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A B S T R A C T   

A novel defect-based fatigue damage model coupled with an optimized neural network is proposed for high-cycle 
fatigue prediction. Based on parametric studies and continuum damage mechanics, the defect-based fatigue 
damage evolution equation is derived, and the numerical simulation and fatigue damage computation are then 
implemented and validated. After that, more computations are performed to acquire a batch of reliable fatigue 
data, and the database is obtained. Finally, the architecture of the optimized neural network is established, and 
the predicted results are verified by experimental fatigue data. The proposed methodology works well for the 
fatigue analysis of casting alloys with surface defect.   

1. Introduction 

As two commonly used casting alloys, ZL114A alloy has excellent 
casting properties, high specific strength, and good fatigue resistance, 
while ZM6 alloy has a light specific gravity, high specific stiffness, and 
excellent creep resistance. They are widely employed in military, aero-
space, transportation and other fields. However, during assembly, a 
number of defects (including scratches and impact pits) tend to develop 
on the surface of the casting alloys, which obviously affect fatigue 
properties and induce a greater risk to the safety and reliability of the 
structure in engineering applications. Therefore, it is necessary to 
investigate the high-cycle fatigue behaviour and an effective approach 
for life prediction of casting alloys. 

A comprehensive literature review shows that the commonly-used 
fatigue analysis methods include the critical plane, energy density, 
damage mechanics, field measurement, probabilistic statistics, molecu-
lar dynamics, phase field, peridynamics, and machine learning. These 
methods have their advantages and are widely employed in engineering 
applications. The notch critical plane approach is adopted to predict the 
fatigue life of metallic notched test pieces [1], and the crack initiation 
and propagation prediction of fatigue damage region [2]. The strain 
energy density-based fatigue criterion is developed to predict the 

multiaxial fatigue life prediction of metals [3] and study the effects of 
mean stress on uniaxial fatigue behavior [4]. The damage mechanics- 
based method is adopted to study the influence of overload on notch 
fatigue behavior [5] and simulate the fatigue dispersion in duplex 
microstructure titanium alloys [6]. The low-cycle fatigue evaluation of 
welded joints is carried out using the DIC-based strain approach [7–8]. 
The probabilistic approach is used to estimate the fatigue life of notched 
components under size effects [9] and the fatigue life of adhesively 
bonded joints [10]. The molecular dynamics simulation is conducted to 
analyse the micro-structural aspects of fatigue crack propagation [11] 
and the fatigue behaviour of pre-cracked aluminium chip for NEMS 
application [12]. The phase-field method is employed to model the crack 
nucleation and propagation of rubber [13], and the fracture and fatigue 
in shape memory alloys [14]. Liu et al. [15] built a fatigue damage- 
cumulative model in peridynamics to study the fatigue crack growth 
rates. Nguyen et al. [16] developed an energy-based peridynamic model 
to simulate fatigue cracking. The machine learning based approach is 
investigated in-depth to research the fatigue behaviour of additively 
manufactured metals [17] and predict the rate-dependent multiaxial 
fatigue behaviour of polyamide-6 [18]. 

It is reported that most studies are focused on the effects of casting 
defects, porosity, and microstructure on the fatigue behaviour of casting 
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alloys. In terms of casting defects, Couper et al. [19] studied the casting 
defects and the fatigue behaviour of an aluminium casting alloy, indi-
cating that the fatigue life could be predicted based on the size of the 
casting defects. The casting defects and fatigue strength were compared 
between standard specimens and production components [20]. Serrano- 
Munoz et al. [21] analysed the effects of surface and internal casting 
defects on fatigue properties. With regard to porosity, the influence of 
porosity on the fatigue limit of cast alloys was studied by Mayer et al. 
[22], and the scatter in fatigue life was mainly due to the porosity in cast 
aluminium–silicon alloys [23]. The experimental study of porosity by 
Buffiere et al. [24] found that the fatigue life and the lifetime scatter 
depended on the pore content, especially at high-stress level. Concern-
ing microstructure, Siegfanz et al. [25] investigated the influence of 
microstructure on the fatigue damage behaviour of cast alloys, revealing 
that the fatigue crack propagation behaviour was closely related to the 
morphology of the solid solution/eutectic microstructure. The rela-
tionship was established between microstructure characteristics and the 
fatigue parameters of casting alloy [26]. 

In recent years, machine learning methods, as a more efficient and 
accurate method, have been widely used in engineering, especially in 
predicting mechanical properties. Machine learning-based models 
(ANN, SVR, and RF) are implemented to study the effect of defect/in-
clusion on fatigue behavior in steels [27], predict finite fatigue life in 
metal materials containing defects [28], correlate defect features and 
fatigue life of 17–4 PH stainless steel [29] and analyze the fatigue 
scattering and assessment of 300 M− AerMet100 steel [30]. In-
vestigations of fatigue uncertainty are also conducted, including the 
fatigue uncertainty estimation of Ni-based superalloy by SVR [31], fa-
tigue uncertainty quantification of composite materials by ANN [32], 
probabilistic fatigue evaluation of joints in orthotropic steel decks by the 
dynamic Bayesian network [33], and probabilistic creep-fatigue damage 
assessment by machine learning models [34]. Furthermore, the material 
fatigue problems in advanced additive manufacturing are also widely 
analyzed using machine learning methods, such as the very-high-cycle 
fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser 
melting [35], fatigue assessment of post-processed additively manufac-
tured AlSi10Mg [36], fatigue analysis of metal additive manufacturing 
considering effects of build orientation and post-processing [37], and 
the fatigue life prediction for laser-directed energy deposition titanium 
alloys [38]. 

