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A B S T R A C T

Study Region: Hulun Lake, the fifth largest lake in China.
Study Focus: The notable decline in water level (WL) caused by climate change is the primary
challenge faced by Hulun Lake. However, the contribution of climate to water loss and its
driving mechanisms remain unclear. The impact of climate on WL change was investigated
using wavelet analysis and structural equation models.
New Hydrological Insights for the Region: In the past 60 years, the increasing potential
evapotranspiration (ET𝑝) caused by warming climate was the main reason for the WL decline
(r=−0.67). For period I (1961–1997), reduced runoff due to increasing ET𝑝 caused an overall
decrease in WL (r = 0.41). During the mid-1980s, the increase in rainfall driven by ENSO (r
= −0.66) caused a slight increase in WL (r = 0.31). For period II (1998–2020), deforestation,
farmland and urban area expansion were the main drivers behind the significant increase of ET𝑝
in the watershed (r = −0.22), which leads to reduced runoff and, consequently, a significant
decrease in WL. The influence of climate on WL change weakened compared with that in the
first period due to land use change (r = −1.08).

1. Introduction

Lakes respond rapidly to climate change, especially in arid and semi-arid regions (Woolway et al., 2020; Woolway and
Merchant, 2019). Some manifested consequences include decline in water volumes, increased water temperature, ecosystem
degradation, etc (Yang et al., 2019, 2020). As a sentinel to climate change, water level (WL) regime is also an intuitive indicator
of lake water resources (Kraemer et al., 2020), which can comprehensively reflect hydrological processes (e.g., runoff generation,
evapotranspiration and rainfall) of the basin and the abundance of lake water storage. In the past decades, global warming and
anthropogenic activities have caused a sharp decrease in WL in closed inland lakes in northern China. The number of lakes larger
than 1 km2 in Inner Mongolia decreased by 159 between 1991 and 2009 (Zhou et al., 2019). There is an impending need to
investigate the impact of climate change on lake WLs in semi-arid and arid regions for watershed management and lake water
conservation.

Among all drivers, climate change has shown a widespread impact on lake WLs in arid regions. Due to the complexity and
nonlinearity of climate factors, their impact on WL typically manifests across different time spans (Rezaei and Gurdak, 2020). With
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the gradual strengthening of human activities, the dual influences on the evolution of watershed environment and on WL requires a
more thorough and discreet verification (Cooley et al., 2021). Climate impact on lake WL has drawn great attention in recent years,
where researchers applied different approaches to reveal the response and driving mechanism of lake WLs against various changing
climatic factors. Those methods include statistical models (such as the least squares regression model and Bayesian network),
conceptual models (such as the Budyko hypothesis and SCS-CN models) (Wang, 2018; Zhang et al., 2015) and process-based models
(such as SWAT, Delft3D) (Chen et al., 2018; McCombs et al., 2014). These methods tend to focus on the impact of individual variables
(e.g., precipitation, air temperature and runoff) on WL. However, lake WL variation often results from complex interactions between
meteorological factors, such as evaporation and precipitation, as well as from watershed hydrological factors such as inflow (Kundu
et al., 2017). How to disentangle such interaction in the context of changing conditions remains a challenge. By considering the
interaction between independent variables, SEM can effectively quantify the combined effect of multiple influencing factors on target
variables (Jia et al., 2020; Song et al., 2021). It can be used to distinguish the direct and indirect effects of hydrometeorological
factors on WL change and is thus considered a powerful method for better WL attribution analysis.

Hulun Lake is the largest lake in northern China and plays a substantial role in water conservation, biodiversity maintenance,
nd climate regulation (Cao et al., 2021a). Since it is located in the middle and high latitudes of the marginal area affected by the
outheast monsoon, the regional hydrological cycle is relatively sensitive to climate change. In recent decades, the WL of Hulun
ake has shown a significant downward trend (Liu and Yue, 2017), with prominent ecological and environmental problems such
s wetland shrinking and water quality deterioration (Fang et al., 2019). Although many studies have applied machine learning
lgorithms, water balance models and other approaches to analyze the attribution of WL decline under climate change (Cai et al.,
016; Fan et al., 2021), few of them considered the interactions of multiple factors when explaining the driving mechanism. In
ddition, with increasing droughts in the basin, the intensification of human activities and significant land use changes in recent
ears (Zhang et al., 2019), it still remains unclear how the contribution of climate to WL changes over time, and the underlying
riving mechanism requires further clarification to improve the management strategy of Hulun Lake WL.

