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Abstract
This paper presents a general Convolution Hierarchical Deep-learning Neural Networks (C-HiDeNN) computational frame-
work for solving partial differential equations. This is the first paper of a series of papers devoted to C-HiDeNN. We focus
on the theoretical foundation and formulation of the method. The C-HiDeNN framework provides a flexible way to construct
high-orderCn approximation with arbitrary convergence rates and automatic mesh adaptivity. By constraining the C-HiDeNN
to build certain functions, it can be degenerated to a specification, the so-called convolution finite element method (C-FEM).
The C-FEM will be presented in detail and used to study the numerical performance of the convolution approximation. The
C-FEM combines the standard C0 FE shape function and the meshfree-type radial basis interpolation. It has been demon-
strated that the C-FEM can achieve arbitrary orders of smoothness and convergence rates by adjusting the different controlling
parameters, such as the patch function dilation parameter and polynomial order, without increasing the degrees of freedom
of the discretized systems, compared to FEM. We will also present the convolution tensor decomposition method under the
reduced-order modeling setup. The proposed methods are expected to provide highly efficient solutions for extra-large scale
problems while maintaining superior accuracy. The applications to transient heat transfer problems in additive manufacturing,
topology optimization, GPU-based parallelization, and convolution isogeometric analysis have been discussed.
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1 Introduction

Numerical analysis using the finite element method (FEM)
has been widely used for the understanding and design of
complex scientific and engineering problems. The demands
for high-fidelity solutions and faster computations have
been crucial with the increasing degrees of freedom of the
discretized numerical systems and the complexity of the
physical problems. In addition, higher-order smoothness and
convergence rates have been demanded since the invention
of FEM [1]. This has motivated the development of the
meshfree-type approximations [2–10] and the isogeometric
analysis in the recent past [11–13].

Unlike FEM,meshfreemethods only require a set of nodes
in the domain of interest and do not have real connectivi-
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ties between nodes. They provide an alternative way to FEM
for the modeling and analysis of problems where there is a
significant or discontinuous change of the geometry, such
as crack propagation, penetration, and large deformation.
Some of the important developments of this type are diffuse
element method [6], element free Galerkin methods [14],
reproducing kernel particle methods [2, 3], h-p clouds [15,
16]. An important feature that meshfreemethods use for con-
structing the approximation function basis is the partition of
unity, which has also enabled the development of the so-
called Generalized FEM, independently initiated by Duarte
and Oden (under the name of cloud-based hp FEM [15, 17])
and Babuška and Melenk (under the name of partition of
unity FEM [18, 19]).

However, due to the lack of Kronecker delta property,
meshfree methods usually need special treatments to enforce
Dirichlet boundary conditions and lose optimal conver-
gence rates compared to FEM. Many techniques have been
developed to resolve this issue, e.g., Lagrangian multiplier
technique [5], transformation technique [20], reproducing
kernel interpolation technique [21], collocation technique
[22], and including the coupling of the FEM and meshfree
methods, like the hierarchical enrichment technique [23, 24]
and the continuous blending method [25, 26]. Nevertheless,
the methods do not have good scalability in parallel compu-
tations, as stated in [27]. The so-called reproducing kernel
element method (RKEM) [27–29] has been since developed.
In RKEM, a modified global FE shape function is combined
with the reproducing kernel to construct a novel high-order
interpolant. This method maintains the basic idea of finite
elements and does not require any special treatment for
boundary conditions.

In this work, we propose a more general framework
for solving partial differential equations (PDEs), i.e., Con-
volution Hierarchical Deep-learning Neural Networks (C-
HiDeNN), that generalizes the idea of RKEM and can
degenerate to traditional FEM andmeshfreemethods. There-
fore, the proposed framework provides a very flexible way
to unify the two types of methods and has a great potential
to adaptively maintain the approximation capability of each
method in the computational domain. This is the first paper
of a series in the special issue devoted to C-HiDeNN. This
work focuses on the theoretical foundation and formulation
of the method.

Application of deep learning neural networks (DeNN) for
solving PDEs has attractedmuch interest in recent years. The
universal approximation theorem [30] demonstrates that neu-
ral networks can approximate any continuous function, as
long as they are sufficiently complex. This has encouraged
many researchers and scientists to use neural networks as
an approximator to PDE solutions. Physics-Informed Neural
Networks (PINN) [31, 32] proposed to use directly physics-
based PDEs as loss functions to train the parameters of

neural networks for solutions. To preserve some desired
properties (like partition of unity) of traditional approxima-
tion functions of PDE solution, the so-called partition of
unity networks has been proposed [33]. Other PINN related
methods like structure-preserving networks [34, 35], rep-
resentative volume element networks [36] have also been
explored. A comprehensive review of PINNs can be found
in [37]. Nevertheless, the training procedure for PINNs is
still computational challenging due to the large number of
unknown parameters and the high non-linearity and non-
convexity of the optimization problem. Furthermore, solving
the numerical solution by directlyminimizing the PDE-based
residuals may require additional treatments for boundary
conditions. This sometimes poses difficulties to enforce the
exact required boundary conditions.

Unlike PINN, the C-HiDeNN is based on the weak form
of the physical problem and does not require additional tech-
niques for boundary conditions. The parameters of networks
(weights and biases) are predefined in an explicit way and
remain unchanged during the solution procedure. This avoids
the expensive training process of traditional neural networks.
In addition, higher-order smooth solutions with arbitrary
convergence rates can be obtained easily by adjusting the
parameters in the C-HiDeNN approximation without mod-
ifying the mesh. As an extension of our previous work on
HiDeNN-FEM [38], the C-HiDeNN combines the general
polynomial approximation (which can be the HiDeNN-FEM
shape function) with a convolution patch function (which can
be the meshfree type approximation) to achieve higher order
continuity in the C-HiDeNN interpolant. Like the HiDeNN
method, C-HiDeNN has the potential to automatically opti-
mize the mesh coordinates (r -adpativity). In addition, the
C-HiDeNN introduces a novel dilation parameter into the
approximation, leading to a built-in length scale filter as
meshfree methods [3]. The spatially adpatitive selection of
this dilation parameter enables the so-called a-adaptivity.
The dilation parameter is also found to have effects of reg-
ularization and numerical viscosity that can enhance the
numerical stability in nonlinear analysis.

We will discuss the numerical performance based on a
special example of C-HiDeNN, i.e., the Convolution FEM
(C-FEM). In particular, the C-FEM combines the traditional
FE shape function and radial basis interpolation and does
not increase the overall degrees of freedom (DoFs) of the
numerical system compared to FEM. It is shown that the C-
FEM can give more accurate results than FEMwith different
controllable parameters that dictate the convergence rates.
Orders of magnitude improvement in terms of accuracy have
been achieved with C-FEM. This implies that C-FEM can
use a very coarse mesh with much fewer DoFs for the same
level of accuracy as FEM, therefore reducing the underlying
computational cost while keeping high-fidelity solutions.
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The convolution shape function can be directly applied
to reduced order modeling techniques [39–44] to further
accelerate the simulations.Wewill discuss the so-called con-
volution tensor decomposition (C-TD) method, based on the
separation of spatial variables. The method can overcome
the exponential growth of DoFs in large size problems and
can be more accurate than FEM with orders of magnitude
speedups. Hence, it has great potential to enable extra-large
scale computing for, e.g., additive manufacturing process
simulations, multiscale analysis of composite materials, and
high-resolution topology optimization. The future develop-
ment and applications of C-HiDeNN related to the graphics
processing unit (GPU) computing and topology optimization
are discussed in detail in [45, 46].