In this work, a novel defect-based fatigue damage model coupled 
with an optimized neural network is proposed for high-cycle fatigue 
prediction of casting alloys with surface defect. The entire paper is 
organised as below. In Section 2, the experimental studies, including the 
preparation of ZL114A and ZM6 specimens and the experimental fatigue 
results, are briefly described. In Section 3, the formulation of the defect- 
based fatigue damage model and the calibration of material parameters 
is carried out. Section 4 presents the numerical implementation, fatigue 
damage computation, and validation of the proposed theoretical model. 
Finally, in Section 5, the architecture of the optimized neural network 
model is established, and the model training and predicted results are 
obtained. 

2. Experiments 

2.1. Preparation of ZL114A and ZM6 specimens 

The standard smooth specimens in Fig. 1 are directly manufactured 
from ZL114A and ZM6 blanks. For scratch defects, a tooling with a 
circular surface is first designed, and a standard specimen is placed on 
the tooling. The large circular surface on one side of the specimen must 
be kept in line with the surface of the tooling. Second, the specimen is 
fixed on the numerical control machine using a clamping device, and a 
tool with a cutter radius of 0.2 mm is employed. The tool is controlled to 
move parallel to the thickness direction of the specimen, and the tool 
position is adjusted to achieve different depths of scratches. As listed in 

Table 1, the specimens with three kinds of the scratch defects in Fig. 2(a) 
are manufactured. For impact pit defects, a punch with a radius of 3 mm 
is used to obtain the desired impact depth by controlling the downward 
displacement of the punch. After punching one side, the specimen is 
switched up and down, and the crater on the other side is fabricated 
using the same procedure. Finally, the geometry of the crater is 
measured to meet the machining accuracy requirements. Table 1 lists 
three kinds of specimens with impact depth, and Fig. 2(b) shows the 
experimental specimen with the impact pit. 

2.2. Fatigue experiments of ZL114A and ZM6 specimens 

Based on the test standard of HB 5287–96 [39], the fatigue experi-
ments of ZL114A and ZM6 specimens are conducted on the QBG-100CC 
resonant high-frequency fatigue machine. The test loading frequency is 
between 110 Hz and 130 Hz, and the specific loading frequency is 
related to the specimen size. The load control is used, the number of 
cyclic loads is recorded, and the criterion for fatigue failure of the 
specimen is a 5 Hz reduction in test frequency. This criterion is adopted 
because the resonant frequency of the equipment decreases if a fatigue 
crack appears in the specimen. A fatigue crack initiates when the fre-
quency is reduced by about 5 Hz. 

In order to better understand the fatigue behavior of ZL114A and 
ZM6 materials, fatigue experiments are conducted under loading con-
ditions, and further fracture analyses are performed on the specimens. 
Smooth specimens are tested at different stress ratios (R = 0.02, 0.5) 
with the maximum stresses ranging from 120 MPa to 250 MPa in one 
loading cycle. In addition, the fatigue experiments of specimens with 
scratch and impact pit are carried out with the stress ratio of R = 0.02, 
and the maximum stress ranges in a loading cycle from 90 MPa to 230 
MPa, and 110 MPa to 200 MPa, respectively. 

Fig. 3 is plotted for the fatigue data of ZL114A and ZM6 specimens. It 
is observed that the dispersion of the fatigue data of ZM6 alloy is larger 
than that of ZL114A alloy, which may be related to the defects inside the 
test specimens. To gain more insight into the fatigue dispersion of ZM6 
alloy, the scanning electron microscope (SEM) analysis is performed on 
the fracture surfaces of several selected specimens, as shown in Figs. 4-6. 
Fig. 4 shows the fracture surface of the ZM6 smooth specimen observed 

Fig. 1. (a) Geometrical dimension of smooth specimen (all dimensions in mm) 
and (b) fatigue test specimen. 

Table 1 
Defect sizes of ZL114A and ZM6 specimens.  

Type of defect Radius/mm Depth/mm Kt 

Scratch 
0.2  0.15  2.48  

0.25  2.97  
0.35  3.36 

Impact pit 3  0.15  1.34  
0.25  1.43  
0.35  1.50  
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at R = 0.02, and we can clearly observe the black inclusions in Fig. 4 (a) 
and the holes in Fig. 4 (b), which are formed during the manufacturing 
process and result in poor fatigue performance. Fig. 5 is plotted for the 
fracture surface of the ZM6 scratched specimen under the loading con-
dition of R = 0.02 and σmax = 95 MPa. It is noted that although the 
fatigue cracks in the ZM6 scratched specimens initiate from the holes, 
there is a significant difference in their lifetimes at the same stress level. 
The hole in Fig. 5(b) is closer to the boundary of the specimen than the 
hole in Fig. 5(a), so the fatigue crack is more likely to occur and has a 
shorter life. The fracture surface of the ZM6 pitted specimen with R =
0.02 and σmax = 120 MPa is presented in Fig. 6, from which we can 
clearly observe that multiple fatigue cracks initiate at large inclusions. 
The crack initiation region, stable crack extension region, and rapid 
fracture region can be seen clearly in the fracture morphology of the 
three types of post-mortem specimens. It is found that the crack initia-
tion sites of all specimens are located on the surface or near the surface 
defects of larger volume. For the scratched specimens, the crack initia-
tion defect is located at the cross-section where the scratch is located. In 
contrast, for the pitted specimens, the crack initiation defect is located at 
the cross-section where the impact pit is located. Thus, surface and in-
ternal defects affect the onset and development of fatigue cracking in the 
specimens. According to the above analysis, it is concluded that the 
casting process could induce inclusions and holes within the ZM6 alloy. 
At the same time, the size, shape, and location of defects have an 
important impact on fatigue behavior, leading to a significant dispersion 
of the experimental fatigue data. 