This study aims to explore the influence of climate on WL change in Hulun Lake from 1961 to 2020. Based on wavelet analysis
nd the SEM, the purpose of this study is to: (1) analyze the characteristics of regional climate and lake level change; (2) quantify
he contribution of climate change to WL variation; and (3) explore the driving mechanism of WL changes in Hulun Lake during
ifferent periods. The results can provide a scientific basis for the management of Hulun Lake and water resource protection in
he basin and also provide important information for revealing the driving mechanisms of lake WL changes in other cold and arid
egions under changing climate.

. Data and methodology

.1. Study area

Hulun Lake (48.30◦–49.20◦N, 117◦–117.41◦E) is located in the western part of the Hulun Buir grassland in Inner Mongolia (Wu
et al., 2015), close to the borders of China, Mongolia and Russia (Fig. 1). The lake area is approximately 2134.05 km2 with
an average depth of 4.71 m. The lake basin features a typical temperate continental climate, with 90% of the area covered by
grasslands (Xiao et al., 2009). Rainfall is concentrated in summer, accounting for about 72.2% of the annual total amount, and the
average temperature is around −1.36 ◦C. Winter lasts from mid-October to early May, which is also the glacial period of the lake.

There are over 60 rivers and streams in the basin, of which Kherlen and Urshen are the largest. The Kherlen River, located
outhwest of Hulun Lake, originates from the eastern foot of the Khentii Mountains in the People’s Republic of Mongolia. It flows
rom west to east before entering Hulun Lake, with an average annual runoff of 4.6 × 108 m3. The Urshen River originates from the

Greater Khingan Mountains southeast to Hulun Lake, with an average annual runoff of 6.11 × 108 m3. Runoff, precipitation and
evapotranspiration are the main components of the multi-year water balance of Hulun Lake (Fu et al., 2021).

Since 2000, Hulun Lake did not discharge any outflow due to the WL decline. To remediate the situation, in 2010, the local
government excavated an artificial channel in the northeast of the lake to divert Hailar river into Hulun Lake during flood season (Li
et al., 2021).

2.2. Datasets

Monthly WL data of 1992–2020 was obtained from Hydroweb (http://hydroweb.theia-land.fr) developed by the Laboratoire
d’Études en Gèo-physique et Océanographie Spatiales (LEGOS), which has been proven a reliable dataset by multiple scholars (e.g.
Cretaux et al., 2011; Liu and Yue, 2017). [Annual] in-situ WL observations for 1961 to 2011 were obtained from the Dalai gauge
(49◦08’, 117◦22’). The overlapping period (1992–2011) between the LEGOS altimetry and the in-situ measurements showed a high
correlation (𝑟2 = 0.99; see Fig.S1). Then, the two datasets were merged together to construct a long time series (1961–2020) to
be used in this study. The meteorological data were obtained from Climatic Research Unit (CRU), which provides interpolated
grid datasets for 4000 gauging stations worldwide across a long time scale (Harris et al., 2020). In this study, four climate
variables, namely precipitation (Pre), potential evapotranspiration (ET𝑝), surface temperature (Tmp), and vapor pressure (Vap),
were downloaded from CRU TS Version 4.05 product (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/) for 1961 to 2020. Sea
surface temperature (SST) anomalies in the Niño 3.4 regions were obtained from NOAA (https://www.esrl.noaa.gov/psd/gcos_wgsp/
Timeseries/Nino34/) to represent ENSO [(El Niño-Southern Oscillation)] intensity. Using SST data, we calculated the ENSO index
2

for December to February and the NAO (North Atlantic oscillation) index for November to March. Landcover data from 1992 to
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Fig. 1. The geographical location of Hulun Lake and its watershed.

2020 were obtained from the European Space Agency Climate Change Initiative. The dataset has a spatial resolution of 300 × 300 m
and includes 37 landuse types (Hollmann et al., 2013), which were then reclassified into 8 categories (i.e., cropland land, forest,
grassland, bare land, vegetation, water body, urban land, and others). The standardized precipitation evapotranspiration index
(SPEI), downloaded from the institutional repository of the Spanish National Research Council (http://digital.csic.es/), was used to
indicate the droughts in the watershed.