In summary, the proposed C-HiDeNN has following key
features:

• General computational framework for solving PDEswith
potentially automatic r - and a- adaptivity

• Arbitrary high order smoothness without modifying the
mesh

• Convolution approximation based highly accurate and
efficient reduced order models

• Built-in length scale control and enhanced numerical sta-
bility for nonlinear problems with the dilation parameter

The paper is organized as follows. We start with a gen-
eral concept of convolution approximation in Sect. 2. The
concept of C-HiDeNN is discussed in Sect. 3. The convolu-
tion reduced-order modeling methods is presented in Sect. 4.
Section5 presents the numerical results of the convolution
methods and a parametric study on the controlling parame-
ters. Then we briefly talk about the future development and
applications of themethod in Sect. 6. The paperwill be closed
with some concluding remarks.

2 General concept of convolution
approximation

Before introducing the Convolution HiDeNN approxima-
tion, we present first the general idea of an element with
the convolution approximation. Let us consider a tradi-
tional linear finite element with an approximation u(ξ) =∑

i∈Ae Ni (ξ)ui , where ξ is the general parametric coordi-
nate, Ae is the nodal set of the element, Ni is the shape
function, ui is the nodal coefficient. Then a convolution
operation can be defined between u(ξ) and a given smooth
function W (ξ) as

(u ∗ W )(ξ) =
∫

Ωpatch

u(t)W (t − ξ)d t (1)

where Ωpatch is the convolution patch domain, which can
span outside an element. Since W can be an arbitrary high
order smooth function, the resultant approximation uc reads

uc(ξ) = (u ∗ W )(ξ) (2)

This way, a convolution element can be defined with the
novel approximation uc. Figure1 illustrates this concept in
a discretized manner. As we can see, the element domain
remains the same as the original element with the coordinate
ξ , and the mesh is not modified by the convolution operation.
As a result, the overall degrees of freedom do not increase for
the convolution approximation. However, we can notice that
the element-wise connectivity is different from the traditional
finite element, thefinal convolution shape function (assuming
Ñk is known) should reside in the convolution patch domain,
which reads

uc(ξ) =
∑

k∈Ωpatch

Ñk(ξ)uk (3)

This approximation concept is the foundation of the pro-
posed Convoluiton HiDeNN method and can be generalized
to have adaptive patch sizes and different types of meshes
such as isogeometric analysis [11].Asmentioned in the Intro-
duction, similar ideas of convolution approximation were
adopted in meshfree methods for high order approximations.
We will present in this work how to construct a general con-
volution approximation and related variants with flexibility
to degenerate to traditional finite element or meshfree meth-
ods (at least in the sense of approximation accuracy).

3 Convolution HiDeNN: theory
and numerical implementation

Based on the previously presented convolution approxima-
tion concept, we introduce in this section the Convolution
HiDeNN method, including the theoretical formulation and
the numerical implementation aspects. Furthermore, we will
discuss the theoretical convergence and the flexibility of con-
structing the high-order Cn continuity shape function in the
C-HiDeNN framework.

3.1 General C-HiDeNN approximation

The C-HiDeNN can be seen as a general partially connected
DeNN for solving partial differential equations with convo-
lution element. Since DeNN has the universal approximation
capability, we can define the C-HiDeNN approximation
using two general functions, i.e., a general piece-wise poly-
nomial function (e.g., finite element basis function) and a
local patch function that operates at each nodal point as a
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Fig. 1 Illustration of the convolution element

convolution operator. Assuming these functions are given
and ignoring the implementation aspect, the DeNN should
be able to reproduce these general functions with appropri-
ate neuron connections and parameters (weights, biases, and
activation functions). Hence we can look at first an equiv-
alent approximation as below without looking into detailed
DeNN structures and coefficients. The corresponding DeNN
architecture for C-HiDeNN will be presented later.

Let Ae denote the support node index set of the piece-
wise polynomial associated with element e and Ai

s be a local
convolution patch node set for each supporting node i . The
convolutional approximation can be written as

uC-HiDeNN(ξ) = ∑
i∈Ae Ni (ξ)

∑
j∈Ai

s
Wξ i

a, j (ξ)d j

= ∑
k∈Ωpatch:=⋃i∈Ae Ai

s
Ñk(ξ)dk (4)

where ξ denotes the general parametric coordinate, d j is the
nodal coefficient. Ni (ξ) is the polynomial function associ-

ated with the node i , Wξ i
a, j (ξ) is the local convolution patch

function with a dilation parameter “a” that considers the con-
tribution from the neighborhood (Ai

s) of the node i . s is a
defined patch size that controls the size of the neighborhood.
Consequently, the convolution is defined between the two
functions N and W with respect to the index sets of i and
j . The convolution patch function plays a similar role as the
kernel/window function in convolutional neural networks,

which is expected to improve the solution smoothness and
extract selected features at desired length scales by control-
ling the parameter a. In our work, we define this parameter
a as the dilation parameter that is frequently used in mesh-
free methods. The final convolution shape function Ñ is then
defined by the products of N and W with the convolution
patch domain Ωpatch := ⋃

i∈Ae Ai
s . As an example, Fig. 2

illustrates the formation procedure of the convolution patch
for a 4-node element.

The choice of functions Ni (ξ) and Wξ i
a, j (ξ) can be

very flexible and affects the implementation complexity and
numerical performance. In general, both finite element [47]
and isogeometric [11] approximations can be used for N ,
meshfree type approximations (e.g., [2, 23, 48, 49]) can be
suitable options for the local convolution patch functionW .
In order to simplify the construction and the implementation
of boundary conditions for solving partial differential equa-
tions (PDEs). We designed these two functions to satisfy
certain conditions, as shown in Table 1.

Based on these conditions, a natural choice for the general
polynomial interpolation is the HiDeNN-FEM approxima-
tion (see Appendix A) or simply traditional FE shape
functions (linear, quadratic, cubic, etc.) [47, 50]. For the
convolution patch function, the radial basis interpolation
function [51, 52], modified reproducing kernel function [27],
and selectively interpolating moving least-squares approxi-
mation [53] can be used. It is obvious that if the polynomial
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Fig. 2 Formation of the convolution patch for a 4-node element

Table 1 Conditions for constructing the convolution interpolation func-
tions

General polynomial function Convolution patch function

Ni (ξ) Wξ i
a, j (ξ)

1. Compact support 3. Kronecker delta:

with Ae ⊂ ⋃

i
Ai
s Wξ i

a, j (ξ k) = δik

2. Partition of unity: 4. Reproducing conditions:
∑

i∈Ae Ni (ξ) = 1, ∀ξ
∑

j∈Ai
s
Wξ i

a, j (ξ)P(ξ j ) = P(ξ)

where P(ξ j ) is a polynomial up to a certain order

function is chosen as constants, C-HiDeNN degenerates to
meshfree approximations. On the contrary, if the dilation and
patchbecome small enough, theC-HiDeNNreproducesFEM
(at least in the sense of approximation accuracy). This implies
the flexibility of the proposed C-HiDeNN framework and
allows to easily degenerate the approximation to FEM,mesh-
free approximations, or a mixture of the twomethods such as
RKEM [27] or the so-called Generalized FEM (GFEM) [53].
Considering the universal approximation and the automatic
adaptivity, the C-HiDeNN provides a unified framework to
adaptively select appropriate approximations in the compu-
tational domain and is expected to keep the advantages of
each method.