3. Formulation of the defect-based fatigue damage model 

3.1. Damage coupled constitutive model 

In the continuum damage mechanics (CDM) [41], damage refers to 
the generation and development of micropores and microcracks. These 
microscopic defects are discontinuous, but a continuity assumption can 
be made in CDM, i.e., the effect of microscopic defects on material 
properties can be characterized by one or several continuous internal 

field variables/damage variables. For the representative volume 
element (RVE) of an isotropic material, the damage degree in a given 
direction is defined as the ratio of the defect cross-sectional area to the 
total cross-sectional area, 

D =
SD

S
(1) 

where D represents the damage degree, S is the total cross-sectional 
area, and SD is the defective cross-sectional area. When D = 0, the ma-
terial is undamaged; when D = 1, the material is completely damaged 
and loses its load-bearing capacity, which means fatigue cracks are 
generated. The effective bearing area SR of the RVE is then obtained, 

SR = (1 − D)S (2) 

The effective stress σ̃ is defined as, 

σ̃ =
σ

1 − D
(3) 

where σ is the nominal stress. It is noted that the effective stress 
characterizes the effect of damage on the internal stress of the material. 

Since the stress concentration caused by defects could lead to elasto- 
plastic deformation near the scratch and pit, a nonlinear elasto-plastic 
constitutive model is employed for analysis. In the case of small 
strains, the total metal strain can be divided into elastic and plastic 
strains, 

εij = εe
ij + εp

ij (4) 

where εe
ij is the elastic strain and εp

ij is the plastic strain. In this case, 
the elastic strain with damage is obtained based on the strain equiva-
lence assumption [42]: 

εe
ij =

1 + υ
E

( σij

1 − D

)
−

υ
E

( σkk

1 − D

)
δij (5) 

where E is the modulus of elasticity, υ is the Poisson’s ratio, and σij is 

the stress component.δij =

{
0, i ∕= j
1, i = j , (i = 1, 2,3; j = 1, 2, 3). 

Fig. 2. (a) The specimen with scratch and (b) the specimen with impact pit.  
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Fig. 3. The fatigue results for the ZL114A [40] and ZM6 specimens: (a) R = 0.02 and R = 0.5 for the smooth specimens, (b) R = 0.02 for the specimens with scratch, 
and (c) R = 0.02 for the specimens with impact pit. 
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In this case, the yield function coupled with damage and the plastic 
flow criterion is expressed below [43], 

F =
( σij

1 − D
− αij

)

eq
− σy (6)  

ε̇p
ij = λ̇

∂F
∂σij

=
3
2

λ̇
1 − D

( σkl
1− D − αkl

)

dev( σkl
1− D − αkl

)

eq

(7)  

ṗ =

̅̅̅̅̅̅̅̅̅̅̅
2
3

ε̇p
ij ε̇

p
ij

√

=
λ̇

1 − D
(8) 

where eq represents the von Mises equivalent stress, dev represents 
the bias part of the stress, αij is the back stress, σy represents the yield 
stress, λ̇ is the plastic multiplier, and ṗ is the cumulative plastic strain 
rate. The hardening equation coupled with damage is 

Fig. 4. The fracture surface of the ZM6 smooth specimen: (a) R = 0.02, σmax = 120 MPa, Nf = 8,300; (b) R = 0.02, σmax = 130 MPa, Nf = 37,900.  

Fig. 5. The fracture surface of the ZM6 scratched specimen: (a) R = 0.02, σmax = 95 MPa, Nf = 538,100; (b) R = 0.02, σmax = 95 MPa, Nf = 139,200.  

Fig. 6. The fracture surface of the ZM6 pitted specimen with R = 0.02, σmax = 120 MPa, Nf = 5,600.  
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αij =
∑K

k=1
α(k)

ij (9)  

α̇(k)
ij = (1 − D)

(
2
3
Ckε̇p

ij − γkα(k)
ij ṗ

)

(10) 

where K is the number of back stress components, and Ck and γk are 
the material parameters calibrated from the test data. 

3.2. Fatigue damage model development 

3.2.1. CDM-based fatigue damage model (Model-1) 
For the case of uniaxial high cycle fatigue, the fatigue damage evo-

lution model [44] is shown below 

Ḋ =
dD
dNf

= a
(

σa

1 − nσm

)m

(1 − D)
− β (11) 

where σa represents the stress amplitude, and σm. a, β, m, and n are 
the materials parameters to be calibrated. 

