
Learning neural-network-based turbulence models for external
transonic flows using ensemble Kalman method

Yi Liu ∗, Xin-Lei Zhang †, and Guowei He ‡

State Key Laboratory of Nonlinear Mechanics, Chinese Academy of Sciences, 100190 Beĳing,
People’s Republic of China

University of Chinese Academy of Sciences, 100049 Beĳing, People’s Republic of China

This paper presents a neural network-based turbulence modeling approach for transonic

flows based on the ensemble Kalman method. The approach adopts a tensor basis neural

network for the Reynolds stress representation, with modified inputs to consider fluid com-

pressibility. The normalization of input features is also investigated to avoid feature collapsing

in the presence of shock waves. Moreover, the turbulent heat flux is accordingly estimated

with the neural network-based turbulence model based on the gradient diffusion hypothesis.

The ensemble Kalman method is used to train the neural network with the experimental data

in velocity and wall pressure due to its derivative-free nature. The proposed framework is

tested in two canonical configurations, i.e., 2D transonic flows over the RAE2822 airfoils and

3D transonic flows over the ONERA M6 wings. Numerical results demonstrate the capability

of the proposed method in learning accurate turbulence models for external transonic flows.

Nomenclature

𝑎 = speed of sound

𝐶 𝑓 = friction coefficient

𝐶𝑝 = pressure coefficient

𝑐𝑝 = specific heat coefficient at constant pressure

𝐶 = chord length

𝐸 = total energy

𝑔 = coefficient of tensor basis

𝐻 = total enthalpy

I = identity matrix

𝑘 = turbulent kinetic energy

𝐿 = reference length
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𝑀 = number of samples

𝑀𝑎 = Mach number

𝑀𝑎𝑛 = normal Mach number

𝑝 = static pressure

P = model error covariance

𝑃𝑟 = Prandtl number

𝑞 𝑗 , 𝑞
(𝑡)
𝑗

= laminar heat flux and turbulent heat flux

R = observation error covariance

𝑅𝑒 = Reynolds number

S,Ω = strain-rate tensor and rotation-rate tensor

Ŝ, Ω̂ = non-dimensionalized strain-rate tensor and rotation-rate tensor

𝑇 = static temperature

𝑇∞ = temperature at far-field

T = tensor basis

𝑈∞ = free-stream velocity

u = velocity vector

𝑤 = weights of neural networks

𝑊 = ensemble of weights,𝑊 = {𝑤}𝑀
𝑚=1

𝑥 = Cartesian coordinates

y = training data

𝑦+ = nondimensional wall distance

𝛼 = angle of attack

𝛽∗ = turbulence model constants

H = model operator that maps the neural network weights to the observed quantities

𝜇, 𝜇𝑡 = dynamic viscosity and turbulent viscosity

𝜃 = scalar invariants

𝜌 = fluid density

𝜎 = viscous stress

𝜏 = Reynolds stress

𝜔 = specific dissipation rate of turbulent kinetic energy

∇ = gradient operator

‖ ∗ ‖ = L2 norm
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tr {∗} = trace operator

Superscripts

(𝑖) = index of tensor basis

𝑛 = index of learning iteration

> = transpose

0 = prior

Subscripts

𝑖, 𝑗 , 𝑘 = 1, 2, 3, tensor indices

𝑚 = index of sample

𝑛 = normal component of vector

𝑡 = turbulent

𝑀𝐴𝐶 = mean aerodynamic chord

𝑅𝑆𝑀 = Reynolds-stress transport model

∞ = at infinity

I. Introduction
Accurate prediction of transonic flows is of significant interest for prior assessments of buffet onset, which further

concerns the safety design of flight vehicles [1, 2]. The Reynolds averaged Navier–Stokes (RANS) simulation with

turbulence models is still the workhorse tool for predicting such flows with high Reynolds numbers due to its low

computational overhead [3]. Therefore, it is necessary to develop accurate turbulence models for transonic flows.

The most widely used turbulence models are linear eddy viscosity models, such as Spalart–Allmaras model [4] and

𝑘–𝜔 SST model [5]. These models assume that the Reynolds stress is linearly related to the strain rate via turbulent eddy

viscosity based on the Boussinesq assumption. They can provide satisfactory predictions for attached flows but often

lead to large discrepancies when encountered with the mean curvature and separation [6, 7]. For transonic flows, there

often occur turbulent heat transfer and shock waves, which would lead to additional difficulties in turbulence modeling.

Specifically, the turbulent heat transfer requires closure modeling for turbulent heat flux, which is usually estimated

based on the gradient diffusion hypothesis. That is, the turbulent heat flux is proportional to the temperature gradient,

while the proportional coefficient involves the turbulent eddy viscosity obtained with turbulence models. Hence the

turbulence model has to be used for estimating the Reynolds stress as well as turbulent heat flux. Moreover, the transonic

flows would produce shock waves, which often interact with the boundary layer and lead to flow separations. Estimating

such shock-induced separation requires capturing the interaction between the shock wave and boundary layer, which

poses another challenge for turbulence models. Some advanced turbulence models that go beyond the Boussinesq
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assumption, e.g., the Reynolds stress transport model, can provide satisfactory predictions for transonic flows but

encounter the robustness issue and increased computational cost [8]. The compromise between predictive accuracy and

practical usability is often intractable for turbulence modeling.

Machine learning methods [9–11] have been increasingly used to construct high-fidelity turbulence models due

to their ability of discovering complicated functional relationships from data. For instance, the tensor basis neural

network [12] and the symbolic expression [13] are proposed to represent the Reynolds stress in an algebraic form based

on the weak-equilibrium assumption. Also, the vector-cloud neural network [14] is proposed to emulate the Reynolds

stress transport equations with embedded non-equilibrium effects. However, these methods usually require full field

data of Reynolds stresses to determine the model parameters, i.e., the weights of neural networks. These Reynolds stress

data can be categorized as direct data for learning turbulence models. This is in contrast to the indirect data [15] such as

velocity and wall pressure, which need to be propagated from the Reynolds stress via the RANS equation. Learning

from the direct data would cause poor posterior prediction due to the inconsistency between training and prediction

environments [16]. In addition, the full field data of Reynolds stress is difficult to be obtained for transonic flows at high

Reynolds numbers. In view of these difficulties, learning turbulence models from indirect data becomes trending since

it can reduce the data requirement and avoid the inconsistency issue simultaneously. Such a strategy is often referred to

as model-consistent training [16].

Model-consistent training ensures consistency between the training and prediction environments by involving RANS

equations in the training process. Different strategies, such as adjoint-based learning [15, 17, 18], ensemble-based

learning [19, 20], and genetic programming [21], have been proposed but are mostly applied for low-speed incompressible

flows. Over the past few years, the genetic programming method has been increasingly used to learn turbulence models

for transonic flows in a model-consistent manner due to its gradient-free merits. That is, the gradient evaluation is not

needed to minimize the discrepancies between the training data and model predictions as the adjoint-based method.

This method has been used to construct algebraic Reynolds stress models in symbolic forms for the wake of turbine

cascade [21] and the separation-induced transition [22] in turbomachines. In contrast to the gradient-free method, the

ensemble Kalman method is a gradient-approximation method, which estimates the model gradient and Hessian based

on the statistics of random samples. By using the approximated gradient and Hessian information, such methods are able

to achieve good training efficiency and also do not require developing adjoint solvers. The ensemble Kalman method is

recently used to learn neural network-based turbulence models from indirect data [20] and shows superior efficiency and

considerable training accuracy compared to the adjoint-based learning method. The ensemble-based method has only

been demonstrated for incompressible flows, and its application for transonic flows is worthy of further investigation.