With these conditions, the Kronecker delta property is
automatically satisfied, the nodal coefficient d j in Equation
(4) becomes the nodal solution u j , as u(ξ j ) = u j . The resul-

tant general convolutional interpolation reads

uC-HiDeNN(ξ) =
∑

i∈Ae

Ni (ξ)
∑

j∈Ai
s

Wξ i
a, j (ξ)u j

=
∑

k∈Ωpatch:=⋃i∈Ae Ai
s

Ñk(ξ)uk (5)

Compared to traditional meshfree methods, this approx-
imation presents several advantages: (1) the connectivity
of the nodes for each element remains unchanged during
the computations, which avoids repetitive updating; (2) the
enforcement of boundary conditions can be performed as
usual finite element methods without difficulties; (3) the sup-
porting domain of each convolution function is limited to a
controllable finite domain by adjusting the dilation parameter
and the local patch size, therefore remains compact.

It can be noticed that the current interpolation (5) iswritten
in terms of a parametric system. This is for the convenience of
numerical implementation like FEM. This is different from
traditional meshfree methods as they are commonly built
upon physical coordinates. From a general point of view,
we can also consider the following convolution interpolation
fully written in physical coordinates.

uC-HiDeNN(x) =
∑

i∈Ae

Ni (x)
∑

j∈Ai
s

W xi
a, j (x)u j (6)

where the patch function W xi
a, j (x) is completely defined in

physical (real) space like traditional meshfree methods. This
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Fig. 3 Deep learning network structure of C-HiDeNN for a 2-node element with patch size s = 2. Detailed parameters of the network can be found
in a companion paper [45]

formulation requires to update the patch function from ele-
ment to element according to the real positions of supporting
nodes.

With the previously defined C-HiDeNN formulation (5)
or (6), we can now look at the neural network implementa-
tion of C-HiDeNN. The architecture of the resulting partially
connected DeNN is illustrated in Fig. 3. This DeNN struc-
ture is defined in an analytical way, whichmeans theweights,
biases, and activation functions are prescribed asfixed so as to
reproduce the desired C-HiDeNN approximation. No train-
ing for weights and biases are required. Hence, the DeNN
coefficients (weights, biases, and activation functions) are
omitted in the final C-HiDeNN approximation. Neverthe-
less, the designed structure still has the flexibility to relax
the constraints on weights and biases and the neuron connec-
tions for a more general approximation, but the cost to pay
is the training computational time. The approximation capa-
bility of neural networks of given fixed size can pose some
questions and warrants more mathematical investigations in
this case. An interesting work along this line can be found in
[54].Another important aspect in this case is that training the
parameters of neural networks can be highly non-convex and
consequently very challenging [55–57]. This point is not the
focus of current paper and will be investigated more in our
future work.

Using the C-HiDeNN approximation, we can solve partial
differential equations. As an example, assuming the potential
energy Π exits for the problem, the C-HiDeNN solution can
be obtained by solving following equation

uC-HiDeNN = argmin
u∗
j∈R,x∗

I∈Ω\∂Ω,a∗∈R+
Π(uC-HiDeNN(x)) (7)

where Ω denotes the entire domain, ∂Ω denotes the bound-
ary. Here we can see that the nodal solution, coordinates,
and the dilation parameter can be optimized together for
highly accurate solutions. If mesh coordinates and dilation
parameter do not change in the solution procedure, the C-
HiDeNN is equivalent to an enhanced version of FEM with
convolution approximation. Furthermore, it is possible to use
different dilation parameters in different elements, leading to
the so-called “a-adpativity”. This will be discussed later in
the paper.

Implementing the C-HiDeNN using neural networks is
the focus of a companion paper in the same special issue
[45], in which the graphics processing unit (GPU) is lever-
aged and discussed in detail. The focus of this paper is to
present the basic concept and formulation with demonstra-
tions on the high accuracy and various potential applications.
Therefore, we will restrict thereafter our discussions to the
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Fig. 4 Illustration of the element-wise convolution path domain with s = 2 and an arbitrary dilation parameter a, where Ae=1
s := Ae1

s , Ae=2
s := Ae2

s .
The C-FEM does not increase the DoFs but uses the neighboring nodes of an element to achieve high-order smoothness

equivalent convolution finite element implementation, which
is presented in the following.

3.2 A special case: Convolution FEM

We present here a special case of C-HiDeNN by restricting

theNi (ξ) andWξ i
a, j (ξ), respectively, to a FE shape function

and a radial basis interpolation function of a given order.
Since the implementation can be done in a similar way to
traditional FEM, this is referred to as Convolution FEM (C-
FEM).

For clarification, let Ni (ξ) denote the FE shape function,

W
ξ i
a, j (ξ) be the radial basis interpolation function. It is clear

that the conditions in Table 1 are automatically satisfied with

the C-FEM. The detailed derivation of theW
ξ i
a, j (ξ) is given in

Appendix B, in which we can define three parameters: dila-
tion parameter, patch size, and polynomial order. The final
displacement approximation can be written as below, with a
newly defined shape function Ñk , the so-called convolution
FE shape function.

uC-FEM(ξ) =
∑

i∈Ae

Ni (ξ)
∑

j∈Ai
s

W
ξ i
a, j (ξ)u j =

∑

k∈As

Ñk(ξ)uk,

(8)

where As = ⋃
i∈Ae Ai

s is the total supporting node set
for the convolution shape function. Again, this supporting
domain is larger than the original element region and includes
the neighboring nodes that form the convolution patch Ai

s .
Unlike specifying directly a higher-order FE shape function,
this convolution shape function does not induce more DoFs
in the mesh. Hence, it can increase the smoothness of the
approximation without increasing significantly the overall
computational cost. As an illustrative example, the support-
ing domain for a 2D convolution element with patch size 2 is
shown in Fig. 4. For a better understanding of the convolution
shape function Ñk , we illustrate a specific 1D convolution
approximation in Appendix C.

Similarly to FEM, we can define the isoparametric map-
ping between the natural coordinate and the physical coordi-
nate.

xC-FEM(ξ) =
∑

i∈Ae

Ni (ξ)
∑

j∈Ai
s

W
ξ i
a, j (ξ)x j

=
∑

k∈As

Ñk(ξ)xk, (9)

Hence we can derive the derivatives and perform the
numerical integration in the same way as FEM. It should
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be noticed that the integration points are still located inside
each element (e.g., [−1, 1] × [−1, 1] for a 2D convolu-
tion element), although the patch expands the support to the
neighborhood. The dilation a, patch size s, and the polyno-
mial order p of the patch function will affect the span and
smoothness of the final convolution shape function and dic-
tate the convergence rates of the C-FEM.

