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A B S T R A C T   

Microstructural defects and inhomogeneity of titanium alloys fabricated by laser powder bed fusion (LPBF) make 
their fatigue behaviors much more complicated than the conventionally made ones, especially in very-high-cycle 
fatigue (VHCF) regime. Most of traditional models/formulae and currently-used machine learning algorithms 
mainly concern fatigue behavior of LPBF-fabricated titanium alloys in high-cycle fatigue (HCF) regime, but rarely 
in VHCF regime. In this paper, a deep belief neural network-back propagation (DBN-BP) model was proposed to 
predict the fatigue life of LPBF-fabricated Ti-6Al-4V up to VHCF regime. Results obtained in this study indicate 
that the DBN-BP model exhibits high precision and strong stability in predicting the fatigue life of LPBF- 
fabricated Ti-6Al-4V in both HCF and VHCF regimes. The primary hyperparameters of the DBN-BP model 
were optimized to further improve the prediction precision of this innovative model. Finally, the optimal DBN-BP 
model was applied to predict the relation between mean stress and stress amplitude, and the effect of energy 
density on the fatigue behavior of LPBF-fabricated Ti-6Al-4V up to VHCF regime.   

1. Introduction 

Fatigue life prediction is a crucial issue in the fatigue research of 
metallic materials. In the past decades, researchers have developed 
various methods to predict the fatigue lives of metallic materials, e.g., 
the empirical formula based on fracture mechanics [1-3], the fatigue 
damage evolution models based on continuous damage mechanics [4- 
6], and the probabilistic models combining the statistical theory and the 
stress/strain-life curve [7-9]. These models/formulae are either based 
on the analysis of the experimental results or based on theoretical 
models with each of them mainly considering some factors. The machine 
learning (ML) approach is an innovative technique emerging in recent 
years, which is capable of identifying the influence of different factors 
on fatigue properties of metallic materials effectively and efficiently, 
and thus it has been widely applied to fatigue life prediction of various 
metallic materials [10-12]. The most commonly used ML models include 
artificial neural network (ANN), support vector regression (SVR) and 
random forest (RF) [13-16], with each of them having its own strengths 

and weaknesses. ANN has the advantages of excellent nonlinear fitting 
ability, simple model and short time consumption [17], but the random 
generation of the weight and threshold of each layer makes ANN easy to 
fall into local minimum, causing unstable prediction results [18]. In 
addition, the network structure parameters of ANN are mainly deter-
mined based on the priori knowledge, which makes the predicted results 
easy to fall into overfitting or failure to converge [19]. SVR with 
different kernel functions is widely utilized in regression estimation and 
reliable prediction results can be obtained even with a small amount of 
data [20,21]. However, SVR is prone to cause overfitting and slow 
training speed when facing problems with big data or numerous factors 
[22,23]. Besides, the prediction precision of SVR will be very low when 
there are some values missing in the fatigue data [24]. RF has strong 
ability of generalization to unfamiliar data and is not easily affected by 
missing data [25,26], but it is usually time-consuming due to its complex 
algorithm and it is prone to cause overfitting when big noise exists in the 
data [27]. 

Laser powder bed fusion (LPBF) is one of the most widely used 
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additive manufacturing techniques for metallic materials having the 
excellent capability of fabricating complex and sophisticated metal 
components with great efficiency and immense flexibility [28-30]. Ti-
tanium alloys fabricated by LPBF process have been broadly utilized in 
various fields such as aerospace, energy and biomedicine due to their 
superior strength and excellent corrosion resistance [31,32]. Neverthe-
less, a certain number of microstructural defects (e.g., pores, lack-of- 
fusion defects and surface defects) and inhomogeneous microstruc-
tures of LPBF-fabricated titanium alloys are generated during the LPBF 
process, which makes their fatigue behaviors and properties much more 
complicated to investigate than conventionally manufactured titanium 
alloys [33-36]. These microstructural defects may be partially elimi-
nated by heat treatment or hot isostatic pressing (HIP), but some of them 
will be still remained in the materials [37-39]. Several ML models 
including ANN, SVR and RF have been employed to predict the fatigue 
lives of LPBF-fabricated titanium alloys (e.g., Ti-6Al-4V) [1,40,41]. 
However, most of current investigations mainly concern the fatigue lives 
of these LPBF-fabricated titanium alloys in HCF regime, but rarely in 
VHCF regime. In fact, the behaviors and mechanisms of crack initiation 
in VHCF regime, such as the formation of rough area and fish eye, are 
quite different from those in HCF regime [42-44], which requires to 
propose an innovative model to address this emerging challenge. 

A deep learning model is essentially an improvement of ANN with 
two or more hidden layers, which has a superior ability to analyze 
original input data with multiple levels of feature extraction. For LPBF- 
fabricated titanium alloys in VHCF regime, fatigue life prediction results 
would be more precise if more fatigue-relevant features can be extracted 
from the raw data of fatigue testing. In the abovementioned machine 
learning models, the input features are only randomly sampled by RF 
[45], simply kernel transformed by SVR [46], neither processed nor 
transformed by ANN. None of these models are able to conduct deep 
extraction of the raw fatigue data. Nevertheless, the deep learning model 
is capable of both extracting and transforming the input features in 
VHCF regime such that more fatigue-relevant features can be obtained 
and consequently the prediction results of the fatigue life will be much 
more precise. As a newly emerged technique, deep learning has been 
mainly applied to the areas of artificial intelligence and big data mining, 
but only very few studies concerning fatigue life prediction of metallic 
materials were reported [47,48], involving neither LPBF-fabricated ti-
tanium alloys nor VHCF issues. 

In this paper, a deep learning model was employed to predict the 
fatigue life of LPBF-fabricated Ti-6Al-4V up to VHCF regime. The fatigue 
data were acquired via a series of fatigue tests considering the effects of 
various factors, e.g., printing parameters, tensile strength, and fatigue 
load on the fatigue life of LPBF-fabricated Ti-6Al-4V. Since the fatigue 
dataset is relatively small and the number of influencing factors is 
relatively large, a deep learning model, named the deep belief neural 
network-back propagation (DBN-BP) model proposed by Hinton 
[49,50], was employed to predict the fatigue life of LPBF-fabricated Ti- 
6Al-4V up to VHCF regime. The prediction results were then compared 
with the experimental results to validate this innovative deep learning 
model. The framework of this paper is as follows. Section 2 introduces 
the experimental work including the preparation of experimental ma-
terials and fatigue tests. Section 3 describes the preprocessing of fatigue 
data, the establishing and the evaluation of the DBN-BP model. Results 
and discussion are given in Section 4, and conclusions gained in this 
study are summarized in Section 5. 

2. Construction of raw dataset 

2.1. Tensile and fatigue tests 

The material investigated in this research was LPBF-fabricated Ti- 
6Al-4V, a typical additively manufactured titanium alloy with high 
strength and fracture toughness, low density, and good biocompatibility 
[31,32,51]. All specimens were fabricated by a LPBF machine 