The present work aims to develop the neural network-based turbulence modeling framework for transonic flows

based on the ensemble Kalman method. Most neural network-based turbulence models are constructed for low-speed

flows. Transonic flows have different flow features from low-speed flows due to fluid compressibility, shock waves,
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and heat transfer, which would require specialized treatments for the neural network-based representation of Reynolds

stresses. In this work, the compressibility effects are taken into account in selecting the input features of neural networks.

Further, the scaling strategy of input features is investigated to avoid feature collapse due to the presence of shock waves.

Moreover, the heat flux closure is modified with the outputs of neural networks based on the Boussinesq hypothesis. The

ensemble Kalman method is used to train the neural network-based model with good training efficiency and flexibility in

data usage. Finally, the method is tested for transonic flows over the ONERA M6 wing, demonstrating its applicability

in 3D flow applications.

The rest of the paper is outlined as follows. The tensor-basis neural network for transonic flows and the ensemble-

based training algorithm are introduced in Section II. The test cases and corresponding results are presented and

analyzed in Section III. Finally, this paper is concluded in Section IV.

II. Ensemble-based turbulence modeling for transonic flows
The Reynolds-averaged Navier-Stokes (RANS) equations for compressible flows can be written as [8]

𝜕𝜌

𝜕𝑡
+
𝜕 (𝜌𝑢 𝑗 )
𝜕𝑥 𝑗

= 0, (1a)

𝜕 (𝜌𝑢𝑖)
𝜕𝑡

+ 𝜕

𝜕𝑥 𝑗

(𝜌𝑢𝑖𝑢 𝑗 ) = − 𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗

+
𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗

, (1b)

𝜕 (𝜌𝐸)
𝜕𝑡

+ 𝜕

𝜕𝑥 𝑗

(𝜌𝐻𝑢 𝑗 ) =
𝜕 (𝜏𝑖 𝑗𝑢𝑖)
𝜕𝑥 𝑗

+
𝜕 (𝜎𝑖 𝑗𝑢𝑖)

𝜕𝑥 𝑗

−
𝜕𝑞 𝑗

𝜕𝑥𝑘
−
𝜕𝑞

(𝑡)
𝑗

𝜕𝑥 𝑗

. (1c)

In the formula above, 𝜌 and 𝑝 represent the density and pressure, respectively, 𝑢𝑖 is the flow velocity component, 𝜏𝑖 𝑗 is

the Reynolds stress tensor, 𝜎𝑖 𝑗 represents the viscous stress, which is described by

𝜎𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖

𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2
3
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖 𝑗

)
,

and 𝜇 is the dynamic viscosity. In the energy equation (1c), 𝐸 and 𝐻 denote the total energy and total enthalpy, 𝑞 (𝑡)
𝑗
is

the turbulent heat flux, and 𝑞 𝑗 is the laminar heat flux. The heat flux 𝑞 𝑗 is calculated by

𝑞 𝑗 = −
𝑐𝑝𝜇

𝑃𝑟

𝜕𝑇

𝜕𝑥 𝑗

,

where 𝑇 is the temperature, and 𝑐𝑝 and 𝑃𝑟 are specific heat coefficients at constant pressure and Prandtl number,

respectively. To close these equations, the Reynolds stress 𝜏𝑖 𝑗 and turbulent heat flux 𝑞 (𝑡)
𝑗
need to be modeled, which

will be introduced in the following.
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A. Reynolds stress closure with tensor basis neural network

We consider the nonlinear eddy viscosity model as the baseline model to represent the Reynolds stresses [12]. Such

a choice is based on the following considerations. First, the nonlinear eddy viscosity model uses the integrity of tensor

bases which is more flexible in contrast to the linear eddy viscosity model that uses only the first tensor basis. Moreover,

the model is straightforward to be implemented and computationally efficient since no additional transport equations

need to be solved. Besides, the nonlinear eddy viscosity models have often been used for numerical predictions of

transonic flows [23, 24].

The nonlinear eddy viscosity model represents the deviatoric part of Reynolds stress with ten independent tensor

bases based on Cayley-Hamilton theory [25]. Specifically, the Reynolds stress can be formulated as

𝜏 = −2𝜌𝑘
10∑︁
𝑖=1

𝑔 (𝑖)T(𝑖) − 2𝜌𝑘
3

I, (2)

where 𝑘 is turbulent kinetic energy, I is identity matrix, and 𝑔 (𝑖) is coefficient of the tensor basis T(𝑖) . The coefficient

g can be represented as the function of scalar invariants 𝜃 of these tensor bases. For compressible flows, we have to

consider the non-zero trace of the strain rate, and the tensor bases can be written as [26, 27]

T(1) =
[
Ŝ − 1

3 tr
{
Ŝ
}]
, T(2) =

[
ŜΩ̂ − Ω̂Ŝ

]
, T(2) =

[
Ŝ2 − 1

3 tr
{
Ŝ2
}]
,

T(4) =
[
Ω̂2 − 1

3 tr
{
Ω̂2

}]
, T(5) =

[
Ŝ2Ω̂ − Ω̂Ŝ2

]
, T(6) =

[
ŜΩ̂2 + Ω̂2Ŝ − 2

3 tr
{
ŜΩ̂2

}]
,

T(7) =
[
Ŝ2Ω̂2 + Ω̂2Ŝ2 − 2

3 tr
{
Ŝ2Ω̂2

}]
, T(8) =

[
ŜΩ̂Ŝ2 − Ŝ2Ω̂Ŝ

]
,

T(9) =
[
Ω̂ŜΩ̂2 − Ω̂2ŜΩ̂

]
, T(10) =

[
Ω̂Ŝ2Ω̂2 − Ω̂2Ŝ2Ω̂

]
.

(3)

Accordingly, one additional scalar invariant tr(Ŝ) need to be included compared to the incompressible scenario [12],

and hence there exist six scalar invariants as

𝜃1 = tr
{
Ŝ
}
, 𝜃2 = tr

{
Ŝ2
}
, 𝜃3 = tr

{
Ω̂2

}
,

𝜃4 = tr
{
Ŝ3
}
, 𝜃5 = tr

{
ŜΩ̂2

}
, 𝜃6 = tr

{
Ŝ2Ω̂2

} . (4)

In the formula above, Ŝ and Ω̂ represent the non-dimensionalized strain rate and rotation rate with the turbulence time

scale 𝜏𝑠, i.e., Ŝ = 𝜏𝑠S and Ω̂ = 𝜏𝑠Ω. The turbulence time scale 𝜏𝑠 can be estimated based on 𝜏𝑠 = 1/(𝛽∗𝜔), where 𝛽∗

is a model constant, 𝜔 is specific turbulence dissipation rate that is obtained with 𝑘–𝜔 SST model in this work. The

formula of 𝑘–𝜔 SST model is presented in Appendix A.

Conclusively, the coefficient g of tensor basis is represented with neural networks in this work, and the scalar
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invariants are used as the input features of the neural network. These inputs of the tensor basis neural network [12] are

modified for compressible flows to consider fluid compressibility. The obtained Reynolds stress tensor is used for the

momentum equation, turbulent kinetic energy transport equation, and the energy equation in Eqs. (1).