Figure 5 illustrates some examples of the 1D convolution
shape functions with different dilation parameters and poly-
nomial orders of the patch functionW for a patch size s = 2.
The detailed derivation of these functions can be found in
Appendix C. It can be seen that the final convolution shape
function has 6 components and satisfies the Kronecker delta
property and partition of unity in the element region. Increas-
ing the dilation a leads to a larger influencing radius of each
supporting node. Higher-order polynomials will make the
final functions smoother, leading to a more regular shape.
It is expected that there exists an optimal combination of
these parameters, which provides the optimal convergence
rate and accuracy for a given problem. This point will be
studied numerically in this work using the numerical exam-
ples.

3.3 a-adaptivity

In addition to h-, p-, and r - adaptivity of traditional FEM,
the proposed method enables the a-adaptivity. That is, the
dilation parameter a can be varying from element to element
in the the solution domain. As mentioned previously, the
dilation parameter a is expected to control the length scale
of approximation and its optimal value should depend on the
solution behaviour. In heterogeneous materials or problems
with complex stress distribution, the optimal characteristic
length should be location-specific and defined by a spatially
varying a. This unique feature of a-adaptivity makes C-
HiDeNN approximation very suitable for various problems
with different characteristic length scales without modifying
the mesh.

The a-adaptivity can be done in an automatic fashion as
r -adaptivity in HiDeNNmethod by optimizing the loss func-
tion (e.g., energy potential). The derivative of solution with
respect to a can be derived without special difficulties. An
alternative way to change a can be performed using conven-
tional adaptation strategies by introducing appropriate error
estimates. The implementation of a-adaptivity will be inves-
tigated more in our future work.

3.4 Remark for the treatment of boundary elements

The previous definition of the patch may encounter some
issues for the elements on the boundary of the computational
domain as there are no enough neighboring nodes for a given
patch size. To address this point, we suggest ignoring the

patch region that expands beyond the computational domain

as shown in Fig. 6. A novel set of the patch function Wξ i
a, j

can be calculated in the same way as previously but using the
reduced support.

3.5 Discussion on the irregular mesh

As mentioned earlier, the convolution patch functionW can
be computed based on either a natural (parametric) coor-
dinate system like traditional FEM or a physical coordinate
system like traditional meshfree methods. If the natural coor-
dinate system is adopted, additional adjustments are needed
for irregular meshes for ensuring the optimal convergence
rate of the method, according to our experience. By default,
the natural coordinate system is a regular mesh with equally
distancingnodes,whichdoes not directly reflect the real spac-
ing information from an irregular physical mesh. Computing
theW based on such regular coordinates seems inappropriate
for a physically irregular mesh. Hence, we propose modify-
ing the nodal position of the patch in the parametric domain
to reflect the relative distance between the nodes in physical
space. Our experience showed that this modification helps
achieve the expected convergence rates of the convolution
FEM. Interested readers can be referred to Appendix D for a
detailed description.

3.6 Discussion on implementation of themethod

The computational framework can be implemented into
an existing FE solver. Detailed implementation leveraging
Google JAX for CPUs and GPUs based parallel comput-
ing can be found in a companion paper in the same special
issue [45]. If we consider only a specific case of C-HiDeNN,
i.e., the C-FEM, C-FEM shares many common development
aspects with traditional FEM and the general partition of
unity (POU)-FEM, such as using only linear finite element
e.g., 3-node triangular (2D), or 4-node tetrahedral (3D) mesh
generation, matrix assembly, and solution procedure. One
major difference is in construction of the elementary stiff-
ness matrix: the C-FEM considers some surrounding nodes
outside each element, whereas traditional FEM does not; the
C-FEM stiffness formulation shares similar expansion of the
bandwidth of the stiffness matrix, to POU-FEM, though the
superiority over POU-FEM or the generalized finite element
method (GFEM) is that the “p-order” convergence and bet-
ter accuracy can be obtained with the same size of the linear
finite element mesh. In addition, the C-FEM can be easily
degenerated to traditional FEM using a small dilation param-
eter (at least in the sense of approximation accuracy), which
also simplifies the implementation of an adaptive adoption of
different elements in different subdomains of the problem.
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Fig. 5 Illustration of the
convolution shape function,
where the patch size s = 2, the
support nodes locate at
{−5,−3,−1, 1, 3, 5}, p denotes
the polynomial order of the
convolution patch function W .
The original FE shape function
remains linear for all the cases,
whereas the convolution shape
function is nonlinear with
higher-order smoothness

3.7 Theoretical convergence and Cn continuity

3.7.1 Theoretical convergence rate

If taking P(ξ) as p-th order polynomials in the reproducing
conditions (see Table 1), C-HiDeNN interpolants (e.g., C-
FEM) satisfy the reproducing property as well, i.e.,

∑

k∈As

Ñk(ξ)(ξk)
m = ξm,m = 0, 1, 2, . . . , p. (10)

Thus below theoretical results on the upper bound of the
error of C-HiDeNN for elliptic equations can be expected,
according to the previous work on the meshfree reproducing
property [8, 27]

‖uC-HiDeNN(x) − uExt(x)‖H1 ≤ C̃h p‖uExt‖H p+1 (11)

where C̃ is a constant, h themesh size, p the reproduced poly-
nomial order, and uExt denotes the exact solution. Detailed
proof of the above equation can be found in Appendix E.
It indicates that C-HiDeNN achieves the p-th order conver-
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Fig. 6 Reduced patch for a
convolution element on the
boundary with patch size s = 1

gence rate when the interpolation functions satisfy the p-th
order reproducing conditions,which is verified byour numer-
ical examples.

3.7.2 Continuity

The C-HiDeNN interpolants can be rewritten in the form of
shape functions with nodal values, i.e.,

uC-HiDeNN(ξ) =
∑

i∈Ae

Ni (ξ)
∑

j∈Ai
s

Wξ i
a, j (ξ)u j

=
∑

k∈As

Ñk(ξ)uk, (12)

where Ñk(ξ) is the C-HiDeNN convolution shape function,
defined by

Ñk(ξ) =
∑

i |k∈Ai
s

Ni (ξ)Wξ i
a,k . (13)

According to the chain rule, the N -th order derivative of
Ñk(ξ) is

DN Ñk(ξ) =
∑

i |k∈Ai
s

[
(DNNi (ξ)Wξ i

a,k

+ N (DN−1Ni (ξ)(DWξ i
a,k)

+ · · · + Ni (ξ)(DNWξ i
a,k)

]
, (14)

where DN denotes the N -th order derivative, assumingNi (ξ)

is Cn continuous and Wξ i
a, j is Cm continuous. It clearly

shows that the continuity of Ñk(ξ) depends on the conti-

nuities of Ni (ξ) and Wξ i
a, j . D

N Ñk(ξ) is continuous up to
N = min(n,m).

For 1D case, Ñk(ξ) hasCN continuity with N = min(n+
1,m), if the Dn+1Ni (ξ) is discontinuous across nodes, e.g.,
FEM shape functions. That is due to the Kronecker delta

property of Wξ i
a, j and partition of unity property of Ni (ξ).

