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Neural networks have the ability to deal with the flush air data
sensing (FADS) system of various vehicles. However, the demand for
large quantities of training data limits its application. To overcome the
problem, this article develops a FADS algorithm called dimensionless
input and output neural networks FADS (DIO-NNFADS) to estimate
air data states. The DIO-NNFADS is utilized to approximate the
aerodynamic model defined by dimensional analysis, which decouples
the freestream static pressure. Thus, trained by less data from a single
flight profile, the DIO-NNFADS can achieve good accuracy in the
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entire flight envelope, effectively reducing the training data for neural
networks. The Mach number, angle of attack, angle of sideslip, and
the pressure coefficients are directly output by the DIO-NNFADS. And
the static pressure and dynamic pressure are solved by the equations
composed of the measured pressures and pressure coefficients. The
proposed FADS algorithm is verified on a simplified supersonic model
through numerical simulation. Results show that the algorithm can
estimate the Mach number within the relative error of 2.9%, static
pressure and dynamic pressure within the relative error of 6.2%, and
the angle of incidence within the absolute error of 0.4◦ in the entire
flight envelope. Besides, the optimal size of the training data set for
the DIO-NNFADS is discussed. Furthermore, the influence of port
layout and selection is analyzed, and the algorithm also shows good
performance for a port layout without stagnation point.

I. INTRODUCTION

Air data states, such as the Mach number, angle of attack,
angle of sideslip, static pressure, and dynamic pressure, are
always critical to the flight control, guidance, and postflight
analysis of most atmospheric flight vehicles [1], [2]. The
systems used to sense, calculate, and output air data states
are called the air data sensor (ADS) [3].

Traditional ADS systems for air data sensing involve
intrusive booms that extend beyond the local boundary
layer [4], [5]. It provides a stable measurement and is
suitable for many practical applications. However, these
intrusive booms can cause unwanted lateral instabilities for
some vehicles with high angles of attack and increase radar
cross-sectional area for surface vessels [6], [7]. Another
serious problem is that these booms cannot withstand the
tremendous heat load under hypersonic flight [8].

To deal with the above problems, a flush air data sens-
ing (FADS) system was developed by NASA in the early
1960s [9], [10]. Unlike intrusive booms that penetrate the
flow away from the influence of the vehicle, the FADS
system uses pressure distribution from multiple pressure
ports on the forebody of the vehicle to predict air data states
that are complete nonintrusive air data sensing systems [8].
The FADS system can avoid the hypersonic heat load caused
by the flow-sensing booms and extend the effective range
of the ADS from the low-subsonic to the hypersonic flow
regime. Since the FADS system uses the natural contours of
the forebody and does not probe the flowfield, instabilities
of the vehicle are not affected, and the radar cross-sectional
area does not increase either. Due to these advantages,
the FADS system has been successfully applied to high-
performance vehicles in various speed domains, such as
X-15 [11], X-31 [12], X-33 [8], and X-43A [13] in the
United States, HYFLFX [14] in Japan, SHEFEX II [15]
in Germany, etc.

Traditional FADS algorithms such as the triples algo-
rithm are based on a semiempirical pressure model, which is
established by fusing potential flow theories (at low-speed
flow) and the modified Newtonian theory (at supersonic
flow) [16]. However, these algorithms are only suitable for
vehicles with blunt noses [17], [18], [19], and an additional
calibration is required to improve the accuracy and stability
of the algorithm [20]. Besides, the lookup table algorithm is
also used to estimate air data states from measured surface
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pressure distribution [21]. However, it needs a particular
pressure port selection, and the algorithm requires an elab-
orate design to generate lookup tables. The accuracy and
stability of the lookup table algorithm are at the cost of
algorithm complexity.

With strong fitting capabilities, neural networks can
approximate complex nonlinear relationships between the
input and output variables of the system without requiring
explicit prior knowledge and manual design that are very
well suited to the FADS system [22], [23], [24]. Compared
with the triples algorithm and the lookup table, neural net-
works have the advantage of being easier to develop while
providing a higher level of detail in the mapping between
the two vector spaces and are feasible for the sharp-nosed
vehicles. Rohloff first proved that it is feasible to use the
trained neural networks to represent the FADS estimation
mapping [25], and discussed the fault tolerance and extrap-
olation stability of the neural-networks-based FADS sys-
tem [26]. However, the training data was only sampled from
a single flight profile, which limits the applicability of the
trained neural networks to similar flight conditions. Then,
Rohloff extracted a wide range of training data across the
entire flight envelope from multiple flight tests, and built a
neural-networks-based FADS system to estimate freestream
static pressure and dynamic pressure [20]. Nevertheless, it
is expensive and time-consuming that massive wind tunnel
tests or flight tests are used to prepare vast bulk of training
data for neural networks. Thus, most neural-network-based
FADS systems are only applied to small unmanned aerial
vehicles (UAVs) [27], [28], [29], [30] in recent years. These
UAVs fly at low speed, and only the angle of incidence
and velocity need to be estimated. Therefore, to expand
the application of the neural-network-based FADS, it is
necessary to explore new techniques to reduce the amount
of training data for neural networks.

A feasible idea is to decouple the freestream static
pressure, which is inspired by the traditional semiempiri-
cal FADS algorithm. Specifically, although the measured
pressure values at different altitudes are different, the pres-
sure distribution is similar between the flight conditions
with the same Mach number and angle of incidence but
different static pressure. Making full use of this similarity
can effectively reduce the size of the training data set for
the neural-networks-based FADS system. For example, the
triples algorithm ingeniously defines a pressure transforma-
tion decoupling freestream static pressure [16]. However,
this transformation is not feasible for sharp-nosed vehicles.
Besides, the semiempirical pressure model is independent
of the Mach number that makes Mach number, static pres-
sure, and dynamic pressure need to be solved iteratively.
Therefore, it is difficult to directly apply this transformation
to neural networks.