B. Heat flux closure with tensor basis neural networks

The turbulent heat flux 𝑞 (𝑡) requires to be modeled to close the energy equation (1c). It is often estimated based on

the gradient diffusion hypothesis. That is, the heat is iso-tropically diffused as

𝑞
(𝑡)
𝑗

= −𝛼𝑡

𝜕𝑇

𝜕𝑥 𝑗

, (5)

where 𝛼𝑡 is the turbulent thermal diffusivity. According to the Reynolds analogy between turbulent heat flux 𝑞 (𝑡)
𝑗
and

momentum flux 𝜏 [28], the diffusivity 𝛼𝑡 can be calculated as

𝛼𝑡 =
𝜇𝑡𝑐𝑝

𝑃𝑟𝑡
, with 𝜇t = −𝑔 (1) 𝜌𝑘

𝛽∗𝜔
. (6)

Here 𝑃𝑟𝑡 is the turbulent Prandtl number, and 𝜇𝑡 is the turbulent eddy viscosity, which is estimated with the first term

of the deviatoric part of Reynolds stress in Eq. (2) by following the Bounssinesq assumption. The eddy viscosity 𝜇𝑡

is also used for the 𝑘 and 𝜔 transport equations. Admittedly, such modification is still under the gradient diffusion

hypothesis. Future investigations need to represent heat flux closures based on the generalized gradient diffusion

hypothesis [29], which introduces the dependence on individual Reynolds stress components. Moreover, the 𝑔 (1)

function is constructed with only scalar invariants of the velocity gradient. For the heat flux closure, the invariants

of temperature gradient [30, 31] should also be considered based on the representation theorems. It is noted that

introducing the invariants associated with temperature gradient would enable the heat flux model to be nonlinear. Such

nonlinear heat flux models are inappropriate for passive scalar transport equations in incompressible scenarios. However,

for compressible flows, the nonlinear heat flux could be applied since the temperature is not passive scalar due to

coupling with momentum equations. Also, we emphasize that this work mainly focuses on turbulence modeling, and the

heat flux closure is modified according to the turbulence model. Learning the heat flux closure from the heat flux data is

of significant interest and will be pursued in the near future work.

Conclusively, we use the neural network to represent the mapping between the scalar invariant and the coefficient

of tensor bases, i.e., 𝜽 ↦→ g. On the one hand, the obtained coefficients are combined with the tensor bases to form

the Reynolds stress based on Eq. (2). On the other hand, the first coefficient 𝑔 (1) is combined with the temperature

gradient to estimate the turbulent heat flux based on Eq. (5). As such, the RANS equations are closed with the neural

network-based closures.
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C. Normalization of the input features

The scalar invariants 𝜃 are used as the input features of neural networks, which are often scaled in the range of, e.g.,

[−1, 1], to improve the efficiency of the neural network training. Two strategies, i.e., the min-max normalization and

local normalization, are usually used to scale the input features. The former approach uses the global minimum and

maximum values to scale the input features, while the latter uses local quantities for scaling. Both approaches have been

employed for feature scaling of tensor basis neural networks [15, 32].

The min-max normalization can ensure the input features within [0, 1], which is widely used in the machine learning

community. However, when encountered with shock waves, local scalar invariants can be extremely large due to the

sharp discontinuity in the velocity field, leading to feature collapses, as noted in [20]. To address this issue, the features

in the shock wave regime can be identified and removed from the collection of input features. Eliminating the features

of shock waves has negligible effects on the model learning since the strong pressure gradients are dominant over the

Reynolds stress in these areas. One widely used criteria for stationary shock wave detection can be expressed as [33]

𝑀𝑎𝑛 > 0.86, with 𝑀𝑎𝑛 =
u · ∇𝑝
𝑎 |∇𝑝 | , (7)

where 𝑀𝑎𝑛 is normal Mach number, u is the velocity vector of the local flow, and 𝑎 is the speed of sound. The detected

shock wave is shown in Fig. 1 for flows over the REA2822 airfoil and the ONERA M6 wings. Based on the criteria, we

can remove the features associated with the shock wave and thus eliminate their effects on the feature scaling.

(a) RAE2822 airfoil (b) ONERA M6 wing

Fig. 1 Plots of the detected shock for RAE2822 case and ONERA M6 based on criteria of 𝑀𝑎𝑛 > 0.86.

Alternatively, the local normalization is also commonly used to scale the input features 𝑞 based on 𝑞 = 𝑞/(‖𝑞‖ +

𝑞∗) [32], where 𝑞∗ is local quantities. For the tensor-basis neural network, the time scale 𝜏𝑠 is used as the local quantity

for normalization. Thus, we can normalize the strain rate and the rotation rate through

Ŝ =
S

‖S‖ + 1/𝜏𝑠
and �̂� =

𝛀
‖𝛀‖ + 1/𝜏𝑠

. (8)
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Further, the scalar invariants are computed with these normalized Ŝ and �̂� based on Eq.(4). It is noted that this scaling is

slightly different from the commonly used one, i.e., 𝑞 = 𝑞/𝑞∗. Because the choice of Eq. (8) can ensure the input features

within the range of [−1, 1], which can improve the convergence rate based on the practice of machine learning [32, 34].

Also, the range of input features is confined and known as a priori, which enables pretraining neural network-based

models to be feasible. The pertaining step is crucial to accelerate model learning and avoid nonphysical model outputs,

such as negative eddy viscosity [20], which will be illustrated in Section II-D.

The min-max normalization and local normalization are analyzed based on the distribution of the scalar invariants 𝜃1

and 𝜃2 from the flow over the RAE2822 airfoils. The scatter plots of the scalar invariants are presented in Fig. 2. It can

be seen that with the min-max normalization the shock wave would lead to most features narrowed down to the range of

[0.8, 1.0]. Such noticeable feature separations between the shock wave and the rest areas can cause sharp discontinuity

in the scalar invariants. In contrast, after removing the shock waves, the two scalar invariants 𝜃1 and 𝜃2 have a relatively

uniform distribution in the feature space as shown in Fig. 2(b), which has benefits to distinguish the subtle difference

of input features. It is noted that most invariants are distributed around 0. That is because parallel flows with small

velocity gradients are dominant in the computational domain, and the invariants with large magnitudes only exist near

the surface of airfoils. As for the local normalization, the strategy can scale the features within the range of [−1, 1] and

simultaneously circumvent the feature collapse caused by the shock waves, as shown in Fig. 2(c).

We test the effects of the min-max normalization and the local normalization on the training performance for

flows over the RAE2822 airfoil. Generally, the min-max normalization leads to training divergence, likely due to the

discontinuity in input features, while the local normalization can achieve good training performance in both accuracy

and efficiency. After removing the features in the shock wave regime, the min-max normalization can provide similar

reductions in data misfit as the local normalization. However, this strategy is very sensitive to the used criteria for shock

wave detection since it requires identifying the shock wave area accurately. In contrast, the local normalization has no

such limitations and hence is adopted in this paper.