The first term in (14) at the left and right limits of ξ j is

∑

i |k∈Ai
s

(
dN

dξ N
Ni (ξ

+
j )

)

Wξi
a,k(ξ

+
j )

=
∑

i |k∈Ai
s

(
dN

dξ N
Ni (ξ

+
j )

)

δ jk

= δ jk
dN

dξ N

∑

i |k∈Ai
s

Ni (ξ
+
j ) = 0, (15)

∑

i |k∈Ai
s

(
dN

dξ N
Ni (ξ

−
j )

)

Wξi
a,k(ξ

−
j )

=
∑

i |k∈Ai
s

(
dN

dξ N
Ni (ξ

−
j )

)

δ jk

= δ jk
dN

dξ N

∑

i |k∈Ai
s

Ni (ξ
−
j ) = 0. (16)

The first term vanishes at nodes, so the continuity of (14)
depends on the second term and the final term.

In general, we consider that Wξ i
a, j achieves higher order

continuity than Ni (ξ), so the overall continuity is depend-
ing on the selection of Ni (ξ). We list the continuities of
C-HiDeNN interpolants with FEM shape functions (C0) and
other shape functionswith higher continuity in Table 2. Care-

ful design ofNi (ξ) andWξ i
a, j can lead to arbitrary high order

CN continuity of C-HiDeNN interpolants, which is difficult
for traditional FEM. For example, Ni (ξ) can be chosen as
B-spline basis functions.
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Table 2 Continuities of
C-HiDeNN interpolants with
FEM shape functions (C0) and
other shape functions with high
order of continuity. Assume that

Wξ i
a, j is C

m continuous, m ≥ 2

Continuities of FEM shape functions Ni (ξ) (C1) Ni (ξ) (Cn)
C-HiDeNN interpolants Ni (ξ) (C0)

1D C1 C2 Cmin(n+1,m)

2D, 3D C0 C1 Cmin(n,m)

4 C-HiDeNN-PGD/TD: reduced order
methods

The convolution shape function can be directly applied to
reduced-order methods (ROM) in place of the traditional FE
shape function. We can expect that the resultant C-HiDeNN-
ROM can be more accurate than the traditional ROM and
even FEM, knowing that the traditional ROM can only be as
accurate as FEM at best.

Reduced ordermethods (ROM) can bemainly categorized
into two classes, (1) data-driven and non-intrusive meth-
ods, (2) intrusive projection-based ROM. The first class of
methods is usually used as data compression or reduced
order surrogate modeling with some precomputed simula-
tion data or even experimental data. Examples of methods
of this class are traditional tensor decomposition [58–61],
High Order Proper Generalized Decomposition (HOPGD)
[62–66]. The second class of methods requires an intrusive
implementation and is usually used for accelerating physi-
cal simulations. Some of the well-known methods are the
reduced basis method [67, 68], Proper Orthogonal Decom-
position (POD) [69–71], the hyper reduction method [72,
73], and Proper Generalized Decomposition (PGD) [39–41,
74, 75]. A comprehensive discussion of the mathematical
background and applications can be found in [58, 75, 76].

Regardless of the applicability of the convolution approx-
imation to other ROM, we focus on the second class of
methods, in particular, those using low rank approximations
for solving partial differential equations (PDEs), the so-
called HiDeNN-Tensor Decomposition (HiDeNN-TD) [39]
and PGD methods [40, 42] both fall into this class. We will
demonstrate that the convolution shape function can help
improve the approximation capability of this type of method.
To simplify terminology, we use TD and PGD to both refer
to low-rank approximation based ROM of the second class
that are used for solving PDEs. Their major difference is in
the solution scheme. PGD uses an incremental strategy for
solving different modes whereas TD requires additional iter-
ations for optimizing all the modes together and reducing the
total number of modes. Detailed discussions about these two
methods can be found in [39].

By applying the C-HiDeNN shape function (5) into
PGD or TD, the so-called Convolution HiDeNN-PGD/TD
(C-HiDeNN-PGD/TD) approximation for a 3D problem is

written as

uC-HiDeNN-PGD/TD(ξ) = uC-HiDeNN-PGD/TD(ξ, η, γ )

=
M∑

m=1

Ñ ξu
(m)
ξ Ñ ηu(m)

η Ñ γ u(m)
γ ,

(17)

where Ñ ξ = [Ñ1(ξ), Ñ2(ξ), . . . , Ñnξ (ξ)] is the 1D con-
volution shape function written in vector form, u(m)

ξ =
[u(m)

1 , u(m)
2 , . . . , u(m)

nξ
]T is the nodal solution vector for the

m-th mode in the ξ -direction, assuming the total number of
modes isM and is small enough compared to the system size.
This definition is similar for Ñ η, u

(m)
η , Ñ γ , u(m)

γ . It can be
seen that the separation of variables allows adopting only 1D
convolution shape function and solving 1D nodal solutions
for a multidimensional problem. This advantage enables a
high computational complexity reduction. In particular, the
total number of degrees of freedom of the system is reduced
from nx ×ny×nz to (nx +ny+nz)×M , assuming nx , ny, nz
are respectively the number of nodes in the three directions
(x, y, z) of a 3D field. This reduction leads to the so-called
reduced order model.

Similarly to C-FEM, by fixing the weights and biases of
the C-HiDeNN approximation and ignoring the neural net-
work implementation, we can define the special case, the
so-called C-TD/PGD, as

uC-PGD/TD(ξ) = uC-PGD/TD(ξ, η, γ )

=
M∑

m=1

Ñξu
(m)
ξ Ñηu(m)

η Ñγ u(m)
γ ,

(18)

This way, we can solve the problem in the same way as
TD or PGD, the detailed solution procedure is presented in
Appendix F.We expect to obtain a better solutionwith higher
accuracy using the convolution approximation. If the number
ofmodes is large enough, the final convolutionROMsolution
can be even more accurate than full-order FEM, which is
usually impossible for traditional ROM (e.g., PGD [40] or
TD [39, 44]).

For a better understanding of this point, let us look at a
simple function space analysis shown in Fig. 7. For notation
simplification, we use TD for both PGD and TD methods as
their approximation space remains equivalent ifwe ignore the
difference in the solution procedure. As demonstrated by our
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Fig. 7 Function approximation space for different approximation methods: tensor decomposition (TD), convolution TD (C-TD), finite element
method (FEM), convolution FEM (C-FEM), convolution Hierarchical Deep-learning Neural Networks (C-HiDeNN), and Deep-learning Neural
Networks (DeNN)

previous work [39, 44], the function space dictates the opti-
mal solution accuracy of different approximation methods,
i.e., larger approximation space usually leads more accurate
solutions. Furthermore, the TD or PGD approximation space
can converge to FEM if the number of modes tends to be infi-
nite [39, 44]. The proof is based on the regular mesh and the
assumption that the FEM shape function is the product of
1D shape functions used for PGD/TD along each direction.
This property should remain similar for C-TD and C-FEM,
i.e., C-TD converges to C-FEM with increasing number of
modes. As the C-FEM has clearly a larger function space
than FEM, the final C-TD approximation space with enough
modes should be able to extend beyond the FEM space and
therefore provide more accurate results than FEM. However,
the original TD approximation does not have this ability
according to this function space analysis.

Besides, the C-HiDeNN and DeNN should have larger
function approximation space thanks to the universal approx-
imation capability of the neural networks. They have the
potential to provide the most accurate results, though high-
performance solution schemes needed to be explored. We
will explore more on this point in our future work.

