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A B S T R A C T   

Dynamic mechanical relaxation is an important metric to understand the mechanical/physical 
properties of amorphous solids which are of viscoelastic nature. Due to the heterogenous 
microstructure, the relaxation behavior of amorphous solids usually shows strong deviation from 
the Debye relaxation. The distribution of relaxation time derived from either the stretched 
exponential function (KWW function) or the power law form is probably the most adopted 
paradigm to describe the non-Debye relaxation. They are essentially the continuous spectrums 
given in analytical forms. However, whether a real amorphous material conforms to such dis
tribution law remains to be discussed. Here we test the assumption in typical metallic glasses 
(MGs) as representatives of the general amorphous solids. The mechanical spectrum of a 
Cu46Zr47Al7 MG in wide frequency domain is probed by the dynamic mechanical analysis tech
nique. It is found that both the KWW function and the modified fractional (MF) model based on 
power law can well describe the experimental data. As a step forward, we combine the quasi- 
point defect theory with the MF model to theoretically reveal the feature of temperature- 
dependent structural evolution in MG. Finally, the distribution of relaxation time correspond
ing to the experimental data is discretized to argue the theoretically predicted microstructural 
heterogeneity in the MGs.   

1. Introduction 

Amorphous solids, which are obtained from their supercooled liquids through glass transition, are characterized by the long-range 
structural disorder (Berthier and Biroli, 2011; Chen and Dai, 2016). Dynamic relaxation behavior exists ubiquitously in amorphous 
solids, and its internal mechanism is still elusive. α relaxation, as a common feature of the general amorphous materials, usually occurs 
near the glass transition temperature Tg and can be also observed in the mechanical relaxation and dielectric response (Cui et al., 
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2017). By the energy landscape picture, α relaxation is explained as the transition between adjacent mega energy valleys, which are 
composed of many small energy valleys (Harmon et al., 2007). As a precursor of α relaxation, β relaxation is associated with the 
transition between these small energy valleys (Qiao et al., 2019). The energy landscape picture phenomenally describes the dynamic 
relaxation behaviors, which are derived from the disordered structure within amorphous solids. Therefore, a deep understanding of the 
dynamic relaxation mechanism is the key to deconstruct the intrinsic structure of amorphous solids. 

Metallic glasses (MGs), as a kind of amorphous solids, are expected to be promising structural materials due to the excellent 
physical, chemical and mechanical properties (Ashby and Greer, 2006; Fu et al., 2020; Jiang et al., 2020; Sha et al., 2017; Wang, 2019; 
Qiao et al., 2022). Due to the disordered arrangement of atoms, there are no well recognized structural defects in analogy with those in 
the traditional crystalline alloys such as dislocations and grain boundaries (Hao et al., 2022; Qiao et al., 2019; Wang, 2012; Zhang 
et al., 2019). Compared with other amorphous solids (i.e., oxide glasses, amorphous polymers), MGs have relatively simple atomic 
structure and can be used as prototypical model for studying the microscopic mechanism of dynamic relaxation. Microstructural 
heterogeneity is an intrinsic structural feature of MGs, which should affect the distribution of relaxation time in MGs and further 
induces dynamic heterogeneity from a kinetic perspective (Kosiba et al., 2019; Tao et al., 2022; Duan et al., 2022). Therefore, dynamic 
relaxation behavior can be regarded as an important entry point to study the microstructural and dynamic heterogeneities in MGs. 

The behavior of amorphous solids, in general, and of MGs in particular, depends very strongly on temperature and frequency. 
Dynamic mechanical analysis (DMA) has been widely used to study the dynamic relaxation behaviors of various MGs systems in a 
certain range of temperature and/or frequency (Cheng et al., 2021; Zhang et al., 2022). Many works have been carried out on modeling 
the viscoelastic response of MGs in both the temperature and frequency domains. The dynamic response can be described by the 
generalized Maxwell (GM) model or the generalized Kelvin–Voigt (GKV) model (Liu et al., 2022; Xu et al., 2022), however, these 
models always require a large number of fitting parameters which sometimes are lack of physical foundation. In order to avoid this 
limitation, traditional models, which are composed of spring and dashpot elements, are often abandoned and replaced by the empirical 
fitting functions. The Kohlrausch–Williams–Watts (KWW) function and Havriliak–Negami (HN) function, as the two most commonly 
used empirical fitting functions, have been proved to be able to describe the dynamic relaxation behaviors of MGs (Yao et al., 2017). 
Wang et al. (2014) associate the fitting parameter βKWW (or β) of KWW function with the dynamic heterogeneity of supercooled liquids. 
However, the parameter βKWW can only reflects the degree of dynamical heterogeneity but cannot quantitatively describe nor 
determine the specific distribution of dynamic heterogeneity. 

The heterogeneous microstructure of MGs is the origin of their unique mechanical properties. The structure of MGs is considered to 
be composed of different regions such as "solid-like region" and "liquid-like region" (Liu et al., 2011). The response of the solid-like 
region under external stress excitation is dominated by elasticity, and the response of the liquid-like region is inelastic. The free 
volume model proposed by Turnbull and Cohen (1970) explains that the total macroscopic volume of solids and liquids includes the 
actual occupied volume and free volume of atoms (or molecules). The free volume can be understood as voids around atoms which are 
randomly dispersed in the matrix with different sizes. Based on the work of Argon et al. (Argon, 1979; Argon and Shi, 1983), Falk and 
Langer (1998) proposed the shear transformation zone (STZ) model by taking specific atomic cluster in MGs under local shear stress as 
a basic unit of deformation. Perez (1990) defined the density fluctuations at nanoscale, accompanying with the fluctuations of entropy 
or enthalpy, as the quasi-point defect (QPD) to describe the evolution of dynamic relaxation and deformation behavior of MGs. The 
flow units model proposed by Wang and Wang (2018) regards the structure of MGs as some flow units embedded in an elastic matrix. 
Compared with the elastic matrix, the flow units have lower elastic modulus and hardness, and have faster dynamic characteristics. 

Macroscopic mechanical models are helpful to obtain the constitutive relations of MGs and predict the mechanical behaviors, but 
they hardly reveal the nature of deformation as physical models. MGs should exhibit linear viscoelastic behavior under small oscil
latory load, and their dynamic relaxation mainly occurs in the form of α relaxation and β relaxation. As a general characteristic of MGs, 
α relaxation provides an important way to understand the physical origin of the mechanical properties and important physical phe
nomena such as glass transition. Traditional mechanical models such as GKV and GM models can well describe the α relaxation 
spectrum of different MGs when there are enough elastic and viscous elements. Ju et al. (Ju and Atzmon, 2014; Ju et al., 2011) linked 
the discrete spectrum based on the GKV model with the STZs, and believed that the peaks on the discrete spectrum were related to STZs 
of different sizes. Traditional mechanical models usually require too many fitting parameters, and a promising solution relies heavily 
on the use of fractional calculus. Fractional calculus is a branch of mathematics, which extends integration and differentiation op
erators to non-integer order, to enrich the classical linear viscoelastic framework (Bonfanti et al., 2020). This led to a new development 
in modeling viscoelastic behaviors known as fractional viscoelasticity, which has been proved to be a good application in polymers 
(Metzler et al., 1995; Pritz, 2003; Wang and Kari, 2020). 

