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a b s t r a c t 

As critical components or platforms, stiff film-compliant substrate structures are widely 

used in micro-electro-mechanical systems (MEMS) and other devices, in which their in- 

dentation behavior plays an important role. In this work, a multi-scale indentation model 

(MSI) for stiff film-compliant substrate structures is established based on the strain gradi- 

ent theory and the surface elastic model. With this model, the indentation size effect of 

the structure is investigated from three aspects: the load-depth relationship, the distribu- 

tion of bending moments in the film, and the surface morphology. The results show that 

the indentation size effect is mainly caused by the characteristic length and the surface 

residual stress of the film, and it is sensitive to the modulus ratio of the film to the sub- 

strate but has little relation with Poisson’s ratio and the contact radius. Based on the above 

analysis, two dimensionless numbers are proposed to evaluate the indentation size effect 

of stiff film-compliant substrate structures. Besides, the predicted bending stiffness by the 

theoretical model is consistent with the experimental result, which verifies the effective- 

ness of the MSI model. Our research sheds light on the understanding of the indentation 

size effect of stiff film-compliant substrate structures and provides theoretical guidance for 

the design of related devices. 

© 2023 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

Due to their extensive applications in MEMS [1–5] and scientific research [6–9] , the stiff film-compliant substrate struc- 

tures have ignited the enthusiasm of researchers. In these applications, the mechanical behavior of stiff film-compliant sub- 

strate structures, especially the indentation behavior, plays an essential role [10–13] . For example, Ho et al. [1] fabricated a

stretchable electronic skin by laying graphene oxide (GO) and its reduced form (rGO) on polydimethylsiloxane (PDMS), and 

the electronic skin can sensor different out-of-plane pressures by different electrical signals; to avoid the non-linear effects, 

Liu et al. [8] proposed a novel method to measure the mechanical properties of soft matters by the indentation response

of stiff film-compliant substrate structures; Niu et al. [7] characterized the fracture properties of graphene through the in- 
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dentation response of graphene-PDMS structures. Therefore, an in-depth understanding of the indentation behavior of stiff

film-compliant substrate structures will contribute to their comprehensive applications. 

To promote their applications, it is necessary to establish theoretical models to quantitatively describe the indentation 

behavior of this structure. At the macro scale, various models have been established by researchers. For example, based on 

the analysis of a large number of indentation data, an empirical model with a weighted average was proposed by Doerner

and Nix [14] . Because there are empirical parameters related to the geometry of the indenter in the model, it is not con-

venient for practical applications. After that, Gao et al. [15] developed an approximate model based on the perturbation 

analysis, and this model was modified by Xu and Pharr [16] to improve its range of applicability. This approximate model

was in good agreement with the simulation result only when 1/3 < E f / E s < 3 ( E f and E s are the moduli of the film and the

substrate, respectively). Considering this case, Gao et al. [17] derived an analytical indentation model with the exact solu- 

tion of Green’s function in the Fourier space, and this analytical model is suitable for the case where 0.1 < E f / E s < 10. For

the stiff film-compliant substrate structures with E f / E s > 10 2 , both Liu et al. [18] and Box et al. [19] obtained the analytical

indentation solution by the Hankel transform, but the former avoided solving the pair of integral equations by assuming a 

uniform stress distribution under the indenter. 

With the development of science and technology, the size of stiff film-compliant substrate structures widely used in 

MEMS and scientific research becomes smaller and smaller than before [20–22] . For example, the thickness of GO or rGO

placed on PDMS to fabricate the electronic skin is into the nanometer scale [1] ; the thickness of the film mounted on a

compliant substrate to form a test platform to measure the mechanical properties of soft matter is also into the nanome-

ter scale [8] . Therefore, the indentation response of stiff film-compliant substrate structures at the micro/nano scale has 

received extensive attention in recent years. At the micro scale, the high-order continuum theory is considered to be an 

effective method to describe the size effect of mechanical behaviors of materials because of its ability to capture the mi-

crostructure effects [23–29] . With this idea, the strain gradient theory has been widely used to investigate the indentation

size effect of stiff film-compliant substrate structures at the micro scale [30–32] . For example, with the mechanism-based 

strain gradient theory, Zhang et al. [30] studied the indentation response of stiff film-compliant substrate structures, and 

they found that the gradient effect in the stiff film is significant but that in the compliant substrate can be neglected, and

the strain gradient effect in the stiff film disappeared rapidly with the increase of the indentation depth. In addition, the 

effects of the substrate and the grain size on the indentation behavior of film-substrate structures were analyzed by Chen 

et al. [31] . In the above studies, E f / E s is lower than 10, and there are few studies on the indentation size effect of stiff film-

compliant substrate structures with E f / E s > 10 2 . Considering this case, Liu et al. [32] derived an analytical indentation model

for stiff film-compliant substrate structures with E f / E s > 10 2 based on the strain gradient theory and investigated the effect

of the characteristic length on the indentation response. Apart from the influence of the strain gradient, many studies have 

shown that surface energy also has significant effects on the mechanical behavior of materials at the micro scale [ 23 , 33–38 ].

As far as we know, for the stiff film-compliant substrate structures with E f / E s > 10 2 , the coupling effect of the strain gradient

and the surface energy on the indentation response has not been investigated in detail. It is also unclear that how these

effects influence the indentation behavior when the structure size changes from macro scale to micro/nano scale. 

To understand the indentation size effect of stiff film-compliant substrate structures with a high modulus ratio and to 

quantitatively describe it, in this work, a MSI model is established based on the strain gradient theory and the surface elastic

model. With the model, the multi-scale indentation response of stiff film-compliant substrate structures is investigated. It 

needs to be emphasized that compared with our previous work [32] , we further consider the effect of surface energy in the

present work, and the coupling effect of the strain gradient and the surface energy is investigated. The arrangement of this

paper is as follows: In Section 2 , the derivation process of the MSI model is introduced. In Section 3 , based on the model, the

effects of the strain gradient and the surface energy on the indentation response of stiff film-compliant substrate structures 

are analyzed, and the dominant factors causing the indentation size effect are obtained at different scales. In Section 4 ,

the influences of E f / E s , contact radius, and Poisson’s ratio on the indentation size effect are discussed. Based on the above

analysis, two dimensionless numbers are proposed to describe the effects of the strain gradient and the surface energy. In 

Section 5 , the bending stiffness of the film predicted by the MSI model is compared with the experiment result to validate

the effectiveness of the model. Finally, the main conclusions are summarized in Section 6 . Our research sheds light on the

understanding of the indentation size effect of stiff film-compliant substrate structures and contributes to comprehensive 

applications of this structure. 

2. Theory and model 

The sketch of the stiff film-compliant substrate structure is shown in Fig. 1 . Here, the radius of the film and the thickness

of the substrate is far greater than the film thickness. For the indentation response of this structure, the previous study has

shown that the gradient effect in the stiff film is significant but that in the soft substrate can be neglected [30] . Therefore,

we considered the stiff film as a strain gradient elastic material and the compliant substrate as a traditional elastic material. 

In addition, when E f / E s is high ( E f / E s > 10 2 ), the sink-down phenomenon is obvious when the indenter is pressed into the

structure. At this time, the deformation mode of the film is similar to the bending of a plate when the indentation depth is

smaller than the film thickness [ 18 , 19 , 39 ]. Therefore, with the consideration of the surface effect, the indentation response

of the stiff film-compliant substrate structure can be regarded as the bending of a strain gradient plate with surface energy 

mounted on a compliant infinite substrate. In this section, the derivation process of the MSI model is introduced. Firstly, 
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Fig. 1. The sketch of the stiff film-compliant substrate structure. 

