
Ocean Engineering 270 (2023) 113613

A
0

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Wave interaction with a concentric bottom-mounted cylinder system with
dual porous ring plates
MoHan Zhang a,d, Xiang Wang b, GuangYuan Wang c,∗, Jin Wang e, PengYuan Zhao e

a Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
b College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
c National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin Research Institute for Water Transport Engineering,
M.O.T., Tianjin, 300000, China
d School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
e China Ship Development and Design Center, Wuhan, 430000, China

A R T I C L E I N F O

Keywords:
Wave diffraction
Concentric cylinders
Porous ring plates
Hydrodynamic force
Free surface elevation

A B S T R A C T

The interaction between linear surface waves and a concentric bottom-mounted cylinder system has been
investigated using the eigenfunction expansion approach. This system contains an outer porous cylinder and
an inner impermeable cylinder, which are connected by dual porous ring plates. Both cylinders are surface-
piercing and rigidly installed on the flat bottom of the ocean, while the porous ring plates are fixed below the
free water surface. The analytical solution of the velocity potentials can be obtained by matching the boundary
conditions. After obtaining the velocity potentials, the wave force and free surface elevation are computed.
The numerical results obtained for limiting cases agreed well with the published results. The results of the
study show that reducing the draft, spacing, and permeability of the dual plates all contribute to reduce the
horizontal force of the inner cylinder. However, the significance of the lower plate is mainly to cope with the
condition where the water surface is lower than the upper plate.
1. Introduction

The supporting members of offshore structures are usually isolated
cylinders or cylindrical arrays, which often bear huge hydrodynamic
forces. Porous structures can reduce the wave action and optimize
the hydrodynamic performance of impermeable structures, so they are
considered to have application prospects. Many scholars have studied
this kind of combination structures.

Wang and Ren (1994) was the first to investigate the wave inter-
action with a bottom-mounted concentric cylinder system theoretically
in which the outer cylinder is porous and the inner cylinder is imper-
meable. Their results show that compared with the cylinder directly
subjected to wave impact, the existence of the outer porous cylinder
not only reduces the hydrodynamic force acting on the inner cylinder
but also reduces the wave amplitude on the windward side of the inner
cylinder. Almost at the same time, Darwiche et al. (1994) segmented
the boundary conditions and studied a bottom-mounted concentric
cylinder system with a semi porous outer cylinder. The so-called semi
porous outer cylinder means that the outer cylinder is porous in the
vicinity of the free water surface and impermeable at a certain distance
below the free water surface. On the foundation of Darwiche et al.

∗ Corresponding author.
E-mail address: heuguangyuan@126.com (G. Wang).

(1994)’s research, Williams and Li (1998) investigated a semi-porous
concentric cylinder system mounted on a storage tank. Li et al. (2003)
studied a concentric cylinder system with a semi porous outer cylinder,
which is another extension to the model studied by Darwiche et al.
(1994). The outer cylinder of the model is porous in a certain angle
range, while the rest is impermeable. Vijayalakshmi et al. (2007) and
Vijayalakshmi et al. (2008) studied the interaction between waves
and two concentric cylinders by experimental and numerical meth-
ods. Mandal et al. (2013) and Mandal and Sahoo (2015) investigated
the hydroelastic analysis of a concentric cylinder system with a flexible
outer wall in a single-layer fluid and a two-layer fluid. Liu et al. (2018)
studied the interaction of waves with a concentric cylinder system with
multiple outer porous cylinders. Cong and Liu (2020) investigated the
mean drift wave force on a concentric cylinder system.

The research mentioned above showed that the hydrodynamic per-
formance of the structure can be improved by setting the porous outer
cylinder and reasonably designing the structure parameters. In addition
to the structural type of setting the outer cylinder, some scholars
found that the porous disk may also be conducive to improving the
hydrodynamic performance of the structure, but the relevant research is
vailable online 11 January 2023
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relatively deficient. Wu and Chwang (2002) analyzed the phenomenon
of wave diffraction by a vertical cylinder with a submerged horizontal
porous ring plate. They found that the presence of the plate helped to
reduce the horizontal force of the cylinder. Recently, Wang et al. (2021)
investigated the wave diffraction from a concentric truncated cylinder
system with a porous ring plate fixed inside. The research show that
the closer the ring plate is to the still water surface, the smaller the
horizontal force and overturning moment of the structure. This is due
to the fact that the ocean wave energy is concentrated on the water
surface, so the closer the disk is to the still water surface, the higher
its wave dissipation efficiency. The position of the still water surface in
the ocean varies greatly by the tides. Therefore, it has been suggested to
use dual plates as a wave dissipation structure to improve its efficiency.
Studies on dual plates have mostly focused on their performance as
breakwaters (Cheong and Patarapanich, 1992; Wang and Shen, 1999;
Wang et al., 2006; Neelamani and Gayathri, 2006; Liu et al., 2008;
Cho et al., 2013; Liu and Li, 2014), while no scholars have considered
their effects on the hydrodynamic performance of concentric cylinder
system.