D. Ensemble Kalman method for learning neural-network-based turbulence models

The ensemble Kalman method is a statistical inference method based on Monte Carlo sampling, which has been

widely used in various applications [35–37]. This method randomly samples the weights of neural networks and uses

the statistics of the weights and model predictions to estimate the gradient and Hessian of the cost function. The cost

function can be written as

𝐽 = ‖𝑤𝑛+1 − 𝑤𝑛‖P + ‖H [𝑤𝑛+1] − y‖R,

where 𝑤 is the weight of the neural network, 𝑛 is the iteration index, P is the model error covariance, R is the observation

error covariance, y is the observation data that obey the normal distribution with zero mean and variance of R, andH is

9



(a) min-max normalization with shock (b) min-max normalization without shock (c) local normalization

Fig. 2 Effects of shock waves on the distribution of input features. The red dots (•) indicate the features in the
shock wave region.

the model operator that maps the neural network weights to the observed quantities. This method uses the ensemble of

the realizations𝑊 to estimate the sample mean �̄� and covariance P as

�̄� =
1
𝑀

𝑀∑︁
𝑚=1

𝑤𝑚,

P =
1

𝑀 − 1 (𝑊 − �̄�) (𝑊 − �̄�)>,

(9)

where 𝑀 is the sample size and 𝑚 is the sample index. Based on the Gauss-Newton method, the weights require the first

and second-order derivatives of the cost function to update the weights. The ensemble Kalman method uses the statistics

of these samples to estimate the derivative information [38]. At the 𝑛 th iteration, each sample 𝑤𝑚 is updated based on

𝑤𝑛+1
𝑚 = 𝑤𝑛

𝑚 + PH> (HPH> + R)−1 (y𝑛𝑚 − H𝑤𝑛
𝑚), (10)

where H is the tangent linear model operator. The readers are referred to Ref. [20] for details of the ensemble-based

turbulence modeling framework.

The schematic of the machine learning framework for compressible flows is shown in Fig. 3. Given the pre-trained

weights 𝑤0 and the initial variance, we can draw an ensemble of samples for the neural network weights. The neural

network output, i.e., the tensor coefficient g, is combined with the tensor bases T to construct the Reynolds stress

tensors 𝝉. Also, the coefficient g is combined with the temperature gradient to form the turbulent heat flux 𝑞 (𝑡) . The

constructed Reynolds stress 𝝉 is used for the momentum equation, turbulent kinetic energy transport equation, and the

energy equation, while the turbulent heat flux 𝑞 (𝑡) is used for the energy equation. Through coupling the neural network

and the Reynolds stress, the flow prediction is obtained by solving the RANS equations. Further the model prediction

and training data are analyzed to update the weight of the neural network based on the ensemble Kalman method.
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Fig. 3 Schematic of ensemble-based training of tensor-basis neural network for transonic flows.

The detailed training procedure is formulated as follows.

• Pre-training: Conventional weight initialization may lead to negative eddy viscosity, which may further cause

the divergence of the solver. Hence, the neural network is pretrained to be a linear eddy viscosity model with

𝑔1 = −0.09, 𝑔 (2−10) = 0. The samples of neural network weights are drawn around the pretrained weights, which

ensure the obtained eddy viscosity close to the baseline. Moreover, the samples that lead to negative eddy viscosity

are rejected and redrawn from the prescribed normal distribution.

• Feature extraction: The predicted flow field is used to construct the input features, i.e., the scalar invariants 𝜃 and

the tensor bases T. Further, the invariants are normalized based on the local time scales as in Eq. (8).

• Coupling neural networks and the RANS equations: The input features are propagated to the g function through

the neural network. The g function is further combined with tensor bases and temperature gradient to construct

the Reynolds stress and turbulent heat flux, respectively. The constructed Reynolds stress and heat flux are used to

close the RANS equations for estimating the mean flow field.

• Kalman correction: The flow prediction and the observation data are analyzed to update the weights of each neural

network based on the ensemble Kalman method. Return to the second step until the maximum iteration is reached.

An in-house computational fluid dynamics (CFD) solver [39–42] is used to solve the RANS equations (1). The

governing equations are discretized with the cell-centered finite volume method on unstructured hybrid meshes composed

of hexahedrons, prisms, tetrahedrons, and pyramids. The convective flux terms are computed with the second-order

Roe discretization schemes [43], and the viscous flux terms are obtained by the reconstructed central scheme. The

LU-SGS relaxation-based implicit backward-Euler scheme is implemented for steady flow simulations. An adaptive

local time-stepping method is developed to eliminate the adverse influence of some poor-quality grids on solution

stability and convergence. All calculations are performed with double precision on a High-performance computing

(HPC) platform with 2.1GHz Intel(R) CPU, and the CFD code is parallelized by using a domain decomposition strategy

with the message passing interface (MPI) protocol. Nonblocking communications are used to overlap the computation
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with the communication and exploit possible performance gains. The ensemble Kalman method is implemented in the

publicly available DAFI code [19].

III. Numerical results
We present two cases to demonstrate the capability of the proposed framework in learning neural network-based

turbulence models for transonic flows. The test cases include 2D flows over the RAE2822 airfoil and 3D flows around

the ONERA M6 wings, as summarized in Table 1. The adiabatic wall condition is applied in this work, which is widely

used as a thermal boundary condition [44, 45]. Specifically, we implement the adiabatic wall conditions in the energy

equation Eq. (1)c by setting the gradient of temperature as zero at walls. The learned turbulence model and heat flux

closure apply the solid wall boundary conditions for 𝑘 and 𝜔 by inheriting from the baseline 𝑘–𝜔 SST model [46]. We

note that the learned models can also be applied for isothermal-wall cases by prescribing the wall temperature. The wall

boundary conditions for the turbulence model and the heat flux closure are consistent with the adiabatic-wall scenarios,

which are independent of the wall temperature. Such implementation strategies are commonly used to numerically

investigate the hot or cold wall effects in aerospace applications [47, 48]. The training data for the two cases are from

the experimental measurements in velocity and wall pressure, respectively. The learned model for each case is tested in

different flow conditions to demonstrate the predictive ability of the neural network-based model.

The ensemble Kalman method has good training efficiency since it is a second-order optimization with approximated

gradient and Hessian information. Specifically, the method draws an ensemble of samples, and the ensemble statistics

are used to estimate the gradient and Hessian [38]. For each sample, the neural network-based turbulence model

will be coupled with the RANS equations to predict the flow fields. The ensemble of cases can be run in a parallel

manner without requiring communication. Hence, the wall time is not significantly increased when these CFD cases are

allocated to different CPUs. Specifically, the computational cost for the RAE2822 case and the ONERA M6 case is

about 232.3 and 973.6 core hours, respectively, which are mostly taken by the CFD calculations. In the following, we

present the detailed case setup and the corresponding training results for each case.