 

 

 

 

 

the governing equation is obtained based on the variational principle. Then, with the Hankel transform, the relationship 

between load and film deflection is derived. Finally, the bending moment distribution in the film is calculated. 

2.1. The governing equation for the indentation response of the stiff film-compliant substrate structure 

In this work, we assume that the film is a strain gradient Kirchhoff plate with surface energy. Based on Kirchhoff’s 

hypothesis, the film deflection is only a function of x and y. Then, the strains in the plate read 

ε xx = −z 
∂ 2 w 

∂x 2 
, ε yy = −z 

∂ 2 w 

∂y 2 
, ε xy = −z 

∂ 2 w 

∂ x∂ y 
(1) 

where w is the film deflection. Based on the simplified theory of strain gradient linear elasticity [ 40 , 41 ] due to Mindlin [42] ,

the constitutive equations are 

σ= 2 με + λtr εI 

τ= g 2 ∇σ∑ = σ − ∇ � τ
(2) 

where σ is the classical Cauchy stress tensor, τ is the double stress tensor, � is the total stress tensor, ε = 1 / 2 (∇u + u ∇)

is the strain tensor, tr ε is its trace, λ and μ are Lame constants, I is a unit tensor, and g is the characteristic length of

material. Based on Kirchhoff’s hypothesis, only in-plane stresses are considered. According to Eq. (2) , the Cauchy stress and

the double stress in the plane can be written as 

σxx = 

E f 

1 − ν2 
f 

(ε xx + νε yy ) , τxxx = g 2 
E f 

1 − ν2 
f 

∂(ε xx + νε yy ) 

∂x 
, τxxy = g 2 

E f 

1 − ν2 
f 

∂(ε xx + νε yy ) 

∂y 
(3a) 

σyy = 

E f 

1 − ν2 
f 

(ε yy + νε xx ) , τyyx = g 2 
E f 

1 − ν2 
f 

∂(ε yy + νε xx ) 

∂x 
, τyyy = g 2 

E f 

1 − ν2 
f 

∂(ε yy + νε xx ) 

∂y 
(3b) 

σxy = 

E f 
1 + νf 

ε xy , τxyx = g 2 
E f 

1 + νf 

∂ε xy 

∂x 
, τxyy = g 2 

E f 
1 + νf 

∂ε xy 

∂y 
(3c) 

where E f and v f are the elastic modulus and Poisson’s ratio of the stiff film, respectively. Then, the strain energy in the stiff

film reads 

U 1 = 

1 
2 

∫ ∫ ∫ 
σxx ε xx + σyy ε yy + 2 σxy ε xy d xd yd z 

+ 

1 
2 

∫ ∫ ∫ 
τxxx ε xx,x + 2 τxyx ε xy,x + τyyx ε yy,x + τxxy ε xx,y + 2 τxyy ε xy,y + τyyy ε yy,y d xd yd z 

(4) 

Using Eqs. (1) and (3) in (4) , and performing variational calculations on Eq. (4) , one can get 

δU 1 = 

∫ ∫ 
A (D ∇ 

4 w − g 2 D ∇ 

6 w ) δwd xd y 

+ 

∫ 
S (D 	1 + g 2 D 	2 ) 

∂δw 

∂n 
ds + 

∫ 
S g 

2 D 	3 
∂ 2 δw 

∂n 2 
ds + 

∫ 
S (D 
1 + g 2 D 
2 ) δwds 

(5) 

where D = (E f t 
3 
f 
) / [12(1 − v 2 

f 
)] is the bending stiffness of the film, and t f is the film thickness. The detailed derivation of

Eq. (5) can be found in Appendix A. 	1 , 	2 , 	3 , 
1 , and 
2 are 

	1 = ( 
∂ 2 w 

∂x 2 
+ v f 

∂ 2 w 

∂y 2 
) cos 2 α + ( 

∂ 2 w 

∂y 2 
+ v f 

∂ 2 w 

∂x 2 
) sin 

2 α + 2(1 − v f ) 
∂ 2 w 

∂ x∂ y 
cos α sin α (6a) 
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	2 = 2 

∂ 
∂s 

( ∂ 
3 w 

∂x 3 
sin αcos 2 α) − ∂ 4 w 

∂x 4 
cos 2 α − 2 

∂ 
∂s 

( ∂ 
3 w 

∂y 3 
cos αsin 

2 α) − ∂ 4 w 

∂y 4 
cos 2 α

− 3 

∂ 4 w 

∂ x 2 ∂ y 2 
sin 

2 α − 6 

∂ 
∂s 

( ∂ 3 w 

∂ x∂ y 2 
sin αcos 2 α) − 3 

∂ 4 w 

∂ x 2 ∂ y 2 
cos 2 α

+ 6 

∂ 
∂s 

( ∂ 3 w 

∂ x 2 ∂ y 
cos αsin 

2 α) − v f ∂ ∂s 
[( cos 2 α − sin 

2 α)( cos α( ∂ 
3 w 

∂y 3 
− ∂ 3 w 

∂ x 2 ∂ y 
) 

− sin α( ∂ 3 w 

∂ x∂ y 2 
− ∂ 3 w 

∂x 3 
)) + 4 sin α cos α( ∂ 3 w 

∂ x 2 ∂ y 
sin α − ∂ 3 w 

∂ x∂ y 2 
cos α)] 

(6b) 

	3 = 

∂ 3 w 

∂x 3 
cos 3 α + 

∂ 3 w 

∂y 3 
sin 

3 α + 3 

∂ 3 w 

∂ x∂ y 2 
sin 

2 α cos α

+ 3 

∂ 3 w 

∂ x 2 ∂ y 
cos 2 α sin α + v f ( cos 2 α − sin 

2 α)( ∂ 3 w 

∂ x∂ y 2 
cos α − ∂ 3 w 

∂ x 2 ∂ y 
sin α) 

+ v f cos α sin α( cos α( ∂ 
3 w 

∂y 3 
− ∂ 3 w 

∂ x 2 ∂ y 
) − sin α( ∂ 3 w 

∂ x∂ y 2 
− ∂ 3 w 

∂x 3 
)) 

(6c) 


1 = −( ∂ 
3 w 

∂x 3 
+ 

∂ 3 w 

∂ x∂ y 2 
) cos α − ( ∂ 

3 w 

∂y 3 
+ 

∂ 3 w 

∂ x∂ y 2 
) sin α

+ (1 − v f ) ∂ ∂s 
(( ∂ 

2 w 

∂x 2 
− ∂ 2 w 

∂y 2 
) sin α cos α + 

∂ 2 w 

∂ x∂ y 
( sin 

2 α − cos 2 α)) 
(6d) 


2 = 

∂ 2 

∂s 2 
( ∂ 

3 w 

∂x 3 
cos αsin 

2 α) − ∂ 
∂s 

( ∂ 
4 w 

∂x 4 
cos α sin α) + 

∂ 5 w 

∂x 5 
cos α + 

∂ 2 

∂s 2 
( ∂ 

3 w 

∂y 3 
cos 2 α sin α) 

+ 

∂ 
∂s 

( ∂ 
4 w 

∂y 4 
cos α sin α) + 

∂ 5 w 

∂y 5 
sin α + 3 

∂ 2 

∂s 2 
( ∂ 3 w 

∂ x∂ y 2 
cos 3 α) + 3 

∂ 
∂s 

( ∂ 4 w 

∂ x 2 ∂ y 2 
cos α sin α) 