In this paper, a concentric bottom-mounted cylinder system with
dual porous ring plates is studied. The concentric cylinder system
consists of a porous outer cylinder and an impermeable inner cylinder,
which are rigidly connected by dual porous ring plates below the still
water surface. Both cylinders are surface-piercing and rigidly installed
on the flat bottom of the ocean. The dual plates can cope with tide-
induced water level changes, ensure that the structure still has a certain
energy dissipation capacity after the still water level is lower than the
upper plate. The hydrodynamic forces of the inner and outer cylinders
under the action of linear waves are calculated by the method of
eigenfunction expansion and boundary conditions matching. This paper
studies the effects of the wave and structure parameters, which has
guiding significance for the engineering application of the structure.

The mathematical model of this study is showed in Section 2. The
analytic solution of diffraction is derived in Section 3. The calculation
program based on the theory is verified in Section 4. Some cases are
given in Section 5. The last section is the conclusion of this paper.

2. Mathematical model

The model of wave interaction with a concentric cylinder sys-
tem with dual porous ring plates fixed inside is shown in Fig. 1. A
cylindrical coordinate system and a Cartesian coordinate system are
established at the intersection of the center of the cylinder system
and the still water surface, and the 𝑧-axis is vertical upward. The
seabed is considered to be flat and impermeable, and the symbol ℎ
denotes the depth of water. The draft of the dual porous ring plates
is 𝑑1 and 𝑑2 respectively. Symbols 𝑎1 and 𝑎2 represent the radii of the
inner impermeable cylinder and the outer porous cylinder respectively.
The fluid is divided into two regions: the exterior region defined by
𝛺1

(

𝑎2 < 𝑟, 0 ≤ 𝜃 ≤ 2𝜋, −ℎ ≤ 𝑧 ≤ 0
)

; the interior region defined by
𝛺2

(

𝑎1 < 𝑟 ≤ 𝑎2, 0 ≤ 𝜃 ≤ 2𝜋, −ℎ ≤ 𝑧 ≤ 0
)

.
We assume that the fluid is inviscid and incompressible and that the

luid motion is irrotational. Then we can use a time-dependent velocity
otential 𝛷 to describe the fluid motion. By further considering linear
armonic waves, the velocity potential can be written as

(𝑟, 𝜃, 𝑧, 𝑡) = Re
[

𝜙 (𝑟, 𝜃, 𝑧) 𝑒−i𝜔𝑡] , (1)

here Re denotes the real part of the argument, 𝜙 (𝑟, 𝜃, 𝑧) the spatial
elocity potential, i =

√

−1, 𝜔 the angular frequency and 𝑡 the time.
ow we only need to consider the spatial velocity potential 𝜙 (𝑟, 𝜃, 𝑧).
he spatial velocity potential satisfies the Laplace equation:
2𝜙𝑗 = 0, 𝑗 = 1, 2, (2)

here the subscript 𝑗 represents variables with respect to region 𝑗.
2

a

Fig. 1. Schematic diagram of a concentric cylinder system with dual porous ring plates
fixed inside.

The velocity potentials in relevant regions also satisfy the imper-
meable seabed condition, the linear free surface condition, and the far
field radiation condition:
𝜕𝜙𝑗

𝜕𝑧
= 0, 𝑧 = −ℎ, 𝑗 = 1, 2, (3)

𝜕𝜙𝑗

𝜕𝑧
= 𝜈𝜙𝑗 , 𝑧 = 0, 𝑗 = 1, 2, (4)

lim
⟶∞

√

𝑟
( 𝜕
𝜕𝑟

− i𝑘0
)

(

𝜙1 − 𝜙𝐼
)

= 0, (5)

here 𝜈 = 𝜔2∕𝑔 and 𝑔 is the acceleration of gravity. 𝑘0 is the incident
avenumber. 𝜙𝐼 is the incident velocity potential.

The boundary condition on the impermeable surface of the inner
ylinder can be expressed as
𝜕𝜙2
𝜕𝑟

= 0, 𝑟 = 𝑎1, −ℎ ≤ 𝑧 ≤ 0. (6)

The boundary condition of the porous ring plates and the outer
cylinder can be written as follows, respectively:
𝜕𝜙2
𝜕𝑧

∣
𝑧=−𝑑+𝑞

=
𝜕𝜙2
𝜕𝑧

∣𝑧=−𝑑−𝑞 =
i
𝜎𝑞

[

𝜙2

(

𝑟, 𝜃,−𝑑−𝑞
)

− 𝜙2

(

𝑟, 𝜃,−𝑑+𝑞
)]

,

𝑎1 ≤ 𝑟 ≤ 𝑎2, 𝑞 = 1, 2, (7)

𝜕𝜙2
𝜕𝑟

∣
𝑟=𝑎+2

=
𝜕𝜙1
𝜕𝑟

∣𝑟=𝑎−2
= i

𝜎3

[

𝜙2
(

𝑎−2 , 𝜃, 𝑧
)

− 𝜙1
(

𝑎+2 , 𝜃, 𝑧
)]

, −ℎ ≤ 𝑧 ≤ 0,

(8)

here 𝜎𝑞 = 𝜇∕
(

𝜌𝑙𝑞𝜔
)

(𝑞 = 1, 2, 3) represent the porous effect pa-
ameter of the dual ring plates and the outer cylinder, 𝜌 and 𝜇 the
ater density and dynamic viscosity, 𝑙𝑞 the porosity coefficient with
dimension of length. 𝜎 = 0 means that the surface is completely
𝑞
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permeable, as if it does not exist. As the 𝜎𝑞 increases to infinity, the
surface becomes completely impermeable. The superscript of plus and
minus in (7) represent the upper and lower surfaces of the ring plates,
respectively. The superscript of plus and minus in (8) represent the
outer and inner surfaces of the outer cylinder, respectively.