For the case of multiaxial high-cycle fatigue, the fatigue damage 
evolution model is 

Ḋ =
dD
dNf

= a
(

σa
*

1 − nσm
*

)m

(1 − D)
− β (12) 

where σ* represents the damage equivalent stress. 

σ*( σij
)
= σeq

[
2
3
(1 + ν) + 3(1 − 2ν)

(
σH

σeq

)2
]1

2

(13)  

σa
* =

1
2
σ*(σmax − σmin) (14)  

σm
* =

1
2

σ*(σmax + σmin) (15) 

where σH is the hydrostatic stress, σeq is the equivalent stress, and ν is 
the Poisson’s ratio. σmax represents the maximum stress, and σmin the 
minimum stress. By integrating the Eq. (11) from D = 0 to D = 1, we 
obtain 

Nf =
1

a(1 + β)

(
σa

1 − nσm

)− β

(16) 

where Nf is the number of loading cycles for crack initiation. 

3.2.2. Defect-based fatigue damage model (Model-2) 
(1) Definition of defect impact factor (DIF). 
It is generally known that pits and scratches are two typical surface 

defects of metal structures. The effect of defects on fatigue can be 
attributed to the stress concentration caused by the defects. The stress 
concentration coefficient increases with the increase of hole diameter 
and increases with the decrease of hole depth. Therefore, it is necessary 
to focus on the stress concentration caused by surface defect, i.e., the 
defect impact factor (DIF) in this study. The ratio of the peak stress to the 
nominal stress in the net section is defined as the DIF. Therefore, this 
subsection first investigates the relationship curve between the typical 
size of the defect and the DIF. 

In the case of plate specimens, the radius and depth of the defect 
along the width direction are very critical. In the geometric configura-
tion of scratches and pits, the geometry of the defect can be completely 
defined by obtaining the values of the depth h and the radius r. Para-
metric finite element (FE) analysis based on the COMSOL platform is 
thus performed to investigate the relationship between the DIF and 
defect dimensions. The depth h and radius r are dimensionless param-
eters, and the axial stress is set to 100 MPa. The FE mesh is automatically 
divided into quadrilateral meshes, and the mesh around the defect is 
automatically updated as the defect size parameters change, provided 

that convergence and calculation accuracy are satisfied. 
The parametric FE results are shown in Figs. 7 and 8 for the specimen 

with the defect size of h = 0.25 mm and r = 0.2 mm. It is seen that the 
maximum stress value of 297 MPa for the scratch and 143 MPa for the 
pit are approximately-two and three times the loading load, indicating 
that the defect causes stress concentration. The variations of DIF with the 
depth h and the radius r are shown in Fig. 9, and we can see that the 
deeper the depth and the larger the radius of the scratch and pit, the 
larger the DIF. Furthermore, we also investigate the variation of DIF with 
the ratio Rh/r of the depth h and the radius r. As plotted in Fig. 10, the 
variation pattern of the DIF with Rh/r is the same for different radii and 
depths, and the DIF grows faster when Rh/r is less than 0.3 and slower 
when it exceeds 0.3. Based on the above analysis, the relationship be-
tween the DIF and Rh/r is proposed as below 

DIF = a(Rh/r)
b
+ c (17) 

The parameters a = 1.541, b = 0.6712, andc = 1.128 are calibrated 
by the least square method. Fig. 11 is plotted for the fitted DIF - Rh/r 
curve. 

(2) The novel fatigue damage model. 
It is known that the surface defect at the edge of the specimen is an 

important factor affecting the fatigue life and crack initiation location. 
The larger the DIF caused by a scratch or a pit, the more likely a crack 
will initiate. Therefore, the DIF is introduced into the stress-related term 
of the damage evolution equation. The defect-based fatigue damage 
model is proposed as below 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ḋ =
dD
dNf

= a
[

DIFpσa

(1 − nDIFpσm)(1 − D)

]β

, for uniaxial fatigue

Ḋ =
dD
dNf

= a
[

DIFpσa
*

(1 − nDIFpσm
*)(1 − D)

]m

, for multiaxial fatigue

(18) 

where p is a material parameter related to material and defect type. 
The terms DIFpσa and DIFpσm reflect the effect of stress concentration 
caused by defects on fatigue damage. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nf =
1

a(1 + β)

(
DIFpσa

1 − nDIFpσm

)− β

, for uniaxial fatigue

Nf =
1

a(1 + β)

(
DIFpσa

*

1 − nDIFpσm
*

)− β

, for multiaxial fatigue

(19) 

It is worth noting that both surface defects and internal microstruc-
tural defects affect fatigue life. In this study, we focus on the effect of 
surface defects on fatigue life, and the DIF is completely defined in terms 
of the geometric parameters of the surface defects. The influence of in-
ternal microstructural defects on fatigue life is indirectly reflected by the 
material parameters of the fatigue damage model. The fatigue life of 
casting alloys with the surface defects can be predicted by the predictive 
model. Furthermore, the DIF should mainly affect the fatigue damage of 
the material around the surface defect. When the shape and size of the 
defect and the applied fatigue loads are given, the fatigue life of the 
specimen could be accurately computed by using the proposed fatigue 
damage model. On the one hand, the fatigue damage of the material far 
from the defect is small and has little effect on the fatigue life of the 
specimen. On the other hand, we are more concerned about the fatigue 
damage of the local material around the defect. Therefore, the proposed 
fatigue damage model works for the fatigue life prediction of the spec-
imen with a defect and the fatigue damage computation of material 
around the defect. 