Linear viscoelastic models are often presented as spectral models (Palade et al., 1996). Although direct measurement of the 
relaxation time spectrum is impossible, the main advantage of this modeling is to ensure consistency with linear viscoelastic theory and 
to easily solve the problem of converting dynamic data from frequency domain to time domain. Traditional mechanical models are 
able to combine the viscosity and elastic modulus with relaxation time, but still lack a specific physical interpretation. With the help of 
fractional calculus method, fractional viscoelasticity can express a specific distribution of relaxation time. At present, the application of 
fractional order model in polymers has a clear physical interpretation (Arikoglu, 2014; Sharma and Cherayil, 2010). It inspires further 
exploration in MGs using fractional order model which is necessary and of great importance. 

As a typical CuZr-based MG, Cu46Zr47Al7 MG is widely preferred for its good glass forming ability as well as suitable cost, in 
addition to its general properties of MGs (Jiang et al., 2006). At the same time, Cu46Zr47Al7 MG can be used as a basic MG to consider 
the changes of various properties after micro-addition of other components (Xie et al., 2010; Xu et al., 2004). Thus, in the current work, 
the fractional order model was applied to Cu46Zr47Al7 MG, which can be considered as a typical representative of MGs. Compared with 
the commonly used KWW function, the fractional order model is different in the description of the experimental phenomena and the 
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distribution of intrinsic relaxation times. To enrich the intrinsic origin of fractional viscoelasticity, we performed mathematical 
calculation to combine the fractional order model with the QPD theory, which has been widely used to describe the dynamic re
laxations in MGs. Previous studies have observed the existence of “soft” regions in MGs, which are closely related to the deformation 
and reflect the structural heterogeneity (Wang et al., 2011; Yu et al., 2012). In order to verify this result, we discretized the relaxation 
times derived from the experimental data, and then combined the discrete spectral peaks with STZs according to Ju’s viewpoint (Ju 
et al., 2011). The viscoelastic behaviors and relaxation spectrum of Cu46Zr47Al7 MG were studied by the above methods to unveil the 
intrinsic heterogeneity in MGs. 

2. Experimental procedures 

2.1. Sample preparation 

The model alloy with nominal composition Cu46Zr47Al7 (at.%) (Xu et al., 2004) was prepared by arc-melting technique under 
purified argon atmosphere. In order to ensure compositional homogeneity, the ingots were melted at least six times. The ingot was then 
sucked into water-cooled copper mold to obtain the amorphous samples, with a size of 80 mm × 10 mm × 2 mm. 

2.2. Materials characterization and thermal properties 

The amorphous nature of the model alloy was determined by the X-ray diffraction (XRD). By Cu-Kα radiation, D8, Bruker AXS 
Gmbh was used and the scanning rate is 0.025◦ per step. As illustrated in the inset of Fig. 1(a), the broad diffraction peak can be seen 
clearly in the XRD pattern, which indicates the sample is in fully amorphous state. 

The thermal properties of Cu46Zr47Al7 MG were measured by a differential scanning calorimetry (DSC, Netzsch 404) at a heating 
rate of 10 K/min. According to the DSC curve in Fig. 1(a), the glass transition temperature Tg and the onset crystallization temperature 
Tx are respectively determined at 683 K and 756 K. 

2.3. Dynamic mechanical analysis 

The dynamic mechanical analysis of Cu46Zr47Al7 MG was carried out on a homemade mechanical spectrometer within a high 
vacuum environment under an inverted torsion mode (as shown in Fig. 1(b)). The testing specimens have the approximate dimensions 
of 30 mm × 3 mm × 1 mm, and the surfaces of the specimens have been polished. The frequency-scan experiment was performed at 
fixed temperature by applying sinusoidal stress of various frequencies between 0.01 to 2 Hz. The amplitude of sinusoidal stress is very 
small, which will not lead to viscoplastic deformation. When sinusoidal stress is applied to viscoelastic materials, the strain has the 
same frequency, but there is a phase difference δ between the stress and strain. For an ideal elastic material, the phase difference is 0, 
while for a purely viscous material, the phase difference is π/2. The phase difference lies between 0 and π/2 for viscoelastic materials. 
The so-called complex modulus G∗, defined as G′

+ iG′′, can be obtained from the experimental results. G′ is the storage modulus and G′′

is the loss modulus. In addition, the loss factor tanδ can be defined by G′′/G′ , where tanδ is related to the energy loss of each cycle. 

2.4. Nanoindentation experiments 

In order to intuitively reflect the microstructural heterogeneity, nanoindentation experiments were carried out on Hysitron TI980 
Triboindenter using Berkovich indenter at room temperature. Prior to the nanoindentation experiments, the sample was progressively 
polished to a mirror finish with sandpaper and diamond plaster to ensure accuracy during the experiments. To perform the mapping of 
local reduced modulus and hardness, an indentation matrix of 10 × 10 with 100 indents was conducted on the sample and the sep
aration between indents was set as 30 μm to prevent the possible interaction of neighboring strain fields. Each indent was produced by 

Fig. 1. (a) DSC curve of the Cu46Zr47Al7 MG at a heating rate of 10 K/min. The inset exhibits the XRD pattern of the Cu46Zr47Al7 MG. (b) Schematic 
diagram of the mechanical spectrometer. 
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applying a loading rate of 1 mN/s to 10 mN, and then unloading at the same rate immediately. The values of reduced modulus and 
hardness can be read directly from the results of Hysitron TI980 Triboindenter. 

3. Theoretical model 

The term “relaxation” is used to represent the process by which a system changes from a non-equilibrium state to an equilibrium 
state. In general, a relaxation process can be described by the function (Lukichev, 2019) 

r(t) = r∞ + r0ϕ(t) (1)  

where the r is a physical parameter of interest, r0 and r∞ are the constants, ϕ(t) is the normalized relaxation function. 
Viscoelasticity is a typical mechanical characteristic of amorphous solids, and it is essentially a relaxation phenomenon. Visco

elastic behaviors are evident in experiments such as creep, stress relaxation and dynamic mechanical loading. Under the framework of 
linear viscoelasticity theory, the resultant stress function σ(t) is linearly related to the increment step in strain magnitude of ε0 at time t 
= 0 

σ(t) = G(t)ε0 (2)  

where G(t) is the relaxation modulus, a monotonically decreasing function. 
In Eq. (1), using σ instead of r, and then combining Eqs. (1) and (2), the relaxation modulus G(t) can be expressed as 

G(t) =
σ∞

ε0
+

σ0

ε0
ϕ(t) (3)  

where σ0 and σ∞ are constants. Similarly, for the stress step, creep compliance J(t) can also be expressed as function of ϕ(t). 