In the basic theory of aerodynamics, choosing a ref-
erence to make the physical quantity dimensionless can
profoundly reveal the essential relationship between vari-
ous variables [31]. For example, freestream static pressure
or dynamic pressure is often chosen as the reference to
make the pressure quantity dimensionless, but they are the

parameters to be solved in the FADS system. In Rohloff’s
research, static pressure and dynamic pressure can be cal-
culated from the measured pressures by using neural net-
works [20]. It can be considered that the measured pressures
can indirectly represent the static pressure and dynamic
pressure. Therefore, an alternative solution is to use the
measured pressure as the reference pressure.

To make full use of the collected information, this article
uses each measured pressure as a reference to make the
remaining pressures dimensionless, and an aerodynamic
model is defined by dimensional analysis, which can de-
couple the freestream static pressure. A dimensionless input
and output neural networks FADS (DIO-NNFADS) is de-
veloped to approximate the aerodynamic model, effectively
reducing the training data scale for neural networks. The
DIO-NNFADS is trained by less data, which is sampled
from a single flight profile. Mach number, angle of attack,
angle of sideslip, and pressure coefficient at each port are
directly output by the DIO-NNFADS. Static pressure and
dynamic pressure are solved by the equations composed of
the measured pressures and pressure coefficients. Further-
more, this article explores the optimal size of the training
data set for neural networks and discusses the applicability
of this algorithm to various pressure port layouts.

The rest of this article is organized as follows. Section II
proposes an implicit FADS aerodynamic model, and Sec-
tion III designs a FADS algorithm to estimating air data
states from the measured pressures. Then, Section IV de-
scribes the simplified supersonic model that is used to verify
the designed FADS algorithm. Section V introduces the
methods of data acquisition. Finally, Section VI concludes
this article.

II. FLUSH AIR DATA SENSING AERODYNAMIC
MODEL

The FADS system relies on the aerodynamic model that
relates measured pressure distribution to the air data states.
The semiempirical pressure model described by Whitmore
has been validated for a high-performance fighter aircraft
forebody and several simple shapes (for example, sphere
and cylinder) [16]. However, the model suitable for a wide
variety of vehicle shapes has not been established. Dimen-
sional analysis is an effective tool to reveal the essential
relationship between various variables that can help us ana-
lyze and establish the aerodynamic model and it is utilized
to find a general aerodynamic model suitable for various
vehicle shapes.

A. Derivation of Aerodynamic Model

With reference to the freestream static pressure p∞ and
dynamic pressure q∞, the pressure of a port i on the surface
of the vehicle can be expressed as

pi = q∞Cpi + p∞ (1)

where Cpi is the pressure coefficient of the ith port.
The semiempirical pressure model described by Whit-

more fuses potential flow and modified Newtonian flow to
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describe the pressure coefficient in terms of the angle of
incidence [8]. Different from the semiempirical pressure
model, Cpi is the function of the spatial position of the ith
port and Mach number M∞, angle of attack α, and angle of
sideslip β:

Cpi = C p(ri, M∞, α, β ) (2)

where ri = [xi/l, yi/l, zi/l] is the spatial position of ith
port, and l is the reference length of the vehicle. However,
static pressure and dynamic pressure are the parameters to
be solved and cannot be chosen as the reference pressure.
Based on the measured pressures, Rohloff used two neural
networks to estimate static pressure and dynamic pressure,
respectively [20]. It can be expressed as

p∞ = �p∞ (p1, p2, . . ., pn) (3a)

q∞ = �q∞ (p1, p2, . . ., pn) (3b)

where �p∞ and �q∞ represent the neural networks used to
estimate static pressure and dynamic pressure, respectively.

The measured pressures can be used to indirectly rep-
resent static pressure and dynamic pressure. Thus, an al-
ternative solution is choosing a measured pressure as the
reference pressure. For the ith and jth port, define the
dimensionless pressure ratio ωi j

ωi j = pi

p j
=

q∞
p∞

C p(ri, M∞, α, β ) + 1
q∞
p∞

C p(r j, M∞, α, β ) + 1
. (4)

According to the literature [8], q∞
p∞

is the function of M∞

G(M∞) = q∞
p∞

=

⎧⎪⎨
⎪⎩
[
1 + 0.2M2

∞
]3.5 − 1 (M∞ > 1)

166.92M7
∞[

7M2∞ − 1
]2.5 − 1 (M∞ ≤ 1)

.

(5)
Substitute (5) into (4), obtain

ωi j = G(M∞)C p(ri, M∞, α, β ) + 1

G(M∞)C p(r j, M∞, α, β ) + 1
. (6)

The above equation can be written as a general form

ωi j = f (ri, r j, M∞, α, β ). (7)

This is an important result that ωi j , the pressure ratio
of two ports, is a function of ri, r j , M∞, α, and β. For the
measured pressures of n ports, at least n − 1 independent
pressure ratios can be defined. However, a question is which
pressure port should be selected as a reference. To make full
use of the collected information, we select each measured
pressure in turn as a reference to make the remaining
pressures dimensionless; n(n − 1) pressure ratios can be
obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω12 = f (r1, r2, M∞, α, β )

ω13 = f (r1, r3, M∞, α, β )
...

ωi j = f (ri, r j, M∞, α, β )
...