Table 1 Details of the numerical settings

Cases Geometry Freestream conditions data y dim(y)
2D training case RAE 2822 airfoil 𝑀𝑎 = 0.75, 𝛼 = 2.80◦, 𝑅𝑒𝐶 = 6.2 × 106 u 31
2D test case (1) RAE 2822 airfoil 𝑀𝑎 = 0.73, 𝛼 = 2.80◦, 𝑅𝑒𝐶 = 6.5 × 106 u 25
2D test case (2) RAE 2822 airfoil 𝑀𝑎 = 0.73, 𝛼 = 2.80◦, 𝑅𝑒𝐶 = 2.7 × 106 u 28
3D training case ONERA M6 wing 𝑀𝑎 = 0.84, 𝛼 = 5.06◦, 𝑅𝑒𝑀𝐴𝐶 = 1.17 × 107 𝐶𝑝 52
3D test case (1) ONERA M6 wing 𝑀𝑎 = 0.84, 𝛼 = 6.06◦, 𝑅𝑒𝑀𝐴𝐶 = 1.17 × 107 𝐶𝑝 52
3D test case (2) ONERA M6 wing 𝑀𝑎 = 0.84, 𝛼 = 3.06◦, 𝑅𝑒𝑀𝐴𝐶 = 1.17 × 107 𝐶𝑝 52
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A. Transonic flows over the RAE2822 airfoils

The hybrid unstructured mesh is used for transonic flows over the RAE2822 airfoil as shown in Fig. 4. The mesh is

chosen based on grid sensitivity tests, which contains 68, 560 vertices and 45, 394 cells. Figure 4 (b) shows the schematic

view of the computational domain. The pressure far field (PFF) is a circle with radius of 100 chord lengths and center at

the leading edge of the airfoil. The adiabatic no-slip wall condition is employed on the airfoil surface. Body-fitted

O-type structured mesh is generated in the nearby region of the airfoil surface, and the triangle and quadrangle meshes

are used in the rest of the computational domain. The first cell height in the normal direction corresponds to 𝑦+ ≈ 0.8

with a growth rate of 1.15 in the boundary layer. The training case is performed at the freestream Mach number of 0.75,

the angle of attack of 𝛼 = 2.8◦, and the Reynolds number of 𝑅𝑒𝐶 = 6.2 × 106 based on the chord length 𝐶. These flow

conditions are set according to the case 10 of the experimental measurements [49].

Fig. 4 The computational setup for the RAE2822 case. (a) RAE 2822 airfoil; (b) Boundary conditions; (c)
Zoomed view of the mesh near the airfoil.

We use a neural network with two hidden layers and 5 neurons per layer based on our sensitivity analysis. The

details of the sensitivity study to the neural network architecture are presented in Appendix B. For this 2D case, the

first three scalar invariants 𝜃 (1−3) are used as the inputs, and the first three tensor coefficients 𝑔 (1−3) are used as the

outputs [26, 50]. The four velocity profiles, at 𝑥/𝐶 = 0.319, 𝑥/𝐶 = 0.404, 𝑥/𝐶 = 0.498 and 𝑥/𝐶 = 0.574, are used as

training data. The relative standard deviation of the neural network weights is set as 0.3, and the sample size is set as 32

for this case. The relative observation error is set as 0.1%, and the experimental data is the velocity measurements from

the case 10 of the experiments [49].

The transonic flows over the RAE2822 airfoil involve shock waves, mean pressure gradient, and interaction between

shock wave and boundary layer, which pose difficulties for turbulence modeling to capture such complex flows. Figure 5

presents the contour plots of Mach number with the learned model and the baseline model. We can see that the flows
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around the leading edge accelerate to the supersonic regime above the airfoil, and the supersonic flows are terminated by

a shock wave leading to a supersonic pocket. At the root of the shock wave, the boundary layer thickens due to the

strong adverse pressure gradient induced by the shock wave, which develops downstream and eventually forms a wake

flow. The presence of the boundary layer increases the effective thickness of the airfoil, which would also affect the

location of the shock wave according to the transonic similarity principles [44]. For this reason, it is challenging to

predict well the flow in the boundary layer and the position of the shock wave. It can be seen in Fig. 5 that the baseline

model predicts the position of the shock waves at 𝑥/𝐶 = 0.645. In contrast, the learned model predicts a relatively small

supersonic region, and the shock wave occurs at a relatively upstream position, i.e., 𝑥/𝐶 = 0.586. The experimental

data of shock wave locations are not available for comparison in this case.

(a) 𝑘–𝜔 SST (b) Learned model

Fig. 5 Contour plots of Mach number with the baseline model (a) and learned model (b) for the RAE2822 case.

The learned model can significantly improve the estimation of velocity compared to the baseline model. It can be

seen from Fig. 6, which presents the velocity profiles at different locations on the upper surface of the RAE2822 airfoil.

The locations are distributed on both sides of the shock wave as indicated in Figure 5 (b). The three locations of 𝑎, 𝑏,

and 𝑐 are at the upstream of the shock wave, and the locations of 𝑑, 𝑒, and 𝑓 are at the downstream of the shock wave. At

the locations of 𝑎, 𝑏, and 𝑐, the characteristics of the velocity profiles are similar, and the boundary layer thickens slowly.

In contrast, at the locations of 𝑑, 𝑒, and 𝑓 , the boundary layer thickens rapidly due to the adverse pressure gradient. The

maximum value of the adverse pressure gradient is located at the root of the shock wave, which is between the locations

of 𝑥/𝐶 = 0.498 and 𝑥/𝐶 = 0.574. Such strong adverse pressure gradients result in the thickness of the boundary layer 𝛿

rapidly increasing from 𝛿 = 0.0055𝐶 at the location 𝑥/𝐶 = 0.498 to 𝛿 = 0.0083𝐶 at the location 𝑥/𝐶 = 0.574. When

the boundary layer develops downstream to the location 𝑥/𝐶 = 0.750, the thickness can reach 𝛿 = 0.0335𝐶. From the

comparison, the learned model can better predict the velocities than the baseline model, particularly at the locations of

𝑥/𝐶 = 0.574 and 𝑥/𝐶 = 0.650.

The learned model is able to improve the prediction of the wall pressure, friction coefficient, and wall temperature
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Fig. 6 Plots of the velocity profiles with the comparison among the baseline model, the learned model, and the
experimental data for the RAE2822 case.

from the baseline model. It can be seen clearly in Fig. 7, which provides the pressure and friction coefficient in

comparison to the experimental measurements. The learned model provides better agreements with the experimental

data in the pressure coefficient, particularly near the shock wave areas, compared to the baseline 𝑘–𝜔 SST model. This

is because the learned model decreases the Reynolds stress in the boundary layer downstream of the shock wave, which

leads to the boundary layer thickening. The thickened boundary layer reduces the effective camber of the airfoil, which

drives the shock wave upstream and changes the pressure distribution in the rear of the airfoil. Evidence can be found

in Figure 8(a), which shows the distribution of the 𝑔 (1) and 𝑔 (2) coefficients near the airfoil. The 𝑔 (1) coefficient in

the boundary layer downstream is around −0.065, which has a smaller magnitude than the baseline value −0.09. That

means that the learned model reduces the Reynolds stress compared to 𝑘–𝜔 SST model based on Eq. (2). Figure 8 (b)

presents the 𝑔 (2) distribution in the region near the airfoil. The amplitude of 𝑔 (2) coefficient is close to zero in most

of the areas with a maximum value of 1.2 × 10−3, which indicates that the Reynolds stresses are dominated by the
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linear part of the learned model for the RAE2822 case. Figure 7 (b) presents the distribution of the friction coefficients,

which also shows that the learned model makes better predictions than the baseline model. Figure 7 (c) presents the

distribution of the wall temperature on the upper surface. Due to the strong compressibility effect, the flow temperature

will increase after passing through the shock wave. Consequently, a small jump in wall temperature can be observed at

the root of the shock wave (𝑥/𝐶 ≈ 0.59) for both the learned and the baseline models. Moreover, the learned model

predicts a small reduction in the wall temperature after the shock wave.

(a) pressure coefficients (b) friction coefficients (c) wall temperature

Fig. 7 Plots of the predicted pressure coefficients, friction coefficients, and wall temperature with comparison
to the experimental data, for the RAE2822 case.