3.1. Debye relaxation and Zener model 

For Eq. (1), the best-known relaxation function is the simple exponential function. It is also known as Debye relaxation that was 
used to research the motion of atoms in solid originally (Debye, 1929). Correspondingly, the normalized exponential relaxation 
function is 

ϕ(t) = e− t/τ, t ≥ 0 (4)  

where τ is the characteristic relaxation time. This parameter determines the rate of decrease (increase) of the relaxation function. 
For the strain step (stress relaxation), we can write G(t) in the form of Debye-type 

G(t) =
σ∞

ε0
+

σ0

ε0
e− t/τ (5) 

Time and frequency are inextricably linked, and the Laplace transform as a mathematical tool can realize the interconversion of 
time and frequency domains. Eq. (5) is transformed by Laplace transform to get 

G∗ =
σ∞

ε0
+

σ0

ε0
⋅

iωτ
1 + iωτ (6) 

The real part and imaginary part of Eq. (6) respectively represent the storage modulus G′

(ω) and the loss modulus G′′(ω), so 

G′

(ω) = σ∞

ε0
+

σ0

ε0

(

1 −
1

1 + ω2τ2

)

(7a)  

G′′(ω) =
σ0

ε0
⋅

ωτ
1 + ω2τ2 (7b) 

Fig. 2. (a) Skeleton of Zener model. (b) and (c) are the relaxation modulus and loss modulus of this model, respectively.  
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Many models and theories have been proposed to describe the viscoelastic behaviors, among which mechanical models consisting 
of spring (pure elastic) and dashpot (pure viscous) elements are well developed (Serra-Aguila et al., 2019). To gain some more intuitive 
comprehension of the viscoelastic behavior, it is useful to consider simple mechanical models with specific combinations of springs and 
dashpots. We firstly consider the well-known standard linear solid model (or Zener model), which can be interpreted by a combination 
of Hookean springs (σ = Eε) and a Newtonian dashpot (σ = ηdε/dt) with the spring constants E1M, E∞M and the viscosity η1M, as shown 
in Fig. 2(a). After some simple calculations, the differential equation associated to the Zener model is 

σ +
η1M

E1M
⋅

dσ
dt

= E∞Mε + η1M

E1M
(E∞M +E1M)

dε
dt

(8) 

By applying a constant strain, the relaxation modulus can be given 

G(t) = G0

[
1 − p1

(
1 − e−

t
τ1

)]
(9a)  

with 

G0 = E∞M + E1M , p1 =
E1M

E∞M + E1M
, τ1 =

η1M

E1M
(9b) 

The relaxation modulus of Zener model given in Eq. (9a) is the Debye form. In other words, Zener model and Debye relaxation are 
equivalent. Fig. 2(b) and (c) show the relaxation modulus and the loss modulus derived from Zener model, respectively. The Zener 
model has a single relaxation time, and it can be seen from the Fig. 2(c) that the loss modulus curve shows the form of symmetrical 
peak, which is different from the mechanical behavior of amorphous solids. According to the previous work, the loss modulus curve of 
amorphous solids shows an asymmetric curve (Bergman, 2000). Meanwhile, the relaxation function ϕ(t) of amorphous solids typically 
shows deviations from a single Debye relaxation, indicating that the relaxation time is actually not a single value. Continuous 
relaxation spectrum function with specific distribution H(τ) or discrete spectra with n pairs of relaxation strengths pi and relaxation 
times τi can be considered. Then, the time relaxation function adopts the following forms respectively: 

ϕ(t) =
∫∞

0

H(τ)e− t/τdτ
τ (10a)  

ϕ(t) =
∑n

i=1
pie− t/τi (10b)  

3.2. Stretched exponential function 

For the Eq. (1), amorphous solids often show deviations from the Debye form, and they are usually fitted with the stretched 
exponential function (or KWW function) 

ϕ(t) = e
−

(

t
τKWW

)β

, 0 < β < 1 (11)  

where β is an empirical exponent. At present, there is no clear mathematical method to deal with the integral transformation of KWW 
function in spite of its simple form. As shown in Eq. (10a), relaxation functions featuring non-Debye form necessarily possess the 
spectrum of relaxation times. Therefore, the proper analysis and understanding of KWW function depend on its relaxation time spectra. 

After some simple mathematical substitutions and the inverse Laplace transformations (Lindsey and Patterson, 1980), the relax
ation time distribution H(τ) of KWW function can be obtained 

H(τ) = −
τKWW

πτ
∑∞

k=0

(− 1)k

k!
sin(πβk)Γ(βk+ 1)

(
τ

τKWW

)βk+1

(12)  

where Γ is the gamma function. Eq. (12) is the non-closed form, excluding β = 1/2. When β = 1/2, the distribution can be written in a 
closed form 

H(τ) = 1
2

(πτKWW

τ

)− 1
2e−

τ
4τKWW (13) 

Due to the lack of mathematical method to perform Laplace transformation on Eq. (11), it is difficult to obtain the accurate 
expression in frequency domain. However, Bergman (2000) gives an approximate expression of the loss modulus in the frequency 
domain 

G′′

Gu
= G′′

p

/{

1 − β +
β

1 + β

[
β
(
ωp

/
ω
)
+
(
ω
/

ωp
)β
]}

(14) 
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where Gu is the storage modulus without relaxation, G′′
p is the peak value of the normalized loss modulus and ωp is the loading fre

quency corresponding to the peak value. 
For Eq. (14), in order to explore the change of loss modulus under different values of stretching parameter β, the values of G′′

p and ωp 

are fixed as 0.25 and 1, respectively. Taking β as 0.2, 0.4, 0.5, 0.6 and 0.8, respectively, the normalized loss modulus curves corre
sponding to each β value are obtained, as shown in Fig. 3(a). It is found that the loss modulus curves are asymmetric in logarithmic 
frequency. The loss modulus at high frequency is significantly affected by the change of β. Meanwhile, it is found that the loss modulus 
peak gradually changes to the symmetric form with the increase of β. According to the Eq. (11), when β is equal to 1, the loss modulus 
shows the symmetric peak of the Debye form. In order to further analyze the distribution of internal relaxation times of loss modulus, 
we take τKWW = 1/ωp and the distribution H(τ) corresponding to different values of β can be obtained, as shown in Fig. 3(b). H(τ) in 
Fig. 3(b) shows a strong dependence on the stretched parameter β. For the same β, as the relaxation time increases, the function shows 
the similar trend of initially increasing, reaching a maximum and then decreasing. Moreover, a narrow distribution is found for a larger 
value of β. The distribution of relaxation time can be seen as a reflection of the overall disorder of the system at the macroscopic level. 
The wider the distribution is, the more disordered the system is. On the contrary, a narrower distribution represents a more orderly 
system. When the distribution is concentrated to a single point in time, the system shows a Debye relaxation. Therefore, with the 
increase of parameter β, the disorder degree of the system decreases. 

KWW function has been proved to be a good description for the viscoelastic behaviors of amorphous solids in previous work. It is 
worth mentioning that even if KWW function is suitable for describing various relaxation processes, its applicability should be 
considered when using this empirical function without theoretical proof (Apitz and Johansen, 2005). When there is more than one 
peak in the frequency domain, the parameters obtained from the use of a single KWW function may be unrealistic or even wrong. In this 
case, the superposition of multiple KWW functions will be relied on to correctly describe the relaxation process. Unfortunately, as an 
empirical equation, KWW function lacks physical interpretation. 

3.3. Power law and fractional order model 

For Eq. (1), in addition to the stretched exponential function (Eq. (11)), the asymptotic power-law is often used to describe 
relaxation deviating from Debye-form 

ϕ(t) =
1

(1 + t/τ)α ∼
(t

τ

)− α
(15)  

where α is the power exponent. For the convenience of calculation and processing, the asymptotic power-law is often approximated by 
its corresponding long-time inverse power-law form, as shown in Eq. (15). Usually, Eq. (15) or the corresponding power law are 
referred to as Nutting law (Nutting, 1921). It should be noted that within a limited range of data, it is simply impossible to distinguish 
Eq. (11) or Eq. (15) by fitting. 