ωn(n−1) = f (rn, rn−1, M∞, α, β )

(8)

where i ≤ n, j ≤ n, and i �= j, ri is the spatial position of
the ith port. Once the aerodynamic configuration of the
vehicle and the pressure port layout are determined, ri is
the known parameter. Define the pressure ratio array � =
[ω12, ω13, . . . , ωi j, . . . , ωn(n−1)], which is only the function
of M∞, α, and β. Inversely, the dimensionless air data states,
M∞, α, and β, can be framed as an inverse mapping problem
of (8). Assume z1 = [M∞, α, β], the inverse form of the (8)
can be expressed as follows:

z1 = �1(ω12, ω13, . . . , ωi j, . . . , ωn(n−1)) (9)

�1 is the implicit function that relates dimensionless air
data states (M∞, α, and β) and the pressure ratio array.

Once the parameters of M∞, α, and β are determined,
the pressure coefficient at each port can also be expressed
as the function of the pressure ratio array. Combine (2) and
(9), and define z2 = [Cp1,Cp2, . . . ,Cpi , . . . ,Cpn ], to obtain

z2 = �2(ω12, ω13, . . . , ωi j, . . . , ωn(n−1)) (10)

�2 is the implicit function that relates the pressure coeffi-
cient at each port (Cpi , i = 1, 2, . . ., n) and the pressure ratio
array.

According to (9) and (10), dimensionless air data states
(M∞, α, and β) and the pressure coefficient at each port
(Cpi , i = 1, 2, . . ., n) can be defined as the function of the
pressure ratio array. It can be considered as a general aero-
dynamic model with an implicit mathematical expression,
which can be solved by neural networks based on observa-
tion data.

B. Discussion

By dimensional analysis, an implicit aerodynamic
model is defined that can be used to estimate air data states.
There are several important differences between the current
aerodynamic model and the semiempirical pressure model.
First, the pressure coefficient of the current aerodynamic
model is a function of Mach number, angle of attack, and
angle of sideslip, which is more consistent with the physics
of flow. Mach number, angle of attack, and angle of sideslip
can be inversely expressed as a function of the pressure ratio
array so that they can be directly and accurately solved with-
out complex calibration algorithms. However, the pressure
coefficient of the previous semiempirical pressure model is
only the function of angle of attack, angle of sideslip. As a
result, Mach number needs to be solved iteratively. Second,
referring to the measured pressure, the dimensionless pa-
rameter of pressure ratio has a simple form in mathematics.
It can be regarded as a general form, which is suitable for
various pressure port layouts, such as the port layout on the
sharp-nosed vehicle. However, the transformation defined
in the triples algorithm is exclusively for blunt-nosed ve-
hicles. Finally, each measured pressure can be used as a
reference to make the remaining pressures dimensionless,
and n(n − 1) pressure ratios can be obtained to solve air data
states. It can be considered as a pressure transformation that
can make full use of the measured information.
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Fig. 1. Flowchart of the proposed FADS estimation algorithm.

III. ALGORITHM

A. General Process for Estimating Air Data States

This section presents the general process of the proposed
FADS algorithm, which can estimate air data states, such
as the Mach number, angle of attack, angle of sideslip,
static pressure, and dynamic pressure based on measured
pressures on the vehicle. The flowchart is shown in Fig. 1, in-
cluding two steps: 1) the estimations of dimensionless vari-
ables, and 2) the estimations of static pressure and dynamic
pressure. For step 1), dimensionless air data states (M∞, α,
and β) and the pressure coefficient at each port (Cpi , i =
1, 2, . . ., n) are directly output by the DIO-NNFADS. For
step 2), static pressure and dynamic pressure are solved
by the equations composed of the measured pressures and
pressure coefficients. With the above two steps, all air data
states can be calculated.

B. Estimation of Dimensionless Air Data States

Mathematically, the FADS estimation can be regarded
as a problem of system parameter identification, that is,
the processing of using observations to estimate system
parameters. Neural networks show dramatic advantages in
system parameter identification, which is very well applied
to the FADS system.

1) Principle of Neural Networks: As shown in Fig. 2,
the structure of neural networks usually consists of three
parts: The input layer, the hidden layers, and the output
layer. The data accepted from the input layer are weighted
and activated in each hidden layer. For the lth hidden layer,
the result of the jth neuron is expressed as follows:

hl, j = f

(
I∑

i=1

hl−1,iw
l
i j + bl

j

)
(11)

hl−1,i is the data of the ith neuron of the (l − 1)th layer, I is
the number of nodes in the (l − 1)th layer, wl

i j is the weight
connecting two adjacent layers, bl

j is the bias, and f (·) is
the LeakyReLU activation function [32].

Fig. 2. Structure of artificial neural networks.

After multiple weighted and activated, the prediction
ŷ( j) is given at the output layer. To avoid overfitting, the
mean square error (MSE) loss function with the L2 regular
penalty is defined

Loss = 1

2 J

J∑
j=1

(
y( j) − ŷ( j)

)2 + λ
∑

‖w‖2
2 (12)

where J is the dimension of the output layer, y( j) is the
true value of the samples, λ

∑ ‖w‖2
2 is an L2-regularization

term, and λ is a non-negative hyperparameter that controls
the magnitude of the penalty.

2) Dimensionless Input and Output Neural Networks:
An aerodynamic model defined by dimensional analysis
is proposed in Section II-A. The model indicates that di-
mensionless air data states and pressure coefficient at each
port are the function of the pressure ratio array transformed
by the measured pressures. However, it is difficult to solve
the explicit expression of the aerodynamic model. Thus,
neural networks are used to infinitely approximate the aero-
dynamic model for estimating dimensionless air data states
and pressure coefficient at each port.