2.3. Methods

2.3.1. Abrupt change point detection
The Mann–Kendall (M–K) significance test and moving t-test were performed to identify abrupt change points of WL variation

during 1961–2020. The M–K test is a non-parametric statistical test that is widely used to evaluate the trends of hydrological time
series (Guclu, 2018). A positive value of the forward curve (UF) indicates an increasing trend of a time series, while a negative
value indicates a decreasing trend. The intersection of the UF and backward curve (UB) within 5% confidence interval is identified
as a change point. The moving t-test can detect whether the mean values of the two sub-samples change significantly (Zhao et al.,
2015). Both methods are widely applied in the field of hydrology. The M–K test and moving t-test were implemented in MATLAB
R2020b.

2.3.2. Wavelet analysis
The wavelet analysis can reveal the local characteristics of a time series in time–frequency domain, making it suitable for studying

hydrometeorological time series with multiple time-scales and nonstationary characteristics (Labat, 2005; Labat et al., 2005). A
wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero. The
wavelet function should satisfy the following conditions:

∫

∞

−∞
𝜓(𝑡)𝑑𝑡 = 0 (1)

Where 𝜓(𝑡) is the basic wavelet function. The continuous wavelet transformation of signal 𝑓 (𝑡) ∈ 𝐿2(𝑅) can be expressed as:

𝑊𝑓 (𝑎, 𝑏) = ∫

∞

−∞
𝑓 (𝑡)𝜓∗

𝑎,𝑏(𝑡)𝑑𝑡

𝜓𝑎,𝑏(𝑡) =
1
√

𝑎
𝜓( 𝑡 − 𝑏

𝑎
), 𝑎, 𝑏 ∈ 𝑅, 𝑎 ≠ 0

(2)

𝑊𝑓 (𝑎, 𝑏) is the wavelet transform coefficient; 𝜓∗(𝑡) is the complex conjugate function of 𝜓(𝑡); 𝑎 is the scale factor that reflects
the period length of the wavelet and 𝑏 is the shift factor, which is the shift in reaction time.
3
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Wavelet coherence (WTC) was applied to identify the frequency bands within which two time series co-varied and can be defined
s:

𝑅2
𝑛(𝑎) =

|𝑏−1𝑊 𝑋𝑌
𝑓 (𝑎)|2

𝑆(𝑎−1|𝑊 𝑋
𝑓 (𝑎)|2) ⋅ 𝑆(𝑎−1|𝑊 𝑌

𝑓 (𝑎)|2)
(3)

Where 𝑅2
𝑛(𝑎) presents wavelet coherence, and 𝑆 is a smoothing operator for both scale and time domain which is defined as:

𝑆(𝑊 ) = 𝑆𝑠𝑐𝑎𝑙𝑒(𝑆𝑡𝑖𝑚𝑒(𝑊 𝑆
𝑛 (𝑠))) (4)

Where 𝑆𝑠𝑐𝑎𝑙𝑒 smooths along the scale axis and 𝑆𝑡𝑖𝑚𝑒 smooths along the time axis. The wavelet coherence spectrum quantitatively
measures the cross-correlation of two factors in multiple temporal scales.

2.3.3. WL influence factor quantifications
Two coherence indicators, namely single-scale coherence rate (SCR) and percentage area significant coherence (PASC), are

defined to assess the influence of individual factors on WL at different scales and to quantify the coherence relationship between
WL and climate factors.

SCR𝑐 =
𝑁𝑐𝑠
𝑁𝑡𝑠

PASC𝑐 =
𝐴𝑠
𝐴𝑡

× 100%
(5)

where 𝑁𝑐𝑠 represents the number of years in which the WL coherence index is larger than 0.5 at scale 𝑠; 𝑁𝑡𝑠 refers to the total
umber of years at scale 𝑠, which equals 60 in this case. SCR𝑐 was used to quantify the coherence relationship between WL and

the climate factor (𝑐) at the scale 𝑠. The higher the SCR𝑐 , the more years the influencing factor 𝑓 is significantly coherent with WL
at scale 𝑠. For climate factor 𝑐, a high value of SCR𝑐 also indicates strong multi-scale stability of coherence relationship between
WL and climate factor 𝑐. 𝐴𝑠 is the area of significant coherence patches; 𝐴𝑡 is the total area of coherence, which is the same for all
climate factors; PASC𝑐 reflects the significant extent of coherence between climate factor 𝑐 and WL across all years and scales. The
larger the value of PASC𝑐 , the more significant coherence between climate factor 𝑐 and WL.

