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Abstract: Metallic components may not be used immediately and are stored for several months
or years after fabrication in some cases, which experience long-term natural aging. Moreover, the
fatigue-beared components commonly suffer discontinuous cyclic loadings in service. In this paper,
the effects of natural aging and discontinuous loading on high cycle fatigue life and failure mechanism
were investigated through rotating bending fatigue tests. The long-term natural aging (e.g., more
than 20,000 h) reduced the fatigue life of both 25CrMo4 and 30CrMnSiA steels, and this effect
was irrespective of the roughness of the specimen surface. The effect of natural aging on the failure
mechanism was related to the microstructure of materials. The natural aging promoted the probability
of multi-site crack initiation for 25CrMo4 steel, but had no influence on the crack initiation mode of
30CrMnSiA steel. The discontinuous cyclic loading had no harmful influence on the fatigue life of
25CrMo4 steel, and it had no influence on the failure mechanism. The specimens under continuous
and discontinuous cyclic loadings both failed from single-site crack initiation or multi-site crack
initiation at the specimen surface.
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1. Introduction

Steels used in structures and components of vehicles often work under cyclic loadings,
and their high cycle fatigue (HCF) performance could be concerned [1–5]. Many factors
influencing the fatigue behavior of steels have been studied in literature, such as stress
ratio, loading frequency, thermal aging, environmental corrosion, defects in surface and
interior and so on [6–14]. In practical application, the steels and components may not be
used instantly after their fabrication, namely that they are stored for a period before their
use [15]. In this way, the steels and components experience a natural-aging period, and the
effect of natural aging needs to be elucidated.

According to the existing studies [15–18], the effect of natural aging on the mechanical
behaviors is diversified for different kinds of steels. Botvina et al. [16] investigated the
effect of storage of 15 years on the fatigue behavior of a low carbon steel and found that the
fatigue strength decreased obviously after such long-term storage. It was due to corrosion
and hydrogen penetration at local regions of the low carbon steel. Li et al. [15] studied
the effect of natural aging of 10,000 h (about 14 months) on the very high cycle fatigue
(VHCF) behavior of bearing steel GCr15, and the results showed that the natural aging had
prolonged the fatigue life of GCr15 steel in VHCF regime. Based on the observation of the
microstructure before and after natural aging, such strengthening in fatigue behavior was
attributed to more precipitation of granular carbides after natural aging, which strength-
ened the microstructure of GCr15 steel. Chang [17] and Zamani et al. [18] studied the
short-term aging effect (i.e., 20 s to 107 s and 7.8 × 105 s, respectively) at room temperature
on low carbon dual phase steels, and the results indicated that the aging above 104 s at
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room temperature contributed to improvement of the tensile strength and the hardness
of the material. Based on the observation of microstructures, the enhancement should
be attributed to carbon supersaturation of ferrite and formation of fine precipitates in
ferrite grains. The variable effects of natural aging have also been observed for aluminum
alloys [19–22]. Tai et al. [19] and Fritsch and Wagner [20] studied the effect of natural aging
on the mechanical performance of AA7075 aluminum alloy, and found that the hardness
and strength of the aluminum alloy increased after longer natural aging due to the strength-
ening effect of more precipitates in the microstructure during the natural aging. However,
the effect of natural aging on the strength of Al-Mg-Si alloy becomes negative [21]. By
using the atom probe tomography and transmission electron microscope, it was found that
the numerous unstable clusters were formed after longer natural aging and they inhibited
the formation of fine precipitates as well as the strengthening of the precipitates. According
to these results, influence of the natural aging on different materials is various. The limited
understanding of the effect of natural aging on the fatigue performance of steels make it
important to study this effect.

Moreover, the steel components in vehicles commonly suffer discontinuous cyclic
loadings in service, e.g., the vehicles work for a while and then stop and repeat this process.
This loading mode is different from the experimentally applied continuous fatigue loading,
and its influence is also worthy of investigation. However, to the authors’ knowledge,
the related studies of metallic materials subjected to discontinuous cyclic loading are rare.
Sun et al. [23] studied the effect of intermittent loading on the dwell fatigue behavior and
conventional fatigue behavior of Ti-6Al-4V ELI alloy. They found that the intermittent
loading time did not affect the dwell fatigue life and fatigue failure mechanism of the
titanium alloy, but it reduced the fatigue life and promoted multi-site crack initiation in the
conventional fatigue scenarios. In other studies, intermittent loading was used to prevent
heating of specimens in ultrasonic frequency fatigue tests [24,25], or was used to arrest
fatigue crack characteristics in fatigue crack propagation tests [26]. Therefore, the effect of
discontinuous cyclic loading on the fatigue behavior and failure mechanism of steels needs
to be further investigated.