One of the typical features of the non-Debye model of material relaxation is memory effect, i.e., the temporal correlation due to the 
fact that the current response is the sum of the incremental relaxation responses accumulated over a period of time (Schiessel et al., 
1995). This property has been illustrated by Boltzmann in the superposition integral 

σ(t) =
∫t

0

G(t − τ) dε(τ)
dτ dτ (16) 

In order to describe the relaxation of power-law form, the relaxation modulus takes the form 

Fig. 3. (a) Normalized loss modulus curves calculated from the Eq. (14), where G′′
p = 0.25, ωp = 1 and the values of stretching parameter β is 

between 0.2 and 0.8. (b) Intensity of relaxation time H(τ) under different values of β. 
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G(t) =
σ∞

ε0
+

σ0

ε0

(t
τ

)− α
(17) 

Substituting this into Eq. (16), the relationship between stress and strain for a power-law material becomes: 

σ(t) = σ∞

ε0
ε(t) + σ0

ε0
τα
∫t

0

(t − τ)− αdε(τ)
dτ dτ (18) 

Fractional calculus defines the differential operation of non-integer order or a function f(t) = 0 for t < 0 as (Gorenflo and Mainardi, 
1997) 

dαf (t)
dtα =

1
Γ(1 − α)

∫t

0

(t − τ)− αdf (τ)
dτ dτ (19) 

Redefining the coefficient cα = ταΓ(1 − α) σ0/ε0 yields the following result: 

σ(t) = σ∞

ε0
ε(t) + cα

dαε(t)
dtα (20)  

which provides a simple constitutive equation for the power-law materials. Fractional derivatives are nonlocal operators, which can 
effectively describe the memory effect and heredity properties of viscoelastic materials (Failla and Zingales, 2020). 

Similar to KWW function, the fractional order model is capable of describing the linearly viscoelastic behavior with few parameters. 
For Eq. (20), σ∞ is zero for convenience, and it can be described by a springpot element (σ(t) = cαdαε(t)/dtα). The schematic symbol of 
springpot element and its relationship with the spring and dashpot elements are shown in Fig. 4. The springpot element, also known as 
the Scott–Blair’s element (Blair and Veinoglou, 1944), can be understood as an interpolation element between the spring element (α =
0) and the dashpot element (α = 1). In order to test the application of fractional operators in viscoelastic materials, Bagley and Torvik 
(1983) have proved that the approach is consistent with molecular theories. At the same time, it is also confirmed that the fractional 
viscoelastic models have good consistency in thermodynamics (Friedrich, 1991; Gloeckle and Nonnenmacher, 1991). 

Caputo and Mainardi (1971) first proposed the fractional Zener model by replacing integer derivative with fractional derivative in 
governing equation, which is a generalization of the Zener model, as shown in Fig. 5(a). The fractional Zener model has the specific 
relaxation time distribution, which can be used to describe the memory mechanism of materials. However, this model exhibits a 
Cole–Cole behavior, which is obviously inconsistent with the characteristics of amorphous solids. 

In order to better predict the asymmetric loss modulus peak of amorphous solids and describe their mechanical behavior, the 
modified fractional (MF) model is adopted here (see Fig. 5(b)), which has been introduced by Heymans to overcome the problem of 
symmetrical loss peak (Heymans, 1996). The MF model, also as a generalization of the Zener model, is proposed by replacing the spring 
and dashpot in the Maxwell element with springpot elements, and attaching a spring to ensure that the high-frequency modulus is not 
infinite. 

Considering that α1 is greater than α2, then according to the relationship between the elements, the governing equation of the MF 
model can be obtained 

(E1 +E2)

(

σ +
cα1

cα2

⋅
dα1 − α2 σ
dtα1 − α2

)

+ cα1

dα1 σ
dtα1

= E1E2

(

ε+ cα1

cα2

⋅
dα1 − α2 ε
dtα1 − α2

)

+ E2cα1

dα1 ε
dtα1

(21) 

In order to obtain the complex modulus of the MF model, the composition rule and Fourier integration for fractional calculus need 
to be applied (Schiessel et al., 1995). After some calculations and simplifications, we get 

G∗ = G0 + (G∞ − G0)
1

1 + λ(iωτMF)
− α2 + (iωτMF)

− α1 (22a)  

where 

Fig. 4. Schematic diagram of the spring-pot element, which behaves as a spring when α = 0 and as a dashpot when α = 1.  
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G0 =
E1E2

E1 + E2
, G∞ = E2, τMF =

(
cα1

E1 + E2

) 1
α1
, λ =

cα1

cα2

(
E1 + E2

cα1

)α1 − α2
α1

(22b) 

The parameters G0 and G∞ correspond to the static modulus and the high-frequency modulus, respectively. τMF is the characteristic 
relaxation time of this model, and λ is the numerical factor. Then, we can get the loss modulus expression of the modified fractional 
model 

G′′(ω) =
(G∞ − G0)(ωτMF)

α1
[
sin

( α1π
2

)
+ λsin

( α2π
2

)
(ωτMF)

α1 − α2
]

1 + A(ωτMF)
α1 − α2 + B(ωτMF)

2(α1 − α2)
(23a)  

where 

A = 2λcos
[
(α1 − α2)π

2

]

+ 2cos
(α1π

2

)
(ωτMF)

α2 (23b)  

B = λ2 + 2λcos
(α2π

2

)
(ωτMF)

α2 + (ωτMF)
2α2 (23c) 

In order to obtain the relaxation time distribution H(τ) of the modified fractional model, we can take ν = 1/τMF, where ν is the 
relaxation frequency. The spectrum is related to the normalized relaxation function ϕ(t) via 

ϕ(t) =
∫∞

0

h(ν)e− νtdν (24) 

Laplace transform is taken on both sides of Eq. (24) 

ϕ∗(iω)

iω =

∫∞

0

h(ν)
ν + iω dν (25a)  

with 

ϕ∗(iω) =
1

1 + λ(iωτ)− α2 + (iωτ)− α1 (25b) 

Since the function ϕ∗(iω)/iω is the Stieltjes transformation of the relaxation spectrum h(ν), the relaxation spectrum h(ν) can be 
calculated by using the properties of the inverse Stieljes transformation (Tschoegl, 1989) 

Fig. 5. (a) The fractional Zener model and (b) the modified fractional model.  

Fig. 6. (a) Normalized loss modulus curves calculated from Eq. (23a), where the values of parameter α1 and α2 are between 0.2 and 0.8. (b) 
Corresponding distribution of relaxation time H(τ) under different values of α1 and α2. 
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h(ν) = 1
2πi

(
ϕ∗(νe− iπ)

νe− iπ −
ϕ∗(νe+iπ)

νe+iπ

)

(26) 

Combining Eqs. (10a) and (24), and taking the relaxation function (Eq. (25b)) into account at the same time, the relaxation time 
distribution H(τ) of the modified fractional model can be obtained 

H(τ) = 1
π ⋅

( τMF
τ

)α1
[
sin(α1π) + λsin(α2π)

( τMF
τ

)α1 − α2
]

1 + C
( τMF

τ

)α1 − α2
+ D

( τMF
τ

)2(α1 − α2)
(27a)  

where 

C = 2λcos[(α1 − α2)π] + 2cos(α1π)
(τMF

τ

)α2
(27b)  

D = λ2 + 2λcos(α2π)
(τMF

τ

)α2
+
(τMF

τ

)2α2
(27c) 

Although the parameters of the relaxation time distribution can be obtained by fitting specific loss modulus curve, it is more 
meaningful to explore the changes of this function relative to the τMF, λ, α1 and α2 parameters. 