2.3.4. Structure equation model (SEM)
SEM has now been widely used in different disciplines (Grace et al., 2014; Hao et al., 2020; Yang et al., 2021). Compared with

other models, SEM can effectively quantify the combined effects of multiple influencing factors on target variables by considering
the interactions between independent variables. In a complete SEM analysis, a set of hypotheses between several variables based on
the results of theoretical basis or prior research should first be constructed. The fitting indicators must then be modified until they
meet statistical requirements (Henseler et al., 2015). Typically, SEM includes observed and latent variables. The observed variables
can be directly measured and are represented by squares or rectangles. Latent variables are used to describe unobserved variables
that can be explained by observed variables and are expressed as circles or ellipses.

SEM adopts a maximum likelihood estimation using goodness-of-fit indicators, such as the comparative fit index, root mean
square error of approximation, and standardized root mean square residual. The standardized regression coefficient (r) represents
the influence of two factors, where a positive value indicates a positive influence. In this study, we considered flow, ENSO, NAO
and four climate factors as the observed variables, while land use change as the latent variable.

3. Results

3.1. Characteristics of WL variation

The WL of Hulun Lake fluctuated significantly over the past 60 years, with an average level of 543.9 m and a decreasing trend of
0.41 m/a (see Fig. 2a). As shown in Fig. 2b–d, the intersection of the positive and inverse sequence lines of the M–K test is in 1972,
1990, and 1997, whereas only 1997 is within the 5% significance level. Among positive peaks of the t-test curves for the 5-year and
15-year sliding windows, the 1997’s peak exceeded the confidence interval. Therefore, 1997 was one abrupt change point of WL.
Based on abrupt point detection, changes of the WL can be divided into two periods: a slow declining period (1961–1997) and a
drastic fluctuating period (1998–2020). In the first period (1961–1997), the WL decreased slightly by 7 mm/a. During 1961–1983,
the WL dropped by 1.8 m from 544.9 m to 543.1 m, after which WL experienced successive increases in years 1984, 1985, and 1986,
rising from 543.8 m to 545 m, and then fluctuated at approximately 544.8 m. In the second period (1998–2020), the WL declined
dramatically, with an overall declining rate of 37.6 mm/a. During 1998–2011, the WL dropped sharply by 3.47 m, from 544.52 m
to 540.97 m at a rate of 330 mm/a. Then, WL experienced a recovery period after 2012, rising from 540.96 m to 543.84 m in 2020,
which is consistent with the observed records by Jason satellite data (Li et al., 2019).
4
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Fig. 2. The inter-annual variation of the Hulun Lake WL from 1961 to 2020 (a), and the abrupt changing point identification diagram of Hulun Lake WL, where
(b) is the positive and negative sequence line of the Mann–Kendall (MK) test; (c) is the sliding t-test curve with a moving window of five time-steps and (d)
fifteen time-steps, respectively.

3.2. Variation of hydrometeorological factors

Climate change is known as an important driver in altering hydrological processes. In this study, ET𝑝, Pre, Tmp and Vap were
selected to investigate the impact of climate change on Hulun Basin over the past 60 years. Fig. 3a–d depict the temporal trends
of meteorological factors in Hulun Basin. Results show that, although the annual Pre in the Basin barely shows an upward trend
(0.1 mm/a), a transition from dry to wet years is evident during 1978–2000, and the turning point occurred approximately in 1986.
Meanwhile, the WL rose from 543.8 m to 545 m during 1984–1986. Therefore, the change of Pre is well correlated with the WL
variation during this period. Vap also showed an upward trend (0.7 hpa/10 a). A climate transition from wet to dry during mid-1990s
was detected from the LOWESS curve, and the turning point was approximately in 1997. Subsequently, Vap decreased at a rate of
0.16 hpa/10 a. The decrease of Vap might be explained by the slight decrease in summer Pre during this period (Fig.S2a), causing
less water to evaporate into the atmosphere (Li et al., 2022). As shown in Fig. 3d, during 1961–1997, the ET𝑝 is relatively stable,
with an increasing trend of 0.16 mm/a; After 1997, however, the annual ET𝑝 increased significantly at a rate of 0.9 mm/a, with
the annual and monthly averages significantly improved during this period (see Fig.S2b). Tmp in Hulun Basin showed a significant
upward trend (0.3 ◦C/10a) and increased by approximately 1.8 ◦C in the past 60 years. In addition, an upward trend occurred in
both ice-covered and none ice-covered periods (Fig.S2c), with rates of 0.31 ◦C and 0.32 ◦C/10a, respectively. Overall, Hulun Basin
is undergoing a warming and drying transition over the past 60 years, with an intensified trend in the 21st century due to the
increase of ET𝑝.

