energy is trained and validated against with
structures ~ energies/forces from the datasets. Currently, a variety
of machine learning models71–77 have been successfully used in
the establishing of interatomic potentials, such as, linear ridge
regression (LRR), gaussian process regression (GPR), neural
networks (NN), and deep learning (DL), etc. Meanwhile, many
structural features78–80 based on local atomic environment (LAE)
have been developed to reproduce the highly accuracy of
potential energy surfaces, such as atom-centered symmetry
function (ACSF), smooth overlap of atomic positions (SOAP), and
many-body tensor representation (MBTR), etc. At present, a plenty
of models and programs81–84 can be freely available for the
construction of ML-based potentials. Here, we employ the linear
basis function (LBF) model to construct the interatomic potential,
in which the model is a simple LRR (namely linear regression + L2-
regularization) method and the features are consist of Gaussian
basis function as described in refs. 85,86. This LBF/LRR model has
been successfully used in our previous work57 to obtain a high
accuracy of relationship for local atomic structures and magnetic
moments in iron carbide phases. It can be expected that the linear
LBF/LRR model will be superior to the nonlinear models (e.g., NN,
DL) in the efficiency of model training, validation, and prediction
under the active learning algorithm. On the other hand, we
employ the ensemble learning algorithm56 to ensure the stability
and reliability of the LBF/LRR potential. After training of M
independent LBF/LRR models, we take the simple average as the
ensemble model to get the results. The total interatomic potential,
denoted as ensemble-LBF/LRR, can be expressed as,

EEnsemble
tot ¼ 1

M

XM

k¼1

ELBF=LRRk (1)

and the atomic forces can be given by

Fi ¼ � ∂EEnsemble
tot

∂Ri
¼ � 1

M

XM

k¼1

∂ELBF=LRRk

∂Ri
(2)

where ELBF=LRRk is the total energy predicted by the k-th LBF/LRR
model, Ri ¼ ðxi; yi ; ziÞ and Fi ¼ ðFix ; Fiy ; FizÞ are the i-th atomic
positions and forces, respectively. Next, we can use the least
squares method to minimize the errors of energies or both
energies and forces. In the following generations, each LBF/LRR
model will be re-trained and the ensemble-LBF/LRR model will be
updated along with the increase of datasets. Alternatively, any
other ML models can replace the LBF/LRR model to obtain the
more reliable ensemble model, such as ensemble-KRR, ensemble-
GPR, ensemble-NN56, etc. And the simple average approach can
also be replaced with other Boosting or Bagging algorithms87,88,
such as AdaBoost, XGBoost, etc.

Step 6: machine learning model prediction and ranking. After
completion of model training and validation, the final ensemble
model will be used to predict and evaluate all the inequivalent
structures in the large enumerated space. Alternatively, we can re-
sample to get a large number of structures for other systems.
Then, one can simply calculate the single-point energy, or
structure relaxation for each structure. For the prediction of
structure relaxation, a small uncertainty of ensemble model
(σuncertainty) will be checked to ensure the consistency of each
LBF/LRR model and then perform the calculation. The uncertainty
is estimated by the standard deviation for each model, as given by

σuncertainty ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1 ðELBF=LRRk � E
Ensemble
tot Þ2

N

s

(3)

where E
Ensemble
tot is the averaged energy of the ensemble models.

After that, the structure ranking should be applied to recommend
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the candidates more reasonably rather than only the single-point
energy. Further, the K-means clustering algorithm (implemented
in scikit-learn82) will be used to divide the enumerated structures
into several parts, and then it goes to Step 2 for structure selecting
and labeling.
Repeat Steps 2–6 until the approach terminates when the

convergence criteria are reached. The converged structure with
lowest energy among all DFT relaxed structures will be expected
to the ‘putative’ most stable structure. The above active learning-
based approach is called as the Large space sampling and Active
labeling for searching (LAsou, sou means searching in Chinese). In
our approach, the sampling from enumeration space can
significantly improve the efficiency that covers a huge space at
once; the active labeling based on ML model and ranking can
rapidly obtain a small amount of preferable candidate structures.
In terms of probability, the candidates obtained from our
approach will be significantly better than the traditional structure
prediction algorithms.
The parameters of present work are listed as following: the

total number of iterations or generations (Niter) is 10, the
number of selected and labeled structures (Nsl) is 5, the number
of data points extracted from each trajectory is 5 with
equidistance, the percentage of training set and validation set
is 60 and 40% respectively, the cutoff radius (Rcut) is 6.0 Å, the
Gaussian basis function in LBF/LRR model with taking 5 values
uniformly in the range of a2[0.1, 2] and 10 values uniformly in
the range of b2[0, 5]85,86, and 5 LBF/LRR models used to build
the ensemble model. For the prediction of structural relaxation,
the maximum atomic forces, maximum number of steps are set
to 0.03 eV Å−1, and 50, respectively.

First-principles calculations
We performed first-principles calculations using the planewave
code Vienna ab initio simulation package (VASP)89,90. The general
gradient approximation of the Perdew-Burke-Ernzerhof parame-
terization (GGA-PBE)91 was adopted for the exchange and
correlation functions. We use the MPRelaxSet module in Pymatgen
software92 to generate input files for each structure, with slightly
different parameter settings for different systems. For BaSc(OxF1-
x)3 (x= 0.667), Ca1-xMnxCO3 (x= 0.25), the energy cutoff was set to
500 eV. The convergence criterion was set to 1 × 10–8 eV in energy
and 1 × 10–6 eV Å−1 in force. For ε-FeCx (x= 0.5), the energy cutoff
was set to 500 eV. We adopted the second-order Methfessel-
Paxton93 smearing scheme with a value of σ= 0.2 eV. Structure
relaxations were performed with convergence criteria of
1 × 10–4 eV in energy and 0.03 eV Å−1 in force.

DATA AVAILABILITY
The datasets include trajectory optimized by VASP for BaSc(OxF1−x)3 (x= 0.667) and
Ca1−xMnxCO3 (x= 0.25) systems and test result files for different factors and several
combinations of the adjustable parameters in the results and discussion section. They
are available at https://doi.org/10.6084/m9.figshare.21776579.
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