(a) 𝑔 (1) -distribution (b) 𝑔 (2) -distribution

Fig. 8 Plots of 𝑔 (1) and 𝑔 (2) coefficients for the RAE2822 case.

The generalization test shows that the trained neural network-based turbulence model is capable of predicting flow

fields at different flow conditions. We test the learned turbulence model to predict the flow over the RAE2822 airfoils at

two flow conditions. One has a similar Reynolds number 𝑅𝑒𝐶 = 6.5 × 106 to the training case, while the other has a

much lower Reynolds number 𝑅𝑒𝐶 = 2.7 × 106. Both cases have the Mach number 0.73 and the angle of attack 2.80◦,

which are similar to the training case. The two cases are also known as Case 9 and Case 12 [49], respectively. The

transonic flows are very sensitive to the inflow conditions [51, 52] for the RAE2822 case. Small variations can lead

to noticeable changes in shock wave locations. Specifically, for the 2D test case (1), the flow with the learned model

provides a relatively upstream location of the shock wave at 𝑥/𝐶 = 0.563 compared to the 𝑥/𝐶 = 0.586 of training

case, and for the 2D test case (2) the predicted shock wave is located further upstream at 𝑥/𝐶 = 0.498. The angle of
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attack is given by 𝛼 = 3.19◦ in the experiments, while it is recommended to be set as 𝛼 = 2.8◦ in numerical simulations

to consider the wind-tunnel-wall interference [49]. Our results show that the learned model can achieve predictive

improvements in the velocity and wall pressure for both the test cases. Only the velocity plots for the 2D test case (1) are

shown in Fig. 9 for brevity. It can be seen that the velocity prediction with the learned model can provide noticeable

improvements over the baseline 𝑘–𝜔 SST model. Particularly, in the locations of (d) and (e) behind the shock waves,

the learned model achieves significant improvements from the baseline model. At location (f), there are only slight

differences between the two models, both of which have satisfactory agreements with the experimental data.

Fig. 9 Velocity results of generalization tests with comparison among the baseline model, the learned model,
and experimental data, for the RAE2822 case.

The error between the prediction and experimental measurements is quantified based on

error =
‖𝑞 − 𝑞exp‖
‖𝑞exp‖ . (11)
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The error estimate for the training and test cases are summarized in Table 2. It can be seen that the learned model

achieves better prediction accuracy compared to the baseline model. In the training case, the error in terms of velocity

is reduced significantly. Specifically, the velocity error is reduced from 14.819% to 7.868%, while the error in 𝐶𝑝

and 𝐶 𝑓 is reduced from 12.582% to 7.701% and from 21.742% to 16.531%, respectively. For the 2D test case

(1) with 𝑀𝑎 = 0.73, 𝛼 = 2.80◦, 𝑅𝑒𝐶 = 6.2 × 106, the velocity prediction is significantly improved from 9.343% to

6.309% with the learned model. The pressure coefficient 𝐶𝑝 is improved slightly from 8.1% to 6.95%, while the

friction coefficient 𝐶 𝑓 is varied from 21.568% to 23.3%. Note that only velocity data is used for model training in

this case. Hence, the prediction improvement in velocity is expected, while the improvement in pressure and friction

coefficients can not be guaranteed unless these data are also used for model training. For the 2D test case (2) with

𝑀𝑎 = 0.73, 𝛼 = 2.80◦, 𝑅𝑒𝐶 = 2.7 × 106, the velocity prediction error is reduced from 9.856% to 6.769%, and the

prediction error in wall pressure is reduced from 11.020% to 7.649%. The friction coefficient measurements are not

available in this test case.

Table 2 Summary of the prediction error in the velocity, pressure coefficient, and friction coefficient for the
RAE2822 case.

Cases Turbulence models
Error estimation

Velocity 𝐶𝑝 𝐶 𝑓

Training case
𝑘–𝜔 SST 14.819% 12.582% 21.742%

learned model 7.868% 7.701% 16.531%

Test case (1)
𝑘–𝜔 SST 9.343% 8.100% 21.568%

learned model 6.309% 6.950% 23.300%

Test case (2)
𝑘–𝜔 SST 9.856% 11.020% —𝑎

learned model 6.769% 7.649% —𝑎

𝑎 The 𝐶 𝑓 measurements of test case (2) are not available.

B. Transonic flows around 3D ONERA M6 wings

Flows over the ONERA M6 wings are typical external transonic flows, which have been widely used for numerical

validation and turbulence model assessments. The flows include shock-induced separation, especially at a relatively

high angle of attack, i.e., 6.06◦, which poses a challenge for turbulence modeling. Numerical simulations are performed

on a hybrid unstructured mesh, as shown in Fig. 10. The mesh employs a pressure far-field boundary condition at a

distance of about 200 chord lengths, a symmetry boundary condition at the inboard wing side, and an adiabatic no-slip

wall condition on the wing surface. The mesh contains 3, 627, 926 cells and 1, 602, 721 points. The grid points on

the wing surface are clustered near the presumed shock wave positions and the wing tip to well capture the shock

wave and shock-induced separations, respectively The dimensionless height of the first cell satisfies 𝑦+ < 0.8, and the

growth rate of the mesh cells is around 1.2 in the boundary layer. The training cases are conducted at Mach number
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𝑀𝑎 = 0.84, angle of attack 𝛼 = 5.06◦, and Reynolds number 𝑅𝑒𝑀𝐴𝐶 = 1.17 × 107 based on the mean aerodynamic

chord (MAC) [53]. The mean aerodynamic chord is 0.64607 m.

Fig. 10 Computational setup for flows over ONERA M6 wings. (a) ONERA M6 wing; (b) boundary conditions;
(c) mesh grids near the wing.

In the ONERA M6 case, we employ a neural network with two hidden layers and 10 neurons per layer based on our

sensitivity analysis. The details of the sensitivity study to the neural network architecture are presented in Appendix B.

The six scalar invariants 𝜃 (1−6) are used as the inputs, and the five tensor coefficients 𝑔 (1−5) are used as the outputs

based on the minimal representation principle [54]. The relative standard deviation of the neural network weights is set

as 0.2, and the sample size is set as 15 for this case. The relative observation error is set as 0.1%, and the observation

data is the wall pressure distribution from the experiments [53]. The pressure measurements at four sections, i.e., 𝜂 =

0.44, 0.65, 0.90, and 0.99, are used as training data. Herein, 𝜂 indicates the spanwise location, defined as 𝜂 = 𝑦/𝑏,

where 𝑦 is the spanwise coordinate, and 𝑏 is the spanwise length.

The learned model can better estimate the flow separation than the baseline model. We use the prediction results of

the Reynolds stress transport model in the previous study [55] as a reference. Figure 11 shows the surface pressure

coefficient and the distribution of streamlines with comparison among the Reynolds stress transport model (RSM),

𝑘 − 𝜔 SST model, and the learned model. From the pressure coefficient distributions, the different turbulence models

predict similar development of the shock waves. The morphology of the shock waves is characterized by the formation

of an 𝜆-like shape on the upper wing. That is, two shock waves are formed from the wing root and gradually approach

the wing tip, merging into a stronger shock wave. As can be seen from Figure 11(b), the 𝑘 − 𝜔 SST model predicts

that the two shock waves on the upper surface of wings are merged at approximately 𝜂 = 0.55, while the Reynolds

stress transport model and the learned model predict the shocks merging at the spanwise 𝜂 = 0.65. Moreover, the
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predicted shock-induced flow separation zones are significantly different with the three turbulence models. The 𝑘 − 𝜔

SST model shows a large separation area after the shock wave, which develops from the root of the shock wave to

the trailing edge of the wing. In contrast, the learned model predicts similar results to the Reynolds stress transport

model, with a relatively small shock-induced separation zone. Specifically, the Reynolds stress transport model, 𝑘 − 𝜔

SST model, and the learned model predict the flow separation covering the range of 𝑥𝑅𝑆𝑀/𝐿𝑀𝐴𝐶 ∈ [1.169, 1.323],

𝑥𝑘𝜔/𝐿𝑀𝐴𝐶 ∈ [1.091, 1.729], 𝑥𝑀𝐿/𝐿𝑀𝐴𝐶 ∈ [1.182, 1.349] in the streamwise direction, respectively.