(SLM125). The pre-alloyed Ti-6Al-4V powder produced by gas atomi-
zation in argon atmosphere and the chemical composition (wt.%) is 
5.93Al, 4.01 V, 0.09O, 0.01 N, 0.01C and balance Ti. Most of Ti-6Al-4V 
powder particles are spherical and the mean diameters of the particles is 
45 μm (d50). During the LPBF process, the laser beam was employed to 
quickly melt the Ti-6Al-4V powder particles layer by layer in an argon- 
filled chamber and the main processing parameters are laser power 325 
W, scan speed 1300 mm/s, layer thickness 0.03 mm and hatch spacing 
0.12 mm. Fig. 1a shows that all specimens were produced in the vertical 
orientation and the laser travelling direction was rotated by 30◦ for the 
subsequent layer to minimize the anisotropy of LPBF Ti-6Al-4V speci-
mens. Two kinds of LPBF Ti-6Al-4V specimens were considered for the 
fatigue testing. One is the as-built specimen that was directly printed 
according to the shape and dimensions illustrated in Fig. 1b. The other is 
the surface-polished specimen that was initially printed as a cylindrical 
bar and then machined and polished, with the shape and dimensions 
shown in Fig. 1c. Note that the design of ultrasonic fatigue specimens 
satisfies the resonant condition for 20 kHz testing frequency. In order to 
reduce the residual stresses induced during LPBF process, a post-LPBF 
heat treatment was performed by heating at 600 ℃ for 2 h and then 
air-cooled to room temperature. The chemical composition (wt.%) of the 
L-PBF Ti-6Al-4V specimens was analyzed by X-ray photoelectron spec-
troscopy (XPS, ESCALAB 250Xi, Thermo Fisher, UK) and the results 
were 6.02Al, 3.97 V, 0.10O, 0.01 N, 0.01C and balance Ti. The densities 
of the LPBF Ti-6Al-4V samples were measured by using Archimedes 
method [52] to give 4.374 g/cm3 for as-built samples and 4.382 g/cm3 

for surface-polished samples. 
Tensile tests were performed to obtain ultimate tensile strength and 

yield strength (at 0.2% offset) of LPBF-fabricated Ti-6Al-4V in which 
gage length and diameter of the tensile test specimen are 20 mm and 5 
mm, respectively. During the test, an extensometer was first assembled 
at both ends of the gage section, and then the testing machine uniformly 
stretched the specimen at room temperature with a strain rate of 10− 4 

s− 1 until failed. The stress–strain curve was automatically obtained 
through the testing machine. Fatigue tests were performed on an ul-
trasonic axial vibration machine (Lasur GF20-TC) at the frequency of 20 
± 0.5 kHz, which was installed in a tensile machine (capacity 20 kN) to 
let the ultrasonic cycling under a given mean stress thus to provide 
required stress ratio. A compressed gas device was used to cool the fa-
tigue testing specimen to substantially reduce the temperature rise of the 
specimen. A set of fatigue tests with five stress ratios (R = − 1, − 0.5, 0.1, 
0.5 and 0.7) were designated to investigate the effect of stress ratio on 
the fatigue behavior of the LPBF-fabricated Ti-6Al-4V. The applied stress 
amplitude of the test specimens is in the range of 50 to 350 MPa. The 
numbers of the test specimens are 180, 12, 10, 31 and 17 at R = − 1, 
− 0.5, 0.1, 0.5 and 0.7, respectively. The fractographic morphologies of 
failed specimens were examined by scanning electron microscopy (SEM, 
FEI Apreo S, US). The equivalent sizes and shapes of crack initiation 
region and defects on the observed fracture surfaces were measured by 
using Image-Pro Plus 6.0 software. More details about material prepa-
ration and fatigue testing can be found in Ref [53,54]. 

2.2. Selection of input and output features 

The predicted fatigue life, defined as the number of cycles to fatigue 
failure, of LPBF-fabricated Ti-6Al-4V is the sole output feature in this 
deep learning model. The selection of input features is crucial since it 
directly determines the precision and efficiency of the deep learning 
model. Fatigue behavior has been intensively investigated in recent 
years and numerous studies indicated that the fatigue life of LPBF- 
fabricated Ti-6Al-4V is primarily affected by printing parameters, min-
imum diameter of specimen, powder size, post-treatment process and 
loading modes [55-57]. With a combined consideration of the literature 
review and the authors’ prior experimental results [53,54,58,59], the 
following input features were considered in this deep learning model: 
stress amplitude σa defined as the half of the difference between the 
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maximum and minimum stresses, yield strength σy defined as the 
amount of stress that results in a plastic strain of 0.2%, stress ratio R 
defined as the quotient of the minimum stress over the maximum stress, 
diameter D defined as the minimum diameter of the fatigue specimen, 
powder size L defined as the mean diameter of Ti-6Al-4V powder par-
ticles, laser power P defined as the power of the laser beam applied in the 
LPBF process, scan speed V defined as the travelling speed of the laser 
beam applied in the LPBF process, layer thickness d defined as the layer 
height of each successive addition of used Ti-6Al-4V powder particles in 
the LPBF process, and hatch spacing h defined as the distance between 
two consecutive laser beams. As stated in Ref.[53], the input energy 
density E can be utilized to describe the effects of the printing param-
eters (P, V, d and h) on the fatigue life of LPBF-fabricated Ti-6Al-4V, 
which is written as [60]: 

E =
P

V × d × h
(1) 

Hence, the input features in the deep learning model are composed of 
stress amplitude σa, yield strength σy, stress ratio R, minimum diameter 
of specimen D, powder size L, and input energy density E. 

2.3. Raw data collection 

The raw data consists of a total number of 250 S-N data points 
collected from the authors’ published papers [53,54,58,59]. The values 
of the selected six input features are listed in Table 1. 

3. Fatigue life prediction model 

In this study, a deep learning model, named the DBN-BP model, was 
adopted to predict the fatigue life of LPBF-fabricated Ti-6Al-4V up to 
VHCF regime. The schematic of the fatigue life prediction, as shown in 
Fig. 2, is comprised by three steps: data pre-processing, establishing of 
the DBN-BP model, and model evaluation. It is worth noting that the 
DBN-BP model consists of two parts, i.e., the Restricted Boltzmann 
Machines (RBMs) structure for the pre-training process and the BP 
neural network (BPNN) for the fine-tuning process (Detailed definitions 
and network structures implemented in the pytorch package are shown 
in Section 3.2.2, where the codes for DBN and RBM are derived from 
Ref. [61]). During the pre-training process, the network parameters of 
each layer in the DBN-BP model were obtained via the use of RBMs to 
ensure that the mapping relationship of each individual layer reaches 
the local optimum. Then in the subsequent fine-tuning process, the ob-
tained network parameters were tuned by using BPNN, such that the 

mapping relationship of the entire network, from the input layer to the 
output layer, reaches the global optimum. 

3.1. Data pre-processing 

3.1.1. Normalization and correlation analysis of input features 
As listed in Table 1, the input features have different units and 

magnitudes. Direct training of the DBN-BP model using these original 
fatigue data could significantly increase the training time and the dif-
ficulty to converge. In order to avoid this outcome, the fatigue data need 
to be normalized into a range [0, 1] by using of Eq. (2). 

Fig. 1. (a) Build direction and printing strategy of the LPBF process, shape and dimensions (mm) of (b) as-built and (c) surface-polished fatigue test specimens.  

Table 1 
Values of input features, collected from Refs. [53,54,58,59].  

No. D 
(mm) 

L 
(μm) 

E (J/ 
mm3) 

σy (MPa) σa (MPa) R Refs. 

1 3.5 34 47.6 1176 ±
73 

145 to 
290 

− 1 [58] 

2 3.5 34 26.7 1117 ±
31 

100 to 
205 

− 1 [58] 

3 3.5 34 19.2 514 ± 30 85 to 175 − 1 [58] 
4 3.5 34 41.0 1135 ±

25 
145 to 
290 

− 1 [58] 

5 3.5 34 63.5 1189 ±
43 

160 to 
290 

− 1 [58] 

6 3.5 34 22.2 1071 ±
58 

115 to 
290 

− 1 [58] 

7 3.5 34 83.3 1018 ±
20 

200 to 
350 

− 1 [58] 

8 3.5 34 28.5 960 ± 9 130 to 
190 

− 1 [58] 

9 3.5 34 47.6 1089 ±
15 

130 to 
205 

− 1 [58] 

10 3.5 34 76.0 1045 ± 5 230 to 
350 

− 1 [59] 

11 3.5 34 76.0 1045 ± 5 88 to 199 0.5 [59] 
12 3.5 45 69.0 1191 ±

20 
160 to 
306 

− 1 [53] 

13 3.5 45 69.0 1191 ±
20 

80 to 180 − 0.5 [53] 

14 3.5 45 69.0 1191 ±
20 

70 to 150 0.1 [53] 

15 3.5 45 69.0 1191 ±
20 

70 to 105 0.5 [53] 

16 3.0 45 69.0 1068 ±
15 

50 to 167 − 1 [54] 

17 3.0 45 69.0 1068 ±
15 

100 to 
160 

0.7 [54]  
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X* =
X − Xmin

Xmax − Xmin
(2) 

where X is the original value, X* is the normalized value, Xmin and 
Xmax are the minimum and maximum values, respectively. 