3.3. Material parameters calibration 

Two types of material parameters need to be calibrated. For the 
material parameters in the damage-coupled constitutive model, Ck and 
γk are obtained by fitting the relationship between the stress and strain 
using the static tensile test data, as shown below. Table 2 lists the 

T. Gao et al.                                                                                                                                                                                                                                     
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Fig. 7. (a) FE model for the specimen with scratch, and (b) the parametric FE result.  

Fig. 8. (a) FE model for the specimen with impact pit, and (b) the parametric FE result.  

Fig. 9. Variations of DIF with the depth h and the radius r.  Fig. 10. Variations of DIF with the ratio Rh/r of the depth h and the radius r.  
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calibrated parameter, and the stress–strain curves for the ZL114A and 
ZM6 alloys are plotted in Fig. 12. It is noted that it’s better to calibrate 
the kinematic hardening parameters using the cyclic stress–strain curve 
from the reversed loading tests. In this work, the cyclic stress–strain 
curves of ZL114A and ZM6 alloys are not measured, and the monotonic 
tensile test data are employed to calibrate these parameters by the least 
squares method. In general, the cyclic stress–strain curve of aluminum 
alloy differs from the monotonic tensile stress–strain curve in the plastic 
or hardening stage. However, they basically coincide exactly in the 
elastic stage. This work aims to carry out high-cycle fatigue analysis, in 
which the elastic damage dominates the damage evolution of the ma-
terial. Therefore, the calibrated parameters are reliable for high-cycle 
fatigue life predictions under cyclic loading conditions. 

σ =
∑K

k=1

Ck

γk
(1 − e− γkεp )+ σy (20) 

In terms of the material parameters in the defect-based fatigue 
damage model, there are four parameters, a, β, n, and p that need to be 
calibrated. First, based on the fatigue test data of smooth specimens, the 
material parameters a, β, and n are fitted using the least squares method, 
and the calibrated results are shown in Table 3. After that, parameter p is 
calibrated by comparing the predicted results with the experimental 
data of the notched specimens. The least square method is used to fit the 
parameter p. The MAPE (mean absolute error percentage) is chosen as 
an index to judge the fitting effect, as shown in Eq. (21), where xt is 
experimental data, and xpre

t is predicted data. The physical meaning of 
the MAPE is the average of the percentage errors of the predicted and 
actual values for each data set. The smaller the MAPE, the better the fit. 
Fig. 13 is plotted for the variation of the MAPE versus the parameter p, 
and all the calibrated results are shown in Table 3. Furthermore, the 
computed MAPE for Model-1 and Model-2 are listed in Table 4, and the 
calibrated results are shown in Fig. 14. It can be seen that most of the 
results obtained by Model-2 fall within the twice error band, and only 
two points of the ZM6 scratched specimens fall between the twice and 
triple error band. It is noted that the proposed defect-based fatigue 
damage model is not very general, considering that the parameters are 

related to the defect geometry of the specimen. Nevertheless, the form of 
the proposed model and the method of material parameters calibration 
can be referred to predict the fatigue life of materials with other defects. 

MAPE =
∑n

t=1
|
xt − xpre

t

xt
| ×

100
n

(21)  

4. Numerical computation of fatigue life based on the defect- 
based fatigue damage model 

4.1. Numerical implementation 

In this study, the FE numerical computation is implemented on the 
Abaqus platform, a commonly-used software suite for complex FE 
analysis and computer-aided engineering. This section presents the nu-
merical method to implement the damage-coupled constitutive model 
and defect-based fatigue damage model. The secondary development is 
performed by the UMAT subroutine, in which the user-defined material 
constitutive model and fatigue damage model are implemented. The 
coupled computation of the stress and damage field is also realized. The 
computational flowchart is briefly presented as below: (1) Initialize all 
parameters, and the initial values of the current integration point vari-
ables are passed to UMAT; (2) Compute the stresses and strains for each 
loading step based on the damage coupled elastoplastic constitutive 
equations and the current damage degree; (3) According to the current 
stress field, compute the current damage increment from the damage 
evolution equation and update the damage degree, then return to the 
main ABAQUS program; (4) Repeat the above steps until the damage 
degree is 1. At this point, the crack is considered to initiate, and the 
number of cycles to failure is obtained. 

Fig. 11. The fitted DIF - Rh/r curve for the specimens with scratch and 
impact pit. 

Table 2 
Material parameters in the damage-coupled constitutive model.  

Material E/MPa υ σy/MPa C1 C2 C3 γ1 γ2 γ3 

ZL114A 72,700  0.3 210  13935.2  31607.2  14276.4  1056.2  471.4  964.7 
ZM6 43,400  0.3 142  1748.9  2880.5  1343.7  169.8  70.4  8.2  

Fig. 12. The stress–strain curve for ZL114A and ZM6 alloys.  

Table 3 
Material parameters in the defect-based fatigue damage model.  