Fig. 6(a) shows the normalized loss modulus of the MF model as a function of frequency (Eq. (23a)), whereas the values of (G∞ −

G0)/G∞, τMF and λ are fixed as 0.5, 1 and 1, respectively. It can be seen from the figure that different combinations of α1 and α2 leads to 
different frequency dependence of the loss modulus. Meanwhile, it can be found that (G∞ − G0)/G∞ and τMF do not strictly limit the 
peak value and peak frequency. Then, their relaxation time distribution H(τ) is given, as shown in Fig. 6(b). In general, with the 
increase of α1 and α2, the strength of loss modulus increases, and the change of relaxation time distribution is relatively complex, 
requiring more detailed comparison. 

To further investigate the changes in the relaxation time distribution due to the changes of individual parameters, here we fix α1 to 
be 1. The changes of relaxation time distribution relative to α2 and λ are shown in Fig. 7(a) and 7(b), respectively. In Fig. 7(a), the 
maximum value of H(τ) gradually decreases as α2 increases to ~0.4, and then develops a larger maximum value as α2 is increased 
further. Similarly, we can see in Fig. 7(b) the influence of the λ parameter variation on the relaxation time distribution. In this case, the 
maximum value of H(τ) decreases and shifts to the left as the λ parameter increases. At the same time, the λ parameter increases, H(τ)
becomes wider, which means that the relaxation time is distributed over a wider time range and the system becomes more disordered. 
However, according to Eq. (22b), there is a coupling relationship between the different parameters. It seems that it is difficult to match 
the real situation by simply changing a single parameter, although the numerical change of Eq. (27a) can be given. For all that, the MF 
model is advantageous in describing the non-Debye relaxation behaviors of amorphous solids, because it not only automatically 
satisfies the thermodynamic constraints, but also incorporates the memory effect through the fractional order operators. At the same 
time, the rich evolution of the relaxation time distribution brought about by changing the parameters also presents an opportunity to 
search for the physical origin of the MF model. In the following article, we will further enrich the content of the MF model from a 
microscopic perspective. 

It is worth mentioning here that the above models are only suitable for describing a single asymmetric peak on the relaxation 
spectrum. When there are other obvious peaks (β relaxation, γ relaxation) in the mechanical relaxation spectrum except for α relax
ation, it is difficult to correctly describe the whole relaxation process using the KWW function or the MF model alone. This is a 
promising solution to consider the superposition of models describing different relaxation processes (Reyes-Melo et al., 2004). 

Fig. 7. Diagrams showing the change in the distribution of the relaxation time H(τ) for (a) α2 = 0.1, 0.2, 0.3, …, 0.9 (τMF = 1 s, λ = 1); (b) λ = 0.2, 
0.4, 0.6, …, 2.0 (τMF = 1 s, α2 = 0.5). 
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3.4. Generalized Maxwell model 

Two different forms of relaxation have been introduced aforementioned in viscoelastic materials. In such models, the distribution of 
relaxation times can be given based on the corresponding relaxation functions. Although the fitting of continuous relaxation time 
spectrum in experiments is satisfied, it remains to be discussed whether this is true for real distribution of relaxation times. Considering 
Eq. (10b), multiple discrete relaxation times are used to describe the real relaxation time distribution. Thus, the GM model is 
considered to further explore the intrinsic mechanism of viscoelastic behaviors. 

A Maxwell element is composed of a spring and a dashpot in series. In order to describe the complex behaviors of viscoelastic 
materials, the schematic figure of GM model is presented in Fig. 8 which contains n maxwell elements and one spring element with all 
elements in parallel. 

The strain ε in each Maxwell element should be same, equal to the sum of the strain of the spring εe
i and the dashpot εv

i in this 
Maxwell element. Therefore, we have 

ε = εe
i + εv

i , i = 1..n (28) 

Then, the total stress is given by 

σ = E∞Mε +
∑n

i=1
EiMεe

i (29) 

Through a series of processing of the stress-strain relationship of the GM model, the relaxation modulus can be given 

G(t) = G0

[

1 −
∑n

i=1
pi

(
1 − e−

t
τi

)
]

(30a)  

with 

G0 = E∞M +
∑n

i=1
EiM , pi =

EiM

E∞M +
∑n

i=1EiM
, τi =

ηiM

EiM
, i = 1..n (30b) 

The storage modulus and loss modulus of GM model are given as following 

G′

(ω) = G0

[

1 −
∑n

i=1

pi

1 + τ2
i ω2

]

(31a)  

G′′(ω) = G0

∑n

i=1

piτiω
1 + τ2

i ω2 (31b) 

For the GM model, it can be seen that the relaxation spectrum is a discrete spectrum in the form of Eq. (10b), which cannot be given 
explicitly as in the two previous models. Although the GM model is not limited to the specified relaxation time distribution, the value of 
n should be large enough to obtain sufficiently accurate results, which will increase the computational effort significantly. 

4. Result and discussion 

4.1. DMA as a function of frequency 

DMA is essentially a thermal and mechanical coupling process, which is convenient to measure the viscoelastic response under 
oscillating deformation (Hao et al., 2022). For MGs, the dynamic mechanical behavior depends on the driving frequency and 

Fig. 8. Generalized Maxwell model.  
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temperature (Menard and Menard, 2020). Fig. 9(a) and (b) show the normalized storage modulus G′

/Gu and loss modulus G′′ /Gu of 
Cu46Zr47Al7 MG as a function of driving frequency with a temperature interval of 5 K, respectively. The decrease of storage modulus G′

with the increase of temperature (or the decrease of frequency) indicates that the mechanical behavior of Cu46Zr47Al7 MG changes 
from elasticity to viscoelasticity upon heating or slowing down of oscillation. At higher temperature, the peak of loss modulus becomes 
obvious due to the existence of α relaxation, which is the characteristic of amorphous materials (Pelletier et al., 2002). At the same 
time, the α relaxation peak gradually shifts to the lower frequency direction with the decrease of temperature. It should be noted that 
there is no obvious β relaxation behavior in the loss modulus, even if the temperature has been reduced below the glass transition 
temperature. This phenomenon is similar to that observed in other CuZr-based MGs, which usually show the form of excess wing (Qiao 
et al., 2019). 

The lower frequency means longer time for atoms to migrate during one cycle of oscillation. The macroscopic flow thus become 
more pronounced. Correspondingly, higher temperature can improve the atomic mobility and thus increase the macroscopic flow. 
Specifically, the characteristics of the sample as temperature increases can also be shown when the frequency decreases, which is seen 
in Fig. 9. Therefore, the effects of frequency and temperature on the viscoelasticity are equivalent to some extent. This is the basic idea 
of time-temperature superposition (TTS) principle (Bergeret et al., 1992), which can be used to obtain the master curve of the 
normalized loss modulus in a broadened frequency domain. 

By applying the TTS principle, the master curve can be obtained by horizontally shifting the curves of different temperatures into a 
reference temperature. The reference temperature is set as 700 K in the current work, and the master curve of the normalized loss 
modulus is shown in Fig. 10(a). It is necessary to take into account the validity when using the TTS principle, that is, only the relaxation 
curves with the shape independent of temperature can be taken. For Cu46Zr47Al7 MG, it can be found that the shape of the master curve 
is similar to the curves at other temperatures, indicating that temperature has little effect on the relaxation breadth, and the contri
bution of β relaxation can also be ignored. In addition, the shifted data points are averaged to optimize the master curve, as shown in 
Fig. 10(b). 