After normalization, the Pearson correlation analysis was conducted 
to determine the correlation between the input features, by using the 
formula of: 

Fig. 2. The schematic of the fatigue life prediction.  

Fig. 3. Pearson correlation heatmap between the six input features.  
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η =
cov(X1,X2)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(X1)⋅var(X2)

√ (3) 

where X1 and X2 represent any two of these six input features, cov(⋅) 
is the covariance function, var(⋅) is the variance function. 

Pearson correlation heatmap of the six input features is illustrated in 
Fig. 3 in which none of the values in the correlation coefficient matrix is 
greater than 0.6, indicating that none of these six input features are 
strongly correlated. Therefore, these input features could be used as 
independent variables in the DBN-BP model. 

3.1.2. Partition of fatigue dataset 
In order to ensure the reliability and generalization ability of the 

DBN-BP model, the fatigue dataset was randomly divided into training 
set, validation set and testing set in the ratio of 8:1:1. First, the fatigue 
life prediction model was obtained through repeated training via the use 
of the data in the training set; Second, the hyperparameters of the model 
were optimized by using the data in the validation set; Last, the pre-
diction performance of the model was assessed by comparing with the 
“unseen/blinded” experimental data in the testing set. If the predicted 
results agree well with the “unseen/blinded” experimental data, then 
the prediction performance is considered to be good and thus this model 
can be used as a predictive model. 

Since the randomness of the dataset partition often affects the pre-
diction results of the model, the k-fold cross-validation was needed. 
Because the fatigue data in the training and validation sets were divided 
into nine equal pieces, so k was set to 9 to acquire a reliable validation. 
To conduct the 9-fold cross-validation, the fatigue data in the training 
and validation sets were partitioned for 9 times. At each time, the fatigue 
data in the training and validation sets were randomly divided into 9 
equal folds, with eight folds used as the training set and the remaining 
fold used as the validation set. Then, the prediction results were ob-
tained by taking the average value of the 9 predictions. Hence, the effect 
of the randomness of the dataset partition on the prediction performance 
can be diminished via the use of k-fold cross validation. 

3.2. Establishment of DBN-BP model 

As a deep learning model, the DBN-BP model is a modification and 
improvement of the BPNN model in which a pre-training process is 
added before the training process. It can be shown later that it is able to 
well predict the fatigue life of LPBF-fabricated Ti-6Al-4V in both HCF 
and VHCF regimes. More details about BPNN and DBN-BP models are 
presented as follows. 

3.2.1. BPNN model 
As a typical neural network, the BPNN model has been widely used in 

fatigue life prediction of metallic materials due to its simple structure 
and high efficiency [41,62]. A typical BPNN model is composed of three 
parts: an input layer, one or several hidden layers, and an output layer. 
Fig. 4 illustrates the structure of a generic BPNN model with a single 
hidden layer. The hyperparameters in the BPNN model, including 
number of hidden layers, number of nodes in hidden layer, batchsize, 
learning rate and epoch, are to be initialized and optimized in Section 
3.2.3. 

As described in Section 3.1, the input features are σa, σy, R, D, L and E, 
and the output is the predicted fatigue life of LPBF-fabricated Ti-6Al-4 V, 
Npre. The input value y and output value o of the hidden layer are pre-
sented in Eqs. (4) and (5), and the output value Npre of the output layer is 
presented in Eq. (6), respectively, in which [x] denotes the input fea-
tures, [w](1) represents the weight between the input and hidden layers, 
[w](2) represents the weight between the hidden and output layers, [b](1) 

and [b](2) denote the biases of the input and hidden layers, respectively. 
An activation function f (⋅) was needed to conduct the nonlinear trans-
formation for the neuron (i.e., the hidden layer) from the input value y to 
the output value o. The ReLU function is one of the most widely used 

activation functions, which has the advantages of avoiding gradient 
vanishing [63,64]. Therefore, the ReLU function was applied in this 
BPNN model, as shown in Eq. (7). 

[y] = [w]
(1)
[x] + [b](1) (4)  

[o] = f ([w]
(1)
[x] + [b](1)) (5)  

Npre = [w]
(2)
[o] + [b](2) (6)  

f (x) =
{ 0 for x < 0

x for x ≥ 0
(7)  

3.2.2. DBN-BP model 
The DBN-BP model is the modification and improvement of the 

BPNN model by integrating the DBN algorithm [49,50]. Composed of 
stacked layers of Restricted Boltzmann Machines (RBMs), DBN is served 
as an unsupervised pre-training process whose results are utilized to 
conduct the subsequent supervised fine-tuning process via the use of 
BPNN. Fig. 5 illustrates the structure of a generic DBN-BP model in 
which each RBM consists of a visible layer and a hidden layer that the 
hidden layer of current (ith) RBM is the visible layer of the next ((i + 1) 
th) RBM. The hyperparameters in the DBN-BP model, consisting of 
number of hidden layers, number of nodes in hidden layer, batchsize, 
learning rate of pre-training, learning rate of fine-tuning, epoch of pre- 
training and epoch of fine-tuning, are to be initialized and optimized 
in Section 3.2.3. 

As shown in Fig. 6, a restricted Boltzmann machine (RBM) has a two- 
layer network structure that consists of a visible layer, which is often 
called the input layer, and a hidden layer, which is the feature extraction 
layer. The visible layer and the neurons of the hidden layer are fully 
connected and bidirectional. The weight w between any two neurons 
denotes the connection strength, a represents the visible layer bias co-
efficient, b denotes the hidden layer bias coefficient, v = (v1, v2, …, vnv) 
and h = (h1, h2, h3, …, hnh) represent the input vector and the output 
vector, respectively. 

RBM is essentially a probabilistic model based on a scalar energy 
which is defined to quantify the state of the network. When the energy is 

Fig. 4. The structure of a BPNN model with a single hidden layer.  
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minimized, the network reaches an ideal state. The network is trained to 
minimize this energy function of the network. Given a set of states (v, h), 
the energy function of RBM can be defined as [65]: 

E(v, h|θ) = −
∑nv

i=1
aivi −

∑nh

j=1
bjhj −

∑nv

i=1

∑nh

j=1
hjwijvi (8) 

where [v] = [v1, v2, v3, …, vnv]T is the input of the visible layer, [h] =
[h1, h2, h3, …, hnh]T is the output of the hidden layer, nv and nh are the 
number of neurons of the visible and hidden layers. θ = {ai, bj, wij} is the 
parameter of RBM, ai and bj are the biases of the visible and hidden 
layers, and wij is the weight between the two layers. 

Then the joint probability distribution can be obtained and expressed 
as: 

P(v, h|θ) = 1
Z(θ)

e− E(v,h|θ) (9) 

where, Z(θ) =
∑

nv ,nh

e− E(v,h|θ) is the partition function. 