The pattern of the wavelet coefficient of Vap is similar to that of Pre, while the pattern of ET𝑝 is roughly the opposite of Pre
and Vap, indicating strong correlations among the three variables. There are two high-value centers on 45- and 55-year scales for
strong ET𝑝 years (1975 and 2010), and one low-value center for weak ET𝑝 year (1992). Tmp showed multiscale characteristics, with
multiple warm and cold centers. Overall, the patterns among Pre, Vap, and ET𝑝 were consistent with the WL variation.

3.3. Relationships between water level and climatic variables

To better understand the impact of climate change on WL variation, the correlation between each climate factor and WL was
analyzed. As shown in Table 1, the correlation coefficients between WL and ET𝑝 reached −0.57, followed by Pre, with 𝑟 being
−0.37. The correlations between WL, Tmp, and Vap were relatively low and none-significant (p>0.1). Overall, ET𝑝 was significantly
correlated with WL changes.

To further investigate the influence of climate factors on the WL at different time scales, WTC was calculated to quantify the
linearity between WL and climate factors in time–frequency domain. According to the results, WL showed a high response to ET𝑝 and
Tmp, followed by Vap and Pre. During 1966–1974 and 1984–1994, WL showed a lag of six-month behind concurrent precipitation
(see Fig. 4e). Similar to Pre, WL lagged behind Vap by six months during 1961–1985 (Fig. 4g), while WL showed in-phase correlations
5
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Fig. 3. Annual average of (a) precipitation, (b) vapor pressure, (c) temperature, and (d) potential evapotranspiration in the basin during 1961–2020. The red
line shows the time series smoothed using LOWESS filtering. Dotted line represents linear regression of time series. The right panel illustrates the isoline of
the real part of Morlet wavelet coefficients, which reflects the periodic changes of the variables at different time scales and their distributions in time. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Results of correlation analysis between the WL and climatic factors in Hulun Lake Basin.

ET𝑝 Pre Tmp Vap

𝑟 𝑝 𝑟 𝑝 𝑟 𝑝 𝑟 𝑝

Spearman −0.57 <0.01 −0.37 <0.01 −0.33 0.07 0.03 0.836

ith Vap around 2000. During this period, the basin showed an overall drying trend. Vap decreased gradually, as did WL. The WTC
haracteristic of Tmp was similar to that of ET𝑝, where, during 1970–1990, WL showed a significant negative correlation with Tmp
nd ET𝑝 (Fig. 4f and h), indicating a decrease of WL with respect to the increasing Tmp and ET𝑝. Notably, the synchronization
elationship among Tmp, ET𝑝, and WL changed during 2004–2020 and 1990–2010. Specifically, the WL series was ahead of Tmp
nd ET𝑝 by approximately 45◦. However, the increase in Tmp during 2004–2020 could not explain the variation in WL. In addition,
he positive correlation between ET𝑝 and WL from 1990 to 2010 is inconsistent with the observed increase of ET𝑝. Thus, one might
nfer that factors other than climate change (such as human activities) may have played a leading role in the drastic change of WL
n Hulun Lake in the late 1990s.

The cumulative SCR of climate factors was calculated to quantify the coherence relationship between each climate factor and
L at different scales. According to the results shown in Fig. 5a, the SCR of Pre and Vap were mainly concentrated on medium and

mall time scales: SCR𝑝 was concentrated within 9 years, while SCR𝑣 within 6 years. SCR𝑒 was mainly concentrated on medium-and
ong-term scales (greater than 6 years), while SCR𝑡 spanned across all years, indicating multiple time-scale impacts on WL. Notably,
ll climate factors have significant coherence with WL within a 4-year scale, which is a typical scale of ENSO (2–7 years). On the
cales of 11- to 12-year that are typical for the NAO (11 years), the SCR of each climate factor reaches the maximum. The SCR
esults highlighted the potential relationship between atmospheric circulation and climate change in Hulun Basin.