For summary, we can expect the following result on the
accuracy of different methods.

‖uDeNN − uExt‖E ≤ ‖uC-HiDeNN − uExt‖E
≤ ‖uC-FEM − uExt‖E
≤ ‖uC-PGD/TD − uExt‖E
≤ ‖uFEM − uExt‖E
≤ ‖uPGD/TD − uExt‖E , (19)

where ‖ · ‖E denotes the energy norm, uExt denotes the exact
solution. The detailed proof can be found in Appendix G.

5 Numerical results

In this section, we will study the numerical performance of
the proposed convolution approximationmethods, especially
in terms of accuracy and convergence rates.

5.1 1D Poisson’s problem and convergence studies

First, let us look at a 1D Poisson’s problem with a distributed
load b.

⎧
⎪⎨

⎪⎩

∇ · (∇u(x)) + b(x) = 0, ∀x ∈ Ω := (−l, l)

u(−l) = 0,

u(l) = 0,

(20)

where b(x) = −e− x2
c (− 2x

c )2 − e− x2
c (− 2

c ). In our work,
c = 0.01 and l = 0.6 are adopted. The analytical solution to
this problem is then

uExt(x) = e− x2
c , (21)

For numerical solutions,we discretize the domainΩ using
a regular mesh with uniformly distributed nodes. The linear
two-node element is used for the reference FEM solution.

Regarding the C-FEM solution, we fix at this time the
patch size s = 3 and dilation parameter a = 3.72 but change
the polynomial order p of the patch function W from 1 to
4 to study their resultant solution behavior. We remark that
changing the polynomial order does not affect the mesh size
and the total number of degrees of freedom of the system
remains unchanged. The linear FE shape function N in the
equation (8) for C-FEM remains the linear FE shape function
in this case.

Weuse6differentmesheswithh = h0, h0/2, h0/4, h0/8,
h0/16, h0/32 and h0 = 0.05 for the convergence study.
The solution error is defined using the relative L2-norm and
energy norm as below

εL = ‖u − uExt‖L2(Ω)

‖uExt‖L2(Ω)

, (22)

εE = ‖u − uExt‖E
‖uExt‖E = ‖u,x − uExt,x ‖L2(Ω)

‖uExt,x ‖L2(Ω)

, (23)

where u,x = du
dx .

123



Computational Mechanics (2023) 72:333–362 345

Fig. 8 Convergence study
against the mesh refinement,
x-axis: Log (h), y-axis: Log (ε)

As shown in Fig. 8, the C-FEM has higher order conver-
gence rates than the original FEM.As expected, the two-node
FE solution can only have a theoretical convergence rate of 2,
whereas the C-FEM can achieve arbitrary convergence rates
by simply adjusting the polynomial order without increas-
ing the number of nodes. Under the L2-norm and the energy
norm measure, the expected convergence rates for C-FEM
with a given polynomial order p are, respectively, p+ 1 and
p. This is consistent to the theoretical analysis. Moreover, it
can be seen that the C-FEM always provides better smooth
solutions with an improved accuracy compared to the orig-
inal FEM in all cases, even for p = 1. This confirms the
performance of the proposed convolution approximation.

For better understanding the influence of different patch
sizes and dilation parameters, we performed a parametric
study for the ratio between the dilation a and patch size s.
Figure9 depicts the behavior of the L2-norm error with the
increasing dilation a for 6 different patch sizes. The over-
all behavior is that the error decreases with the increasing
dilation before reaching a minimum value. The dilation a or
the ratio a/s at this minimummay be considered the optimal
parameter for the given patch size s. We can see that the opti-
mal pair of a and s periodically appears when increasing the
value of dilation. Nevertheless, we can see that the periodi-
cally appearing localminimum L2 normerror remains almost
identical when s is fixed. This means that we can take the
smallest a that corresponds to the first local minimum as the
best dilation parameter. If we plot the L2-error convergence
rates for different s with the best a, we can see a clear conver-
gence slope of 2, as shown in Fig. 12a. Moreover, increasing
the patch size s can improved the overall accuracy, although
the convergence slope remains the same (see Fig. 12a). Inter-
estingly, the final optimal a seems independent of mesh size
h and only varies slightly when s increases.

Similar conclusions can be drawn from Figs. 10 and 11.
By further looking at Fig. 12, we can observe that the opti-
mal dilation remains around 3.8 in this example, regardless
of the order p, mesh size h, and patch size s. This obser-

vation reflects that the optimal dilation might be related to
some physical quantifies or characteristic length of a given
problem. This point can be further explored in our future
work.

We remark here that in this example the C-FEM approx-
imation is constructed in the natural coordinate system and
can be degenerated to linear FEM in the sense of approxi-
mation accuracy when p = 1 and s = 1 with a very small
dilation, as shown in Fig. 12a.

In terms of computational expense, large s and a may
result in a large bandwidth in the final global stiffness matrix.
As the sparsity of the matrix can affect the efficiency of the
matrix inversion, we suggest using the smallest s and a when
satisfactory accuracy is obtained. In this example, s = 4 and
a = 3.8 can be a good choice.

5.2 1D nonlinear heat conduction with phase
transformation

In this study, we assess the stability of the C-FEM and FEM
through the analysis of a nonlinear problem. Specifically,
we consider a one-dimensional heat conduction problem in
composite materials (see Fig. 13), where the two sides con-
sist of two solid materials with distinct thermal capacities,
densities, and thermal conductivity. The governing equation
is

∂

∂t

(
ρcpT + fLΔH

) = −∇ · (k∇T ) + Q (24)

where ρ is the material density, cp is the heat capacity, fL
is the liquid fraction with fL = 1 for pure liquid state and
fL = 0 for pure solid sate, ΔH is the latent heat, k is the
thermal conductivity, T is the temperature and Q represents
the volumetric heat source. Thematerial on the left-hand side
has a density of 2200g/m3, a thermal capacity of 1700 J/K,
and a thermal conductivity of 100 W/mK. The phase trans-
formation is only considered for the right-hand side material,
a phase transition from solid to liquid occurs at 660 K. In its
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Fig. 9 Parametric study of the L2-norm error on the different ratios of a/s for p = 1. x-axis: a/s, y-axis: L2-norm error

Fig. 10 Parametric study of the L2-norm error on the different ratios of a/s for p = 2. x-axis: a/s, y-axis: L2-norm error
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Fig. 11 Parametric study of the L2-norm error on the different ratios of a/s for p = 3. x-axis: a/s, y-axis: L2-norm error

Fig. 12 The L2-norm error convergence rates against the mesh refinement for different optimal combinations of a and s. x-axis: mesh size, y-axis:
L2-norm error

solid state, the material on the right-hand side has a density
of 2555g/m3, a thermal capacity of 1190 J/K, and a ther-
mal conductivity of 211 W/mK. Upon transition to its liquid
state, the material maintains its original density and thermal
capacity, but its thermal conductivity decreases to 91W/mK.
The latent heat for phase change is 3.98 × 106 J. Note that
we do not consider the fluid flow in this example, the phase
transformation is considered by material property variations
and the produce of latent heat.