According to the implicit expression of the (9) and (10),
the input and output of neural networks can be determined.
The input of neural networks is the pressure ratio array,
and the output contains two parts: 1) Dimensionless air
data states (M∞, α, and β), 2) pressure coefficient at each
port (Cpi , i = 1, 2, . . ., n). Since both the input and output of
neural networks are dimensionless variables, the proposed
estimation algorithm is called dimensionless input and out-
put neural networks FADS (DIO-NNFADS).

Fig. 3 gives the details of DIO-NNFADS. First, n pres-
sures are measured by the sensor array with n ports. The
measured pressures are transformed into a dimensionless
pressure ratio array as the input of neural networks. To fully
dig out the information contained in the measured pressures,
each measured pressure can be chosen as the reference, in
turn, to make the remaining pressures dimensionless. A
total of n(n − 1) pressure ratios can be obtained for the
input of neural networks. Second, the pressure ratio array
is transferred from the input layer to the hidden layers.
Through the linear weighted and nonlinear activated in two
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Fig. 3. Structure of dimensionless input and output neural networks.

TABLE I
Hyperparameters of Dimensionless Input

and Output Neural Networks

Fig. 4. Comparison between traditional neural-network-based FADS
and the DIO-NNFADS. (a) Traditional neural-network-based FADS.

(b) Dimensionless input and output neural networks FADS.

hidden layers with 256 nodes, a set of features are extracted.
Finally, these extracted features are linear weighted to out-
put dimensionless air data states and pressure coefficient
at each port. A total of n + 3 dimensionless variables are
output. Table I gives the details of the DIO-NNFADS.

Fig. 4 gives the comparison of traditional neural-
network-based FADS and the DIO-NNFADS. Traditional
neural-network-based FADS directly establishes the map-
ping between the measured pressures and air data states,
ignoring the similarity between the flight conditions with the
same Mach number and the angle of incidence but different
static pressure. Thus, large amounts of data across the entire
flight envelop are required to train neural networks, which is
costly in terms of extensive wind tunnel tests and flight tests.
Different from traditional neural-network-based FADS, the
input of DIO-NNFADS is the pressure ratio array trans-
formed by the measured pressures, and the output contains

dimensionless air data states and pressure coefficient at each
port, as shown in Fig. 4(b). The essence of DIO-NNFADS
is to approximate the aerodynamic model in Section II-A
based on the observation data. The DIO-NNFADS has the
capability of decoupling static pressure. Thus, it can be
trained with less data from a single flight profile and is also
suitable for the entire flight envelope.

C. Estimation of Static Pressure and Dynamic Pressure

Pressure coefficient at each port can be directly calcu-
lated by the DIO-NNFADS. Together with the measured
pressures, only static pressure and dynamic pressure are still
unknown parameters in (1). For the pressure sensor array
with n ports, the resulting n overdetermined system (more
equations than the unknown variables) of equations is

⎡
⎢⎢⎢⎢⎣

p1

p2

...

pn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Cp1 1

Cp2 1
...

...

Cpn 1

⎤
⎥⎥⎥⎥⎦
[

q∞
p∞

]
. (13)

Define the matrix

M =

⎡
⎢⎢⎢⎢⎣

Cp1 1

Cp2 1
...

...

Cpn 1

⎤
⎥⎥⎥⎥⎦ . (14)

Because the number of equations is always greater than
that of unknown variables to be derived, p∞ and q∞ can be
expressed by least square estimation. The result is

[
q∞
p∞

]
= [

MT M
]−1

MT

⎡
⎢⎢⎢⎢⎣

p1

p2

...

pn

⎤
⎥⎥⎥⎥⎦ . (15)
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Fig. 5. Three-dimensional view of the simplified supersonic model
(unit: mm).

The result can be further simplified as

p∞ = − (∑n
i=1 Cpi

) (∑n
i=1 piCpi

)− (∑n
i=1 C2

pi

) (∑n
i=1 pi

)
(∑n

i=1 C2
pi

)− (∑n
i=1 Cpi

)2

(16a)

q∞ =
∑n

i=1 piCpi − (∑n
i=1 Cpi

) (∑n
i=1 pi

)
(∑n

i=1 C2
pi

)− (∑n
i=1 Cpi

)2 . (16b)

Equations (16a) and (16b) are the working forms of the
solver equations used in the FADS system.

D. Summary

With the above two steps, all the air data states can
be estimated. Mach number, angle of attack, and angle
of sideslip are directly output by DIO-NNFADS. Static
pressure and dynamic pressure can be calculated by the
equations composed of the measured pressures and pressure
coefficients. Compared with the previous researches, the
DIO-NNFADS has the following advantages.

1) The pressure ratio array with a simple transformation
is applicable for various pressure port layouts. All
measured pressures are used as a reference in turn,
which can make full use of the collected pressure
information and ensure the robustness of the DIO-
NNFADS.

2) Compared with traditional neural-networks-based
FADS, the DIO-NNFADS can decouple the
freestream static pressure, greatly reducing the train-
ing data for neural networks.

IV. TEST VEHICLE GEOMETRY AND PORT LAYOUT

A. Vehicle Geometry

The proposed FADS algorithm is verified on a sim-
plified supersonic model. As shown in Fig. 5, the nose
of the vehicle is a hemisphere with a radius of 10 mm,
followed by a conical fuselage. To meet the volume re-
quirements, the wing is a delta wing with a certain thick-
ness and has a leading-edge radius of 5 mm. The vehicle
geometry is symmetric about the vertical meridian and
lateral meridian, respectively. The vehicle is designed to

TABLE II
Target Flight Condition

Fig. 6. Details of the pressure port matrix layout.