On the common boundaries between different regions, the velocity
potentials must satisfy appropriate transmission condition:
𝜕𝜙1
𝜕𝑟

=
𝜕𝜙2
𝜕𝑟

, −ℎ ≤ 𝑧 ≤ 0, 𝑟 = 𝑎2, (9)

1 = 𝜙2 + i𝜎3
𝜕𝜙2
𝜕𝑟

, −ℎ ≤ 𝑧 ≤ 0, 𝑟 = 𝑎2. (10)

3. Analytical solution

The analytic solution of the diffraction problem is obtained by uti-
lizing the method of separating variables in each region. In region 𝛺1,
the potential 𝜙1 can be written in terms of the following eigenfunction
expansion:

𝜙1 = −
i𝑔𝐴
𝜔

∞
∑

𝑛=0
𝜀𝑛 cos (𝑛𝜃)

{

[

i𝑛𝐽𝑛
(

𝑘0𝑟
)

+ 𝐴𝑛0𝑅𝑛
(

𝑘0𝑟
)]

𝑍0
(

𝑘0𝑧
)

+
∞
∑

𝑚=1
𝐴𝑛𝑚𝑅𝑛

(

𝑘𝑚𝑟
)

𝑍𝑚
(

𝑘𝑚𝑧
)

}

, (11)

where the eigenfunctions are defined as

𝑅𝑛
(

𝑘𝑚𝑟
)

=

⎧

⎪

⎨

⎪

⎩

𝐻𝑛(𝑘𝑚𝑟)
𝐻𝑛(𝑘𝑚𝑎2)

, 𝑚 = 0

𝐾𝑛(𝑘𝑚𝑟)
𝐾𝑛(𝑘𝑚𝑎2)

, 𝑚 ≥ 1
,

𝑚
(

𝑘𝑚𝑧
)

=

⎧

⎪

⎨

⎪

⎩

cosh[𝑘𝑚(𝑧+ℎ)]
cosh(𝑘𝑚ℎ)

, 𝑚 = 0

cos[𝑘𝑚(𝑧+ℎ)]
cos(𝑘𝑚ℎ)

, 𝑚 ≥ 1
,

nd

𝑛 =
{

1, 𝑛 = 0
0, 𝑛 ≥ 1

.

ere, 𝐴 is the amplitude of the incident wave, 𝐴𝑛𝑚 (𝑛, 𝑚 = 0, 1, 2,…)
re unknown coefficients, 𝐽𝑛 and 𝐻𝑛 denote the first kind of Bessel and
ankel function of order 𝑛, while 𝐾𝑛 is the second kind of modified
essel function of order 𝑛. Wavenumber 𝑘0 and 𝑘𝑚 are the roots of the

following dispersion relations:

𝜔2 =
{

𝑔𝑘𝑚tanh
(

𝑘𝑚ℎ
)

, 𝑚 = 0
−𝑔𝑘𝑚 tan

(

𝑘𝑚ℎ
)

, 𝑚 ≥ 1
.

The velocity potential 𝜙2 in the region 𝛺2, satisfying the body
boundary conditions (3), (4), (6) and the first equal of (7), can be
expressed as

𝜙2 = −
i𝑔𝐴
𝜔

∞
∑

𝑛=0
𝜀𝑛 cos (𝑛𝜃)

∞
∑

𝑙=1
𝐵𝑛𝑙𝑈𝑛

(

𝜅𝑙𝑟
)

𝑓
(

𝜅𝑙𝑧
)

, (12)

here the radial eigenfunction 𝑈𝑛
(

𝜅𝑙𝑟
)

and vertical eigenfunction
(

𝜅𝑙𝑧
)

are given as:

𝑛
(

𝜅𝑙𝑟
)

=
𝐻 ′

𝑛
(

𝜅𝑙𝑎1
)

𝐽𝑛
(

𝜅𝑙𝑟
)

− 𝐽 ′
𝑛
(

𝜅𝑙𝑎1
)

𝐻𝑛
(

𝜅𝑙𝑟
)

𝐻 ′
𝑛
(

𝜅𝑙𝑎1
)

𝐽𝑛
(

𝜅𝑙𝑎2
)

− 𝐽 ′
𝑛
(

𝜅𝑙𝑎1
)

𝐻𝑛
(

𝜅𝑙𝑎2
) ,

𝑓
(

𝜅𝑙𝑧
)

=
−i𝑔𝐴
𝜔

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐸𝑙 sinh
[

𝜅𝑙
(

ℎ − 𝑑2
)]

×
(

𝜅𝑙 cosh 𝜅𝑙𝑧 + 𝑣 sinh 𝜅𝑙𝑧
)

, −𝑑1 < 𝑧 < 0
{

𝐸𝑙
(

𝜅𝑙 cosh 𝜅𝑙𝑧 + 𝑣 sinh 𝜅𝑙𝑧
)

+𝑄𝑙 cosh
[

𝜅𝑙
(

𝑧 + 𝑑1
)]}

× sinh
[

𝜅𝑙
(

ℎ − 𝑑2
)]