The current research aims to study the effects of natural aging and discontinuous
cyclic loading on the HCF behavior of steels. Two kinds of steels were chosen in this
study as reference. One is a common low carbon steel 25CrMo4, and the other is a widely
used medium carbon structural steel 30CrMnSiA. To view a continuum variation of long-
term natural-aging effect, three different conditions of specimens were considered„ i.e.,
initial state, after the first natural aging period and after the second natural aging period.
Moreover, the rotating bending fatigue tests under continuous loading and discontinuous
loading were performed for 25CrMo4 specimens to study the effect of intermittent loading.
The fatigue life data and fatigue fracture surfaces of these specimens were examined to
gain more understanding for these effects.

2. Materials and Experiments
2.1. Materials and Specimens

The low carbon steel 25CrMo4 and medium carbon steel 30CrMnSiA are investigated
in this paper, and their chemical compositions are shown in Table 1. The specimens are
designed to be an hourglass shape, as shown in Figure 1. The parallel parts and the
minimum section have diameters of 10 mm and 3.5 mm, respectively, and the hourglass
part has a radius of 7 mm. The 25CrMo4 steel was in an as-received state and had a
hardness of 274 kgf/mm2. The fatigue specimens were machined out from the as-received
material and the minimum sections of the fatigue specimens were polished carefully. The
30CrMnSiA steel was heated at 880 ◦C in a vacuum furnace for 45 min, followed by oil-
quenched and tempered at 550 ◦C in air for 1 h. The heat-treated 30CrMnSiA steel had a
hardness of 339 kgf/mm2. The fatigue specimens were machined out from the heat-treated
material and the specimen surfaces were not polished after machining.
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Table 1. Chemical compositions of the tested steels.

Materials Chemical Compositions (wt%)

25CrMo4
C Cr Si Mn Mo S P Fe

0.22 0.54 0.26 0.85 0.17 0.027 0.016 balanced

30CrMnSiA
C Cr Mn Si Fe

0.34 1.20 1.10 1.10 balanced
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Figure 1. Geometry of specimens for rotating bending fatigue tests (in mm).

2.2. Experimental Methods

Based on the testing standard GB/T 4337-2015 [27], the fatigue tests were conducted
on a GIGAQUAD YRB200 rotating bending fatigue machine with a frequency of 50 Hz
and stress ratio (R) of −1 at room temperature in air, as shown in Figure 2a. Figure 2b
shows the stress diagram of the minimum section of the specimen under bending load. The
stress ratio R = −1 means that the cyclic loading is fully reversed. According to mechanics
of materials [28] and the standard GB/T 4337-2015 [27], the equations to calculate the
maximum stress (σmax) is given below.

σmax =
32FL
πd3 (1)

where F is value of the external load, L is the distance from the acting line of external load
to the minimum section, d is the diameter of the minimum section of the specimens.
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Figure 2. (a) GIGAQUAD YRB200 rotating bending fatigue machine. (b) A stress diagram of the
minimum section of the specimen under bending load.

For the effect of natural aging, the specimens of 25CrMo4 steel were tested in the
initial state and after natural-aging periods of 26,000 h (36 months, named NA-26000)
and 34,000 h (47 months, named NA-34000), respectively, and the number of the tested
specimens were eight, eight, and five, respectively. The specimens of 30CrMnSiA steel
were tested in the initial state and after natural-aging periods of 8800 h (12 months, named
NA-8800) and 20,000 h (28 months, named NA-20000), respectively, and the number of
the tested specimens were three, six and three, respectively. The stress amplitudes of
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330 MPa and 580 MPa were determined for the fatigue specimens of 25CrMo4 steel and
the 30CrMnSiA steel, respectively.

For the effect of discontinuous cyclic loading, two groups of 25CrMo4 specimens were
tested under the stress amplitude of 330 MPa. One group was loaded continuously, and
the other was firstly loaded for 1 h and then stopped the machine. When the machine was
totally stopped, started the machine immediately and repeated this procedure until failure.
The two groups were both from the batch of 25CrMo4 specimens after NA-34000, and each
group had five specimens.