TABLE III
Location of Ports 1–9

fly in the range of altitude and Mach number being 10–
25 km and 1.5–5. Table II describes the possible flight
conditions. The range of corresponding static pressure
is 2.5–26.5 kPa.

B. Port Layout

The ports of the traditional FADS algorithm are usually
arranged on the nose of the vehicle. Due to the extremely
limited space, it is difficult to arrange all ports on the
nose. As shown in Fig. 6, a new port layout is arranged.
This layout focuses on using the pressures in other parts
of the vehicle to solve the air data states. Only one port
is arranged on the model nose to collect the stagnation
pressure. Eight ports are symmetrically arranged in x = 50
and 150 mm cross sections, respectively. Four ports are
on the leading edge, and four ports are on the fuselage of
the vehicle. A total of nine pressures can be collected at
each flight condition. More details of these ports are listed
in Table III.
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TABLE IV
Summary of Computational Conditions

V. NUMERICAL SIMULATION

A. Data Set Acquisition

Computational fluid dynamics (CFDs) simulation is
used to obtain the pressure distribution at each flight condi-
tion. Two data sets are generated: Training data set and test
data set. Training data set is used to learn the weights and
bias of DIO-NNFADS, and the performance of the learned
neural networks is examined by the test data set. As shown
in Table IV, training data set contains two subsets: Subset
1 and 2. All flight conditions in subset 1 are calculated with
the static pressure of 12.1 kPa and uniformly cover possible
conditions in this flight profile. The range of angle of attack
is −6◦ to 20◦ with an increment of 2◦, and the angle of
sideslip is −6◦ to 6◦ with an increment of 2◦. The vehicle
is operated at Mach number M∞ = [1.5, 2, 3, 4, 5]. A total
of 490 conditions are calculated. The purpose of subset 1
is to enable training data set to uniformly and completely
cover a single FADS flight profile. It is known that the
pressure coefficients at different altitudes are similar. How-
ever, flow separation may occur in some flight conditions
at high angles of attack, which causes slight differences
in the surface pressure coefficients between similar flight
conditions. In addition, the appearance of separation may be
different while fly altitudes vary, which may cause different
influences on the surface pressure. These differences may
reduce the estimation accuracy of the DIO-NNFADS. To
further improve the performance of the DIO-NNFADS in
such flight conditions, an additional training data set with a
high angle of attack, subset 2, is generated. It only includes
70 flight conditions at α = 20◦, but p∞ = 2.5 and 26.5 kPa,
corresponding to the lower and upper limits of the flight
altitude. Therefore, a total of 560 flight conditions are
calculated and the pressure at each port can be extracted
for training data set.

As discussed in Section III-B, the DIO-NNFADS has
the capability that the neural networks learned by a single
flight profile can be generalized to the entire flight envelope.
To evaluate the generalization of the DIO-NNFADS, the test
data set, including 300 conditions, is randomly generated
in the entire flight envelope.

B. Numerical Methods

The governing equations are the Reynolds-averaged
Navier–Stokes equations. The turbulence model used in this
study is Spalart–Allmaras one-equation model [33]. The
AUSM+ spatial discretization scheme is adopted, with an
implicit lower–upper symmetric Gauss–Seidel scheme for

Fig. 7. Grid used in numerical simulation (approximately 5.09 million
cells). (a) Spatial mesh. (b) Wall mesh.

Fig. 8. Results of grid convergence study showing the influence of grid
resolution on calculating the wall pressure.

the temporal integration to accelerate convergence. More
details about the CFD solver and its validation can be found
in [34], [35].

C. Grid Independence Validation

A baseline grid with approximately 5.09 million cells
is used, and the spatial and wall meshes are exhibited
in Fig. 7. To ensure that the value of y+ is less than 1,
the height of the first layer normal to the wall is 0.005 mm.
Three grids with different resolutions are generated to
demonstrate that the calculation results of CFD are in-
dependent of the grid. In addition to the baseline grid,
the fine grid has 10.18 million cells, and the coarse has
2.55 million cells. Fig. 8 shows the pressure distribution
on the vertical meridian of vehicle calculated with three
different grid resolutions under flight condition of M∞=2.5,
α = 0◦, and β = 0◦. The pressure distribution of the three
different resolution grids is quite close and has no significant
difference. Thus, the grid convergence with the baseline grid
can be confirmed.
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TABLE V
Estimation Results on the Training Data Set

TABLE VI
Estimation Results on the Test Data Set

VI. RESULTS AND DISCUSSION

A. Estimation Results

1) Comparison With Traditional Neural-Network-Based
FADS: To demonstrate the superiority of the DIO-
NNFADS, the NNFADS described in literature [25] is also
used to analyze the same data set for comparison. The
following points should be emphasized.

1) The input of the NNFADS is the measured pressures
after normalization to the [0, 1] interval, and the
air data states (M∞, α, β, p∞, and q∞) are directly
output.

2) The input of the DIO-NNFADS is the pressure ratio
array transformed by the measured pressures. The
output consists of two types: a) dimensionless air
data states (M∞, α, and β); b) pressure coefficient at
each port (Cpi , i = 1, 2, . . ., n). Static and dynamic
pressures are computed by the combination of the
measured pressures and pressure coefficients.

3) Except for the input and output, the DIO-NNFADS
and the NNFADS have the same network structure
and the parameters, such as the same number of
hidden layers and nodes, and the same learning rate,
etc.