The probabilities that neurons in the hidden and visible layers will be 

activated can be calculated and described as: 

P
(
hj= 1|v

)
=

1

1 + exp
(

− bj −
∑nv

i=1
viwij

)

P(vi= 1|h) = 1

1 + exp

(

− ai −
∑nh

j=1
wijhj

)

(10) 

RBMs are trained to maximize the likelihood function, i.e., the 
product of probabilities assigned to some training set V, denoted as V =
{v1, v2,…, vns} in which ns represents the number of samples in the 
training set and the kth sample can be written as vk = [v1

k, v2
k,…, vnv

k ]T. 
Thus, the likelihood function can be expressed as: 

L(θ) =
∏ns

k=1
P
(
vk) (11) 

A maximum likelihood estimate was implemented to obtain the 
optimal values of the variable set θ = {ai, bj, wij} of RBM, by using the 
following equations: 

∂logL(θ)
∂wij

=
∑ns

k=1
[P(hj = 1|vk)vk

i −
∑ns

k=1
[P(vk)P(hj = 1

⃒
⃒vk)vk

i ]

∂logL(θ)
∂ai

=
∑ns

k=1
[vk

i −
∑

v
P(vk)vk

i ]

∂logL(θ)
∂bj

=
∑ns

k=1
[P(hj = 1

⃒
⃒vk) −

∑ns

k=1
P(vk)P(hj = 1|vk)]

(12) 

Thereafter, a layered greedy algorithm is used to train every single 
layer, using the hidden layer of the current (ith) RBM as the visible layer 
of the next ((i + 1)th) RBM, such that the optimal values of variable set θ 
= {ai, bj, wij} can be obtained for every layer and the pre-training process 
is finished. Subsequently, based on local optimum results, the global 
optimization can be performed throughout the network to acquire the 
optimal values of variable set θ = {ai, bj, wij} for the entire network and 
the fine-tuning process is completed. With the integration of DBN and 
BPNN, the output of the DBN-BP model, i.e., the predicted fatigue life 
Npre, can be well attained. 

Fig. 5. The structure of a generic DBN-BP model.  

Fig. 6. The structure of a RBM.  
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3.2.3. Optimization of hyperparameters 
Hyperparameters are the parameters whose values are set manually 

in the deep learning model, rather than the model parameters obtained 
from the learning process, which mainly include number of hidden 
layers, number of nodes in hidden layers, batchsize, learning rate, 
epoch, etc. The number of hidden layers and hidden layer nodes deter-
mine the complexity of the neural network. An increase in these 
numbers can enhance the ability of the network to handle complex 
nonlinear problems but may result in a considerable elongation of time- 
consumption. The value of the batchsize should be in a reasonable range 
since a too small batchsize may lower the training speed and increase the 
difficulty of convergence, whereas a too large size may result in an 
inappropriate local minimum. The learning rate ought to be not too 
large to avoid the non-convergence of the prediction model and not too 
small to refrain a slow convergence rate and an excessive time- 
consumption. Epoch, similar to the iteration step, determines the 
fitting state of the model. The value of epoch should be increased to turn 
the prediction results from the initial underfitting state into the optimal 
fitting state, but may result in the overfitting state if the value of the 
epoch exceeds a threshold value. In brief, the training efficiency, pre-
diction precision, generalization ability, and robustness of the network 
model are all closely related to the hyperparameters [66,67]. 

In order to obtain an excellent performance for the fatigue life pre-
diction model, it is requisite to determine the appropriate values for 
these hyperparameters that are initialized before the training process. 
The initialization of the values of these hyperparameters usually are 
empirical and these values can be adjusted and optimized according to 
the comparison between the experimental results and the predicted re-
sults of the fatigue lives of LPBF-fabricated Ti-6Al-4V, so that the model 
has a superior prediction ability for any unseen data. Hyperparameters 
of BPNN and DBN-BP models were initialized and optimized and their 
values are listed in Tables 2 and 3, respectively. 

3.3. Model evaluation 

In order to comprehensively evaluate the fatigue life prediction 
models of LPBF-fabricated Ti-6Al-4V from various perspectives, three 
statistical measures, i.e., R2 (coefficient of determination), RMSE (root 
mean square error) and MAE (mean absolute error), are employed to 
quantify the prediction precision of BPNN and DPN-BP models. The 
value of R2 explicitly indicates how well the data fit the regression model 
in which the closer R2 is to 1 means the model has a better prediction 
precision. RMSE clearly reflects the deviation between the predicted and 
experimental values in which a smaller value of RMSE represents a 
better prediction performance of the model. However, RMSE is quite 
sensitive to outliers because its calculation results are closely related to 
larger values. Thus, MAE is utilized to be the alternate of RMSE since it is 
not sensitive to the outliers. The smaller the value of MAE is, the higher 
the precision of the prediction model is. The expressions of R2, RMSE 
and MAE are listed as follows. 

R2(y, ypre) = 1 −

∑n

i=1
(yi − ypre

i )
2

∑n

i=1
(yi − y ∗ )2

(13)  

RMSE(y, ypre) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ypre

i )
2

√

(14)  

MAE(y, ypre) =
1
n
∑n

i=1
|yi − ypre

i | (15) 

where yi denotes the ith experimental data, yi
pre represents the ith 

predicted value, and y* is the mean value of the experimental data. 

4. Results and discussion 

4.1. Fatigue life prediction results 

For the purpose of comparison, both BPNN and DBN-BP models were 
employed to predict the fatigue life of LPBF-fabricated Ti-6Al-4V. The 
predicted values via the BPNN model were compared with the experi-
mental values by using the data in the training, validation, and testing 
sets, which are shown in Figs. 7a, 7b and 7c, respectively. The com-
parisons of the predicted values via the DBN-BP model with the exper-
imental values by using the data in the training, validation, and testing 
sets, are presented in Figs. 7d, 7e and 7f, respectively. 

As seen in Fig. 7a, about 70% of prediction points are within the 
triple error band, whereas the remaining 30% of those points are outside 
the triple error band. Similarly, only 56% of prediction points are within 
the triple error band in Fig. 7b and 62% of the prediction values are 
within the triple error band in Fig. 7c. On the contrary, all the prediction 
points via the DBN-BP model are well within the triple error band and 
most of them fall on the isoline (Npre = Nf), no matter of using the data in 
the training set, the validation set or the testing set (Figs. 7d-7f). It 
should also be noted that the majority of predicted fatigue lives of LPBF- 
fabricated Ti-6Al-4V by using the BPNN model are overvalued in HCF 
regime but undervalued in VHCF regime (shown in Figs. 7a-7c), whereas 
the prediction values via the DBN-BP model match the experimental 
values very well, in both HCF and VHCF regimes, by using the data in all 
three sets (illustrated in Figs. 7d-7f). The results in Fig. 7 clearly indicate 
that the DPN-BP model has a much better prediction precision than the 
BPNN model. 

The above observations can be well explained by the characteristics 
of BPNN and DBN-BP models. When the BPNN model was utilized to 
predict the fatigue life of LPBF-fabricated Ti-6Al-4V, the input fatigue 
data were neither pre-processed nor further mined, which may cause the 
interaction between the data in HCF regime and the data in VHCF 
regime. When the fatigue lives in HCF regime were predicted, the pre-
diction values were generally larger than the experimental values due to 
the effect of VHCF data. Similarly, when the fatigue lives in VHCF 
regime were predicted, the prediction values were usually smaller than 
the experimental values due to the effect of HCF data. On the other hand, 
the weights and biases obtained by the BPNN model make the prediction 
process tend to fall into the local optimum [18], causing the biased 
prediction results. As far as the DBN-BP model is concerned, it has the 
abilities of powerful reasoning and full description of relationships 

Table 2 
Hyperparameter settings for the BPNN model.  

Parameter Value 

Number of hidden layers 1 
Number of nodes in hidden layer 10 
Batchsize 32 
Learning rate 0.01 
Epoch 400  

Table 3 
Hyperparameter settings for the DBN-BP model.  