The microstructures of the two kinds of steels were observed by an optical microscope.
The hardness was measured by a microhardness tester with a load of 25 gf and a holding
time of 15 s. After the fatigue tests, the fracture surfaces of the failed specimens were
observed by a scanning electron microscope (SEM).

3. Results and Discussion
3.1. Effect of Natural Aging on HCF of 25CrMo4 Steel

Figure 3a shows the fatigue life data of 25CrMo4 specimens in the initial state and
after NA-26000 and NA-34000. It was found that the fatigue lives of specimens after NA-
26000 and NA-34000 were lower than those in the initial state as a whole. The 50% survival
probability and the cumulative probability of the fatigue life data in the initial state and after
NA-26000 and NA-34000were calculated to analyze the effect of natural aging. According
to Refs. [15,29], the fatigue life data in logarithm in the same testing conditions were
assumed to follow two parameter Weibull distribution, and the 50% survival probability
was calculated based on the Weibull distribution equation below.

F(x) =

{
1 − e−( x

λ )
k

x ≥ 0
0 x < 0

(2)

where x is fatigue life in logarithm, i.e., log10(N f ), k > 0 is the shape parameter, and λ > 0
is the scale parameter. The fatigue life data in logarithm were ranked from the minimum
value to the maximum value, and marked as log10(N f ,1), log10(N f ,2), . . . log10(N f ,n), and
the parameters in Equation (2) were determined by the best fitting of the distribution of the
fatigue life in logarithm. The cumulative probability in logarithm of the fatigue life was
calculated following the equation below.

F(log10(N f ,i)) =
i − 0.3
n + 0.4

(3)

where i = 1, 2, 3, . . . , n, and n is the total number of specimens.
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The 50% survival probability of the fatigue life in Figure 3a presents a consistent
decreasing trend with the prolonged natural aging, and the values are reduced from
1.7 × 106 cycles of the initial specimens to 7.6 × 105 cycles of the specimens after NA-34000.
The cumulative probability of the fatigue life in logarithm for the specimens after different
natural-aging durations are shown in Figure 3b. It is seen that the probability of the initial
specimens failed with a fatigue life <1.0 × 106 cycles is <44%, but the probability of the
specimens after NA-26000 and NA-34000 failed within this fatigue life range increases to
>56% and >69%, respectively. It also confirms the trend that prolonged natural aging tends
to reduce the fatigue life of 25CrMo4 steel.

SEM observation indicated that all the specimens failed from surface crack initiation,
and the crack initiation was due to machined scratch or extrusion and intrusion under
fatigue loading [30–32]. Figure 4 shows the fracture surfaces of the initial specimens and
the specimens after NA-26000. For the initial specimens, most of the specimens failed from
single-site crack initiation, as shown in Figure 4(a1), and only two specimens presented
multi-site crack initiation as shown in Figure 4(b1). However, multi-site crack initiation
became a dominant failure mode for the specimens after natural aging. After NA-26000,
only two specimens failed from single-site crack initiation (Figure 4(c1)), four specimens had
three crack initiation sites or above, and two specimens presented two crack initiation sites
(Figure 4(d1)). The situation for the specimens after NA-34000 was similar. Two specimens
had three crack initiation sites, two specimens had two crack initiation sites and only one
specimen showed single-site crack initiation. Figure 5 shows the probability of single-site
and multi-site crack initiations after different natural-aging durations. It is seen that the
multi-site crack initiations tend to increase with increasing the aging time. The multi-side
crack initiation mode after natural aging might be attributed to corrosion and hydrogen
penetration in long-term storage. The content of Cr in the chemical composition is a
little low for the 25CrMo4 steel, and it could not protect the steel from corrosion [33,34].
Based on the results in literature [16,35], corrosion and hydrogen penetration could occur
in the rough surface and surface regions with inclusion in air. In this way, the loading
capacity of the local regions could be reduced, and multi-site crack initiation could occur in
these regions.