, −𝑑2 < 𝑧 < −𝑑1
{

𝐸𝑙𝐷
(

𝜅𝑙𝑑2
)

−𝑄𝑙 sinh
[

𝜅𝑙
(

𝑑2 − 𝑑1
)]}

× cosh
[

𝜅𝑙 (𝑧 + ℎ)
]

, −ℎ < 𝑧 < −𝑑2 ,
3

Here, 𝐵𝑛𝑙 (𝑛 = 0, 1, 2,…; 𝑙 = 1, 2, 3,…) are unknown coefficients, the
rime denotes the first derivative with respect to the argument. The
ymbol 𝐷

(

𝜅𝑙𝑧
)

is defined as 𝐷
(

𝜅𝑙𝑧
)

= 𝜈 cosh
(

𝜅𝑙𝑧
)

− 𝜅𝑙 sinh
(

𝜅𝑙𝑧
)

. 𝐸𝑙
nd 𝑄𝑙 are unknown coefficients that can be determined by substituting
q. (12) into the second equal of Eq. (7):

𝜎1𝐸𝑙𝜅𝑙𝐷
(

𝜅𝑙𝑑1
)

+𝑄𝑙 = 0, (13)

𝜎2𝜅𝑙 sinh
[

𝜅𝑙
(

ℎ − 𝑑2
)] {

𝐸𝑙𝐷
(

𝜅𝑙𝑑2
)

−𝑄𝑙 sinh
[

𝜅𝑙
(

𝑑2 − 𝑑1
)]}

+ 𝐸𝑙𝐷
(

𝜅𝑙ℎ
)

−𝑄𝑙 sinh
[

𝜅𝑙
(

ℎ − 𝑑1
)]

= 0. (14)

The above linear equations are homogeneous. To satisfy that the
solutions of the coefficients 𝐸𝑙 and 𝑄𝑙 are nontrivial, the determi-
nant of the linear system should be equal to 0. Thus the following
‘‘dispersion–dissipation relation’’ is obtained:

𝐷
(

𝜅𝑙ℎ
)

+ i𝜎2𝜅𝑙𝐷
(

𝜅𝑙𝑑2
)

sinh
[

𝜅𝑙
(

ℎ − 𝑑2
)]

+ i𝜎1𝜅𝑙𝐷
(

𝜅𝑙𝑑1
)

sinh
[

𝜅𝑙
(

ℎ − 𝑑1
)]

= 𝜎1𝜎2𝜅
2
𝑙 𝐷

(

𝜅𝑙𝑑1
)

sinh
[

𝜅𝑙
(

ℎ − 𝑑2
)]

sinh
[

𝜅𝑙
(

𝑑2 − 𝑑1
)]

.

Bao et al. (2009) gives an iterative method to solve the above complex
eigenvalues 𝜅𝑙.

Application of the transmission condition (9)–(10), two sets of
algebraic equations can be derived by using the orthogonal properties
of the vertical eigenfunctions in each fluid region:

i𝑛𝑘0𝐽 ′
𝑛
(

𝑘0𝑎2
)

∫

0

−ℎ
𝑍0

(

𝑘0𝑧
)

𝑓
(

𝜅𝑙𝑧
)

𝑑𝑧

+
∞
∑

𝑚=0
𝐴𝑛𝑚𝑅

′
𝑛
(

𝑘𝑚𝑎2
)

∫

0

−ℎ
𝑍𝑚

(

𝑘𝑚𝑧
)

𝑓
(

𝜅𝑙𝑧
)

𝑑𝑧

= 𝐵𝑛𝑙𝑈
′
𝑛
(

𝜅𝑙𝑎2
)

∫

0

−ℎ

[

𝑓𝑙
(

𝜅𝑙𝑧
)]2𝑑𝑧, (15)

i𝑛𝐽𝑛
(

𝑘0𝑎2
)

∫

0

−ℎ
𝑍0

(

𝑘0𝑧
)

𝑓
(

𝜅𝑙𝑧
)

𝑑𝑧 +
∞
∑

𝑚=0
𝐴𝑛𝑚 ∫

0

−ℎ
𝑍𝑚

(

𝑘𝑚𝑧
)

𝑓
(

𝜅𝑙𝑧
)

𝑑𝑧

= 𝐵𝑛𝑙
[

1 + i𝜎3𝑈 ′
𝑛
(

𝜅𝑙𝑎2
)]

∫

0

−ℎ

[

𝑓𝑙
(

𝜅𝑙𝑧
)]2𝑑𝑧. (16)

Solving the Eqs. (15)–(16), the coefficients 𝐴𝑚𝑛 and 𝐵𝑛𝑙 can be
obtained. Then the velocity potential in each region can be determined.
Finally, the hydrodynamic forces and the free surface elevations can be
calculated by the velocity potential.