Parameter Value 

Number of hidden layers 4 
Number of nodes in Hidden layer I 10 
Number of nodes in Hidden layer II 7 
Number of nodes in Hidden layer III 7 
Number of nodes in Hidden layer IV 5 
Batchsize 32 
Learning rate of pre-training 0.05 
Epoch of pre-training 8 
Learning rate of fine-tuning 0.05 
Epoch of fine-training 2200  
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among input features [68], which can learn critical information from the 
input features of the dataset during the pre-training process [69], so as to 
avoid the influence of other irrelevant data on the prediction perfor-
mance. With the combination of the pre-training and fine-tuning pro-
cesses, the DBN-BP model is capable of obtaining better weights and 
biases than the BPNN model, making up for the shortcomings of the 
traditional BPNN model [70]. In brief, the DBN-BP model has exhibited 
the superior ability of predicting the fatigue life of LPBF-fabricated Ti- 
6Al-4V in both HCF and VHCF regimes. 

4.2. Precision and stability of prediction models 

In order to objectively and comprehensively evaluate the prediction 
performance of BPNN and DBN-BP models, the precision and stability of 

the prediction results obtained from both models were presented and 
compared. As stated in Section 3.3, three statistical measures, i.e., R2, 
RMSE and MAE, were used to quantify the prediction precision of the 
BPNN and DPN-BP models. Figs. 8a and 8b present the values of R2, 
RMSE and MAE via DBN-BP and BPNN models, by using the data of the 
training set, the validation set, and the testing set, respectively. It can be 
seen from Fig. 8 that the value of R2 obtained from the DBN-BP model is 
consistently around 1, no matter of using the data of the training set, the 
validation set, or the testing set, which is much better than that from the 
BPNN model (about 0.8). Furthermore, the values of RMSE and MAE 
from the BPNN model are in the range of 0.4 ~ 0.5, which are far higher 
than those from the DBN-BP model (around 0.1). The comparisons of 
values of R2, RMSE and MAE via DBN-BP and BPNN models clearly show 
that the DBN-BP model has a much better prediction performance than 

Fig. 7. Comparisons of experimental and predicted fatigue lives for (a) training set, (b) validation set and (c) testing set of the BPNN model; (d) training set, (e) 
validation set and (f) testing set of the DBN-BP model. 
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the BPNN model. In addition, Figs. 8a and 8b illustrate that the values of 
R2, MAE and RMSE for both DBN-BP and BPNN models vary in a rela-
tively narrow range, regardless of using the data of the training set, the 
validation set, or the testing set, indicating that both models have not 
obvious overfitting and can be used to predict unseen data. 

To be a superior prediction model, it is vital to have not only highly 
precise but strongly stable prediction performance. Therefore, the sta-
bility of these two prediction models was evaluated by repeated pre-
dictions using the prediction model under the same conditions. Figs. 8c 
and 8d show the variation of values of R2, MAE and RMSE with 30 
repeated predictions from BPNN and DBN-BP models by using the data 
in the testing set, respectively. It is seen that the values of R2 have a small 
fluctuation (about 0.05) by using both BPNN and DBN-BP models. 
Nevertheless, the values of MAE and RMSE vary in a narrow range of 
0.08 for the BPNN model but in a relatively wide range of 0.18 via the 
DBN-BP model which can be explained as follows. With the nearly- 
perfect fitting of the DBN-BP model, 30 times of repeated predictions 
may cause the amplification of the error/gap between the predicted 
value and the experimental value and consequently result in a relatively 
large fluctuation of the values of MAE and RMSE. Overall, both DBN-BP 
and BPNN models present excellent stability of predicting the fatigue life 
of LPBF-fabricated Ti-6Al-4V. 

4.3. Analysis of hyperparameter sensitivity 

Results in Sections 4.1 and 4.2 have clearly shown that both BPNN 
and DBN-BP models exhibited good fittings between the predicted and 

experimental values of the fatigue lives of LPBF-fabricated Ti-6Al-4V. In 
order to further optimize BPNN and DBN-BP models and verify the ra-
tionality of the hyperparameter settings in Tables 2 and 3, parametric 
studies were developed to analyze the sensitivity of hyperparameters. As 
the primary parameters directly affecting the prediction performance of 
neural network models [41,62], the number of hidden layers and 
number of nodes in each hidden layer were analyzed to optimize the 
predicted fatigue life of LPBF-fabricated Ti-6Al-4V in HCF and VHCF 
regimes by using BPNN and DBN-BP models. 

First, the number of hidden layers were analyzed and optimized for 
both BPNN and DBN-BP models. Figs. 9a and 9b illustrate the variation 
of values of three statistical measures, i.e., R2, RMSE and MAE, with the 
number of hidden layers (nh) in the BPNN model and the DBN-BP model, 
respectively, by using the data of the testing set. In the BPNN model, the 
value of R2 decreases slowly from 0.840 to 0.779 when nh varies from 1 
to 4, then drops steeply to 0 when nh becomes 5. The value of RMSE 
increases slowly from 0.466 to 0.548 with nh varying from 1 to 4, then 
rises rapidly to 1.168 when nh reaches at 5. Similarly, the value of MAE 
grows slowly from 0.343 to 0.391 with nh increasing from 1 to 4, then 
rises steeply to 1.031 when nh becomes 5. In the DBN-BP model, the 
value of R2 increases rapidly from 0.494 to 0.936 when nh varies from 1 
to 2, but increases slowly from 0.936 to 0.989 when nh changes from 2 to 
4, and keeps at 0.99 thereafter. The value of RMSE decreases steeply 
from 0.829 to 0.3 with nh increasing from 1 to 2, then declines slowly to 
0.123 with nh varying from 2 to 4, and remains at around 0.1 afterwards. 
Similarly, the value of MAE drops quickly from 0.623 to 0.222 with nh 
increasing from 1 to 2, then decreases slowly to 0.099 when nh adds from 

Fig. 8. Statistical measures of prediction precision for (a) BPNN and (b) DBN-BP models; Variation of statistical measures with repeated predictions from (c) BPNN 
and (d) DBN-BP models using the testing set. 
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2 to 4, and stays at 0.08 afterwards. 
The results in Fig. 9 evidently indicate that the number of hidden 

layers plays a significant role on the prediction precision of both BPNN 
and DBN-BP models. For the BPNN model, the prediction precision 
reaches the optimal value when the number of hidden layers is 1 and 
deteriorates steeply when the number of hidden layers becomes 5, 
inferring that the BPNN model is not suitable for deep learning. As far as 
the DBN-BP model is concerned, the prediction precision improves with 
the increase of the number of hidden layers and remain at the optimal 
value as long the number of hidden layers is no less than 4. 

Second, the number of nodes in each hidden layer were analyzed and 
optimized for BPNN and DBN-BP models. According to the obtained 
optimization results, the number of hidden layers was chosen as 1 for the 
BPNN model and 4 for the DBN-BP model. The schemes of the para-
metric study of number of nodes in each hidden layer for BPNN and 
DBN-BP models are listed in Tables 4 and 5 respectively. Variations of 
the values of three statistical measures (R2, RMSE and MAE) with the 
numbers of nodes in each hidden layer of BPNN and DBN-BP models are 
illustrated in Figs. 10 and 11, respectively. 

As shown in Table 4, the BPNN model had only one hidden layer and 
the optimization begun with the number of nodes in the sole hidden 
layer varying from 5 to 25 with an increment of 5. Fig. 10 indicates that 
the values of all three statistical measures (R2, RMSE and MAE) converge 
quickly when the number of nodes reaches to 10 and fluctuates in a very 
narrow range afterwards, inferring the optimal value of the number of 
nodes being 10 for the BPNN model with a single hidden layer. 