For a further investigation, the microstructure of 25CrMo4 steel after NA-34000 was
observed by an optical microscope to understand its characteristics. As shown in Figure 6a,
the microstructure includes coarse ferrite, pearlite, bainite and cementite-enriched area, and
their distribution is nonuniform, especially for coarse ferrite and cementite-enriched area.
The grain sizes of coarse ferrite reach 20~30 µm, and the coarse ferrite grains gather in local
regions to form weak regions [36]. According to the precipitation of carbides due to natural
aging reported in literature [15,17,18], the cementite-enriched area might be increased due
to the carbide precipitation and gathering in the regions after the natural aging. Figure 6b
shows the hardness of ferrite and cementite-enriched area, and the mean values between
the two regions present significant difference. This might also have an adverse effect on the
fatigue performance of 25CrMo4 steel.

3.2. Effect of Natural Aging on HCF of 30CrMnSiA Steel

Figure 7 shows the fatigue life data of 30CrMnSiA specimens after different natural-
aging durations under the stress amplitude of 580 MPa. The fatigue lives of the initial
specimens and the specimens after NA-8800 are close. However, the fatigue lives of
the specimens after NA-20000 are lower than the initial specimens as a whole. Due to
the less experimental data in Figure 7, the mean fatigue life in logarithm is used for the
analysis of the natural-aging effect. The mean life of the initial specimen is 2.3 × 105 cycles,
and it slightly decreases to 2.0 × 105 cycles after NA-8800. However, the mean life of
the specimens after NA-20000 dramatically decreases to 9.8 × 104 cycles.. These results
indicate that the effect of natural aging in a moderate period is not obvious for the fatigue
performance of 30CrMnSiA steel, while the long-term natural aging is harmful.
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Figure 8 shows the fracture surfaces of the 30CrMnSiA specimens in the initial state
and after NA-8800. The initial specimens all failed from single-site crack initiation, as
shown in Figure 8(a1), except one specimen presented two-site crack initiation. The fatigue
cracks initiated from surface inclusion, as shown in Figure 8(a3). After NA-8800, single-site
crack initiation was still a dominant failure mode (Figure 8(b1)), but two specimens failed
from two-site crack initiation, as shown in Figure 8(c1). Similar to the initial specimens,
the fatigue cracks of the specimens after NA-8800 also initiated from surface inclusion, as
shown in Figure 8(b3,c2,c3). The crack initiation behavior of the specimens after NA-20000
was similar to those in the initial state and after NA-8800. Single-site crack initiation was
a dominant failure mode, and one specimen failed from two-site crack initiation. It was
seen that the natural aging did not change the dominant failure mode of single-site crack
initiation, this performance was different from the 25CrMo4 steel reported in this paper.
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Figure 4. Fatigue fracture surfaces of 25CrMo4 specimens in the initial state and after NA-26000.
(a1–a3) Initial specimen failed from single-site crack initiation: σa = 330 MPa, Nf = 8.9 × 105 cycles;
(a2,a3) are enlarged views of the crack initiation site. (b1–b3) Initial specimen failed from multi-site
crack initiation: σa = 330 MPa, Nf = 2.0 × 105 cycles; (b2,b3) are enlarged views of the two crack
initiation sites. (c1–c3) Specimen after NA-26000 failed from single-site crack initiation: σa = 330 MPa,
Nf = 2.9 × 105 cycles; (c2,c3) are enlarged views of the crack initiation site. (d1–d3) Specimen after
NA-26000 failed from multi-site crack initiation: σa = 330 MPa, Nf = 1.2 × 106 cycles; (d2,d3) are
enlarged views of the two crack initiation sites.
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Figure 8. Fatigue fracture surfaces of 30CrMoSiA specimens in the initial state and after NA-8800:
(a1–a3) Initial specimen failed from single-site crack initiation: σa = 580 MPa, Nf = 1.8 × 105 cycles;
(a2,a3) are enlarged views of the crack initiation site. (b1–b3) Specimen after NA-8800 failed from
single-site crack initiation: σa = 580 MPa, Nf = 1.4 × 105 cycles; (b2,b3) are enlarged views of the crack
initiation site. (c1–c3) Specimen after NA-8800 failed from multi-site crack initiation: σa = 580 MPa,
Nf = 1.1 × 105 cycles; (c2,c3) are enlarged views of the two crack initiation sites.