The horizontal force on the inner cylinder 𝐹𝐼 and outer cylinder 𝐹𝑂
in the direction of wave can be obtained by integrating the pressure
difference between two sides of the wetted body surface at 𝑟 = 𝑎1 and
𝑟 = 𝑎2, respectively:

𝐹𝐼 = i𝜔𝜌𝑎1 ∫
2𝜋

0 ∫

0

−ℎ
𝜙2

(

𝑎1, 𝜃, 𝑧
)

⋅ (− cos 𝜃) 𝑑𝜃𝑑𝑧, (17)

𝐹𝑂 = i𝜔𝜌𝑎2 ∫
2𝜋

0 ∫

0

−ℎ

[

𝜙1
(

𝑎2, 𝜃, 𝑧
)

− 𝜙2
(

𝑎2, 𝜃, 𝑧
)]

⋅ (− cos 𝜃) 𝑑𝜃𝑑𝑧. (18)

Similarly, the vertical force 𝐹𝐻 can be given as:

𝐹𝐻 = 𝐹𝑈
𝐻 + 𝐹𝐿

𝐻

= 𝜌𝜔∫

2𝜋

0
𝑑𝜃 ∫

𝑎2

𝑎1

[

𝜎1
𝜕𝜙2

(

𝑟, 𝜃, −𝑑1
)

𝜕𝑧
+ 𝜎2

𝜕𝜙2
(

𝑟, 𝜃, −𝑑2
)

𝜕𝑧

]

𝑟𝑑𝑟.

(19)

where 𝐹𝑈
𝐻 and 𝐹𝐿

𝐻 represent the heave force of the upper and lower
lates respectively.

The overturning moment 𝐹𝑃 of the system can be calculated by

𝑝 = i𝜌𝜔𝑎1 ∫
0

−ℎ ∫

2𝜋

0
𝜙2 (𝑧 + ℎ) (− cos 𝜃) 𝑑𝜃𝑑𝑧

+ i𝜌𝜔𝑎2
0 2𝜋

(

𝜙1 − 𝜙2
)

(𝑧 + ℎ) (− cos 𝜃) 𝑑𝜃𝑑𝑧
∫−ℎ ∫0
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Fig. 2. Comparison between the present model and that of Wang and Ren (1994), where ℎ = 15 m, 𝑎2 = 10 m, 𝑏1 = 𝑏2 = 1000𝜋, 𝑏3 = 2𝜋, 𝑘0 = 0.3334, 𝑑1 = 1 m, 𝑑2 = 2 m.
Fig. 3. Comparison between the present model and that of Chwang and Wu (1994), where 𝑘0𝑎2∕𝜋 = 0.4, 𝑏3 = 1000𝜋, and 𝑟 = 𝑎2 , 𝜃 = 0 for (a).
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Fig. 4. Comparison between the present model and that of Wu and Chwang (2002),
here 𝑘0ℎ = 𝜋, 𝑎1∕𝑎2 = 0.7, 𝑏3 = 1000𝜋.

+ 𝜌𝜔∫

𝑎2

𝑎1
∫

2𝜋

0
𝜎1

𝜕𝜙2
𝜕𝑧

∣𝑧=−𝑑1
(

−𝑟2 cos 𝜃
)

𝑑𝜃𝑑𝑟

+ 𝜌𝜔∫

𝑎2

𝑎1
∫

2𝜋

0
𝜎2

𝜕𝜙2
𝜕𝑧

∣𝑧=−𝑑2
(

−𝑟2 cos 𝜃
)

𝑑𝜃𝑑𝑟. (20)

The free surface elevations can also be calculated by the linear
ernoulli equation:

(𝑟, 𝜃, 𝑧) = i𝜔𝜙𝑗 (𝑟, 𝜃, 𝑧) ∣ , 𝑗 = 1, 2. (21)
4

𝑔 𝑧=0 c
4. Validations

In order to verify the analytical solution, a program based on
Fortran is developed. 𝑏𝑞 = 2𝜋∕

(

𝑘0𝜎𝑞
)

(𝑞 = 1, 2, 3) are introduced to
express the dimensionless porous effect parameter of the ring plates (𝑏1
for the upper plate and 𝑏2 for the lower plate) and the outer cylinder
𝑏3), respectively.

To solve for the unknown coefficients of Eqs. (15)–(16), we truncate
oth 𝑙 and 𝑚 to 𝑙0 and 𝑛 to 𝑛0. First, the convergence test of the analytic

solutions with 𝑙0 and 𝑛0 are list in Table 1 for the model 𝑎1 = 4 m, 𝑎2 =
8 m, ℎ = 10 m, 𝑑1 = 0.5 m, 𝑑2 = 1.5 m, 𝑏1 = 𝑏2 = 𝑏3 = 2𝜋, 𝑘0𝑎2 = 1.0, in
which the parameters are defined as

𝑓𝐻 = |𝐹𝐻∕𝜌𝑔𝐴𝜋𝑎21|, 𝑓𝐼 = |𝐹𝐼∕2𝜌𝑔𝐴𝑎1ℎ|, 𝑓𝑂 = |𝐹𝑂∕2𝜌𝑔𝐴𝑎2ℎ|,

𝛾𝐼 = |𝜂𝐼 (𝑎1, 0, 0)∕(2𝐴)|, 𝛾𝐸 = |𝜂𝐸 (𝑎2, 𝜋, 0)∕(2𝐴)|.

It can be seen that 𝑙0 = 20 and 𝑛0 = 4 are enough to ensure
onvergence of the numerical results within three decimal places, as
ufficiently accurate for engineering purposes.