Table V gives the estimation results of two algorithms on
the training data set. Both algorithms achieve good results
for Mach number, angle of attack, and angle of sideslip
which illustrates the powerful nonlinear fitting ability of
neural networks. However, the DIO-NNFADS performs
much better than the NNFADS in estimating static and
dynamic pressures.

Table VI presents the estimation results on the test data
set. For the estimation results of the DIO-NNFADS, the
maximum relative errors for Mach number, static pressure,
and dynamic pressure are 2.9%, 6.2%, and 4.2%, respec-
tively, and the maximum error of the angle of incidence is no
more than 0.4◦. The results present that the DIO-NNFADS
achieves high accuracy across the entire flight envelope.
For the results of NNFADS, the maximum errors of all air
data are beyond the accuracy required by the FADS system,

which indicate that it is difficult for NNFADS to effectively
estimate air data states based on such less training data.

Fig. 9 provides estimation results of the two algorithms
on the test data set in detail. For the DIO-NNFADS, the
relative errors of more than 95% calculation conditions
are less than 2% in Mach number, 5% in static pressure,
and 2.5% in dynamic pressure. The absolute errors of most
calculation conditions are no more than 0.2◦ in the angle of
incidence. However, the NNFADS shows good estimation
results around the static pressure 12.1 kPa. As shown in
Fig. 10, results with large errors are mainly distributed in the
region away from this point. Obviously, that is because the
training data set is primarily generated with a static pressure
12.1 kPa.

Next, the processing time of NNFADS and DIO-
NNFADS is compared. The processing time can be di-
vided into three parts: Preprocessing time, neural network
solving time, and postprocessing time. For NNFADS, the
preprocessing and postprocessing refer to the normalization
of the pressure distribution and the antinormalization of
the solved static and dynamic pressures, respectively. For
DIO-NNFADS, the preprocessing means transforming the
pressure distribution to pressure ratio array, and the postpro-
cessing means solving static and dynamic pressures based
on pressure distribution and pressure coefficients.

The two algorithms are used to process the same sample
by Python 3.6 on a platform (Intel (R) Xeon (R) Gold 5218
Processor, 2.3 GHz), and the results are shown in Table VII.
First, the neural network solving time of the two algorithms
is very close because their network structures are identical
except the inputs. Second, the preprocessing and postpro-
cessing of DIO-NNFADS consumes more time compared
to NNFADS. The total processing time of NNFADS and
DIO-NNFADS is 0.131 and 0.246 ms, respectively, which
are in the same order of magnitude.

2) Influence of the Sensor Noise and Bias: First, the
influence of sensor noise on the accuracy of the proposed
algorithm is considered. In the test data set, three samples
with different altitudes of 10 km (M∞ = 4, α = 11.5◦, and
β = −0.7◦), 15 km (M∞ = 3.5, α = 4.4◦, and β = 0.2◦),
and 25 km (M∞ = 2.3, α = −0.9◦, and β = −3.3◦) are
studied. The altitude of 15 km corresponds to the altitude of
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Fig. 9. Comparison of estimation errors between NNFADS and DIO-NNFADS. (a) As a function of Mach number. (b) As a function of static
pressure. (c) As a function of dynamic pressure. (d) As a function of angle of attack. (e) As a function of angle of sideslip.

TABLE VII
Processing Time of the NNFADS and DIO-NNFADS

Fig. 10. Error of angle of attack under different static pressure
(NNFADS, test data set).

generating training data, and 10 and 25 km correspond to the
upper and lower limits of the flight envelope, respectively.
Since the measured pressure values cover a range of three
orders of magnitude, three types of pressure sensors with
different end scale values (1000, 100, and 10 kPa) are
equipped to measure pressures at the condition of 10, 15, and
25 km, respectively. Then, ten levels of noise are added to
all the pressure signals at each condition, which conform to

a normal distribution with the mean value of 0 and standard
deviations of 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%,
0.8%, 0.9%, and 1% (corresponding to full scale of the
sensor), respectively.

Assuming that the pressure signal consists of 30 sam-
pling points, the algorithm outputs under different levels of
noise are presented in Fig. 11. It can be seen that the stronger
the noise, the larger the uncertainty of the estimation results.
At the altitude of 10 km, the estimation results satisfy the
requirements according to the accuracy requirements given
in literature [8] (±5 percent accuracy for 2.5 ≤ M∞ ≤ 5,
±2.5 percent accuracy for 1.5 < M∞ ≤ 2.5, ±0.5◦ absolute
accuracy for angle of attack and sideslip). For the condition
of 15 km, a larger uncertainty is displayed because the static
pressure of the free flow is 12.1 kPa, which is at the lower
limit of the sensor range (100 kPa). To make the estimations
of Mach number and angle of attack meet the requirements,
the noise standard deviation needs to be less than 0.7%. For
the condition of 25 km, the estimation of Mach number
requires the noise standard deviation of less than 0.6%.
In addition, all results meet the accuracy requirements for
angle of sideslip.
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Fig. 11. Estimation results under different levels of noise (±0.2, ±0.175, and ±0.058 absolute accuracy for the condition of 25, 15, and 10 km,
respectively, ±0.5◦ absolute accuracy for angle of attack and sideslip. Results exceeding the requirements are pointed out by red box). (a) Mach

number. (b) Angle of attack. (c) Angle of sideslip.