+ 3 

∂ 5 w 

∂ x 2 ∂ y 3 
sin α + 3 

∂ 2 

∂s 2 
( ∂ 3 w 

∂ x 2 ∂ y 
sin 

3 α) + 3 

∂ 5 w 

∂ y 2 ∂ x 3 
cos α − 3 

∂ 
∂s 

( ∂ 4 w 

∂ x 2 ∂ y 2 
cos α sin α) 

− ∂ 2 

∂s 2 
[( cos 2 α − sin 

2 α)( ∂ 3 w 

∂ x∂ y 2 
cos α − ∂ 3 w 

∂ x 2 ∂ y 
sin α) + sin α cos α( cos α( ∂ 

3 w 

∂y 3 
− ∂ 3 w 

∂ y∂ x 2 
) 

− sin α( ∂ 3 w 

∂ x∂ y 2 
− ∂ 3 w 

∂x 3 
))] 

(6e) 

We assumed that the top surface and the bottom surface of the film have the same mechanical properties, which is

reasonable and accepted by previous researchers [43] . The constitutive equation for the surface [44] is 

ταβ = τ0 δαβ + (τ0 + λs ) u 

s 
γ ,γ

δαβ + (μs − τ0 )(u 

s 
α,β

+ u 

s 
β,α

) + τ0 u 

s 
α,β

(7) 

where τ 0 is the residual surface stress, ταβ is the surface stress tensor, λs and μs are the surface elastic constants, and u s 

is the displacement of the film surface. Then, the strain energy of the film surface reads 

U 2 = 

1 

2 

( 

∫ 
S + 

τxx ε 
s + 
xx + τyy ε 

s + 
yy + 2 τxy ε 

s + 
xy dS + + 

∫ 
S −

τxx ε 
s −
xx + τyy ε 

s −
yy + 2 τxy ε 

s −
xy dS −) (8) 

where ε s+ xx , ε 
s+ 
yy , and ε s+ yx are the strains of the top surface of the film; ε s −xx , ε 

s −
yy , and ε s −yx are the strains of the bottom surface

of the film. Based on Eq. (1) , they can be written as 

ε s+ xx = 

t f 
2 

∂ 2 w 

∂x 2 
, ε s+ yy = 

t f 
2 

∂ 2 w 

∂y 2 
, ε s+ xy = 

t f 
2 

∂ 2 w 

∂ x∂ y 
(9a) 

ε s −xx = − t f 
2 

∂ 2 w 

∂x 2 
, ε s −yy = − t f 

2 

∂ 2 w 

∂y 2 
, ε s −xy = − t f 

2 

∂ 2 w 

∂ x∂ y 
(9b) 

Substituting Eqs. (7) and (9) into (8) , we can get 

U 2 = 

∫ ∫ 
(λs + 2 μs ) t 2 

f 

4 

(∇ 

2 w ) 
2 − t 2 (2 μs − τ s 

0 ) 

2 

(w ,xx w ,yy − w 

2 
,xy ) d xd y (10) 

The variation of the elastic strain energy of the film surface is as follows (See Appendix B for the detailed derivation): 

δU 2 = 

∫ ∫ 
(λs + 2 μs ) t 2 

f 

2 

∇ 

4 w δwd xd y + 

∫ 
S 

�1 δw ds + 

∫ 
S 

�2 
∂δw 

∂n 

ds (11) 

where 

�1 = 

(λs +2 μs ) t 2 
f 

2 

⎧ ⎨ 

⎩ 

[ ∂ 
∂s 

( ∂ 
2 w 

∂x 2 
sin α cos α) − ∂ 3 w 

∂x 3 
cos α] − { ∂ 3 w 

∂ x 2 ∂ y 
sin α

+ 

∂ 3 w 

∂ x∂ y 2 
cos α + 

∂ 
∂s 

[( ∂ 
2 w 

∂x 2 
− ∂ 2 w 

∂y 2 
) sin α cos α] } 

−[ ∂ 
∂s 

( ∂ 
2 w 

∂y 2 
sin α cos α) + 

∂ 3 w 

∂y 3 
sin α] 

⎫ ⎬ 

⎭ 

+ 

t 2 
f 
(2 μs −τ s 

0 ) 

2 

⎧ ⎨ 

⎩ 

{ ∂ 3 w 

∂ x 2 ∂ y 
sin α + 

∂ 3 w 

∂ x∂ y 2 
cos α + 

∂ 
∂s 

[( ∂ 
2 w 

∂x 2 
− ∂ 2 w 

∂y 2 
) 

sin α cos α] } + { ∂ 
∂s 

[ ∂ 
2 w 

∂ x∂ y 
( sin 

2 α − cos 2 α)] 

− ∂ 3 w 

∂ x∂ y 2 
cos α − ∂ 3 w 

∂ x 2 ∂ y 
sin α} 

⎫ ⎬ 

⎭ 

(12a) 

�2 = 

(λs +2 μs ) t 2 
f 

2 
[ ∂ 

2 w 

∂x 2 
cos 2 α + ( ∂ 

2 w 

∂y 2 
cos 2 α + 

∂ 2 w 

∂x 2 
sin 

2 α) + 

∂ 2 w 

∂y 2 
sin 

2 α] 

− t 2 
f 
(2 μs −τ s 

0 ) 

2 
[( ∂ 

2 w 

∂y 2 
cos 2 α + 

∂ 2 w 

∂x 2 
sin 

2 α) − 2 

∂ 2 w 

∂ x∂ y 
sin α cos α] 

(12b) 
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Based on Eqs. (5) and (11) , we can know that the variation of the total elastic strain energy of the film is 

δU = δU 1 + δU 2 = 

∫ ∫ 
A [(D + 

(λs +2 μs ) t 2 
f 

2 
) ∇ 

4 w − g 2 D ∇ 

6 w ] δwd xd y 

+ 

∫ 
S (D 	1 + g 2 D 	2 + �1 ) 

∂δw 

∂n 
ds + 

∫ 
S g 

2 D 	3 
∂ 2 δw 

∂n 2 
ds 

+ 

∫ 
S (D 
1 + g 2 D 
2 + �2 ) δwds 

(13) 

Eq. (13) suggests the work δW done by the external force is 

δW = 

∫ ∫ 
A 

(q + q s − p) δwd xd y −
∫ 

S 

M n 
∂δw 

∂n 

ds −
∫ 

S 

M nn 
∂ 2 δw 

∂n 

2 
ds + 

∫ 
S 

V n δwds (14) 

where q is the indentation load, p is the reaction force of the substrate to the film, M n is the traditional moment, M nn is

the high-order moment, V n is the concentration force acting on the film, and q s = 2 τ 0 ∇ 

2 w is the force due to the change

of the surface curvature. The reason why we introduce q s into Eq. (14) is as follows: when the surface effect is considered,

the discontinuity of the stress across the interface follows the generalized Yang-Laplace equation [45–48] : 

�σi j n i n j = τ s 
αβκ s 

αβ (15) 

where �σi j = σ 2 
i j 

− σ 1 
i j 

denotes the discontinuity of the stress across the interface, τ s 
αβ

is the surface stress, κs 
αβ

is the 

curvature tensor of the surface, and n i is the normal vector of the film surface. With Eq. (15) , the additional force can be

expressed as q s = 2 τ 0 ∇ 

2 w . Including the residual stress in the mechanical description by this method has been proven to

be effective by experiments [ 46 , 49–51 ]. 