The initial temperature of the materials is 600 K, and a

Gaussian heat source Q = A ·exp
(
− (x−0.02)2

r2a

)
, where A =

1 × 108 and ra = 0.05, is present at the position x = 0.02
m. The problem is discretized with an element size 5× 10−4

m and the time step 0.25 s for both FEM and C-FEM. The
reference solution is obtained by FEM using a much smaller
mesh size 1×10−7 m as well as a shorter time step 1×10−3

s to ensure an accurate and stable solution.
This transient nonlinear problem is solved by the Newton-

Raphsonmethodwith an implicit time integrator. The numer-
ical solutions obtained by the C-FEM and FEM are depicted
in Fig. 14. Here we studied the C-FEMwith varying dilation
parameters a. As shown in the figure, the traditional FEM
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Fig. 13 Case setup for 1D nonlinear heat conduction with phase transformation

solutions (red curves) near thematerial phase transition point
have some numerical instabilities due to the sudden change
of heat. Similarly, when the dilation a used in the C-FEM
method is very small, C-FEM solutions tend to have a simi-
lar unstable behavior to FEM solutions. This is because the
C-FEMmethodwith small a values closely resembles the tra-
ditional FEM method. However, when the dilation a used in
the C-FEM method increases, the advantages of the C-FEM
method begin to manifest and a stable solution consistent to
the reference solution can be easily obtainedwithoutmodify-
ing the mesh, whereas FEM would need much finer meshes
to achieve a stable solution.

The reason that theC-FEMmethodobtained stable numer-
ical solutions in such nonlinear problems is the underlying
regularization and numerical viscosity due to the dilation
parameter. This is particularly desired in highly nonlinear
problems to ensure the accuracy and physics-consistent solu-
tions. This example demonstrates the significant advantages
of the C-FEMmethod and shows its great potential to resolve
the instability issues in nonlinear numerical analysis.

5.3 3D heat transfer problems for welding and
additive manufacturing

We investigate two 3D heat transfer problems at this time for
potential applications to problems with a concentrated heat
source, like welding and additive manufacturing.

We focus here on the C-PGD/TD reduced order modeling
method, since it allows to adopt directly the 1D convolution
shape function for solving 3D problems and has great poten-
tial for extra-large scale numerical analysis. Since the TD can
be seen as a general optimized PGD solution and they can
achieve the same accuracy with enough modes as shown in
[39], we do not distinguish C-TD and C-PGD here. We use
C-TD as the unified name for this kind of method.

The first problem consists in studying the accuracy of the
C-TD method with comparison to FEM. For this purpose, a
heat conduction problemwithmanufactured load is designed

as below

⎧
⎪⎨

⎪⎩

∇ · q(x) = r(x), ∀x ∈ Ω

q = −k · ∇T (x),

T (x) = 0, ∀x ∈ ∂ΩT ,

(25)

where q is the heat flux, T (x) is the temperature field, k
is the material conductivity, Ω is the 3D cubic domain and
considered large enough, ∂ΩT is the bottom surface, r(x) is
the body heat source term with

r = −k
4A(x2 + y2 + z2)

c4
e
− x2+y2+z2

c2 + k
6A

c2
e
− x2+y2+z2

c2

(26)

The analytical solution to this problem is then
T Ext = Ae

− x2+y2+z2

c2 (27)

In this work, we set A = 1000 and c = 0.1. The C-TD
approximated solution is obtained by an alternating fix point
algorithm as proposed by [40]. Figure15 shows the final
numerical solutions for FEM and C-TD. It is shown that
they look very similar and can both provide accurate results
if fine meshes are used. However, if we look at the conver-
gence curve of both methods using the previously defined
L2-error (22), C-TD method does provide an overall better
accuracy than FEM with respect to the exact solution, as
shown in Fig. 16. If the original PGD/TD based ROM are
used for this problem, they can only achieve the same accu-
racy as FEM at convergence. This confirms again the our
theoretical analysis.

To further demonstrate the advantages of the C-PGD/TD
reduced order model in terms of computational cost, we run
a transient heat transfer problem with a moving heat source,
as shown in Fig. 17. This kind of simulation is usually used to
investigate the toolpath influence in additive manufacturing
processes. Here, we used particularly C-PGD to investigate
the efficiency. C-TD is expected to have a slight difference in
the total computational time for the same accuracy. It can be
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Fig. 14 The numerical simulation result comparison between the standard FEM and C-FEM with different dilation parameters. The patch size and
polynomial order are both fixed at 3 in all C-FEM solutions.

Fig. 15 Numerical solutions of FEM and C-TD for the temperature field
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Fig. 16 L2-norm error of the numerical solutions of FEM, PGD/TD,
and C-PGD/TD against the mesh size

seen that the C-PGD provides visibly similar results to FEM.
Since the analytical solution to this problem is not available,
we do not focus on the accuracy comparison for this problem.
However, in terms of computational cost, the C-PGD shows
a significant speedup compared to FEM, especially when the
mesh size is large. In our implementation, the total CPU time
of FEM for the mesh size 1,774,094 (degrees of freedom)
and 75 time steps is 545,118s, whereas C-PGD takes about
73,896s for the same computation, leading to a speedup of
7.37. Orders of magnitude speedups can be expected if larger
meshes are used.

More importantly, as the C-PGD/TD can provide more
accurate solutions than FEM, it has the possibility to use a
coarser mesh for the same accuracy. Hence, the C-PGD/TD
has a great potential to achieve high-performance computing
with highly accurate solutions.

6 Future developments and applications

6.1 C-HiDeNN-Graphics Processing Unit (GPU)
Computing

The convolution operations in C-HiDeNN, acting over the
patch domains, are analogous to those in convolutional neu-
ral network (CNN). The definition of patch size s is similar
to kernel size in CNN. The dilation parameter a affects ker-
nel values and decide which kernel value is to be turned
off. Therefore, advanced parallel programing tools originally
developed for CNNor othermachine learning techniques can
also be applied to C-HiDeNN to reduce computation time.
Figure18 shows our preliminary results on graphics pro-
cessing unit (GPU) computation of C-HiDeNN, revealing
excellent speed-ups (approx. ×100) compared to the same
code running on CPU. For more details, readers may refer to
[45].

6.2 C-HiDeNN for Isogeometric Analysis (IGA)

The flexibility and potential of the general framework of C-
HiDeNN interpolants shown in Sect. 3.1 allows its extension
to IsogeometricAnalysis (IGA), calledC-IGA. The key point
of C-IGA is to design the local convolution patch functions

Wξ i
a, j (ξ) in the parametric domain so as to reproduce the IGA

basis functions such as B-spline and NURBS (nonuniform
rational B-splines) basis functions, i.e.,

∑

j∈Ai
s

Wξ i
a, j (ξ)R(ξ j ) = R(ξ), (28)

with R(ξ) denoting IGA basis functions. This can be done
by modifying the rhs (right-hand-side) of equation (48) with
R, which defines the reproducing conditions of local con-
volution patch functions. Therefore, denoting the C-IGA
interplation function as Ñk , we have the following desired
property

∑

k∈As

Ñk(ξ)R(ξ k) = R(ξ). (29)

C-IGA inherits the advantages of IGA: (1) exact geome-
try; (2) high order continuity; (3) compact support. Further
more, C-IGA has the Kronecker delta property, and thus is
convenient for the enforcement of boundary conditions.