TABLE VIII
Estimation Errors Under Different Biases

Next the influence of individual sensor bias is discussed.
Three typical sensors located at ports 1, 2, and 5 are studied.
Port 1 is located at the stagnation point. Port 2 and 5 are
located on the lateral and vertical meridian, respectively.
Four biases are investigated: −1%, −0.5%, 0.5%, and 1%
(corresponding to full scale of the sensor). As mentioned
in the study of noise, the same three samples are tested
and the results are shown in Table VIII. For the estima-
tion of the angle of attack and sideslip, all results satisfy
the requirements. Port 1 exhibits a large error in Mach
number estimation and three results exceed the require-
ments, which indicates the importance of the stagnation
point pressure for Mach number estimation. Port 2 has
a larger error on angle of sideslip than angle of attack,
illustrating that lateral meridian ports are important for
estimating angle of sideslip. Similarly, port 5, located on
the vertical meridian, is important for estimating angle of
attack.

3) Influence of Training Subset 2: The training data
set consists of two subsets: 1) subset 1 with the majority
of conditions; 2) subset 2 with a small number of samples.
Subset 2 is generated to further improve the accuracy of

the DIO-NNFADS at high angles of attack. In this sec-
tion, the DIO-NNFADS is individually trained by subset
1. Compared with the results of the entire training data set
(subset 1 and 2), the influence of training data subset 2 can
be analyzed.

Table IX presents the estimation results. Only trained
by subset 1, the same level of average error is achieved.
However, the maximum errors of Mach number, static
pressure, dynamic pressure, and angle of attack increase.
As shown in Fig. 12, the maximum errors appear at high
angles of attack, and the maximum error of angle of attack
increased from 0.35◦ to 0.565◦. When the DIO-NNFADS
is trained by the subset 1 and 2, the maximum error at
high angles of attack is no more than 0.35◦. With the above
analysis, it can be found that the addition of subset 2 can
improve the accuracy of the DIO-NNFADS at high angles of
attack.

4) Visualization: Generally, as a black-box model,
the operating mechanism of neural networks is difficult
to understand. However, with the visualization of the pa-
rameters, some interesting phenomena can be somewhat
explained.
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TABLE IX
Estimation Results Under the Different Training Data Set

Fig. 12. Estimation error of angle of attack under the different training
data set.

Fig. 13. Relationship between one input feature of neural networks and
the flight conditions (the surface represents the training data at α = 0◦,

and dots represent the test conditions at the small angle of attack).
(a) NNFADS. (b) DIO-NNFADS.

An input of NNFADS and DIO-NNFADS at small
angles of attack is extracted and then plotted, as shown
in Fig. 13. It should be noted that training subset 1 is
calculated under the condition with the static pressure of
12.1 kPa, which is presented as a surface in the figure.

The test data is randomly generated in the entire flight
envelop that is plotted as the blue dots. Fig. 13(a) shows
the relationship between the normalization p1 (one input
of NNFADS) and flight conditions (M∞ and β) at small
angles of attack. The blue dots (represent the test data)
are distributed over space in three dimensions and are
away from the surface (composed of the training data).
Fig. 13(b) plots the relationship between the ω12 (one input
of DIO-NNFADS) and flight conditions. It can be seen that
the blue dots are very close to the surface. The difference
between the DIO-NNFADS and the NNFADS is vividly
shown by the visualization. Although the freestream static
pressure is different at different altitudes, the pressure ratio
is independent of static pressure. Therefore, based on the
less data from a flight profile, the trained DIO-NNFADS
shows good generalization across the entire flight envelope.
However, when the measured pressure is directly used as
the input of the neural network, the training data set should
cover the entire flight envelope.

B. Influence of the Size of Training Data Set

The DIO-NNFADS can be trained by less data from
one flight profile data, and then generalize to the entire
flight envelope. A question needs to be answered is that how
much training data need to be prepared for DIO-NNFADS.
To answer this question, a denser training data set similar
to the training data set in Section V-A but containing more
flight conditions is prepared. As shown in Section V-A, the
training data set also contains two subsets. Subset 1 includes
1296 calculation conditions under the static pressure of
12.1 kPa. Different from the training data set in Table X,
more conditions with different angles of incidence and
Mach numbers are calculated. The calculation conditions of
angle of attack are the intersection of the increment of 2◦ and
the increment of 3◦. The same is true for the angle of sideslip.
The range of Mach number is 1.5–5 with an increment
of 0.5. Subset 2 contains 144 calculation conditions with
high angles of attack. Finally, a total of 1440 conditions are
calculated in the denser training data set.

Based on the denser training data set, 15 subsets with
different sizes are randomly selected. The number of con-
ditions included in these 15 subsets are 30, 60, 90, 120,
240, 480, 600, 720, 840, 960, 1080, 1200, 1320, and 1440,
respectively. DIO-NNFADS is used to analyze these 15
subsets to find the optimal size of training data. Since these
subsets are randomly selected, the same experiments are
repeated 20 times. To ensure the reliability of the conclu-
sion, the average results of these 20 experiments are used
for analysis.
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TABLE X
Computational Conditions of the Denser Training Data Set

Fig. 14. Relationship between the average error and the size of training data. (a) Convergence curve for Mach number. (b) Convergence curve for
static pressure. (c) Convergence curve for dynamic pressure. (d) Convergence curve for angle of attack. (e) Convergence curve for angle of sideslip.

Fig. 14 gives the trend of the average error as the size
of training data increases. It can be seen that the trends of
all air data states are similar. When the size of training data
is less than 500, the average error is greatly reduced as the
size of training data increases. But when the size of training
data is more than approximate 500, the average error no
longer decreases. Therefore, the size of the training data set
in this study is 560. Note that when the size of the training
data set is 300, the average error is less than 0.7% in Mach
number, 3% in the static pressure and dynamic pressure,
and 0.1◦ in the angle of incidence, which also shows good
estimation results and is deemed sufficient for a FADS
application.