For the bending of the strain gradient plate with surface energy mounted on a compliant infinite substrate, according to 

the energy conversation law δU = δW , the governing equation and boundary conditions can be expressed as 

D 

′ ∇ 

4 w (x, y ) − 2 τ0 ∇ 

2 w (x, y ) − g 2 D ∇ 

6 w (x, y ) = q (x, y ) − p(x, y ) (16a)

M n = D 	1 + g 2 D 	2 + �1 (16b) 

M nn = g 2 D 	3 (16c) 

V n = D 
1 + g 2 D 
2 + �2 (16d) 

where D 

′ , ∇ 

2 w ( x,y ), ∇ 

4 w ( x,y ) and ∇ 

6 w ( x,y ) are 

D 

′ = D + 

(λs + 2 μs ) t 2 
f 

2 

(17a) 

∇ 

2 w (x, y ) = 

∂ 2 w 

∂x 2 
+ 

∂ 2 w 

∂y 2 
(17b) 

∇ 

4 w (x, y ) = 

∂ 4 w 

∂x 4 
+ 2 

∂ 4 w 

∂ x 2 ∂ y 2 
+ 

∂ 4 w 

∂y 4 
(17c) 

∇ 

6 w (x, y ) = 

∂ 6 w 

∂x 6 
+ 3 

∂ 6 w 

∂ x 4 ∂ y 2 
+ 3 

∂ 6 w 

∂ x 2 ∂ y 4 
+ 

∂ 6 w 

∂y 6 
(17d) 

In the case of symmetry, Eq. (16a) can be written as 

D 

′ ∇ 

4 w (r) − 2 τ0 ∇ 

2 w (r) − g 2 D ∇ 

6 w (r) = q (r) − p(r) (18a) 

For the indentation response of the strain gradient plate with surface energy mounted on a compliant substrate, the bound- 

ary conditions are 

w (+ ∞ ) = 0 , w 

′ (+ ∞ ) = 0 , w 

′′ (+ ∞ ) = 0 

w (0) = w 0 , w 

′ (0) = 0 , V n (0) � = ∞ 

(18b) 

∇ 

2 w ( r ), ∇ 

4 w ( r ) and ∇ 

6 w ( r ) are given by 

∇ 

2 w (r ) = 

d 2 w 

dr 2 
+ 

1 

r 

dw 

dr 
(19a) 

∇ 

4 w (r ) = 

d 4 w 

dr 4 
+ 

2 

r 

d 3 w 

dr 3 
− 1 

r 2 
d 2 w 

dr 2 
+ 

1 

r 3 
dw 

dr 
(19b) 

∇ 

6 w (r) = 

1 

r 

d 

dr 
(r 

d 

dr 
∇ 

4 w ) (19c) 
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2.2. The relationship between the indentation load and the film deflection 

Based on the Hankel transform, the relationship between the indentation load and the film deflection can be obtained. 

The detailed process is introduced as follows. The Hankel transform of Eq. (18a) is 

D 

′ ξ 4 w (ξ ) + 2 τ0 ξ
2 w (ξ ) + g 2 Dξ 6 w (ξ ) = q (ξ ) − p (ξ ) (20) 

Moreover, the surface vertical displacement of a semi-infinite solid under an arbitrary symmetric load reads [52] 

w (r) = 

2(1 − ν2 
s ) 

E s 

∫ + ∞ 

0 

p ( ξ ) J 0 ( ξ r) dξ (21) 

where E s and v s are the modulus and Poisson’s ratio of the soft substrate, respectively. Here, we assume that the film

deflection is coordinated with the surface vertical displacement of the substrate, and there is no slip in the interface. These

assumptions are always considered to be reasonable when the indentation depth is no more than the film thickness. Then, 

combining Eqs. (20) and (21) , we can get the film deflection: 

w (r) = 

2(1 − ν2 
s ) 

E s 

∫ + ∞ 

0 

[ q ( ξ ) − D 

′ ξ 4 w (ξ ) − 2 τ0 ξ
2 w (ξ ) − g 2 Dξ 6 w (ξ )] J 0 (ξ r) dξ (22) 

In addition, the inverse Hankel transform of the film deflection is 

w (r) = 

∫ + ∞ 

0 

w (ξ ) J 0 (ξ r) ξdξ (23) 

Comparing Eqs. (22) and (23) , we can know that 

w (ξ ) = 

2(1 − ν2 
s ) 

E s 

q ( ξ ) 

ξ [1 + ( s 
l 
) lξ + (1 + ( k 

l 
) 

3 
) l 3 ξ 3 + ( g 

l 
) 

2 
l 5 ξ 5 ] 

(24) 

where 

l = 

3 

√ 

2 D 

′ (1 − v 2 s ) 

E s 
, s = 

4 τ0 (1 − v 2 s ) 

E s 
, k = 

3 

√ 

(λs + 2 μs )(1 − v 2 s ) t 
2 
f 

E s 
(25) 

Using Eqs. (24) in (23) , we get 

w (r) = 

∫ + ∞ 

0 

2(1 − ν2 
s ) 

E s 

q (ξ ) 

1 + ( s 
l 
) lξ + (1 + ( k 

l 
) 

3 
) l 3 ξ 3 + ( g 

l 
) 

2 
l 5 ξ 5 

J 0 ( ξ r) dξ (26) 

Letting t = l ξ , Eq. (26) can be written as 

w (r) = 

1 

D 

′ 1 / 3 ( 
2(1 − ν2 

s ) 

E s 
) 

2 / 3 ∫ + ∞ 

0 

q̄ ( t 
l 
) 

1 + ( s 
l 
) t + (1 + ( k 

l 
) 

3 
) t 3 + ( g 

l 
) 

2 
t 5 

J 0 ( 
t 

l 
r) dt (27) 

From Eq. (27) , it can be seen that once q̄ (t/l) is known, the relationship between the film deflection and the indentation

load is obtained. To get the specific expression form of q̄ (t/l) , we assume that the contact stress under the spherical indenter

satisfies the Hertz contact. This assumption is reasonable and has been accepted by previous researchers [53] . According to

the Hertz contact, q (r) has the form: 

q (r) = 

3 Q 

2 πa 2 
[1 − ( 

r 

a 
) 

2 

] 

1 

/ 2 

, r ≤ a ; q (r) = 0 , r > a (28) 

The Hankel transform of Eq. (28) is 

q (ξ ) = 

3 Q 

2 πa 2 

∫ a 

0 

[1 − ( 
r 

a 
) 

2 

] 

1 

/ 2 

J 0 ( ξ r) rdr (29) 

Replacing ξ with t / l and using Eqs. (29) in (27) , we can get 

w (r) = 

Q 

D 

′ 1 / 3 ( 
2(1 − ν2 

s ) 

E s 
) 

2 / 3 ∫ + ∞ 

0 

I 1 ( α, t) 

1 + ( s 
l 
) t + (1 + ( k 

l 
) 

3 
) t 3 + ( g 

l 
) 

2 
t 5 

J 0 ( 
t 

l 
r) dt (30) 

where 

I 1 (α, t) = 

3 

2 πα2 

∫ α

[1 − ( 
ρ

α
) 

2 

] 

1 

/ 2 

J 0 (tρ) ρdρ;ρ = 

r / l ;α = 

a / l (31) 

0 
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For the convenience of writing, Eq. (30) can be written as 

w (r) = I 2 (α, 
r 

l 
) 

Q 

D 

′ 1 / 3 [ 
2(1 − ν2 

s ) 

E s 
] 

2 

/ 3 

(32) 

where 

I 2 (α, 
r 

l 
) = 

∫ + ∞ 

0 

I 1 (α, t) 

1 + ( s 
l 
) t + (1 + ( k 

l 
) 

3 
) t 3 + ( g 

l 
) 

2 
t 5 

J 0 (t 
r 

l 
) dt (33) 

What needs to be emphasized is that Eq.(32) satisfies all boundary conditions. When r = 0, the load-depth relationship is

obtained: 

w (0) = I 2 (α, 0) 
Q 

D 

′ 1 

/ 3 

[ 
2(1 − ν2 

s ) 

E s 
] 

2 

/ 3 

(34) 

When the effects of the strain gradient and the surface energy are neglected, Eq. (34) degenerates to the traditional one

[18] . 