When the dimensionless porous effect parameters of the ring plates
1 and 𝑏2 approaches infinity, the effect of them disappears, and the
odel degenerates into a concentric cylinder system, which is the same

s the model studied by Wang and Ren (1994). The parameters are
elected as follows: ℎ = 15 m, 𝑎2 = 10 m, 𝑏1 = 𝑏2 = 1000𝜋, 𝑏3 = 2𝜋, 𝑘0 =
.3334, 𝑑1 = 1 m, 𝑑2 = 2 m. Fig. 2 shows the comparison between
he present model and that of Wang and Ren (1994), in which the
orizontal force of the inner and outer cylinder is non-dimensionalized
y 2𝜌𝑔𝐴𝑎1ℎ and 2𝜌𝑔𝐴𝑎2ℎ, respectively. It can be seen that the present
ethod is reliable in calculating the horizontal force of the inner and

uter cylinder, based on comparison with published results of Wang
nd Ren (1994).

To further verify the vertical force and free surface elevation, we

onsider the limiting case of reducing the model to a porous disk.
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Table 1
Convergence test on the dimensionless wave force and run-up for 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑1 = 0.5 m, 𝑑2 = 1.5 m, 𝑘0𝑎2 = 1.0, 𝑏1 = 𝑏2 = 𝑏3 = 2𝜋,.
𝑙0 𝑛0 = 2 𝑛0 = 4 𝑛0 = 6

𝑓𝐻 𝑓𝐼 𝑓𝑂 𝑓𝑃 𝛾𝐼 𝛾𝐸 𝑓𝐻 𝑓𝐼 𝑓𝑂 𝑓𝑃 𝛾𝐼 𝛾𝐸 𝑓𝐻 𝑓𝐼 𝑓𝑂 𝑓𝑃 𝛾𝐼 𝛾𝐸
2 1.272 0.665 0.459 2.260 0.162 0.698 1.272 0.665 0.459 2.260 0.161 0.665 1.272 0.665 0.459 2.260 0.161 0.665
5 1.152 0.602 0.443 2.119 0.155 0.698 1.152 0.602 0.443 2.119 0.151 0.665 1.152 0.602 0.443 2.119 0.151 0.665
10 1.028 0.678 0.417 2.038 0.290 0.720 1.028 0.678 0.417 2.038 0.286 0.687 1.028 0.678 0.417 2.038 0.286 0.688
20 1.028 0.678 0.417 2.038 0.289 0.720 1.028 0.678 0.417 2.038 0.286 0.688 1.028 0.678 0.417 2.038 0.286 0.688
30 1.028 0.678 0.417 2.038 0.290 0.720 1.028 0.678 0.417 2.038 0.286 0.688 1.028 0.678 0.417 2.038 0.286 0.688
Fig. 5. Variations of the dimensionless hydrodynamic forces vs. wavenumber 𝑘0𝑎2 for different 𝑑1 at 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑2 − 𝑑1 = 1.0 m, 𝑏1 = 𝑏2 = 𝑏3 = 2𝜋: (a) Inner
cylinder; (b) Outer cylinder; (c) Upper plate; (d) Lower plate; (e) Overturning moment of system.
5
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Fig. 6. Variations of the dimensionless hydrodynamic forces vs. wavenumber 𝑘0𝑎2 for different 𝑑2 at 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑1 = 1.0 m, 𝑏1 = 𝑏2 = 𝑏3 = 2𝜋: (a) Inner cylinder;
(b) Outer cylinder; (c) Upper plate; (d) Lower plate; (e) Overturning moment of system.
When the dimensionless porous effect of the outer cylinder 𝑏3 ap-
proaches to infinity and the radius of the inner cylinder 𝑎1 approaches
to infinitesimal, the model degenerates to dual porous disks. Setting
the permeability of one of the disks to infinity, the model further
degenerates to an isolated disk. The parameters are chosen as 𝑑1∕ℎ =
0.2, 𝑑2∕ℎ = 0.4, 𝑘0𝑎2∕𝜋 = 0.4, 𝑏2 = 𝑏3 = 1000𝜋, 𝑏1 = 1 for case 1, and
𝑑1∕ℎ = 0.1, 𝑑2∕ℎ = 0.2, 𝑘0𝑎2∕𝜋 = 0.4, 𝑏1 = 𝑏3 = 1000𝜋, 𝑏2 = 1 for case 2.
Fig. 3 shows the comparison of dimensionless free surface elevation and
heave force between the present results and the corresponding solution
by Chwang and Wu (1994). The free surface elevation and vertical force
are non-dimensionalized by the wave amplitude 𝐴 and 2𝜌𝑔𝐴𝜋𝑎22. This
figure shows that the calculation results of the free surface elevation
6

and vertical force are coincide with the results of Chwang and Wu
(1994).