Fig. 11 Plots of surface pressure and streamline with the Reynolds stress transport model, baseline model, and
learned model, for the ONERA M6 case.

The learned model can provide improved predictions in terms of the pressure coefficient compared to the baseline

model. It is supported by Fig. 12, which shows the pressure coefficient distribution at different spanwise positions on the

wing surface in comparison to the experimental data. The position of the span-wise section is indicated in Figure 11(a),

i.e., 𝜂 = 0.44, 0.65, 0.80, 0.90, 0.96, 0.99 from the wing root to the wing tip. It can be seen that the pressure coefficients

predicted by the baseline 𝑘 − 𝜔 SST model have significant discrepancies from experimental data. In contrast, the

learned model is able to predict the pressure coefficient in good agreement with the experimental measurements in

different spanwise sections. This is due to the fact that it accurately predicts the location of the 𝜆-type shock waves, as

shown in Fig. 11.

The predictive improvement in the surface pressure with the learned model is likely due to the reduction of Reynolds

shear stress downstream of the shock wave. Figure 13 shows the contour plots of Mach number, 𝑔 (1) and 𝑔 (2) coefficients

obtained by the learned model on a cutoff plane 𝜂 = 0.90, where the flow separation is the most extensive. One can see

that the supersonic pocket and the shock-induced separations on the suction side are resolved well. In this separation

region, the learned model reduces the magnitude of 𝑔 (1) coefficient and further the Reynolds shear stress based on

Eq. (2). The reduction of the shear stress weakens the momentum transport within the boundary layer, which leads to

the thickening of the boundary layer downstream of the shock wave. In addition, the enlarged separation zone results
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Fig. 12 Plots of wall pressure coefficients with comparison among the baseline model, the learned model, and
experimental data, for the ONERA M6 case.

in a circular-arc bump that would hold the shock wave at a relative downstream position compared to the baseline

model. Recall that 𝑔 (2) is the coefficient of the second tensor basis, and the distribution of 𝑔 (2) coefficient is shown in

Figure 13(d). The coefficients 𝑔 (3−5) have similar patterns as the 𝑔 (2) with very small magnitudes, and hence their plots

are omitted for brevity. The relatively large amplitude is mainly in the separation and wake regions, with a maximum

value of about 1.5 × 10−4. It indicates that the nonlinearity of the algebraic Reynolds stress model is relatively weak in

the ONERA M6 case.

Figure 14 presents the predicted temperature distribution on the upper surface of the wing with the learned model

and the baseline model. The temperature distribution on the surface is significantly affected by the location of the

shock wave. One can see that the wall temperature rises across the shock wave region, due to the strong compressibility

effects. At the section of 𝜂 = 90% in Fig. 14 (c), the wall temperature is significantly reduced behind the shock wave.

That is caused by the momentum transport weakening and further heat production decreasing at the shock-induced

separation region. Also, it is noticeable that the learned model leads to more severe temperature reductions compared to

the baseline model. That is likely because the learned model suppresses the turbulent heat transfer by reducing the

magnitude of 𝑔 (1) coefficient at the post-shock region as shown in Fig. 13(c).
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(a) 𝑘–𝜔 SST (b) learned model

(c) 𝑔 (1) -distribution (d) 𝑔 (2) -distribution

Fig. 13 Contour plots of the Mach number, 𝑔 (1) and 𝑔 (2) coefficients at the cutoff plane of 𝜂 = 90% for the
ONERA M6 case.

Fig. 14 Distribution of temperature on the upper surface of the ONERA M6 wing.

The learned model can be generalized well to different flow conditions for the ONERA M6 case. Specifically, the

learned model is tested for the ONERA M6 wings at the flow condition of 𝑀𝑎 = 0.84, 𝛼 = 6.06◦, and Reynolds number

based on the mean aerodynamic chord 𝑅𝑒𝑀𝐴𝐶 = 1.17 × 107. This flow has a wider flow separation zone than the

training case in spite of slight variations in the angle of attack. The predicted pressure coefficients with the baseline

model and the learned model are shown in Fig.15 with comparison to the experimental measurements. It shows that the

learned model achieves more accurate predictions than the baseline model. In addition, the learned model is also tested

for the ONERA M6 wings at the flow condition of 𝑀𝑎 = 0.84, 𝛼 = 3.06◦, and 𝑅𝑒𝑀𝐴𝐶 = 1.17 × 107. This test case

is noticeably different from the training case since the shock wave on the suction side is relatively weak and the flow

22



is almost attached without separation. For such attached flows, both the baseline model and the learned model can

obtain good agreement with the experimental data, and hence the plots are omitted for brevity. The error between the

prediction and experiment for the training and test cases is summarized in Table 3, quantitatively showing the better

predictive performance of the learned model than the baseline model in both training and test cases. Here the error is

computed based on the results at the spanwise locations 𝜂 = 44%, 65%, 80%, 90%, 96%, 99%.

Fig. 15 Results of generalization tests in surface pressure coefficients with comparison among the baseline
model, the learned model, and experimental data, for the ONERA M6 case.

Table 3 Summary of the prediction error in wall pressure coefficients for the ONERA M6 case.

Cases Turbulence models Error estimation of 𝐶𝑝

Training case
𝑘–𝜔 SST 35.767%

learned model 12.378%

Test case (1)
𝑘–𝜔 SST 36.807%

learned model 15.300%

Test case (2)
𝑘–𝜔 SST 12.356%

learned model 11.645%
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IV. Conclusion
In this work, we demonstrate the application of the ensemble Kalman method in learning turbulence models

for transonic flows from sparse experimental data. A neural network-based turbulence model for transonic flows is

developed by taking into account fluid compressibility. The normalization strategies of input features, including the

min-max normalization and local normalization, are investigated with emphasis on the effects of shock waves on flow

features. Moreover, turbulent heat fluxes are modified with the tensor basis neural networks based on the Boussinesq

assumption. The proposed neural network framework is tested in two external flow cases, i.e., 2D transonic flows

around the RAE2822 airfoil and 3D transonic flows around the ONERA M6 wings. The experimental measurements of

velocity and wall pressure are used to train the neural network-based model, respectively, highlighting the flexibility of

the ensemble Kalman method in the use of training data. Both training and test cases show that the learned model can

achieve predictions in good agreement with the training data, which demonstrates the capability of the ensemble-based

turbulence modeling framework for transonic flows.