2.3. The distribution of bending moment in the film 

When E f / E s is high, the influence of the contact area on the indentation behaviors of stiff film-compliant substrate struc-

tures is small, which will be verified in Section 3 . Therefore, to simplify the calculation process of the bending moment in

the film, we assume that the indentation load is a concentrated force. Namely, α is equal to zero. At this time, I 1 = 1/2 π .

Then, the film deflection can be expressed as 

w (r) = I 2 ( 
r 

l 
) 

Q 

2 π(D 

′ ) 
1 

/ 3 

[ 
2(1 − ν2 

s ) 

E s 
] 

2 

/ 3 

(35) 

where 

I 2 ( 
r 

l 
) = 

∫ + ∞ 

0 

1 

1 + ( s 
l 
) t + (1 + ( k 

l 
) 

3 
) t 3 + ( g 

l 
) 

2 
t 5 

J 0 (t 
r 

l 
) dt (36) 

Based on Eqs. (35) and (36) , we can know that 

dw (r) 

dr 
= 

Q 

2 π(D 

′ ) 
2 

/ 3 

[ 
2(1 − ν2 

s ) 

E s 
] 

1 

/ 3 

I 3 ( 
r 

l 
) (37a) 

d 2 w (r) 

dr 2 
= 

Q 

2 πD 

′ I 4 ( 
r 

l 
) (37b) 

where 

I 3 ( 
r 

l 
) = 

∫ + ∞ 

0 

t 

1 + ( s 
l 
) t + (1 + ( k 

l 
) 

3 
) t 3 + ( g 

l 
) 

2 
t 5 

[ −J 1 (t 
r 

l 
)] dt (38a) 

I 4 ( 
r 

l 
) = 

∫ + ∞ 

0 

t 

1 + ( s 
l 
) t + (1 + ( k 

l 
) 

3 
) t 3 + ( g 

l 
) 

2 
t 5 

[ 
J 1 (t r 

l 
) 

r / l 
− tJ 0 (t 

r 

l 
)] dt (38b) 

According to the theory of plate, the radial and circumferential bending moments in the film can be written as 

M r (r) = −D nom 

[ 
d 2 w (r) 

dr 2 
+ νf 

1 

r 

dw (r) 

dr 
] ; M ϕ (r) = −D nom 

[ 
1 

r 

dw (r) 

dr 
+ νf 

d 2 w (r) 

dr 2 
] (39) 

where D nom 

is the nominal bending stiffness of the film, and its definition is illustrated as follows. Eq. (34) can be written

in the traditional form: 

w (0) = I tra 
2 (α, 0) 

Q 

(D nom 

) 
1 

/ 3 

[ 
2(1 − ν2 

s ) 

E s 
] 

2 

/ 3 

(40) 

where I tra 
2 

and D nom 

read 

I tra 
2 (α, 0) = 

∫ + ∞ 

3 
2 πα2 

∫ α
0 [1 − ( ρα ) 

2 
] 
1 

/ 2 J 0 (tρ) ρdρ

1 + t 3 
J 0 (0) dt (41a) 
0 
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D 

1 

/ 3 

nom 

= 

I 2 (α, 0) 

I tra 
2 

(α, 0) 
D 

′ 1 

/ 3 (41b) 

3. Results and discussion 

In this section, the influences of the strain gradient and the surface energy on the indentation response of stiff film- 

compliant substrate structures are analyzed in detail from three aspects: the load-depth relationship, the surface morphol- 

ogy, and the bending moment in the film. For the stiff film-compliant substrate structures used in the MEMS, E f / E s is always

more than 10 2 and the thickness of the film is usually in the micro or nano scale. Therefore, E f / E s changing from 10 3 to 10 5 

is studied. The material characteristic length g is usually from 0.1 to 10 μm [54] , so we take g/ t f as 0 ∼20. Moreover, the

surface energy generally changes from 0.1 to 1 J/m 

2 . At this time, the surface elastic constant and the surface residual stress

are usually -10–10 N/m and 0.1–1 N/m [55] , respectively. Hence, we take ( λs + 2 μs )/( E s t f ) and τ 0 /( E s t f ) as -100–100 and 0–

20, respectively. The effects of the strain gradient and the surface energy on the indentation response of stiff film-compliant 

substrate structures are analyzed as follows. 

3.1. The effects of the strain gradient and the surface energy on the load-depth relationship 

The load-depth relationship is important data, which is usually used to interpret the indentation data to get the mechan- 

ical properties of materials. Therefore, it is significant to investigate the effects of the strain gradient and the surface energy

on the load-depth relationship. From Eq. (34) , it can be known that Q/ (E s t 
2 
f 
) is a function of w (0)/ t f , E f / E s , v f , v s , α, λs /( E s t f ),

μs /( E s t f ), τ 0 /( E s t f ) and g/ t f : 

Q 

E s t 2 f 

= f ( 
w (0) 

t f 
, 

E f 
E s 

, v f , v s , α, 
λs 

E s t f 
, 

μs 

E s t f 
, 

τ0 

E s t f 
, 

g 

t f 
) (42) 

The load-depth relationship at different modulus ratios, characteristic lengths, surface elastic constants, and surface resid- 

ual stresses are shown in Fig. 2 . From Fig. (2), it can be known that the load increases linearly with the increase of the

indentation depth. The reason for this is that the bending of the film controls the indentation behavior of the stiff film-

compliant substrate structure at this time. However, the slopes are different from each other. As shown in Fig. 2 (a), the

higher E f / E s , the greater the slope. This phenomenon is easy to understand. If we assume that the modulus of the substrate

is constant, then the higher the modulus ratio, the larger the modulus of the film. In other words, the higher the modulus

ratio, the larger the bending stiffness of the film. The high bending stiffness of the film will lead to great surface settle-

ment when the indenter is pressed into the stiff film-compliant substrate structure, which means that the material of the 

substrate involving in the deformation also increases. Therefore, under the same indentation depth, the higher the modulus 

ratio, the greater the slope of the load-depth relationship. Fig. 2 (b) shows the results at different material characteristic 

lengths. It can be known that the slope of the load-depth relationship steeps when g/ t f increases, which is similar to the

case where the modulus ratio increases. The reason for this is that the nominal bending stiffness increases with the increase

of g/ t f . On the basis of considering the strain gradient, the effects of the surface elastic constant and the surface residual

stress on the load-depth relationship are shown in Fig. 2 (c) and (d), respectively. It can be seen that the influence of the

surface residual stress is significant, but that of the surface elastic constant can be neglected. For example, when w 0 / t f is 0.5,

Q/ (E s t 
2 
f 
) changes from 17.96 to 18.30 when ( λs + 2 μs )/( E s t f ) is from −100 to 100; however, when τ 0 /( E s t f ) increases from

0 to 20, Q/ (E s t 
2 
f 
) changes from 17.96 to 47.61. Based on the above analysis, we can conclude that when the thickness of the

film changes from the macro scale to the nano scale, the indentation behavior will change due to the effects of the strain

gradient and the surface energy. More importantly, we find that the dominant factors causing the indentation size effect of 

the stiff film-compliant substrate structure are the characteristic length and the surface residual stress, and the essence of 

their effects is to increase the nominal bending stiffness of the film. 