To verify the overturning moment, we specify 𝑎1∕𝑎2 = 0.7, 𝑘0ℎ = 𝜋
and 𝑏3 = 1000𝜋 in the present model. In case 1, the lower plate is
completely permeable, i.e. 𝑏2 = 1000𝜋, and 𝑑1∕ℎ = 0.2, 𝑑2∕ℎ = 0.24,
𝑏1 = 1. Similarly, the upper plate is completely permeable, i.e. 𝑏1 =
1000𝜋, and 𝑑1∕ℎ = 0.16, 𝑑2∕ℎ = 0.2, 𝑏2 = 1 in case 2. As shown in
Fig. 4, the numerical results of the two cases agree well with the result
of Wu and Chwang (2002), where 𝐹 0

𝑃 indicates that all porous surfaces
are completely permeable. Fig. 4 can demonstrate the validity of the
present formula of overturning moment.
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Fig. 7. Variations of the dimensionless hydrodynamic forces vs. wavenumber 𝑘0𝑎2 for different 𝑏1 and 𝑏2 at 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑1 = 1.0 m, 𝑑2 = 2.0 m, 𝑏3 = 2𝜋: (a) Inner
cylinder; (b) Outer cylinder; (c) Upper plate; (d) Lower plate; (e) Overturning moment of system.
Through the above verification, the present results are proved reli-
able.

5. The numerical results

5.1. Hydrodynamic forces

5.1.1. Effect of the dual plates draft-depth
Fig. 5 shows the variation of the hydrodynamic forces with the

dimensionless wavenumber 𝑘0𝑎2 for different 𝑑1 at 𝑎1 = 4 m, 𝑎2 =
8 m, ℎ = 10 m, 𝑑2 − 𝑑1 = 1.0 m, 𝑏1 = 𝑏2 = 𝑏3 = 2𝜋. From Fig. 5(a),
it can be observed that all curves keep a similar trend, that is, with the
7

increase of the dimensionless wavenumber 𝑘0𝑎2, the horizontal force of
the inner cylinder increases firstly and then gradually decreases. Mean-
while, with the decrease of 𝑑1, the peak value of the horizontal force
acting on the inner cylinder decreases gradually, and the wavenumber
corresponding to the peak value moves to the left. Compared with the
case without dual plates, the peak horizontal force of the inner cylinder
is reduced by about 35% for 𝑑1 = 0.5 m. It can be seen from Fig. 5(b)
that the horizontal force of the outer cylinder is only slightly affected
by 𝑑1 in the high frequency region. From Fig. 5(c) and (d), the peak
values of the upper and lower plate vertical force increase with the
decrease of 𝑑1. The upper plate vertical force is more significant than
the lower in the whole frequency range, which is because the wave
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Fig. 8. Variations of the dimensionless wave run up on cylinders for different 𝑑1∕ℎ at 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑2 −𝑑1 = 1.0 m, 𝑏1 = 𝑏2 = 𝑏3 = 2𝜋, 𝑘0𝑎2 = 1.0: (a) Inner cylinder;
(b) Outer cylinder.
Fig. 9. Variations of the dimensionless wave run up on cylinders for different 𝑏1 and 𝑏2 at 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑2 = 2.0 m, 𝑑1 = 1.0 m, 𝑏3 = 2𝜋, 𝑘0𝑎2 = 1.0: (a) Inner
ylinder; (b) Outer cylinder.
nergy is more dissipated by the upper plate and the exponential decay
f wave motion in the vertical direction. According to Fig. 5(e), the
verturning moment of system has only one peak point for no plates
ase. The presence of dual plates leads to a second peak point of curves.
he first peak decreases with the decrease of 𝑑1, while the second peak

ncreases with the decrease of 𝑑1.

.1.2. Effect of the dual plates spacing
The effect of the dual plates spacing on the dimensionless hydro-

ynamic forces is shown in Fig. 6, in which the curves are plotted for
ifferent 𝑑2 at 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑1 = 1.0 m, 𝑏1 = 𝑏2 =
3 = 2𝜋. As can be observed from Fig. 6(a) and (b), when the upper
late is fixed, reducing the spacing between the two plates can slightly
educe the inner cylinder horizontal force, while the outer cylinder has
asically no effect. Compared to 𝑑2 = 5.0 m, the horizontal force of the
nner cylinder is reduced by about 7.7% for the case of 𝑑2 = 1.1 m.

This shows that when the upper plate is submerged, the lower plate
has little effect on the horizontal force of the inner and outer cylinders.
The significance of the lower plate is to ensure that the structure still
has the ability to dissipate surface waves after the water surface drops
below the upper plate. From Fig. 6(c) and (d), it can be shown that
decreasing the draft depth of the lower plate will decrease the peak
vertical force of the upper plate while increasing the value of the lower
plate. This indicates that the closer the lower plate is to the upper plate,
the greater its role in the dissipation of wave energy in the system. For
the overturning moment of the system, as shown in Fig. 6(e), the first
peak decreases and the second peak increases as the draft of the lower
plate decreases.
8

5.1.3. Effect of the dual plates permeability
The influence of the dual plates permeability is shown in Fig. 7,

in which the parameters are chosen as: 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ =
10 m, 𝑑1 = 1.0 m, 𝑑2 = 2.0 m, 𝑏3 = 2𝜋. Case (A) and (D) indicate that
the upper plate or the lower plate does not exist, respectively. Case (B)
and (C) indicate that both plates exist, but the permeability of them
are different. From Fig. 7(a) and (b), it can be noticed that reducing
the permeability of the dual plates can significantly reduce the peak
surge force of the inner cylinder, while it has almost no effect on the
outer cylinder. When dual plates are present and the upper plate is
less permeable (Case C), the peak horizontal force of the inner cylinder
is reduced by about 28% compared to the no plates case. As seen in
Fig. 7(c) and (d), the lower the permeability of the plate, the higher
the vertical force on it. The dual plates have a protective effect on each
other. It can be seen from Fig. 7(e) that the first peak of the overturning
moment decreases gradually and the second peak increases gradually
with the decrease of the permeability of the dual plates.