Fig. 5b shows the contribution of each climate factor to the WL variation at different periods. ET𝑝 contributed the most in the
ast 60 years, where PASC𝑒 = 9.6%, followed by Tmp (PASC𝑡 = 8.8%). Vap and Pre have less influence on WL, with PASC=5.9%
nd 2.7%, respectively. The PASC of Pre and Vap were larger during the first period, indicating that the impacts of the two variables
n WL were mainly concentrated during 1961–1997. Instead, the PASC values of ET𝑝 and Tmp for the two periods were similar,
mplying that ET and Tmp contribute almost the same in both periods to WL variation. It is worth noting that the average PASC of
6
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Fig. 4. Correlations between Hulun Lake WL and (a) Pre, (b) Tmp, (c) Vap, and (d) ET𝑝. The straight lines are linear regression lines, with the shades being the
95% confidence bands. The lower panel shows the wavelet coherence (WTC) between WL and (e) Pre, (f) Tmp, (g) Vap, and (h) ET𝑝. The color bar states the
spectral power, and the thick black contour indicates the 95% confidence level, and the less intense colors specify the cone of influence. Black arrows are the
phase angle, indicating the phase relation between two series for which right- and left-pointing arrows refer to in-phase and anti-phase relations, respectively.
Furthermore, upward (downward) arrows are indicative of lead (lag) between the time series. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. (a) SCR𝑐 for all WL influencing factors at each scale. (b) PASC𝑐 for each influencing factor on WL during the entire period, the first and second periods,
respectively.

all climate factors during 1961–1997 (denoted as PASCI) was greater than that during 1998–2020 (PASCI=4.43% > PASCII=2.34%),
which infers a weakening impact of changing climate on WL variation towards late 20th century.

According to the results, WL variation highly correlates with ET𝑝, followed by Tmp. The impact of Vap and Pre on WL weakened
after the end of the 20th century, except for ET𝑝 and Tmp.

4. Discussions

4.1. Underlying mechanisms of water level variation in different periods

Hulun Lake is located at the junction of the monsoon and non-monsoon regions, and its hydrological cycle is greatly influenced
by global atmospheric circulation (Li et al., 2020; Sun and Lotz, 2020). Figure.S3d shows that there is a significant correlation
between the ENSO index and lake inflow on a 0–5-year scale, highlighting the impact of El Niño events on runoff in Hulun basin.
WTC results (Fig.S3e) show that NAO has a strong positive correlation with flow during the 1980s and the 1990s. The strong NAO
introduced more precipitation in the basin Siderius et al. (2018), which may be the reason why Hulun Lake maintained high WLs
during this period. Overall, results show that large-scale climate patterns can significantly regulate precipitation in the basin and
affect the runoff, thereby indirectly affecting the lake WL.

The direct and indirect effects of climatic factors on WL changes during different periods were explored using the SEM. As shown
in Fig. 6a, there is a direct pathway between ET𝑝 and WL. Since the increasing trend of ET𝑝 was notably larger than that of Pre and
Tmp (Fig. 3), its impact on WL was more significant (r = −0.67) in the past 60 years. Tmp had the greatest impact on ET𝑝 (r =
0.44), indicating that the rise in ET caused by climate warming was the main driving force leading to the decline of Hulun Lake WL,
7
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Fig. 6. Results of SEM analysis for (a) 1961–2020, (b) 1961–1997, and (c) 1998–2020. The total coefficient combines the direct and indirect effect of each
variable on WL.