For the DBN-BP model, as shown in Table 5, the optimization begun 
with the number of nodes in the first hidden layer while keeping the 
nodes of other hidden layers unchanged. Once the number of nodes in 
hidden layer I was optimized, then the number of nodes in hidden layer 
II would be optimized while keeping the nodes of other hidden layers 
constant. Similarly, the numbers of nodes in hidden layers III and IV 
could be optimized. Figs. 11a-d show the variations of the values of three 
statistical measures (R2, RMSE and MAE) with the numbers of nodes in 
hidden layers I ~ IV by using the data in the testing set, respectively. It 
can be seen in Table 5 that the optimization begun with the number of 
nodes in the first hidden layer varying from 5 to 25 with an increment of 
5, while keeping the nodes of other hidden layers unchanged. Results in 
Fig. 11a show that the values of all three statistical measures (R2, RMSE 

and MAE) fluctuate in a very narrow range after the number of nodes in 
hidden layer I reaches at 10, inferring the optimal value of the number of 
nodes in the first hidden layer being 10. Then the number of nodes in the 
hidden layer II varied from 2 to 22 with an increment of 5 while keeping 
the number of nodes in other hidden layers constant. Fig. 11b indicates 
that the optimal value of the number of nodes in hidden layer II is 10 
since the values of R2, RMSE and MAE vary very little after the number 
of nodes in hidden layer II becomes 7. Nevertheless, Figs. 11c and 11d 
reveal that the variations of the number of nodes in hidden layers III and 
IV have little effect on the prediction precision of the DBN-BP model. 

Fig. 9. Variation of statistical measures with the number of hidden layers in (a) the BPNN model and (b) the DPN-BP model by using the data in the testing set.  

Table 4 
Scheme of parametric study for number of nodes in the BPNN model.  

Number of hidden layers 1 1 1 1 1 

Number of nodes 5 10 15 20 25  

Table 5 
Scheme of parametric study for number of nodes in the DBN-BP model.  

Hidden layer I II III IV 

Number of 
nodes 

5, 10, 15, 20, 
25 

7 7 5 

10 2, 7, 12, 17, 
22 

7 5 

10 7 2, 7, 12, 17, 
22 

5 

10 7 7 5, 10, 15, 20, 
25  

Fig. 10. Values of statistical measures versus the number of nodes in the BPNN 
model with a single hidden layer, by using data in the testing set. 
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The numbers of nodes in hidden layers III and IV should be chosen as 7 
and 5, respectively, to have the largest R2 and smallest RMSE and MAE. 
Based on the above discussion, it is evident that the prediction precision 
mainly depends on the number of hidden layers and the number of nodes 
on the first two hidden layers of the DBN-BP model. The rationality of 
the hyperparameter settings in Tables 2 and 3 was also verified by the 
optimization results. 

4.4. Applications of the DBN-BP model 

As shown in Sections 4.1–4.3, the DBN-BP model has high precision 
and strong stability in fatigue life prediction of LPBF-fabricated Ti-6Al- 
4V. In this section, it is applied to predict several aspects of the fatigue 
behavior of LPBF-fabricated Ti-6Al-4V. 

First, the DBN-BP model is applied to predict the relation between 
the stress amplitude and the mean stress of LPBF-fabricated Ti-6Al-4V in 
both HCF and VHCF regimes. As stated in Ref. [53], the relation between 
stress amplitude and mean stress of LPBF-fabricated Ti-6Al-4V was 
correlated by the models of Gerber [71], Goodman [72] and Pan et al. 
[73] as expressed in Eqs. (16)–(18), respectively, in which σa is the 
applied stress amplitude, σ-1 is the fatigue strength at R = − 1, σm is the 
mean stress and σu is the tensile strength of tested material. 

Gerber formula: 

σa = σ− 1

[

1 −

(
σm

σu

)2
]

(16) 

Goodman formula: 

σa = σ− 1

(

1 −
σm

σu

)

(17) 

Pan et al. formula: 

σa = σ− 1

(

1 −
σm

σu

)2

(18) 

By using Eqs. (16)–(18), Haigh diagrams were obtained and illus-
trated in Fig. 12 to show the relation between σm and σa for HCF (Nf =

106) and VHCF (Nf = 108) of the tested LPBF-fabricated Ti-6Al-4V 
specimens, in which σb = 1246 MPa, σ-1 = 220 MPa for HCF regime and 
σ-1 = 150 MPa for VHCF regime [53]. However, it is seen that none of the 
curves generated by these three models are close to experimental data 
under any stress ratio, indicating they cannot be used to estimate the 
relation between stress amplitude and mean stress of LPBF-fabricated Ti- 
6Al-4V in both HCF and VHCF regimes. 

Then the DBN-BP model was utilized to predict the relation between 
stress amplitude and mean stress of LPBF-fabricated Ti-6Al-4V under 
various stress ratios. For the purpose of comparison, the values of input 
features σy, D, L and E were set as the same values in Ref [53], i.e., 1191 
MPa, 3.5 mm, 45 μm, and 69 J/mm3, respectively. By varying the values 
of input values σa and R, various fatigue lives of LPBF-fabricated Ti-6Al- 
4V were predicted and the relations between σm and σa for HCF (Nf =

106) and VHCF (Nf = 108) are illustrated in Figs. 12a and 12b, respec-
tively. It is seen that the prediction curve generated by the DBN-BP 

Fig. 11. Values of statistical measures versus the number of nodes in (a) hidden layer I, (b) hidden layer II, (c) hidden layer III, and (d) hidden layer IV in the DBN-BP 
model, via the use of the data in the testing set. 
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model matches well with the experimental data in both HCF and VHCF 
regimes. As stated in previous sections, with the combination of pre- 
training and fine-tuning processes, the DBN-BP model is able to 
extract and transform fatigue-relevant input features into the model 
such that the weights and biases of the model are optimized and 
consequently the prediction performance is considerably enhanced. 

Second, the DBN-BP model was employed to predict the effect of the 
input feature E on the fatigue performance of LPBF-fabricated Ti-6Al-4V 
in HCF and VHCF regimes. The effects of processing parameters on the 
fatigue behavior of LPBF-fabricated Ti-6Al-4V had been experimentally 
investigated by our group and published in Ref. [58]. In order to 
compare with the experimental results in Ref. [58], the values of input 
features D, L and R of the DBN-BP model were set as the same values in 
Ref [58], i.e., D = 3.5 mm, L = 34 μm and R = − 1. In order to 
distinguish the effect of E on the fatigue performance of LPBF-fabricated 
Ti-6Al-4V from the effect of σy, the value of σy was constrained in a 
narrow range of 1100 ~ 1200 MPa. Thus, only the input data of groups 
1, 2, 4, and 5 in Table 1 were adopted, with the values of σy are 1176, 
1117, 1135, and 1189 MPa, and the values of E are 47.6, 26.7, 41.0, and 
63.5 J/mm3, respectively. For the purpose of comparison, the BPNN 
model was also utilized to obtain the prediction results with same input 
data. Fig. 13 shows the comparison of predicted values by DBN-BP and 
BPNN models and experimental data of fatigue lives of LPBF-fabricated 
Ti-6Al-4V for each group. In order to distinguish the “unseen/blinded” 

data in the testing set and the “used” data in training and validation sets, 
hollow spots were utilized to represent the “unseen/blinded” testing 
data and solid spots were employed to denote the “used” training and 
validation data. Comparison indicates that the DBN-BP model exhibits a 
better prediction performance than the BPNN model, no matter using 
the “used” data in training and validation sets, or the “unseen/blinded” 
data in the testing set. It is seen that the overall fatigue strength in HCF 
and VHCF regimes gets larger with the increase of energy density E and 
reaches the largest value at E = 47.6 J/mm3 (group 1), then decreases 
rapidly when E = 63.5 J/mm3 (group 5), implying that the fatigue 
strength of LPBF-fabricated Ti-6Al-4V is not linearly related with the 
magnitude of energy density E. 

Third, it is interesting to note that groups 1 and 9 have the same 
value of E (47.6 J/mm3) but different values of σy (1176 and 1089 MPa). 
Hence, the S-N curve was predicted by DBN-BP and BPNN models using 
the input data of group 9 in Table 1, and the comparison of predicted 
values by DBN-BP and BPNN models and experimental values of the 
fatigue lives of LPBF-fabricated Ti-6Al-4V for groups 1 and 9 is presented 
in Fig. 14 in which solid spots represent the “used” data in training and 
validation sets and hollow spots denote the “unseen/blinded” data in the 
testing set. It can be seen again that the prediction performance of the 
DBN-BP model is better than that of the BPNN model, no matter 
comparing with the “used” data in training and validation sets or the 
“unseen/blinded” data in the testing set. Furthermore, it is seen that 

Fig. 12. Haigh diagrams of LPBF-fabricated Ti6Al-4V showing the relation of mean stress and stress amplitude at (a) Nf = 106 cycles and (b) Nf = 108 cycles.  