5.2. Wave elevations at the free surface

5.2.1. Effect of the dual plates draft-depth
Fig. 8 shows the variation of the dimensionless wave run up on the

inner and outer cylinder for different 𝑑1∕ℎ at 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ =
10 m, 𝑑2 − 𝑑1 = 1.0 m, 𝑏1 = 𝑏2 = 𝑏3 = 2𝜋, 𝑘0𝑎2 = 1.0. By examining
Fig. 7(a), it can be seen that lowering the draft depth of dual plates
helps to reduce the wave run up on the inner and outer cylinders. This
indicates that the smaller the draft depth of the dual plates, the greater
their ability to dissipate wave energy.
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Fig. 10. Comparison of free surface elevation for 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑1 = 0.5 m, 𝑑2 = 1.5 m, 𝑏3 = 2𝜋, 𝑘0𝑎2 = 1.0: (a) 𝑏1 = 𝑏2 = 1000𝜋; (b) 𝑏1 = 1000𝜋, 𝑏2 = 2𝜋; (c) 𝑏1 =
𝑏2 = 2𝜋; (d) 𝑏1 = 𝑏2 = 0.5𝜋.
5.2.2. Effect of the dual plates permeability
Fig. 9 shows the variation of the dimensionless wave run up on

the inner and outer cylinder for different 𝑏1 and 𝑏2 at 𝑎1 = 4 m, 𝑎2 =
8 m, ℎ = 10 m, 𝑑1 = 1.0 m, 𝑑2 = 2.0 m, 𝑏3 = 2𝜋, 𝑘0𝑎2 = 1.0. As can be
seen from Fig. 9, reducing the permeability of the dual plates helps to
reduce the wave run up on the inner and outer cylinders. This suggests
that the smaller the permeability of the dual plates, the greater their
ability to dissipate wave energy.

The influence of the permeability of the upper and lower ring
plates on the fluid region can also be revealed by calculating the wave
elevations at the free surface. Fig. 10 shows the dimensionless wave
elevations at the free surface 𝜂∕ (2𝐴) in the vicinity of the system, which
the parameters are chosen as 𝑎1 = 4 m, 𝑎2 = 8 m, ℎ = 10 m, 𝑑1 =
0.5 m, 𝑑2 = 1.5 m, 𝑏3 = 2𝜋, 𝑘0𝑎2 = 1.0. The following four groups of
parameters are selected: (a) both of dual plates are completely porous
(𝑏1 = 𝑏2 = 1000𝜋), and the model is equivalent to a concentric cylinder
system; (b) the upper plate is completely porous (𝑏1 = 1000𝜋) and the
lower plate is porous (𝑏2 = 2𝜋); (c) the dual plates are porous (𝑏1 =
𝑏2 = 2𝜋); (d) the dual plates are porous (𝑏1 = 𝑏2 = 0.5𝜋). Comparing
with Fig. 10(b) and (a), it can be seen that the existence of a single
porous plate significantly alleviates the wave oscillation in the annular
region, mainly in the form of reduced free surface elevation on the
downstream side. From the comparison of Fig. 10(c) and (b), it can be
observed that the addition of another plate failed to significantly reduce
the free surface elevation in the annular region. At this point, the lower
plate is more meaningful to cope with the tide-induced water depth
variation. From Fig. 10(d) and (c), it can be concluded that reducing
dual plates permeability could further reduce the free surface elevation
in the annular region. Fig. 10(a)–(d) show that in the case of the upper
plate submerged, it is more effective to reduce the permeability of the
plate than to add a plate in order to increase the wave dissipation. And
if the variation of water depth is considered, dual plates are obviously
more advantageous.
9

6. Conclusions

Based on the linear potential wave theory, the hydrodynamic per-
formance of a concentric bottom-mounted cylinder system with dual
porous ring plates is studied. The velocity potential of each region is
obtained by the method of eigenfunction expansion and boundary con-
ditions matching. The hydrodynamic forces are obtained by integrating
the pressure difference between two sides of the wetted body surface.
The calculation results are compared with published papers. This paper
analyzes the draft, spacing, and permeability of the dual plates on the
effect of the diffraction process.

The results show that reducing the dual plates draft, spacing, and
permeability can increase the wave dissipation, which is manifested
by the simultaneous reduction of the horizontal force on the inner
cylinder and the free surface elevation in the annular region. However,
all these measures have little effect on the horizontal force of the outer
cylinder. In addition, the results of the study also show that the lower
plate provides limited improvement in wave dissipation capacity of the
structure. The significance of it is mainly to ensure that the structure
still has a certain ability to dissipate surface wave energy after the water
depth change causes the upper plate above the water surface.

In this paper, Darcy’s law is used to analyze the interaction between
waves and porous plates. However, it is considered as an inadequate
description of the pressure drop condition when the plate opening is
large. The quadratic pressure drop model offers a more reasonable
alternative that also directly considers the effect of wave height on
wave energy dissipation. Related work will be carried out in the future.
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