Material α β n p(for pit) p(for scratch) 

ZL114A 8.89 × 10-13  2.936  0.002455  0.52  0.212 
ZM6 1.40 × 10-9  1.815  0.003966  0.222  − 0.014  
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4.2. FE model 

Due to the symmetry of the specimen, a 1/4 model is established for 
FE analysis to save computational time, and the symmetric displacement 
constraints are applied on the symmetry surface. For cyclic loading, the 
tensile stress is applied at the outer end of the specimen. The field out-
puts are set to stress, strain, and damage degree. In addition, mesh 
convergence verification is also performed. The local mesh refinement is 

performed at the smallest section of the smooth and defected specimens 
to ensure that the stress remains consistent, and the good mesh 
convergence is achieved. The C3D8 element is adopted. A total of 26,248 
nodes and 19,282 elements are used to mesh the smooth specimen, 
32,629 nodes and 24,304 elements are used to mesh the scratched 
specimen, and 31,352 nodes and 23,725 elements are used to mesh the 
impacted specimen. The FE model of the smooth specimen is shown in 
Fig. 15. 

4.3. Fatigue life computation by the fatigue model 

4.3.1. Computed results for the smooth specimens 
For the ZL114A smooth specimen, the distribution of the damage 

field under the fatigue loads of R = 0.5 and Smax = 250MPa is shown in 
Fig. 16. It can be seen that the stress is highest at the minimum cross- 
sectional area of the specimen, which is also the initiation point of fa-
tigue cracking. The distribution patterns of the damage and stress fields 
are basically the same. Fig. 17(a) is plotted for the variation of stress 
versus the number of loading cycles, and the stress of the dangerous 
element gradually decreases with the increase of the number of cycles. 
The trend of damage degree with the number of loading cycles is shown 
in Fig. 17(b). It is noted that the damage grows slowly in the first 85 % 
and 90 % of the lifetime, while the damage increases sharply, and the 
crack initiates faster in the last 10 % of the lifetime. 

For the ZM6 smooth specimen under the fatigue loads of R = 0.02 
and Smax = 130MPa, the distribution of the damage field and the vari-
ations of the stress and damage degree versus the number of cycles have 
similar patterns, as shown in Figs. 18 and 19. The numerically predicted 
results are compared with the experimental results of the ZL114A and 
ZM6 smooth specimens under different fatigue loads, as shown in 
Fig. 20. It is found that all the predicted fatigue lives are within the twice 
error band, indicating that the calibrated material parameters have good 
accuracy and can be employed to compute the fatigue lives of specimens 
with scratch and impact pit. 

4.3.2. Computed results for the specimen with scratch and pit 
For the specimen with scratch, Fig. 21(a) is plotted for the compared 

results between the numerically computed fatigue lives and the 

Fig. 13. Variation of the MAPE versus the parameter p.  

Table 4 
The computed MAPE for Model-1 and Model-2.  

Type MAPE by Model-1 MAPE by Model-2 

ZL114A with impact pit  99.83 %  19.8096 % 
ZL114A with scratch  134.1741 %  27.5528 % 
ZM6 with impact pit  35.8547 %  26.1863 % 
ZM6 with scratch  32.1226 %  31.445 %  

Fig. 14. The calibrated results of Model-1 and Model-2.  
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Fig. 15. The model of smooth specimen.  

Fig. 16. Damage distribution of the ZL114A smooth specimen with R = 0.5 and Smax = 250MPa.  

Fig. 17. For the ZL114A smooth specimen with R = 0.5 and Smax = 250MPa, (a) variation of von Mises stress versus the loading cycles, and (b) variation of damage 
versus the loading cycles. 
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experimental data of ZL114A scratched specimens. It is observed that 
the numerical computation results of Model-1 have a significant error, 
and all the data points fall outside the twice error band, indicating that 
the prediction accuracy is low. In contrast, the predicted results of the 
proposed Model-2 fall within the twice error band. The numerical 
computation results versus experimental data for the ZM6 scratched 
specimens are shown in Fig. 21(b), from which we can see that the 
predicted fatigue lives of Model-1 are less accurate, with only a few data 
falling within the triple error band and most of the data points lying 
outside the triple error band, while the predicted results of the proposed 
Model-2 agree well with the experimental data. 

In terms of the specimen with pit, the variation of the experimental 
life of ZL114A specimens with the numerically computed data is shown 
in Fig. 22(a). It is clear that the prediction accuracy of both Model-1 and 
Model-2 is high, and most of the data fall within the twice error band. 
Fig. 22(b) is plotted for the predicted fatigue lives of the ZM6 specimen 
with pit. It is noted that most of the computed results fall within the 
twice error band, and only two data fall outside the triple error band. 

Even though most of the results of ZL114A and ZM6 smooth and 
defected specimens predicted by the defect-based fatigue damage model 
lie within the triple error band, there is still a relative error between the 

Fig. 18. Damage distribution of the ZM6 smooth specimen with R = 0.02 and Smax = 130MPa.  

Fig. 19. For the ZM6 smooth specimen with R = 0.02 and Smax = 130MPa, (a) variation of von Mises stress versus the loading cycles, and (b) variation of damage 
versus the loading cycles. 

Fig. 20. The numerical predicted results versus the experimental results for the 
ZL114A and ZM6 smooth specimens. 
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predicted values and the experimental data. The following two reasons 
contribute to the prediction error. First, there are not sufficient experi-
mental data. Three parameters in the defect-based fatigue damage 
model need to be calibrated. However, there are only five sets of 
experimental data. As far as probability statistics are concerned, it is 
known that the larger the amount of data, the more accurate the fit. 
Therefore, the calibration process of material parameters could cause 
errors. Second, the effects caused by internal pores are not considered. 
Studies show that porosity and the critical pores near the surface have a 
significant effect on the fatigue behavior of the material. The porosity 
characterizes the average effect of the random distribution of pores in-
side the material, while critical pores could induce stress concentrations 
near the pores, which are not taken into account in the proposed defect- 
based fatigue damage model. 