3.2. The effects of the strain gradient and the surface energy on the surface morphology 

Based on Eq. (32) , we can know that w ( r )/ t f is a function of r/ t f , E f / E s , v f , v s , α, λs /( E s t f ), μ
s /( E s t f ), τ 0 /( E s t f ) and g/ t f : 

w (r) 

t f 
= f ( 

r 

t f 
, 

E f 
E s 

, v f , v s , α, 
λs 

E s t f 
, 

μs 

E s t f 
, 

τ0 

E s t f 
, 

g 

t f 
) (43) 

Fig. 3 shows the surface morphology of the structure at different modulus ratios, characteristic lengths, surface elastic 

constants, and surface residual stresses. From Fig. 3 (a), it can be seen that the higher the modulus ratio, the smoother the

surface. This is because when the modulus of the substrate is assumed to be a constant, the larger the modulus ratio, the

greater the bending stiffness of the film. Therefore, under the same indentation depth, the surface settlement range in the 

case where E f / E s is large is greater than that in the case where E f / E s is small. When the film thickness changes from the

macro scale to the micro/nano scale, the strain gradient and the surface energy begin to affect the shape of the surface

morphology. Fig. 3 (b) shows that with the increase of g/ t , the surface becomes smooth, which is similar to the case where
f 
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Fig. 2. The load-depth relationship. (a) The effects of strain gradient and surface energy are not considered; (b) only the strain gradient is considered; (c) 

the effects of strain gradient and surface elastic constant are considered; (d) the effects of strain gradient and surface residual stress are considered. 

 

 

 

 

 

 

 

 

 

 

E f / E s increases. On the basis of the strain gradient, the influences of the surface elastic constant and the residual stress on

the shape of the surface morphology are further investigated, which are shown in Fig. 3 (c) and (d), respectively. As we can

see, the effect of surface residual stress on the shape of the surface morphology is significant, but that of the surface elastic

constant is small. 

3.3. The effects of the strain gradient and the surface energy on the bending moment in the film 

The distribution of bending moment in the film is related to its fracture behavior. Therefore, studying the effects of the

strain gradient and the surface energy on the distribution of the bending moment is significant. From Eq. (39) , it can be

known that M r / (E s t 
2 
f 
) is a function of r/ t f , E f / E s , v f , v s , α, λs /( E s t f ), μ

s /( E s t f ), τ 0 /( E s t f ) and g/ t f : 

M r 

E s t 2 f 

= f ( 
r 

t f 
, 

E f 
E s 

, v f , v s , α, 
λs 

E s t f 
, 

μs 

E s t f 
, 

τ0 

E s t f 
, 

g 

t f 
) (44) 

From Fig. 4 (a), it can be seen that the distribution patterns of the radial bending moment are different from each other

under different modulus ratios. The maximum radial bending moment in the positive direction, the abscissa of the point 

where the radial bending moment reaches zero and the maximum, and the maximum bending moment in the negative 

direction all increase with the increase of the modulus ratio. When the thickness of the film changes from the macro scale

to the micro/nano scale, the strain gradient and surface energy begin to influence the distribution pattern of the radial 

bending moment. However, their influences on the distribution pattern of the radial bending moment are similar to, but 

not identical to, that of the modulus ratio. As shown in Fig. 4 (b), when the strain gradient is considered, the maximum

bending moment in the positive direction first decreases and then increases with the increase of g/ t f . For example, when

g/ t changes from 0 to 10, the dimensionless maximum bending moment changes from 6.88 to 3.12; and when g/ t changes
f f 
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Fig. 3. The surface topography. (a) The effects of strain gradient and surface energy are not considered; (b) only the strain gradient is considered; (c) the 

effects of strain gradient and surface elastic constant are considered; (d) the effects of strain gradient and surface residual stress are considered. 

 

 

 

 

 

 

 

 

 

 

 

from 10 to 20, the dimensionless maximum bending moment changes from 3.12 to 3.72. In addition, when g/ t f increases, the

maximum bending moment in the negative direction increases, and the abscissa of the point where the bending moment 

reaches the maximum in the negative direction and zero becomes large. On the basis of considering the strain gradient, the

influences of the surface elastic constant and the surface residual stress on the distribution pattern of the radial bending 

moment are studied, which are shown in Fig. 4 (c) and (d), respectively. From the figures, we can know that the effect of the

surface residual stress on the radial bending moment is significant, and that of the surface elastic constant can be neglected.

Moreover, the effect of the residual stress on the distribution pattern of the radial bending moment is different from that of

the strain gradient. For example, when τ 0 /( E s t f ) changes from 0 to 20, the maximum bending moments in the positive and

negative direction increase, but the abscissa of the point where the bending moment reaches the maximum and zero does 

not change significantly. 

Different from the distribution pattern of the radial bending moment, the circumferential bending moment decreases 

with the increase of the radial distance monotonically. As shown in Fig. 5 (a), when the modulus ratio increases, the max-

imum circumferential bending moment becomes large, and the abscissa of the point where the circumferential bending 

moment decreases to zero increases. In addition, the distribution patterns of the circumferential bending moment at dif- 

ferent modulus ratios are similar to each other. However, when the strain gradient and the surface energy are considered, 

there is no similarity in the distribution patterns of the circumferential bending moment. As shown in Fig. 5 (b), when g/ t f 
increases from 0 to 20, the maximum circumferential bending moment first decreases and then increases, and the abscissa 

of the point where the circumferential bending moment decreases to zero increases. In addition, based on Fig. 5 (c) and

(d), we find that the surface elastic constant has little influence on the distribution patterns of the circumferential bending 

moment, but the influence of the surface residual stress is significant. For example, from Fig. 5 (d), it can be seen that the

maximum circumferential bending moment increases sharply when τ 0 /( E s t f ) increases from 0 to 20. 

Based on the above analysis, it can be known that when the thickness of the film changes from the macro scale to the

micro/nano scale, the indentation behavior of the structure will change significantly due to the effects of the strain gradient 

and the surface residual stress. The essence of their effects on the indentation response is to increase the nominal bending
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Fig. 4. The radial bending moment. (a) The effects of strain gradient and surface energy are not considered; (b) only the strain gradient is considered; (c) 

the effects of strain gradient and surface elastic constant are considered; (d) the effects of strain gradient and surface residual stress are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

stiffness of the film, which is similar to, but not identical to, that of the modulus ratio. In addition, what needs to be added

is that the effect of the surface elastic constant can be neglected. 

4. Analysis of factors influencing the size effect of indentation behavior of the stiff film-compliant substrate structure 

In Section 3 , the influence of strain gradient and surface energy on the indentation response is focused on, and we found

that there is a strong size effect in the indentation response of stiff film-compliant substrate structures. At this time, we 

will ask the question that whether the indentation size effect is influenced by other factors, such as the modulus ratio, the

contact area, and Poisson’s ratio. In this section, their influences on the indentation size effect are investigated. 