Fig. 7. Time series of SPEI-1, SPEI-3, SPEI-6, SPEI-12 and SPEI-24 for 1961 to 2018.

since it increases lake surface evaporation which plays the largest role of the multi-year water cycle in Hulun Lake (Fu et al., 2021).
Moreover, the increasing trend of ET𝑝 was notably larger than that of Pre and Tmp, thus its impact on WL was more significant.
Considering both Tmp and ET𝑝 increases may incur drought, the SPEI was used to analyze drought in Hulun Basin. Drought years
were often accompanied by a decline in WL, such as in 1977–1983 and 1998–2012 (see Fig. 7). After 2000, The drought became
even more severe in terms of intensity and duration. WTC (Fig.S4) showed that long-term drought in the watershed affected the
WL throughout the study period. The effect of Pre on Flow is not significant, which is attributed to the high spatial heterogeneity
of Hulun Basin. This can cause inconsistent responses of the hydrological cycle to the underlying surface in different regions (Bai
et al., 2021), resulting in asynchronous rainfall-runoff-confluence (Zhang et al., 2022). WTC results also verified that there was a
time lag between the Flow and Pre (Fig.S5). The total coefficients of ET𝑝, Pre, Tmp, Flow, and Vap on WL variation were −0.66,
−0.3, −0.29, 0.21 and −0.04, respectively.

In the first period, Flow had the greatest impact on WL (r = 0.41; Fig. 6b), indicating that the decrease in runoff (0.1 billion
m3/a) was the main reason for the drop in WL during 1961–1997. The direct effect of ET𝑝 on WL was small (r = −0.08), however,
a pathway between ET𝑝 and flow was observed. Due to the existence of a large water-deficient steppe in Hulun Basin Cao et al.
(2021b), the increase in ET𝑝 weakens the runoff in the watershed (Chi et al., 2018), indirectly affecting WL by cutting lake inflow (r
= −0.24). Previous studies have shown that, although rainfall is an important component of the hydrological cycle in Hulun Basin,
runoff is the main source for the water balance of the lake (Haghighi and Klove, 2015). In addition, the strong El Niño greatly
enhanced the possibility of summer extreme precipitation (r = −0.66), making the runoff high in the mid-1980s (Fig.S3a) and WL
also increased significantly, which is consistent with the increasing trend of extreme precipitation events in Inner Mongolia over the
past 50 years (Fu et al., 2013). The effect of NAO on Pre was smaller (r = −0.12) compared to the ENSO. The total coefficients of
8
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Fig. 8. Mechanism of WL drop during 1998–2020.

Table 2
Correlation analysis between lake levels, flow, and climatic
factors in the Hulun Basin during 2011–2017.

Correlation r 𝑝-value

Flow 0.37 0.07
Diversion 0.75 0.05
Vap −0.22 0.08
Pre −0.03 0.015
Tmp 0.25 0.17
ET𝑝 0.29 0.09

Flow, Pre, ENSO, ET𝑝, Tmp and NAO on WL variation were 0.41, 0.29, −0.19, −0.18, −0.07 and −0.01, respectively. In the second
period, ET𝑝 had the greatest impact on WL (r = −0.58; Fig. 6c). The rising temperature was a reason for the increase in ET𝑝 (r =
0.32). In addition, rising Tmp facilitates the decline in WL (r = −0.21). This is because the areas of permafrost in the upper reaches
of the Ursun and Kherlen rivers have been decreasing, and the snow melt in mountainous areas has accelerated since the 1980s,
which to a certain extent replenished the river flow and maintained high WL. However, around 2000, as Tmp continued to rise, the
permafrost layer completely disappeared (Sun and Lotz, 2020), and the insufficient supply of snow-thawed permafrost to the rivers
caused lake inflow to decline rapidly. Thus, WL also dropped. The total coefficients of ET𝑝, Tmp, Pre and Flow on the WL variation
were −0.58, −0.4, −0.19, and 0.17, respectively.

4.2. Implication from increased ET𝑝

In addition to climate change, strong human activities such as deforestation and the expansion of cropland and urbanization are
other reasons for the shrinking lake areas in the Mongolia-Xinjiang Plateau after the 1990s (Tao et al., 2015). Cropland increased
by 3919 km2 from 1992 to 2020. The significant expansion of cropland altered the properties of land surface, such as surface albedo
and leaf area index (Glenn et al., 2010), thereby greatly increasing ET𝑝 in the central watershed and agricultural areas. Urban areas
are also expanding, the construction of urban reservoirs, ponds, and roads will intercept surface runoff, thus reducing the amount
of water entering the lake (Shirmohammadi et al., 2020). In addition, large areas of forest and vegetation in the upper reaches were
replaced by bare land, weakening the retention ability of soil to conserve water. The sediment content of rivers increased in flood
season and discharge decreased significantly in dry season, thus threatening water resources and lake WLs (Acosta-Martinez et al.,
2010). The SEM was adjusted in the second period after considering the impact of land use change (Fig. 8). Vegetation coverage
loss had the most significant impact on WL (r = 1.09), followed by the expansion of cultivated land and urban areas (r = −1.04,
r = −0.95). Land use change had the most significant impact on the increase in ET𝑝 (r = 0.78). The total coefficients of LC, Flow,
ET𝑝 and Tmp on WL variation were −0.86, 0.26, 0.2, and 0.02, respectively. Overall, the decline in the WL of Hulun Lake in the
late 1990s was the result of the combined effects of climate warming, vegetation degradation, and urban and cropland expansion.