Figure 9a,b show the microstructures of 30CrMnSiA steel observed by an optical
microscope in the initial state and after NA-20000, respectively. Both images show tempered
sorbite, and there is no obvious difference for the microstructure characteristic, which
implies that the natural aging does not change the microstructure of the 30CrMnSiA steel.
Therefore, the negative effect of NA-20000 might be attributed to the surface corrosion in
the long-term storage of 30CrMnSiA specimens in air [16,37].
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The effect of natural aging is discussed here. The 25CrMo4 steel has a low Cr content
of 0.54% in weight and has a nonuniform microstructure with coarse ferrite, pearlite, bainite
and cementite-enriched area. The fatigue life of 25CrMo4 steel could be weakened after the
natural aging of 26,000 h and above. The 30CrMnSiA steel has a low Cr content of 1.20% in
weight and has a uniform tempered sorbite microstructure, and its fatigue performance
keeps after the natural aging of 8800 h, but shows a decreasing trend after the natural
aging of 20,000 h. Therefore, the negative effect of long-term natural aging on the fatigue
behavior of 25CrMo4 steel and 30CrMnSiA steel might be attributed to their low Cr content
and low resistance to corrosion as well as hydrogen penetration around rough surface
and surface inclusion [33–35]. The corrosion in the local regions could accelerate the crack
initiation [16,37] and reduce the fatigue life.

3.3. Effect of Discontinuous Loading on HCF of 25CrMo4 Steel

Figure 10a shows a comparison of fatigue life of 25CrMo4 specimens under continuous
cyclic loading and discontinuous cyclic loading, and the fatigue life under discontinuous
cyclic loading is slightly higher than that under continuous cyclic loading as a whole.
Meanwhile, the cumulative probability of the fatigue life data is calculated based on
Equation (3) to analyze the effect of discontinuous cyclic loading, as shown in Figure 10b.
The specimens under continuous cyclic loading have a probability of 87% to fail at a
fatigue life <1.2 × 106 cycles, but for the specimens under discontinuous cyclic loading,
the probability of the fatigue life within this range is only <50%. The result shows that the
specimens under discontinuous cyclic loading tend to have a little longer fatigue life.
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Figure 10. Comparison of fatigue life of 25CrMo4 specimens under continuous cyclic loading and
discontinuous cyclic loading. (a) Fatigue life of the two loading conditions, (b) cumulative probability
of fatigue life in logarithm.

Similar to the specimens under continuous cyclic loading, the specimens under discon-
tinuous cyclic loading failed from single-site crack initiation or multi-site crack initiation,
and all the cracks initiated from the specimen surface. Figure 11(a1–a3,b1–b3) show the
SEM images of a single-site crack initiation and a multi-site crack initiation of the specimens
under discontinuous cyclic loading, respectively. For the specimens under discontinuous
cyclic loading, two specimens failed from single-site crack initiation and three specimens
failed from multi-site crack initiation. The counts of multi-site crack initiation were close to
those under continuous cyclic loading, indicating that the loading mode did not change the
crack initiation mode.
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Figure 11. Fatigue fracture surfaces of 25CrMo4 specimens under discontinuous cyclic loading:
(a1–a3) Specimen failed from single-site crack initiation: σa = 330 MPa, Nf = 1.6 × 106 cycles;
(a2,a3) are enlarged views of the crack initiation site. (b1–b3) specimen failed from multi-site crack ini-
tiation: σa = 330 MPa, Nf = 6.4 × 105 cycles; (b2,b3) are enlarged views of the two crack initiation sites.

4. Conclusions

The effects of natural aging and discontinuous cyclic loading on HCF behavior of
steels were studied by rotating bending fatigue tests. The main conclusions are as follows.

(1) The natural aging in a moderate period (e.g., less than 10,000 h) has no or negligible
harmful influence on the fatigue life, while the long-term natural aging (e.g., more
than 20,000 h) reduces the fatigue life of the 25CrMo4 steel and 30CrMnSiA steel. The
reduction of the fatigue life should be due to the corrosion and the action of hydrogen
at the specimen surface during the long-term natural aging.

(2) The effect of natural aging on the failure mechanism is related to the microstructure
of materials. The dominant failure mode of 25CrMo4 specimens is switched from
single-site crack initiation in the initial state to multi-site crack initiation after natural
aging. While the dominant failure mode of 30CrMnSiA specimens after natural aging
remains the single-site crack initiation.

(3) The discontinuous cyclic loading has no harmful influence on the fatigue life of the
25CrMo4 steel. It does not change the fatigue crack initiation mode. The specimens
under continuous and discontinuous loadings both fail from single-site crack initiation
or multi-site crack initiation at the specimen surface.
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