Fig. 13. Comparison of experimental data and prediction results by DBN-BP 
and BPNN models of LPBF-fabricated Ti-6Al-4V, using input data of groups 1, 
2, 4, 5. 

Fig. 14. Comparisons of experimental data and prediction results by DBN-BP 
and BPNN models of LPBF-fabricated Ti-6Al-4V, using input data of groups 1 
and 9. 
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fatigue strength of group 1 (σy = 1176 MPa) is higher than that of group 
9 (σy = 1089 MPa), inferring that the fatigue strength gets larger with 
the increase of the yield strength under the same value of the energy 
density. 

5. Conclusions 

In this paper, a deep learning model, named the DBN-BP model, was 
proposed to predict the fatigue life of LPBF-fabricated Ti-6Al-4V up to 
VHCF regime by integrating DBN as the pre-training process and BPNN 
as the fine-tuning process. The main conclusions of this paper are listed 
as follows. 

(1) Comparison with the experimental data clearly indicates that the 
DBN-BP model presents a much better performance (R2 ≅ 0.99, RSME 
and MAE ≅ 0.1) than the BPNN model (R2 ≅ 0.8, RSME ≅ 0.5, and 
MAE ≅ 0.4) in fatigue life prediction of LPBF-fabricated Ti-6Al-4V, 
which evidently validates the correctness and precision of the DBN-BP 
model. The stability of the DBN-BP model is also verified since values 
of R2 fluctuate in a very narrow range between 0.9 and 1 after 30 times 
of repeated predictions from the DBN-BP model under the same 
conditions. 

(2) The BPNN model with a single hidden layer has the optimal 
prediction precision and the optimal number of hidden layers in the 
DBN-BP model is 4. The optimal number of nodes in the first and second 
hidden layer should be 10 and 7, respectively, to reach the optimum and 
stable values for the three statistical measures of the DBN-BP model. 
Nevertheless, variations of the number of nodes in the hidden layers III 
and IV have little effect on the prediction precision of the DBN-BP 
model. 

(3) The DBN-BP model exhibits a significantly better performance in 
predicting the relation between mean stress and stress amplitude than 
other proposed empirical models. The prediction curve agrees very well 
with the experimental data in both HCF and VHCF regimes of LPBF- 
fabricated Ti-6Al-4V. Prediction results by using the DBN-BP model 
revealed that energy density E has a direct impact on the fatigue strength 
of LPBF-fabricated Ti-6Al-4V, but not in a linear relationship. 

The above findings provide a comprehensive insight into the deep 
learning-based fatigue life prediction model of LPBF-fabricated Ti-6Al- 
4V up to VHCF regime. The prediction performance of the DBN-BP 
model could be further enhanced if more fatigue-relevant input fea-
tures were considered, such as the variable amplitude fatigue test, the 
location, size and distribution of defects. In addition, this DBN-BP model 
could be employed to future prediction on the fatigue lives of other 
commonly-used additive manufactured alloys such as SS 316L and 
AlSi10Mg. 
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Doubrava R, Rů ek R, Petrusová L. Modelling fatigue life prediction of additively 
manufactured Ti-6Al-4V samples using machine learning approach. Int J Fatigue 
2023; 169: 107483. 

[3] Konda N, Verma R, Jayaganthan R. Machine learning based predictions of fatigue 
crack growth rate of additively manufactured Ti6Al4V. Metals 2022;12:50. 

[4] Zhan Z, Li H. Machine learning based fatigue life prediction with effects of additive 
manufacturing process parameters for printed SS 316L. Int J Fatigue 2021;142: 
105941. 

[5] Pandey V, Singh I, Mishra B, Ahmad S, Rao A, Kumar V. A new framework based on 
continuum damage mechanics and XFEM for high cycle fatigue crack growth 
simulations. Eng Fract Mech 2019;206:172–200. 

[6] Sandoval C, Malcher L, Canut F, Araújo L, Doca T, Araújo J. Micromechanical 
Gurson-based continuum damage under the context of fretting fatigue: Influence of 
the plastic strain field. Int J Plasticity 2020;125:235–64. 

[7] Tridello A, Niutta C, Berto F, Qian G, Paolino D. Fatigue failures from defects in 
additive manufactured components: A statistical methodology for the analysis of 
the experimental results. Fatigue Fract Eng Mater Struct 2021;44:1944–60. 

[8] Burr A, Persenot T, Doutr P, Buffiere J, Lhuissier P, Martin G, et al. A numerical 
framework to predict the fatigue life of lattice structures built by additive 
manufacturing. Int J Fatigue 2020;139:105769. 

[9] Haridas R, Thapliyal S, Agrawal P, Mishra R. Defect-based probabilistic fatigue life 
estimation model for an additively manufactured aluminum alloy. Mat Sci Eng A- 
Struct 2020;798:140082. 

[10] Gan L, Wu H, Zhong Z. On the use of data-driven machine learning for remaining 
life estimation of metallic materials based on Ye-Wang damage theory. Int J 
Fatigue 2022;156:106666. 

[11] Liu Y, Wu J, Wang Z, Lu X-G, Avdeev M, Shi S, et al. Predicting creep rupture life of 
Ni-based single crystal superalloys using divide-and-conquer approach based 
machine learning. Acta Mater 2020;195:454–67. 

[12] Zhang X, Gong J, Xuan F. A physics-informed neural network for creep-fatigue life 
prediction of components at elevated temperatures. Eng Fract Mech 2021;258: 
108130. 

[13] Vassilopoulos AP, Georgopoulos EF, Dionysopoulos V. Artificial neural networks in 
spectrum fatigue life prediction of composite materials. Int J Fatigue 2007;29(1): 
20–9. 

[14] Dang L, He X, Tang D, Li Y, Wang T. A fatigue life prediction approach for laser- 
directed energy deposition titanium alloys by using support vector regression 
based on pore-induced failures. Int J Fatigue 2022;159:106748. 

[15] Liu Q, Shi W, Chen Z. Rubber fatigue life prediction using a random forest method 
and nonlinear cumulative fatigue damage model. J Appl Polym Sci 2020;137: 
48519. 

[16] Gan L, Wu H, Zhong Z. Fatigue life prediction considering mean stress effect based 
on random forests and kernel extreme learning machine. Int J Fatigue 2022;158: 
106761. 

[17] Dedeakayogulları H, Kaçal A, Keser K. Modeling and prediction of surface 
roughness at the drilling of SLM-Ti6Al4V parts manufactured with pre-hole with 
optimized ANN and ANFIS. Measurement 2022;203:112029. 

[18] Niu G, Yi X, Chen C, Li X, Han D, Yan B, et al. A novel effluent quality predicting 
model based on genetic-deep belief network algorithm for cleaner production in a 
full-scale paper-making wastewater treatment. J Clean Prod 2020;265:121787. 

[19] Chu J, Liu X, Zhang Z, Zhang Y, He M. A novel method overcoming overfitting of 
artificial neural network for accurate prediction: Application on thermophysical 
property of natural gas. Case Stu Therm Eng 2021;28:101406. 

[20] Liang R, Yu R, Zhang Y. Machine learning of weld joint penetration from weld pool 
surface using support vector regression. J Manuf Process 2019;41:23–8. 

[21] Li J, Zhu D, Li C. Comparative analysis of BPNN, SVR, LSTM, Random Forest, and 
LSTM-SVR for conditional simulation of non-Gaussian measured fluctuating wind 
pressures. Mech Syst Signal Pr 2022;178:109285. 