5. Architecture of optimized neural network model 

5.1. Artificial neural network 

Artificial neural network (ANN) [45–46] refers to a network struc-
ture composed of numerical nodes and the computational relationships 
between nodes. In engineering applications, the commonly used ma-
chine learning techniques include the ANN, random forest (RF), decision 
tree (DT), and support vector machine (SVM). The ANN can learn on 
their own and produce results that are not limited by the data supplied to 

them. In addition, because the input is kept in its own networks rather 
than a database, it does not suffer from data loss. Compared with other 
machine learning models, the advantages of ANN lie in the effective 
visual analysis, processing of unorganized data, adaptive structure, 
continuous learning, user-friendly interface, and so on. At the same time, 
due to its complex nature, the ANN model has some limitations, such as 
hardware dependence, black box nature, approximate results, and data 
dependency. A schematic diagram of ANN is shown in Fig. 23, where the 
circles represent neurons (numerical values), and the arrows represent 
links (mathematical relationships). The basic architecture of the ANN is 
constructed [47] by adjusting the number of hidden layers, the number 
of neurons in each layer, and the links between the layers. 

In this study, the ANN model is employed to predict fatigue life based 
on the following considerations. (1) The damage model in Abaqus is 
computationally expensive, and it is also time-consuming to build FE 
models and perform numerical simulations. (2) Although the numeri-
cally computed fatigue lives are acceptable, there are still some errors 
compared with the experimental data. (3) We intend to develop a reli-
able dataset of the ANN model, including defect morphology, fatigue 
loads, and materials, to quickly and accurately predict the high-cycle 
fatigue life of casting alloys with the surface defects. 

5.2. Dataset construction and data pre-processing 

For the defected ZL114A and ZM6 specimens under different fatigue 

Fig. 21. Variation of predicted results with fatigue test data for the specimen with scratch: (a) ZL114A, (b) ZM6.  

Fig. 22. Variation of predicted results with fatigue test data for the specimen with impact pit: (a) ZL114A, (b) ZM6.  
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loads, 61 sets of numerical computations are performed according to the 
experimentally validated theoretical model and numerical method, and 
a batch of reliable fatigue life data is acquired. Therefore, there are 93 
sets of data in the database, including 32 experimental data and 61 sets 
of numerically computed results. 

The definitions of the input and output are presented for the ANN. It 
is clear that the defect morphology can be characterized by its geometric 
parameters, i.e. defect depth and the defect radius, while the fatigue 
loads can be characterized by the maximum stress and the stress ratio. 
Furthermore, there are two kinds of materials. Therefore, the above five 
parameters as inputs to the ANN can completely define the material, 
defects, and stress levels. Therefore, there is a corresponding relation-
ship between these five parameters and the output fatigue life. 

After that, the definitions of the training and test sets are presented 
for the ANN model. On the one hand, the distinction between training 
and test sets could help to detect the generalization of the neural 
network. When the ANN model is trained, the fatigue lives are directly 
predicted using the inputs of the training set and then compared with the 
experimental data. On the other hand, distinguishing between training 
and test sets could prevent overfitting. For the dataset of this study, 80 % 
of the data is employed in the network, and the remaining 20 % is used 
to evaluate the training results of the network. 

5.3. Architecture design of the ANN model 

The designed architecture of the ANN model in this study is listed in 
Table 5. The Dense layer is the fully connected layer, the Relu layer is the 
activation function layer, and Batch Normalization is the batch 
normalization processing layer. Each layer has a certain number of 
neurons, and the type of each layer represents the form of connection 
with the previous layer, i.e., the mathematical relationship between the 
two layers. The detailed workflow of the ANN model is presented as 
follows.  

(1) Model architecture design and data segmentation. The fatigue 
database of smooth and defected ZL114A and ZM6 specimens are 
imported, and the input/output and training/test data sets are 
split. The ANN architecture is then designed, including the 
number of layers, the type of layers, and the number of neurons. 
The loss function and optimizer are selected, and the number of 
training rounds is determined. After that, all the weights of the 
ANN model are randomly initialized.  

(2) Model training and process recording. The training set is fed into 
the network, and the results are computed forward. The error is 
then obtained based on the calculated results and the output data 
set. After that, the loss function and backpropagation gradient are 
computed based on the error, and the loss function is recorded. It 
is judged whether the maximum number of training rounds is 
reached. If not, the forward computation is performed on the test 
set, and the loss function is recorded.  

(3) Model test. The loss function curves are plotted based on the 
above computation. For the trained ANN, the forward computa-
tion is performed separately for the training/test set. The 
computed results are saved, and the error bands are plotted. 