Notably, Hulun Basin experienced severe drought during 2013–2020 (Fig. 7). However, the WL began to rise at a rate of
312 mm/a since 2012. Correlation analysis ( Table 2) showed that from 2012 to 2020, the correlation between the inflow and
WL was 0.75, exceeding the correlations of natural inflow and meteorological factors with WL. The rapid recovery of the WL can
be explained by the implementation of the river diversion project, which was introduced in 2010 (Cai et al., 2016).
9
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From 1961 to 1997, Hulun Basin was less disturbed and the WL was mainly affected by climate change. Reduction in runoff
aused the slight WL decrease, which is consistent with the results found by Cao et al. (2021a) and Fu et al. (2021). During this
ime, the WL generally fluctuated within a certain range; however, the WL underwent drastic changes after 1998. At the beginning
f the 21st century, ET𝑝 of the basin increased significantly due to the rising temperature, which is considered to be the main
eason for WL drop (Fan et al., 2021). While, in our work, we found that the landuse of Hulun Basin has changed a lot since the
ate 20st century. As a consequence, vegetation degradation, and human activities further increased the ET𝑝, resulting in a decrease

in the water yield of the basin. The increasing warming and drying trends and drought events in the Hulun Basin have seriously
threatened the water yield here, and a reasonable land-use pattern can promote surface runoff yield by conserving water resources,
thus ensuring lake inflow (Sun et al., 2017). Forest land can better reduce the fluctuation of water production in the basin caused
by climate change (Feng et al., 2012) and protect the regional environment from extreme events (Lloret et al., 2012). In the future,
while ensuring ecological water replenishment, the focus should be further strengthened by performing ecological restoration based
on forest land and shrubs that are conducive to runoff in order to preserve soil water storage and canopy interception capacity, thus
ultimately to improve inflow to maintain a suitable ecological WL for Hulun Lake.

5. Conclusions

This study applied wavelet analysis to explore the characteristics of Hulun Lake WL and the changing climate factors in the basin.
Results showed that in the past 60 years, Hulun basin has shown a warming trend, while the WL has shown an overall downward
trend (41.2 mm/a), which can be further divided into two periods, namely a slow declining period from 1961 to 1997 where the WL
decreased with a trend of 7.4 mm/a, and a transitional period towards recovery from 1998 to 2020 where WL dropped by 3.47 m
and began to rise in 2012, with an overall decrease of 37.6 mm/a. Using SEM method, the contribution of climatic factors to WL
was quantified and the driving mechanism of WL change was revealed, which showed that the increasing ET𝑝 caused by warming
temperature was the main reason for WL decline (𝑟 = −0.66). From 1961 to 1997, increasing ET𝑝 led to reduced runoff, which
directly caused a decrease in WL (𝑟 = 0.41). In the mid-1980s, the ENSO drove the increasing rainfall and incurred a slight increase
in WL (r = 0.31). From 1998 to 2020, land use change became the main reason for the decline in lake WL (𝑟 = −1.08), because the
basin experienced significant deforestation, farmland expansion, and urbanization, which significantly enhanced ET𝑝 (𝑟 = −0.22)
and further reduced runoff, leading to a WL drop. With a mandate of ecological water protection from the government, future efforts
should focus on implementing ecological restoration by recovering forests, grasses, and shrubs lands that are conducive to runoff in
order to increase lake inflow and maintain a suitable WL.

Still, some limitations of this work should be noted. First, the proposed method does not describe lake level dynamics as physics-
based models do, and it cannot capture all nonlinear relationships among possible driving factors and WL. Thus, further studies are
still needed to investigate such non-linear relationships. In addition, a longer water diversion data may help to better elaborate the
driving mechanism of WL variation.
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