Previous work has shown that the α relaxation peak in the frequency spectrum can be well described by the KWW function (Eq. 
(14)) (Qiao and Pelletier, 2014b). The value of β can be obtained from the fitting of KWW equation, as the solid line shown in Fig. 10 
(b). β is determined to be ~0.53. The value of β is similar to those obtained in other CuZr-based MGs (Qiao et al., 2016; Tao et al., 
2021). At the same time, the value of characteristic relaxation time τKWW based on the form of extended exponential equation is ~29.7 
s. It should be noted that in the high-frequency tail of the master curve, there is a small deviation between the data points and the KWW 
fitting curve, which may be caused by the β relaxation in the form of excess wing. Although the KWW function can well describe the α 
relaxation, its physical meaning is still not very clear. Wang et al. (2014) linked β with the degree of dynamic heterogeneity in the 
supercooled liquid, and a smaller β usually represents a larger dynamic heterogeneity of the system. Lukichev (2019), based on the 
mechanical oscillator model, argued that the KWW function describes the motion related to coordinate dependent viscosity. 

Fractional rheology based on the power law has been proved to be satisfactory description of the viscoelastic behavior in polymers 
(Fang et al., 2015; Nadzharyan et al., 2018). In our work, the MF model is proposed to be combined with Zener model and the 
fractional element, which is used to describe the dynamic response of MGs. At the same time, we take α1 as 1, which will be introduced 
later. The fitting result of MF model (Eq. (23a)) is shown in the dotted line in Fig. 10(b). It can be found that the MF model is in good 
agreement with the data points in the whole observation frequency range. Compared with the KWW function, MF model can describe 
the viscoelastic behavior of Cu46Zr47Al7 MG in a wider frequency range. It implies that the fractional rheological model can be also 
used in MGs. 

4.2. Physical origin of the MF model 

In polymers, the fractional rheological model has been explained by the generalized Langevin equation (Sharma and Cherayil, 
2010). In order to explore the physical interpretation of MF model, τmol and χ are used instead of τMF and α2, respectively. For MGs, the 

Fig. 9. DMA curves in the Cu46Zr47Al7 MG as a function of frequency at various temperatures (650 to 725 K by step of 5 K). (a) The normalized 
storage modulus G′

/Gu and (b) the normalized loss modulus G′′/Gu, respectively. 

F. Zhu et al.                                                                                                                                                                                                             



International Journal of Plasticity 164 (2023) 103588

12

α1 parameter can be considered equal to 1 (Cavaillé et al., 1991; Pelletier et al., 2002; Qiao and Pelletier, 2014a). Thus, Eq. (22a) can 
be rewritten as 

G∗ = G0 + (G∞ − G0)
1

1 + λ(iωτmol)
− χ

+ (iωτmol)
− 1 (32)  

where χ is a correlation factor. Eq. (32) is the frequency domain expression of the QPD theory. Perez et al. (Perez, 1990; Perez et al., 
1983) proposed the QPD theory based on the concept of “quasi-point defects”, which was first used to describe the relaxation 
mechanism and the mechanical deformation mechanism of amorphous polymers. In the framework of QPD theory, density fluctuations 
accompanied by fluctuations in entropy or enthalpy in amorphous materials are considered as quasi-point defects. In the process of 
nucleation, merging and expanding of the quasi-point defects, atoms or molecules of glass forming liquid can move relatively, resulting 
in a macroscopic dynamic relaxation behavior. According to QPD theory, the global characteristic relaxation time τmol of atoms or 
molecules in amorphous materials can be defined as (Mangion et al., 1992; Pelletier et al., 2002): 

τmol = t0

(
τβ

t0

)1/χ

(33)  

where t0 is a time scale factor. τβ is the characteristic time of the elementary movements related to β relaxation, which follows the 
Arrhenius law: 

τβ = τ0βexp
(

Uβ

kT

)

(34)  

where Uβ is the activation energy of β relaxation, k is the Boltzmann constant, T is the absolute temperature, and τ0β is a pre- 
exponential factor. 

Due to the disordered arrangement of atoms in MGs, the activation energy Uβ in Eq. (34) should adopt a distribution function 
instead of a single value (Egami, 2011; Yang et al., 2012). Previously, lognormal distribution or discretized normalized Gumbel 
distribution is often used to describe the distribution of τβ (Hao et al., 2022; Rinaldi et al., 2011). In this work, we take a continuous 
function to describe the asymmetric distribution, as given in Eq. (12). Thus, 〈τβ〉 should be used instead of τβ in Eq. (33), where 〈τβ〉 is 
the most probable value of τβ. Rinaldi et al. (2011) argued that there are four contributions of deformation in QPD theory based on 
hierarchical correlation, including elastic component, β relaxation, and the viscoelastic and viscoplastic components of α relaxation. 
Here, the expression of complex compliance J∗ is given 

J∗ =
1

Eel
+ Aβ

∫∞

0

H
(
τβ
)

1 + iωτβ
dlnτβ + Ave

∫∞

0

H(τve)

1 + iωτve
dlnτve + Avp

∫∞

0

H
(
τvp

)

1 + iωτvp
dlnτvp (35)  

where Eel is storage modulus at ambient temperature. Aβ, Ave and Avp are regarded as the intensity of the β relaxation process, 
viscoelastic deformation and viscoplastic deformation. Meanwhile, τβ, τve and τvp are considered as the relaxation time of the above 
three processes, respectively. Note that G∗ in Eq. (32) is simply the inverse of the J∗ expression. This means that both the storage 
modulus G′ and the loss modulus G′′ can be simply deduced from J′ and J′′. 

Considering the range of temperature and frequency in which the DMA experiment were conducted, the viscoplastic deformation 
component in Eq. (35) can be neglected. Thus, the viscoelastic deformation component can be equivalent to contribution of α 
relaxation. In this case, Eq. (35) can be rewritten as 

Fig. 10. (a) Master curve obtained by TTS principle. (b) Description of the experimental data by different models. The solid line is fitted by the 
KWW equation, where β = 0.53 and τKWW = 29.7 s. The dotted line is fitted by the MF model, where (G∞ − G0)/G∞ = 0.94, τMF = 35.1 s, λ = 0.99 
and α2 = 0.35. 
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J∗ =
1

Eel
+ Aβ

∫∞

0

H
(
τβ
)

1 + iωτβ
dlnτβ + Aα

∫∞

0

H(τα)

1 + iωτα
dlnτα (36)  

where Aα and τα are the intensity and relaxation time of α relaxation, respectively. In addition, because of the asymmetry of α 
relaxation process, here τα adopts the same distribution as τβ. At this point, the loss modulus can be understood as a superposition of 
two KWW functions with different empirical exponents (βKWW− α, βKWW− β) and characteristic relaxation time (τKWW− α, τKWW− β), as 
shown in Fig. 11(a). It can be seen that the calculated master curve is able to fit the experimental data better compared to the use of a 
single KWW function. Moreover, the β relaxation in the form of excess wing is successfully separated from the master curve. The 
contributions of different components to the relaxation time distribution are given in Fig. 11(b). Furthermore, it can be seen that the 
relaxation time distribution obtained from the superposition of two components deviates from the distribution given by the QPD 
theory, although they are very close in the description of the main curve. This implies that the QPD theory is not simply a superposition 
of two KWW functions, and as mentioned before there are essential differences between them. Nevertheless, due to the difficulty of 
deconstructing Eq. (27a) directly, giving a priori distributions of relaxation time for different processes is still very relevant for a deeper 
understanding of the QPD theory. 