For the stiff film-compliant substrate structure used in MEMS and scientific research, it can be known that the range of 

E f / E s is from 10 3 to 10 5 , and the Poisson’s ratio is usually from 0.2 to 0.49. So we focus on this range. In addition, previous

research has stated that there will be an obvious sink-down phenomenon when the indenter is pressed into the stiff film- 

compliant substrate structure [56] , so α is usually smaller than 0.5. Here, we take α as 0.1–0.25. Fig. 6 shows the influences

of modulus ratio, Poisson’s ratio and contact radius on the indentation size effect. As we can see, due to the influences of

the strain gradient and the surface energy, the nominal bending stiffness increases with the decrease of the film thickness. 

However, under different modulus ratios, the indentation size effect is different from each other. From Fig. 6 (a), it can be

known that at the same film thickness, the higher the modulus ratio, the smaller the nominal bending stiffness. In other

words, the high modulus ratio will inhibit the indentation size effect caused by the strain gradient and the surface energy.

In addition, from Fig. 6 (b) and (c), we can know that the indentation size effect is not sensitive to the Poisson’s ratio and

the contact radius. 

From Section 3 , we know that the main factors leading to the indentation size effect are the characteristic length, g,

and the surface residual stress, τ . The influence of the surface elastic constants can be neglected. In addition, according to
0 
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Fig. 5. The circumferential bending moment. (a) The effects of strain gradient and surface energy are not considered; (b) only the strain gradient is 

considered; (c) the effects of strain gradient and surface elastic constant are considered; (d) the effects of strain gradient and surface residual stress are 

considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

the analysis of this Section, we find that the indentation size effect caused by the strain gradient and the surface energy

is sensitive to the modulus ratio of the film to the substrate but has little relation with the Poisson’s ratio and the contact

radius. Combining the above findings and Eq. (32) , it is exciting to find that two dimensionless numbers, g /( E s 
−1/3 E f 

1/3 t f )

and τ 0 /( E s 
2/3 E f 

1/3 t f ), control the indentation size effect of the stiff film-compliant substrate structure. Then, we draw the

control surface of the indentation size effect in the space composed of g /( E s 
−1/3 E f 

1/3 t f ), τ 0 /( E s 
2/3 E f 

1/3 t f ) and D nor / D f , which

is shown in Fig. 7 . From Fig. 7 , we can know that when the film thickness decreases from the macro scale to the micro

scale, the indentation size effect is mainly controlled by g /( E s 
−1/3 E f 

1/3 t f ). For example, when the film thickness is 1 μm

and the modulus ratio is 10 3 , according to the common range of the characteristic length and the surface residual stress,

τ 0 /( E s 
2/3 E f 

1/3 t f ) is 0.01–0.1 and g /( E s 
−1/3 E f 

1/3 t f ) is 0.1–1. At this time, the influence of the surface residual stress is small.

Therefore, when the film thickness is at the micro scale, the indentation size effect is mainly caused by the strain gradient.

When the film thickness continues to decrease, the effect of the surface residual stress becomes more and more significant. 

For example, when the film thickness is 50 nm and the modulus ratio is 10 3 , τ 0 /( E s 
2/3 E f 

1/3 t f ) is 0.2–2 and g /( E s 
−1/3 E f 

1/3 t f )

is 2–20. At this time, as shown in Fig. 7 , the influence of the surface residual stress cannot be neglected. Namely, when the

film thickness is at the nano scale, the indentation size effect depends on both the strain gradient and the surface residual

stress. 

5. Experiment 

In this section, the experiment is conducted to validate the effectiveness of the MSI model. Cu/PDMS layered structure as 

a typical stiff film-compliant substrate structure is used as the experimental sample. In this section, firstly, the preparation 

and characterization of the samples are introduced in detail; then, the normalized bending stiffness of the Cu nanofilm 

measured by the indentation test is compared with that predicted by the MSI model. 
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Fig. 6. The relationship between the nominal bending stiffness and film thickness. (a) The results at different modulus ratios; (b) the results at different 

Poisson’s ratios; (c) the results at different contact radii. 

Fig. 7. The relationship between the normalized bending stiffness and the dimensionless numbers proposed by us. 
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Fig. 8. The stress-strain relationship of PDMS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Sample preparation and characterization 

Preparation and characterization of PDMS: Sylgard 184, which is produced by Dow Corning (USA), is used to prepare 

PDMS. Mixing the main agent and the curing agent with a ratio of 10:1, and curing the mixture at 85 °C for 4 h, then the

PDMS with a thickness of 3 mm is obtained. The modulus of PDMS is measured as 2.319 ±0.036 MPa by the ElectroForce

3100 test instrument produced by the American BOSE company, and the stress-strain relationship of PDMS is shown in 

Fig. 8 . 

Preparation and characterization of Cu/PDMS: High Vacuum Magnetron Sputtering Coating Machine (PVD75120303) pro- 

duced by Kurt J. Lesker is used to coat the PDMS wafer sized 1 cm × 1 cm with a Cu nanofilm (purity of the Cu: 99.999%).

There are three Cu/PDMS samples with different thicknesses of Cu nanofilm, and they are shown in Fig. 9 . Then, the inden-

tation test is conducted by an in-situ nanomechanical test system (TI-900 TriboIndenter). A Berkovich indenter with a tip 

radius of 50 nm is used, and the tests are conducted at room temperature (-18 °C). The maximum indentation depth is less

than the thickness of the Cu nanofilm, and every sample is tested by 5–8 times. The indentation load-depth relationship is

shown in Fig. 10 . Based on the method proposed by us [18] , the normalized bending stiffness of the Cu nanofilm can be

calculated, which will be compared with that predicted by the MSI model. 

Thickness characterization of Cu nanofilm: When the Cu is coated on the top of the PDMS, a half-covered silicon wafer

is also placed in the chamber of the High Vacuum Magnetron Sputtering Coating Machine. Then, the thickness of the Cu

nanofilm coated on the half-covered silicon wafer is measured by atomic force microscopy (AFM, Brucker Corporation, Mul- 

timode 8 SPM), which is shown in Fig. 9 . The measured thickness of the Cu nanofilm is taken as the thickness of the Cu

nanofilm on the PDMS. The thicknesses of the Cu nanofilm of the three samples are measured as 130, 71.8, and 39.5 nm,

respectively. 

5.2. Results and discussion 

The load-displacement relationship is the first-hand and the most important data of the indentation experiment, and 

it is always used to obtain the mechanical properties of the materials. As shown in Fig. 10 , the indentation load linearly

increases with the increase of the indentation depth. The reason for this is as follows. For the indentation response of the

stiff film-compliant substrate structure, the indentation deformation can be divided into two parts: one is the settlement of 

the compliant substrate, and the other is the deflection of the film. Although the indentation depth is comparable to the

film thickness, the film deflection is still small. Therefore, the linear relationship occurs when the indentation depth is less 

than the film thickness, which has been verified by our previous work [18] . In addition, the data of the loading is in good

agreement with that of the unloading, which shows that the system is elastically deformed. That is, there is no slip at the

interface between the Cu nanofilm and the PDMS. By fitting the data, we can get the slope of the load-depth relationship.

Then, based on our previous work [18] , the normalized bending stiffness can be calculated. Here, the Poisson’s ratios of Cu

and PDMS are 0.35 and 0.49, respectively. According to previous research, the modulus of Cu is about 118–126 GPa [57–59] ,

so we take the modulus of Cu as 123 GPa in the calculation. 