5.4. Model training and predicted results 

The ANN model is trained for 300 rounds and then evaluated with 
test data. The model parameters are listed in Table 6, and the variation 
of the loss function with the number of training rounds is shown in 
Fig. 24. The red curve represents the training set, and the green curve 
represents the test set. It can be seen that both tend to converge as the 
training iteration process proceeds, where the average error of the test 
set is about 12.74 %, indicating the high accuracy of the ANN model. 
The curve of the correlation coefficient is plotted in Fig. 25, where the 
green data points are the training set, and the red data points represent 
the test set. The black dashed line is the reference line with a slope of 
one, meaning that the predicted results match the experimental data 
exactly. The solid line is the regression curve of the data points, and Rc is 
the correlation coefficient. The closer the value of Rc is to 1, the better 
the prediction is. It can be seen that the linear fit of the model is good. 

After the training, the ANN model is employed to predict the fatigue 
life of ZL114A and ZM6 specimens under different stress levels. All the 

Fig. 23. A schematic diagram of ANN.  

Table 5 
The designed architecture of the ANN model.  

Network layer Layer type Number of neurons 

1 Input 5 
2 Batch Normalization 5 
3 Dense 100 
4 Relu 100 
5 Dense 400 
6 Relu 400 
7 Dense 50 
8 Relu 50 
9 Dense 1 
10 Output 1  

Table 6 
The parameters of the ANN model.  

Number of 
input variables 

Number of 
output 
variables 

Number of 
training data 

Number of 
test data 

Average 
error 

5 1 74 19  12.74 %  
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predicted results are listed in Table 7. Fig. 26 is plotted for the predicted 
fatigue lives, and it is observed that the prediction of the model is good, 
and the prediction results of the test set are within the twice error band 
with high accuracy. 

6. Conclusion 

In this work, the high-cycle fatigue behaviours of ZL114A and ZM6 
alloys with the surface defects are investigated. A novel defect-based 
fatigue damage model coupled with an optimized neural network is 
proposed for fatigue life prediction. The following conclusions can be 
drawn from the experimental studies and numerical analysis:  

(1) Experimental studies reveal that the fatigue data dispersion of 
ZM6 alloy is more significant than that of ZL114A alloy, which 
may be related to the defects inside the specimens. It is also 
concluded that the casting process could induce the inclusions 
and holes inside the ZM6 alloy, and the size, shape, and location 
of the defects have important effects on the fatigue behavior, 
leading to a significant dispersion of experimental fatigue data.  

(2) According to finite element parametric studies, the relationship is 
established between the typical size of the defect and the defect 
impact factor (DIF), and the defect-based fatigue damage evolu-
tion equation is then derived based on the continuum damage 

Fig. 24. Variation of loss function with the training round.  

Fig. 25. The curve of correlation coefficient: (a) training set, and (b) test set.  

Table 7 
The predicted fatigue lives of ZL114A and ZM6 specimens.  

Case No. Material h r Smax R Nexp Npre Error 

1 ZL114A  0.15 3 200  0.02 99,050 103,503  4.50 % 
2 ZL114A  0.25 3 140  0.02 409,100 305,787  25.25 % 
3 ZL114A  0.15 0.2 210  0.02 79,110 55,509  29.83 % 
4 ZL114A  0.25 0.2 120  0.02 410,100 395,316  3.61 % 
5 ZL114A  0.15 3 165  0.02 206,023 185,751  9.84 % 
6 ZL114A  0.15 3 190  0.02 117,897 113,484  3.74 % 
7 ZL114A  0.25 3 145  0.02 298,416 275,796  7.58 % 
8 ZL114A  0.25 3 175  0.02 144,344 120,875  16.26 % 
9 ZL114A  0.35 3 160  0.02 185,217 163,640  11.65 % 
10 ZL114A  0.35 3 185  0.02 103,655 80,785  22.06 % 
11 ZL114A  0.15 0.2 225  0.02 49,551 51,198  3.32 % 
12 ZL114A  0.25 0.2 155  0.02 194,753 200,270  2.83 % 
13 ZL114A  0.35 0.2 160  0.02 152,493 138,914  − 8.91 % 
14 ZM6  0.25 3 134  0.02 40,418 46,291  14.53 % 
15 ZM6  0.15 0.2 120  0.02 85,894 97,846  13.91 % 
16 ZM6  0.25 0.2 92  0.02 174,636 171,583  1.75 % 
17 ZM6  0.25 3 128  0.02 66,628 54,889  17.62 % 
18 ZM6  0.35 3 112  0.02 90,060 82,890  7.96 % 
19 ZM6  0.25 0.2 94  0.02 171,888 163,795  4.71 %  
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mechanics. Finally, the calibration of material parameters is 
carried out.  

(3) The numerical simulations and fatigue damage computations of 
ZL114A and ZM6 specimens are implemented, and the effec-
tiveness of the proposed theoretical model is validated. More 
numerical computations are then performed to obtain a batch of 
reliable fatigue data, which forms the database of the artificial 
neural network model.  

(4) The architecture of the optimized neural network model is 
established, the model training is conducted, and the predicted 
results are obtained, which are verified by the experimental fa-
tigue data of ZL114A and ZM6 specimens.  

(5) Outlook for future research. Future work is needed to further 
develop the proposed defect-based fatigue damage model to take 
into account internal defects (including microstructures, 
porosity, and inclusions). Although the numerically computed 
fatigue lives are within the acceptable error range compared with 
experimental data, the prediction accuracy can still be improved 
by refining the theoretical model. Furthermore, the applicability 
of the optimized neural network model needs to be further 
explored, and other metallic materials, as well as other types of 
defects, need to be investigated. 
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