In QPD theory, the correlation factor χ, corresponding to α2 in Eq. (22a), is closely related to the concentration of quasi-point 
defects, which reflects the degree of short-range order, and can quantitatively indicate the atomic mobility of amorphous materials 
and the change of quasi-point defects concentration in the relaxation process. When the value of χ is 0, the material is completely 
ordered, corresponding to the ideal crystal. The motion of atoms or molecules is completely related, and the motion of structural units 
is affected by the motion of all other units. At this time, the concentration of quasi-point defects in the system is the smallest. On the 
contrary, when the value of χ is 1, the material is completely disordered, corresponding to the ideal gas. The motion of all structural 
units is independent of each other and the quasi-point defect concentration reaches the maximum. The loss factor tanδ, defined as the 
ratio of loss modulus to storage modulus G′′/G′ , is an important factor to reflect how much materials can lose energy due to dynamic 
deformation. In the framework of QPD theory, the evolution of loss factor tanδ of amorphous materials with frequency can be expressed 
as 

ln(tanδ) = −
Uβ

kT
− χln(ω) − χln(τ∗) + ln(λ) (37)  

where τ∗ corresponds to the mean time required for the structural unit to move over its equal size distance. Below Tg, MGs remain in an 
isoconfigurational state and thus the value of χ is constant, so the Arrhenius behavior can be expected. On the contrary, metastable 
thermodynamic equilibrium will occur when temperature is above Tg, and χ increases with temperature. In a first approximation, the 
evolution of correlation factor χ with temperature can be assumed to obey simple forms 

χ(T) = χ
(
Tg
)

for T < Tg, (38a)  

χ(T) = χ
(
Tg
)
+ a

(
T − Tg

)
for T ≥ Tg (38b)  

where a is the slope. 
Fig. 12(a) shows the logarithmic relationship between the loss factor tanδ and angular frequency ω of Cu46Zr47Al7 MG at different 

temperatures. The correlation factor χ can be determined by the slope of the solid line fitted by Eq. (37). It can be seen that the 
experimental data between 650~710 K can be well described by Eq. (37). Fig. 12(b) shows the evolution of correlation factor χ with 
temperature. It can be found that the evolution of correlation factor with temperature conforms to Eq. (38). As shown in Fig. 12(b), the 

Fig. 11. (a) Master curve of the normalized loss modulus. Red solid line: calculated curve. The dashed lines respectively denote individual con
tributions to the α and β relaxations, where βKWW− α = 0.58, τKWW− α = 29.7 s, βKWW− β = 0.41, τKWW− β = 0.17 s, and Aα/Aβ = 8.1. (b) The dashed 
lines indicate the separate contributions of α and β relaxation to the relaxation time distribution, respectively. The red solid line is a superposition of 
the contributions from α component and β component. The dotted line is fitted by the MF model. 
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parameter χ remains around constant when the temperature below Tg due to the glassy solids stay in isoconfigurational state. The glass 
transition temperature can be determined around 689 K, which is very close to the 683 K obtained from the DSC curve. The values of χ 
below Tg are between 0.3 and 0.4 for most typical MGs (Zhang et al., 2021), the value of χ below Tg in the current work is determined to 
be 0.346, which is consistent with other works in the literature. According to the QPD theory, the structure in the amorphous system is 
in a frozen state below Tg, thus the concentration of quasi-point defects remains almost constant and the atomic mobility is limited. 
Above Tg, a large number of frozen atoms are activated and the concentration of quasi-point defects increases with the increase of 
temperature, resulting in a significant increase in χ. Fig. 12(b) shows a linear increase of the correlation factor χ above Tg and the slope 
is determined to be 5.04 × 10− 3. 

In previous reports, the microstructure heterogeneity of MGs was qualitatively described based on concentration of defects, which 
was considered to be closely related to plastic deformation (Gao and Bei, 2016; Li et al., 2015; Qiao et al., 2019). KWW function was 
widely used in the research of MGs, and the parameter β can qualitatively describe the dynamical heterogeneity (Wang et al., 2014). 
Here we list the β of some MG systems to compare with the corresponding χ in QPD theory, as shown in Table 1. It can be seen that the 
MF model based on QPD theory can be well applied to various MGs. In particular, QPD theory can accurately describe the decrease of 
concentration of defects after annealing (Qiao et al., 2017). Meanwhile, in the process of microalloying, the elaboration of defect 
evolution in QPD theory is consistent with KWW function (Tao et al., 2021). 

4.3. Discretization analysis of the microstructure of MGs 

The explicit expressions of relaxation time distributions based on the KWW function and the power-law form can be given in 
continuous forms, however, the intrinsic nature of the discrete atoms in MGs indicates that the true distribution might be discrete 
rather than continuous. Recently, in the quasistatic measurements of the amorphous Al86.8Ni3.7Y9.5 ribbon, Ju et al. (2011) successfully 
obtained the distribution of discrete relaxation times and revealed the quantized hierarchy of STZs with the help of direct spectrum 
analysis. Jiao et al. (2013) proposed that MGs may be composed of an elastic matrix and a series of scattered deformation units, and 
gave evidence for structural heterogeneity by analyzing deformation units with various relaxation times in the Pd-based MG. In 
nanoindentation pop-in tests, Gao and Bei (2016) employed the unified model to describe the defect density of MGs, and proposed a 
phenomenological model of ductile-versus-brittle behavior based on hard matrix and soft zones at the micro scale. Ke et al. (2014) and 
Tao et al. (2022) gave the direct reflection of the structural heterogeneity by conducting the local indentation matrix in nano
indentation experiments of MGs. In order to acquire the distribution of local mechanical properties of the Cu46Zr47Al7 MG, the 
nanoindentation experiments were repeated at 10 × 10 different positions in a square lattice with a spacing of 270 μm. Fig. 13(a) and 
(b) show the mapping of local reduced modulus and local hardness as obtained from the nanoindentation experiments. As illustrated in 
this figure, the tested amorphous structure exhibits the variations in the local static property, which indicates the microstructural 
heterogeneity. Fig. 13(c) and (d) display the statistical distributions of local reduced modulus and local hardness, all of them can be 

Fig. 12. (a) Influence of the driving frequency on the logarithm of the loss factor tanδ at different temperatures. The solid lines represent theoretical 
fits by Eq. (37); (b) Evolution of the correlation factor χ with temperature. 

Table 1 
Chemical composition, glass transition temperature Tg, empirical exponent β and correlation factor χ for some MGs.  

Metallic glasses Tg (K) β χ (below Tg) 

Cu46Zr47Al7 (current work) 683 0.53 0.346 
Cu46Zr46Al8 (as-cast) (Qiao et al., 2017) 691 – 0.37 
Cu46Zr46Al8 (annealed at 623 K) (Qiao et al., 2017) – – 0.34 
Zr50Cu40Al10 (Tao et al., 2021) 691 0.49 0.383 
(Zr50Cu40Al10)98Dy2 (Tao et al., 2021) 683 0.48 0.395 
Pd43Ni10Cu27P20 (Pelletier et al., 2002) 568 0.5 0.40 
(LaCe)32.5Co20Al15 (Zhai et al., 2018) 422 0.463 0.44  
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well fitted to the Gaussian curve, which is consistent with the previous investigations (Ke et al., 2014; Tao et al., 2022; Wagner et al., 
2011). 