The load-depth relationship predicted by the MSI model is also plotted in Fig. 10 . The predicted results of the MSI

model are different from the fitting results. However, as shown in Fig. 11 , the MSI model is more consistent with the

experimental results compared with the SG model. From the experiment results in this figure, it can be seen that the

normalized bending stiffness of the Cu film exhibits a strong size effect. Namely, with the decrease in the thickness of
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Fig. 9. (a) the photograph of the Cu/PDMS sample 1; (b) AFM image of the central region of the Cu/PDMS sample 1; (c) the optical image of Cu/Si sample 

1; (d) AFM image of the central region of the Cu/Si sample 1; (e) the measurement result of the thickness of Cu nanofilm of sample 1; (f) the photograph 

of the Cu/PDMS sample 2; (g) AFM image of the central region of the Cu/PDMS sample 2; (h) the optical image of Cu/Si sample 2; (i) AFM image of the 

central region of the Cu/Si sample 2; (j) the measurement result of the thickness of Cu nanofilm of sample 2; (k) the photograph of the Cu/PDMS sample 

3; (l) AFM image of the central region of the Cu/PDMS sample 3; (m) the optical image of Cu/Si sample 3; (n) AFM image of the central region of the Cu/Si 

sample 3; (o) the measurement result of the thickness of Cu nanofilm of sample 3. 

 

 

 

 

 

 

the Cu nanofilm, the normalized bending stiffness of the film increases, significantly. To verify the effectiveness of the MSI 

model, the predicted normalized bending stiffness of Cu film mounted on PDMS is compared with the experimental result. 

The method of comparing the normalized bending stiffness to explain the effects of the strain gradient and the surface 

energy was widely adopted by previous researchers [25] . According to previous work, the characteristic length of Cu is 0.5–

5 μm [60] . In this paper, we take it as 2.5 μm. Based on the molecular simulation, the previous research shows that the

surface elastic modulus of Cu is -10–5 N/m, and the surface residual stress of Cu is 0–1 N/m [55] . Here, we take the surface

elastic modulus and the surface residual stress of Cu as -1 and 0.5 N/m, respectively. The predicted normalized bending

stiffness of Cu film coated on the PDMS by the SG model and MSI model is shown in Fig. 11 . Based on the indentation

experiment of Cu/PDMS, we find that the SG model is suitable only when the film thickness is greater than 100 nm. When

the film thickness is less than 100 nm, the SG model will underestimate the normalized bending stiffness of the film. For
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Fig. 10. The relationship between the indentation load and indentation depth. (a) The results of sample 1, the thickness of Cu nanofilm is 130 nm; (b) the 

results of sample 2, the thickness of Cu nanofilm is 71.8 nm; (c) the results of sample 3, the thickness of Cu nanofilm is 39.5 nm. 

Fig. 11. The relationship between the normalized bending stiffness and the thickness of the Cu nanofilm. The symbol is for the experiment, the solid line 

is for the MSI model, and the dashed line is for the SG model. 

 

 

 

 

 

 

example, when the thickness of the Cu film is 71.8 and 39.5 nm, the difference between the SG model and the experiment

is 18.4% and 77.6%. This is because the effect of the surface energy is not considered in the SG model. Compared with the

SG model [32] , the predicted normalized bending stiffness of Cu film coated on the PDMS by the MSI model is in better

agreement with the experiment result when the film thickness is less than 100 nm. For example, when the thickness of the

Cu film is 71.8 and 39.5 nm, the difference between the MSI model and the experiment is 14.9% and 9.2%, which verifies the

effectiveness of the MSI model. It should be noted that this paper only preliminarily verified the effectiveness of the model.
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In future work, more experimental data are needed to verify the effectiveness of the model and evaluate the applicable

scope of the model. 

6. Conclusion remarks 

In this work, the multi-scale indentation response of stiff film-compliant substrate structures is studied based on the 

theory and the experiment. Firstly, based on the strain gradient theory and the surface elastic model, the MSI model for

the stiff film-compliant substrate structure is derived with the Hankel transform. Then, with this model, the indentation 

size effect is investigated in detail. The results show that with the decrease of the film thickness, the influences of the strain

gradient and the surface energy on the indentation response of the stiff film-compliant substrate structure become more and 

more significant. When the film thickness decreases from the macro scale to the micro scale, the strain gradient first begins

to affect the indentation response. At this scale, the indentation size effect is mainly caused by the strain gradient. As the

film thickness is further reduced from the micro scale to the nano scale, the influence of the surface energy becomes more

and more obvious. It should be emphasized that the surface residual stress is the main factor affecting the indentation

response, and the influence of the surface elastic modulus can be neglected. At this scale, the indentation size effect is

caused by the strain gradient and the surface residual stress. In addition, the factors influencing the indentation size effect 

are investigated. We find that the indentation size effect caused by the strain gradient and the surface energy is sensitive

to E f / E s , but has little relationship with the contact radius and the Poisson’s ratio. The high modulus ratio will inhibit the

indentation size effect. Based on the above analysis, two dimensionless numbers g /( E s 
−1/3 E f 

1/3 t f ) and τ 0 /( E s 
2/3 E f 

1/3 t f ) are

proposed to evaluate the indentation size effect. Finally, the indentation experiment of the Cu/PDMS layered structure is 

carried out to validate the effectiveness of the MSI model. The results show that when the thickness of the Cu decreases

from 130 to 39.5 nm, the nominal bending stiffness increases from 2.14 to 11.96. The bending stiffness of the film predicted

by the MSI model is consistent with the experimental result, which verifies the effectiveness of the MSI model. Our research

sheds light on the understanding of the indentation size effect of the stiff film-compliant substrate structure and provides 

theoretical guidance for the design of related devices. 
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Appendix A. The derivation of Eq. (5) 

Dividing Eq. (4) into two parts, we have 

U 

tra 
1 = 

1 

2 

∫ ∫ ∫ 
σxx ε xx + σyy ε yy + 2 σxy ε xy d xd yd z (A.1) 

U 

gra 
1 

= 

1 

2 

∫ ∫ ∫ 
τxxx ε xx,x + 2 τxyx ε xy,x + τyyx ε yy,x + τxxy ε xx,y + 2 τxyy ε xy,y + τyyy ε yy,y d xd yd z (A.2) 

Using Eqs. (1) and (3) in Eq. (A.1), we can get 

U 

tra 
1 = 

1 

2 

D 

∫ ∫ 
A 

( 
∂ 2 w 

∂x 2 
) 
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+ ( 
∂ 2 w 

∂y 2 
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+ 2 ( 
∂ 2 w 
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+ 2 v f ( 
∂ 2 w 

∂x 2 
∂ 2 w 

∂y 2 
− ( 

∂ 2 w 

∂ x∂ y 
) 

2 

) d xd y (A.3) 

There are many terms in Eq. (A.3). Here, taking the first term as an example, the specific solution process of variation is

given as follows: 

1 
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Dδ( 
∫ ∫ 

A ( 
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) 
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∫ ∫ 
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= D 

∫ ∫ 
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∂x 4 
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( ∂δw 
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sin α) cos αds 
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= D 

∫ ∫ 
A 

∂ 4 w 

∂x 4 
δwd xd y + D 

∫ 
S 

∂ 2 w 

∂x 2 
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∂x 3 
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(A.4) 
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The same method is used for the other terms, and one has 
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Using Eqs. (1) and (3) in Eq. (A.2), we can get 
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Performing variational calculation on Eq. (A.6), one has 
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Then δU 1 can be expressed as 
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Appendix B. The derivation of Eq. (11) 

The variation of the elastic strain energy of the film surface is 
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Using the same method in Appendix A, one can rewrite Eq. (B.1) in the form: 
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Then δU 2 reads 
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