[22] Xu H, Wang R, Wang K. A new SVR incremental algorithm based on boundary 
vector. CiSE Wuhan, China 2010: 11706831. 

[23] Lu S, Chen Y, Zhu X, Wang Z, Ou Y, Xie Y. Exploring support vector machines for 
big data analyses. CSSE 2021:31–7. 

[24] Shi Y, Wang S, Jiang Y, Liu P. Transfer learning support vector regression. J Comp 
Appl 2013;33:3084–9. 

[25] Zhang S, Zhou Y, Yan J, Bu F. Missing data completion method based on KNN and 
Random Forest. 2nd IYSF Academic Symposium on Artificial Intelligence and 
Computer Engineering, 2021: 12079. 

[26] Yu Z, Zhang C, Xiong N, Chen F. A new random forest applied to heavy metal risk 
assessment. CSSE 2022;40:207–21. 

[27] Sun Z, Sun H, Zhang J. Multistep wind speed and wind power prediction based on a 
predictive deep belief network and an optimized random forest. Math Probl Eng 
2018;2018:1–16. 

[28] Li G, Chandra S, Rashid R, Palanisamy S, Ding S. Machinability of additively 
manufactured titanium alloys: A comprehensive review. J Manuf Process 2022;75: 
72–99. 

[29] Zhang J, Liu Y, Sha G, et al. Designing against phase and property heterogeneities 
in additively manufactured titanium alloys. Nat commun 2022;13:4660. 

[30] Ladani L, Sadeghilaridjani M. Review of powder bed fusion additive manufacturing 
for metals. Metals 2021;11:1391. 

Y. Jia et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0142-1123(23)00146-9/h0005
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0005
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0005
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0015
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0015
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0020
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0020
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0020
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0025
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0025
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0025
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0030
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0030
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0030
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0035
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0035
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0035
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0040
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0040
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0040
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0045
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0045
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0045
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0050
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0050
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0050
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0055
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0055
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0055
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0060
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0060
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0060
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0065
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0065
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0065
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0070
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0070
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0070
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0075
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0075
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0075
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0080
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0080
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0080
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0085
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0085
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0085
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0090
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0090
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0090
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0095
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0095
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0095
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0100
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0100
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0105
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0105
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0105
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0115
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0115
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0120
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0120
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0130
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0130
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0135
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0135
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0135
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0140
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0140
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0140
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0145
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0145
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0150
http://refhub.elsevier.com/S0142-1123(23)00146-9/h0150


International Journal of Fatigue 172 (2023) 107645

14

[31] Lewandowski JJ, Seifi M. Metal additive manufacturing: A review of mechanical 
properties. Annu Rev Mater Res 2016;46:151–86. 

[32] Shipley H, McDonnell D, Coull R, Lupoi R, O’Donnell G, Trimble D. Optimisation of 
process parameters to address fundamental challenges during selective laser 
melting of Ti-6Al-4V: A review. Int J Mach Tools Manuf 2018;128:1–20. 

[33] Nguyen DS, Park HS, Lee CM. Optimization of selective laser melting process 
parameters for Ti-6Al-4V alloy manufacturing using deep learning. J Manuf 
Process 2020;55:230–5. 

[34] Sanaei N, Fatemi A. Analysis of the effect of surface roughness on fatigue 
performance of powder bed fusion additive manufactured metals. Theor Appl Fract 
Mech 2020;108:102638. 

[35] Gong H, Rafi K, Gu H, Janaki Ram GD, Starr T, Stucker B. Influence of defects on 
mechanical properties of Ti-6Al-4V components produced by selective laser 
melting and electron beam melting. Mater Des 2015;86:545–54. 

[36] Li P, Warner DH, Fatemi A, Phan N. Critical assessment of the fatigue performance 
of additively manufactured Ti-6Al-4V and perspective for future research. Int J 
Fatigue 2016;85:130–43. 

[37] Masuo H, Tanaka Y, Morokoshi S, Yagura H, Uchida T, Yamamoto Y, et al. 
Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V 
manufactured by additive manufacturing. Int J Fatigue 2018;117:163–79. 

[38] Borrego LP, Jesus J, Ferreira JAM, Costa JDM, Capela C. Assessment of the fatigue 
performance of heat-treated addictive manufactured Ti-6Al-4V specimens. 
Procedia Struct Integr 2019;18:651–6. 

[39] Yu H, Li F, Wang Z, Zeng X. Fatigue performances of selective laser melted Ti-6Al- 
4V alloy: Influence of surface finishing, hot isostatic pressing and heat treatments. 
Int J Fatigue 2019;120:175–83. 

[40] Zhan Z, Hu W, Meng Q. Data-driven fatigue life prediction in additive 
manufactured titanium alloy: A damage mechanics based machine learning 
framework. Eng Fract Mech 2021;252:107850. 

[41] Li J, Yang Z, Qian G, Berto F. Machine learning based very-high-cycle fatigue life 
prediction of Ti-6Al-4V alloy fabricated by selective laser melting. Int J Fatigue 
2022;158:106764. 

[42] Hong Y, Sun C. The nature and the mechanism of crack initiation and early growth 
for very-high-cycle fatigue of metallic materials - An overview. Theor Appl Fract 
Mec 2017;92:331–50. 

[43] Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of 
metallurgical structures around inclusions at interior crack initiation site for a 
bearing steel in very high-cycle fatigue. Fatigue Fract Eng Mater Struct 2015;38: 
1305–14. 

[44] Heinz S, Eifler D. Crack initiation mechanisms of Ti-6Al-4V in the very high cycle 
fatigue regime. Int J Fatigue 2016;93:301–8. 

[45] Ma H, Cheng X. A method for unbalanced big data classification based on 
optimization random forest. Microelectronics Computer 2018;35:28–32. 

[46] Banki M, Shirazi A. Using wavelet support vector machine for classification of 
hyperspectral images. 2009 Second International Conference on Machine Vision: 
154–157. 

[47] Yang J, Kang G, Liu Y, Kan Q. A novel method of multiaxial fatigue life prediction 
based on deep learning. Int J Fatigue 2021;151:106356. 

[48] Maleki E, Unal O, Sahebari S, Kashyzadeh K, Danilov I. Application of deep neural 
network to predict the high-cycle fatigue life of AISI 1045 steel coated by industrial 
coatings. J Mar Sci Eng 2022;10:128. 

[49] Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural 
Comput 2006;18(7):1527–54. 

[50] Hinton G. Deep belief networks Scholarpedia 2009;4(6):5947. 
[51] Liu SY, Shin YC. Additive manufacturing of Ti-6Al-4V alloy: A review. Mater Des 

2019;164:107552. 

[52] Gong H, Rafi K, Gu H, Starr T, Stucker B. Analysis of defect generation in Ti-6Al-4V 
parts made using powder bed fusion additive manufacturing processes. Addit 
Manuf 2014;1:87–98. 

[53] Fu R, Zheng L, Ling C, Zhong Z, Hong Y. An experimental investigation of fatigue 
performance and crack initiation characteristics for an SLMed Ti-6Al-4V under 
different stress ratios up to very-high-cycle regime. Int J Fatigue 2022;164:107119. 

[54] Fu R, Zheng L, Zhong Z, Hong Y. High-cycle and very-high-cycle fatigue behavior 
at two stress ratios of Ti-6Al-4V manufactured via laser powder bed fusion with 
different surface states. Fatigue Fract Eng Mater Struct 2023:1–16. https://doi.org/ 
10.1111/ffe.13985. 

[55] Fotovvati B, Namdari N, Dehghanghadikolaei A. Fatigue performance of selective 
laser melted Ti-6Al-4V components: State of the art. Mater Res Express 2019;6: 
012002. 

[56] Günther J, Krewerth D, Lippmann T, Leuders S, Tröster T, Weidner A, et al. Fatigue 
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