C. Influence of Port Layout and Selection

The layouts and position of the pressure ports affect the
estimation accuracy. Several different port layouts are built
to demonstrate the robustness of this estimation algorithm.

1) Influence of Port Selection: As listed in Table XI, in
addition to layout A, five port layouts lacking one or more

TABLE XI
Pressure Port Selections for Dimensionless Neural Networks

ports are built. Layouts B and C are the minimum number
of pressure ports for the FADS system. Layout D contains
the ports on the leading edge and the nose, and layout E on
the fuselage and nose. Layout F includes all pressure ports
except the port on the nose. Through the estimation results,
the importance of each component can be demonstrated.

Table XII gives the estimation results of these port
layouts. Both layouts B and C can estimate all air data states
independently, which meet the accuracy requirements of the
FADS system. But the accuracy of layout C is higher than
layout B. Layouts D and E do not meet the requirements,
and by comparing the results of the two layouts, some
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TABLE XII
Average Errors Under Different Pressure Port Selections

Fig. 15. Port layout G on hemisphere head of the vehicle.

TABLE XIII
Estimation Result With Different Pressure Port Layouts

conclusions can be drawn. Layout E shows good results
while layout D shows poor results on the estimation of
angle of attack, demonstrating the importance of the vertical
meridian ports for estimating angle of attack. Similarly,
the lateral meridian ports are very important for estimating
angle of sideslip. Such phenomenon is consistent with the
results analyzed according to the sensor bias influence.

It is worth emphasizing that layout F shows good estima-
tion results and its accuracy is slightly lower than layout A. It
illustrates that the proposed FADS algorithm can accurately
estimate all air data states without stagnation pressure. The
stagnation point of a hypersonic vehicle often has a tremen-
dous heat load, which puts forward high requirements for
the measurement of stagnation point pressure. The nonstag-
nation port layout can effectively avoid severe heat load
and reduce the restrictions on the pressure sensors. It has
important implications for the FADS system of hypersonic
vehicles.

2) Comparison With Traditional Port Layout: Al-
though it is difficult to arrange pressure ports on a hemi-
sphere nose with a radius of 10 mm for an actual hyper-
sonic vehicle, the pressure distribution can be accurately
obtained using CFD simulation. Port layout G, a traditional
port layout on the hemisphere nose, is also arranged for
comparison. As shown in Fig. 15, nine ports are arranged
on the vehicle nose, and nine pressures are collected. The
DIO-NNFADS is developed to analyze the collected data.

Table XIII presents the results of layout G. The average
error of the layout G for Mach number and static pressure
is higher than the layout A. But the opposite results are
exhibited in the estimation for dynamic pressure. For the
traditional port layout G, large errors exist in the region at
large Mach numbers, as shown in Fig. 16. It can be explained

Fig. 16. Mach relative error under different port layouts.

Fig. 17. Pressure coefficient of port 7 (α = 4◦, β = 4◦). (a) Layout G.
(b) Layout A.

by Fig. 17(a), which plots the pressure coefficient at port 7
under different Mach numbers. When the Mach number is
below 3.5, the pressure coefficient increases rapidly with the
increase of the Mach number. But when the Mach number
exceeds 3.5, the rate of increase diminishes considerably
and the pressure coefficient appears to reach a plateau. It
causes neural networks to have a low resolution for high
Mach numbers. Small disturbances in the input of neural
networks could cause large errors in the estimation of Mach
number. As shown in Fig. 17(b), when the port is located
on the leading edge, the pressure coefficient increases with
the increase of Mach number, and neural networks can
clearly distinguish the Mach number. According to liter-
ature [36], the blunt-body flows tend to approach Mach
number independence at lower Mach number than slender
bodies. Hence, arranging more pressure ports on the slender
fuselage instead of the blunt nose is helpful to estimate the
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Fig. 18. Relationship between static pressure error and dynamic
pressure error (layout G).

Mach number. That is the reason why the Mach number
error of layout G is smaller than that of layout A. The
same reason can explain the large static pressure error of
layout G. However, the errors of dynamic pressure exhibit
good estimation results. As shown in Fig. 18, the error
characteristics of the static pressure and dynamic pressure
are consistent. Due to the high dynamic pressure under
high Mach number, the relative error of dynamic pressure
is small, which is presented in Table XIII.

VII. CONCLUSION

A new FADS algorithm based on dimensionless input
and output neural networks is developed for estimating air
data states. Dimensional analysis defines a pressure ratio
array that can be regarded as a pressure transformation to
solve air data states. Besides, a general aerodynamic model
with a simple form is also analyzed and defined. The aero-
dynamic model can decouple freestream static pressure, and
dimensionless input and output neural networks are used to
approximate the model. Mach number, angle of attack, an-
gle of sideslip, and pressure coefficients are directly output
by dimensionless input and output neural networks. Static
pressure and dynamic pressure are obtained by solving the
equations composed of the measured pressures and pres-
sure coefficients. Unlike traditional neural-network-based
FADS, dimensionless input and output neural networks can
decouple the freestream static pressure, effectively reducing
the size of training data. The proposed FADS algorithm
is verified on a simplified supersonic model. Trained by
less data from a single flight profile, the proposed FADS
algorithm shows good accuracy and generalization perfor-
mance across the entire flight envelope. The maximum error
of Mach number is less than 2.9%, static and dynamic
pressures are less than 6.2%, and the angle of incidence is
less than 0.4◦. Besides, the optimal size of the training data
is also discussed. Furthermore, the proposed algorithm also
shows good performance for various pressure port layouts,
such as the port layout without stagnation point.
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