The dynamical heterogeneity seems to arise from the structural heterogeneity (Jiao et al., 2013), in the concept of dynamic het
erogeneity, there are various local regions with different sizes in the MGs where atoms move at different rates, thus leading to different 
relaxation times in these regions (Berthier, 2011) (as is schematically displayed in the illustration in Fig. 14). These local relaxation 
behaviors contribute to the overall relaxation, and the discrete distribution of relaxation time can be obtained by collecting the 
characteristic relaxation times of different regions. For Cu46Zr47Al7 MG, Fig. 14 shows the schematic diagram of contributions of 
different regions to the overall relaxation. Each region only has one single characteristic relaxation time, and its response is considered 
to conform to a Debye relaxation behavior (as shown in Eq. (4)). In order to further explore the real change of the intrinsic relaxation 
times, the GM model is used, and each region is equivalent to a Maxwell element (as illustrated in Fig. 8). 

As described above for the GM model, Eq. (31b) can be used to fit the loss modulus as a function of frequency. The number of 

Fig. 13. Mapping of (a) local reduced modulus and (b) local hardness of Cu46Zr47Al7 MG at the indentation load of 10 mN and the scanning space of 
270 μm. On the right are the corresponding statistical distribution of (c) local reduced modulus and (d) local hardness. The red dashed lines are the 
Gaussian fitting to the experimental data. 

Fig. 14. Schematic diagram of the relaxation spectrum and the decomposed independent relaxation times. The solid line is the best fitting of the 
QPD model. The inset is a schematic illustration of the corresponding spatial distribution of the heterogeneous relaxation time domains in 
Cu46Zr47Al7 MG. 
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Maxwell elements, n, should be as large as possible to ensure that the calculated relaxation time distribution is smooth enough. At the 
same time, a large value of n means that more computational resources are required. In addition, n should not exceed the number of 
data points to avoid the uncertainty of the solution. The pi are fitting parameters, and the τi are fixed and spaced logarithmically. 
Owing to the reciprocal relationship between relaxation time and angular frequency, there are τmin = 1/ωmax and τmax = 1 /ωmin. In the 
current work, n is set as 80 and the corresponding relaxation times are set to be equally logarithmic spaced from τmin = 1 /4ωmax to τmax 
= 4/ωmin, so as to obtain the change of relaxation time in a relatively wide range. In order to make the calculation result converge 
better, p1 = 0 and p80 = 0 are taken as boundary conditions. In the calculation process, the regularization factor is introduced to 
prevent over fitting. According to Eq. (10b), the intensity of the relaxation time spectrum, H(τi), is given by 

H(τi) = pi/Δlnτ. (39) 

The calculation results are shown in the histogram in Fig. 15. To further compare with the continuous spectrum of relaxation time, 
the relaxation time distribution derived from KWW function and MF model are obtained according to Eq. (12) and (27a). For the model 
with continuous spectrum, the relaxation time distribution shows only a single peak. As shown in Fig. 15, the MF model shows a 
narrower and higher peak, while the distribution peak of KWW function is broader and lower. For the discrete relaxation time 
spectrum, although the overall trend is similar to the continuous spectrum, there are many small peaks, which reflects the dynamic 
heterogeneity in MGs. 

The relationship between the relaxation time τ and the activation energy spectrum Ea is τ = τ0exp(Ea /KT). Moreover, the acti
vation energy spectrum in fact approximately conforms to the Gaussian distribution. In this context, Jiao et al. (2013) and Liu et al. 
(2022) speculate that the relaxation time spectrum conforms to the lognormal distribution, and the stress relaxation experimental data 
can be well described by the flow unit model. As shown in Fig. 16, by further processing the discrete relaxation time spectrum, it can be 
found that each peak can be well described by the log-normal distribution. According to the results, we infer that the relaxation time 
distribution in MGs should be the superposition of multiple log-normal distribution processes, rather than a simple log-normal dis
tribution. This fact further reflects the heterogeneity of the internal structure of MGs. Lei et al. (2020) deemed that the peaks on 
different time scales correspond to different processes in MGs. The peaks near the relaxation time corresponding to the peak frequency 
of loss modulus show a wider and higher form, which correspond to the α relaxation process. At the same time, the small peaks at the 
smaller time scale are considered as evidence of the existence of the β relaxation. 

The discretization of the peaks in relaxation time distribution directly reflects the differences of relaxation times between different 
regions. The difference of dynamic response originates from the microstructural heterogeneity in MGs. Ju et al. (Ju and Atzmon, 2014; 
Ju et al., 2011) associated discrete peaks of relaxation time distribution to STZs in MGs. In the presence of shear stress, small clusters 
composed of multiple atoms will spontaneously rearrange cooperatively (Argon, 1979). Clusters migrate across the energy barrier to a 
lower energy state, and inelastic shear deformation occurs in the system. In the process of continuous loading, the local plastic flow in 
the STZ causes more local STZs through percolation. These STZs expand and merge with each other, and finally show macro shear 
zones. The strain of MGs is mainly concentrated in the shear band with a thickness of only tens of nanometers (Qiao et al., 2019; Van 
Loock et al., 2021). Through the multi-peaks fitting of the discrete relaxation time spectrum, there are 11 distinct peaks in Fig. 16. Each 
peak can be considered to corresponds to a specific type of STZs (see the inset of Fig. 16). As mentioned by Ju et al. (2011), the area of a 
peak m represents the volume fraction occupied by potential m-type STZs, and there are atomic level differences between different 
types of STZs. Therefore, the discrete relaxation time distribution reveals the discrete nature of microstructure in MGs, which also helps 
us understand the diversity of STZs in MGs. 

5. Conclusion 

In this work, the dynamic mechanical spectrum of a Cu46Zr47Al7 MG in frequency domain is probed by means of DMA technique. 
When describing the non-Debye relaxation, the MF model is proposed based on the fractional rheology in addition to the commonly 
used KWW function, and both models can well describe the experimental data. We use QPD theory to enrich the internal physical 
interpretation of the MF model, and point out that the fractional order factor is related to the concentration of the quasi-point defects. 
For Cu46Zr47Al7 MG, the structure is in a frozen state below Tg, thus the concentration of quasi-point defects remains almost constant 
and the atomic mobility is limited. Above Tg, a large number of frozen atoms are activated, and the concentration of quasi-point defects 
increases with the increase of temperature, resulting in a significant increase of the parameter χ. In this way, through responsive 
combination of several well-known mechanical models, we provide a physics-motivated fractional-order description of the viscoelastic 
deformation in amorphous solid. It further sheds light on constructing a quantitative relationship between property and heterogeneous 
structure of amorphous materials. 
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Mangion, M.B.M., Cavaillé, J.Y., Perez, J., 1992. A molecular theory for the sub-tg plastic mechanical response of amorphous polymers. Philos. Magazine A 66, 

773–796. 
Menard, K.P., Menard, N.R., 2020. Dynamic Mechanical Analysis. CRC Press. 
Metzler, R., Schick, W., Kilian, H.G., Nonnenmacher, T.F., 1995. Relaxation in filled polymers: a fractional calculus approach. J Chem Phys 103, 7180–7186. 
Nadzharyan, T.A., Kostrov, S.A., Stepanov, G.V., Kramarenko, E.Y., 2018. Fractional rheological models of dynamic mechanical behavior of magnetoactive elastomers 

in magnetic fields. PolymerPolymer (Guildf) 142, 316–329. 
Nutting, P.G., 1921. A new general law of deformation. J. Franklin. Inst. 191, 679–685. 
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