Future works will be conducted to evaluate the machine-learned turbulence models by comparison to classical

nonlinear eddy viscosity models [56, 57] in various applications. Moreover, the nonlinear eddy viscosity model is still

under the weak equilibrium assumption. The present ensemble method can be extended in the Reynolds stress transport

model framework to construct the neural network-based model for the pressure-strain-rate correlation. Besides, the

heat flux closure is based on the gradient diffusion model in this work. The generalized gradient diffusion model and

additional invariants associated with the temperature gradient need to be considered for predicting the heat flux in future

investigations.

A. Baseline 𝑘–𝜔 SST turbulence model
The 𝑘–𝜔 Shear Stress Transport (SST) model [5] is used to evaluate the turbulent kinetic energy 𝑘 and specific

turbulence dissipation rate 𝜔. The corresponding transport equations are

𝜕𝜌𝑘

𝜕𝑡
+
𝜕
(
𝜌𝑢 𝑗 𝑘

)
𝜕𝑥 𝑗

= 𝑃 − 𝛽∗𝜌𝑘𝜔 + 𝜕

𝜕𝑥 𝑗

[
(𝜇 + 𝜎𝑘𝜇𝑡 )

𝜕𝑘

𝜕𝑥 𝑗

]
, (A.1)

𝜕𝜌𝜔

𝜕𝑡
+
𝜕
(
𝜌𝑢 𝑗𝜔

)
𝜕𝑥 𝑗

=
𝛾𝜌

𝜇𝑡
𝑃 − 𝛽𝜌𝜔2 + 𝜕

𝜕𝑥 𝑗

[
(𝜇 + 𝜎𝜔𝜇𝑡 ) 𝜕𝜔

𝜕𝑥 𝑗

]
+2𝜌 (1 − 𝐹1) 𝜎𝜔2

𝜔
𝜕𝑘
𝜕𝑥 𝑗

𝜕𝜔
𝜕𝑥 𝑗
. (A.2)

The production of turbulent kinetic energy is stress-based and defined as

𝑃 = 𝜏𝑖 𝑗
𝜕𝑢𝑖

𝜕𝑥 𝑗

, (A.3)
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where the Reynolds stress tensor 𝜏𝑖 𝑗 is obtain by the proposed neural-network-based turbulence model. The blending

function 𝐹1 is given by 

𝐹1 = tanh
(
Γ4

)
, Γ = min [max (Γ1, Γ3) , Γ2]

Γ1 =
500𝜇
𝜌𝜔𝑑2

Γ2 =
4𝜎𝜔2𝜌𝑘
𝐶𝐷𝑘𝜔𝑑2

Γ3 =
√
𝑘

𝛽∗𝜔𝑑

𝐶𝐷𝑘𝜔 = max
(
2𝜌

𝜎𝜔2
𝜔

𝜕𝑘

𝜕𝑥 𝑗

𝜕𝜔

𝜕𝑥 𝑗

, 10−20
) . (A.4)

Here, 𝑑 is the shortest distance from the wall. Each of the constants in Eqs. (A.1) and (A.2) is blended via

𝜑 = 𝐹1𝜑1 + (1 − 𝐹1) 𝜑2. (A.5)

The constants are

𝜎𝑘1 = 0.85 𝜎𝑘2 = 1.0, 𝜎𝜔1 = 0.5, 𝜎𝜔2 = 0.856,

𝛽1 = 0.075 𝛽2 = 0.0828, 𝛽∗ = 0.09,

𝜅 = 0.41 𝛾1 =
𝛽1
𝛽∗ − 𝜎𝜔1𝜅

2
√
𝛽∗ 𝛾2 =

𝛽2
𝛽∗ − 𝜎𝜔2𝜅

2
√
𝛽∗ .

(A.6)

More details can be found in ref. [5].

B. Sensitivity analysis of mesh grid and network architecture
In the RAE2822 cases, the mesh sensitivity is investigated for the training case at the flow condition of 𝑀𝑎 = 0.75,

𝛼 = 2.8◦, and 𝑅𝑒𝐶 = 6.2 × 106. Three typical meshes with different resolutions are generated for comparison, and the

first layer spacing of all meshes in the normal direction corresponds to 𝑦+ ≈ 0.8. The cell numbers of these meshes are

summarized in Table B.1, and all the grids are generated with the same topology. Figure B.1 compares the predicted

wall pressure distribution 𝐶𝑝 with various mesh sizes. The wall pressure distribution is affected by the mesh resolution

mainly near the shock location, which exhibits that the medium and fine meshes provide very close results. Hence, the

medium-density mesh is adopted for the RAE2822 case.

Table B.1 Summary of mesh grids for mesh sensitivity study of the RAE 2822 case.

Meshes Coarse Medium Fine
Number of cells 32, 047 45, 394 104, 122

We also perform the mesh sensitivity study for the ONERA M6 cases. Three meshes are generated with the same

topology, and the cell numbers of each mesh are summarized in Table B.2. All generated meshes are simulated with

the training case, i.e., at the flow condition of 𝑀𝑎 = 0.84, 𝛼 = 5.06◦ and Re = 1.17 × 107. Figure B.2 shows the

comparisons of simulated wall pressure distribution with various mesh sizes. The variation of mesh density affects the
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(a) 𝐶𝑝-distribution (b) Zoomed in view

Fig. B.1 Comparison of predicted wall pressure distribution with various mesh sizes for the RAE 2822 cases.

wall pressure distribution on the suction side, especially at the section of 𝜂 = 96%. The differences between the medium

and the fine mesh are small in the predicted wall pressure. Therefore, the medium-density mesh is used for the ONERA

M6 case.

Table B.2 Summary of mesh grids for mesh sensitivity study of ONERA M6 cases.

Meshes Coarse Medium Fine
Number of cells 2, 735, 233 3, 627, 926 6, 563, 867

Fig. B.2 Comparison of predicted wall pressure distribution with various mesh sizes for the ONERA M6 case.

The sensitivity to the architecture of neural networks is investigated for both the RAE 2822 case and the ONERA

M6 case. Four neural network architectures are tested: (1) two hidden layers with 5 neurons per layer; (2) two hidden

layers with 10 neurons per layer; (3) four hidden layers with 20 neurons per layer; (4) eight hidden layers with 10
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neurons per layer. The results of prediction errors for the RAE2822 case and the ONERA M6 case are summarized in

Tables B.3 and B.4, respectively. For the RAE2822 case, the neural network with two hidden layers and 5 neurons per

layer provides the best predictions in the velocity compared to the other neural network architectures. Moreover, this

neural network predicts the pressure coefficient with the error of 7.701%, which has only subtle differences from other

cases. As for the ONERA M6 case, the neural network with two hidden layers and 10 neurons per layer provides the

best estimation of the wall pressure coefficient 𝐶𝑝 , compared to the other architectures. Therefore, the neural network

with two hidden layers and 5 neurons per layer is used for the RAE2822 case, and the neural network with two hidden

layers and 10 neurons per layer is adopted for the ONERA M6 case.

Table B.3 Parameter sensitivity analysis of neural networks for the RAE 2822 cases.

Hidden layers Neurons per layer Trainable parameters
Error estimation
Velocity 𝐶𝑝

2 5 68 7.868% 7.701%
2 10 183 8.262% 7.656%
4 20 1403 8.463% 7.902%
8 10 843 8.069% 7.864%

Table B.4 Parameter sensitivity analysis of neural networks for the ONERA M6 cases.

Hidden layers Neurons per layer Trainable parameters Error estimation of 𝐶𝑝

2 5 68 12.823%
2 10 183 12.378%
4 20 1403 12.460%
8 10 843 12.668%
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