Different from C-FEM, there exists three domains for
computing: physical domain, parametric domain, and par-
ent domain, as illustrated in Fig. 19. The mapping between
physical domain and parametric domain is the C-IGA map-
ping:

xC-IGA(ξ) =
∑

k∈As

Ñk(ξ)xIGAk (30)

where the coordinates xIGAk is obtained by the IGA mapping

xIGAk = xIGA(ξ k) =
∑

i

Ri (ξ k)Bi (31)

with Ri (ξ) denoting IGA basis functions and Bi corre-
sponding control points. Note that due to the reproducing
property of C-IGA interpolants (29), the C-IGA mapping
can reproduce precisely the IGA mapping and ensures the
exact geometry representation like IGA

xC-IGA(ξ) =
∑

k∈As

Ñk(ξ)x IGAk

=
∑

k∈As

Ñk(ξ)
∑

i

Ri (ξ k)Bi

=
∑

i

Bi

∑

k∈As

Ñk(ξ)Ri (ξ k)
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Fig. 17 Solution snapshots of FEM and C-PGD for the transient heat transfer problem

=
∑

i

Bi Ri (ξ) = xIGA(ξ) (32)

A numerical verification and comparison with FEMmap-
ping is illustrated in Fig. 19. Here, we use the IGA produced
geometry as a reference. With the same nodal position
information, the C-IGA can reproduce exactly the reference
geometry using the coordinatemapping, whereas linear FEM
can only have straight lines between nodes.

Next, we can use the C-IGA interpolant to solve a Pois-
son’s equation. As shown in Fig. 20, we consider 1D problem

d

dx

(
du

dx

)

+ b(x) = 0, x ∈ [0, 10] (33)

with a body force

b(x) = −4π2(x − 2.5)2 − 2π

eπ(x−2.5)2
− 8π2(x − 7.5)2 − 4π

eπ(x−7.5)2
.

(34)

To eliminate the boundary effect for IGA,we consider homo-
geneous boundary conditions, i.e.,

u(0) = u(10) = 0. (35)

Note that due to the Kronecker delta property, C-IGA can
easily handle the Dirichlet boundary conditions. The analyt-

123



352 Computational Mechanics (2023) 72:333–362

Fig. 18 Computation time for building C-HiDeNN shape functions for
a 2D Poisson’s equation when s = 4 with a large dilation. C-HiDeNN
is coded with Python JAX library. Computing resources: CPU - Intel(R)
Core(TM) i7-4790 CPU @ 3.60 GHz; GPU - NVIDIA A6000 48GB
graphics memory

ical solution is

u(x) = (e−π(x−2.5)2 − e−6.25π )

+2(e−π(x−7.5)2 − e−56.25π )

−e−6.25π − e−56.25π

10
x . (36)

As shown in Fig. 20, the preliminary results demonstrate that
C-IGA achieves the same or higher convergence rate com-
pared with conventional IGA. More studies will be reported
in our future work.

6.3 C-HiDeNN for Topology Optimization (TO)

The other application for C-HiDeNN is the topology opti-
mization (TO). TO aims to give the optimal structural design
by relocating the materials in the design domain. The topol-
ogy optimization equations with the Solid Isotropic Material
with Penalization method (SIMP) approach can be written as

min c(ρ)

s.t . : δΠ=
∫

Ω

∇suT D(ρ)∇sδudΩ−
∫

Ω

f T δuρdOmega

−
∫




tT δud
,

ρmin 
 ρ ≤ 1, 0 < ρmin 
 1,

g(ρ) ≤ 0,

(37)

where c(ρ) is the objective function with design variables ρ.
The equilibrium equation is defined as δΠ in the principle of
virtual work form. The design variable constraint is defined
as 0 < ρmin 
 ρ ≤ 1, where ρ = ρmin is no material and
ρ = 1 is solid material. Other design constraints are defined

in g. To reduce the compuational cost in TO, we develop
the C-HiDeNN-TD (Tensor Decomposition) method. After
tensor decomposition and discretization, the principle of the
virtual work can be converted to the following problems

For each mode m,

K̃
u(m)
x

u(m)
x = f

u(m)
x

, K̃
u(m)
y

u(m)
y = f

u(m)
y

, K̃
u(m)
z

u(m)
z = f

u(m)
z

,

K̃
v

(m)
x

v(m)
x = f

v
(m)
x

, K̃
v

(m)
y

v(m)
y = f

v
(m)
y

, K̃
v

(m)
z

v(m)
z = f

v
(m)
z

,

K̃
w

(m)
x

w(m)
x = f

w
(m)
x

, K̃
w

(m)
y

w(m)
y = f

w
(m)
y

, K̃
w

(m)
z

w(m)
z = f

w
(m)
z

.

(38)

where u, v,w are the displacement components in the 3D
problem, (·)x , (·)y, (·)z are the decomposed 1D vectors in
the x, y, z directions.. The stiffness matrix of each mode for
each displacement is defined as K̃ with the integrated exter-
nal force f . Derivations of the above equations can be done
in a similar way toAppendix F. By the decomposition, the 3D
structural problem is decomposed into several 1D problems.

Figure21 shows the cantilever beam design example with
sample volume fraction and length scale control for differ-
ent design resolutions. The chart shows that when increasing
the number of DoFs, the computational cost increases from
104 to 106 h for traditional FEM-TO method. For the C-
HiDeNN-TD-TO, it only increases from 33 to 112h. The
tensor decomposition makes the high resolution TO design
muchmore affordable.Details of theC-HiDeNN-TD-TOand
more studies can be found in [46].

7 Conclusion

A general C-HiDeNN framework has been developed for
highly accurate and efficient solutions to scientific and engi-
neering problems. The C-HiDeNN framework unifies the
finite element andmeshfree approximationmethods and pro-
vides aflexibleway to construct a desired approximationwith
high-order continuity. We demonstrated the capability of the
proposed method using a special example of this method, the
C-FEM. The proposed convolutionmethod does not increase
the overall degrees of freedom of the discretized system but
provides higher accuracy and smoothness with controllable
parameters. These parameters include the polynomial order
of the convolution patch function, patch size, and dilation and
can be easily modified to obtain arbitrary convergence rates
and orders of magnitude higher accurate solutions without
modifying the mesh.

Theoretically, we showed that the C-HiDeNN with the
p-order reproducing condition can achieve the p-th order
convergence rate in terms of H1-norm. The C-HiDeNN and
its variants, C-FEM and C-TD, can be more accurate than
traditional FEMwith the samemesh. The numerical analysis
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Fig. 19 Illustration of the geometrical mapping. The physical element
is pulled back first to the parametric domain through the C-IGA map-
ping, then through a second mapping, one affine, to the parent element.

Computation of radial basis functionsWξ i
a, j and Gaussian quadrature is

performed over the parent domain. C-IGA mapping is equivalent to the
IGA mapping, and is able to represent the exact geometry

has confirmed this result. The different optimal sets of the
controlled parameters have been studied. We found that the
optimal dilation might be related to some physical lengths
and requires further investigations. Furthermore, it is found
that the dilation parameter introduces some regularization
and numerical viscosity into the solution procedure and can
improve the solution stability for nonlinear analysis.

For future applications, the proposed C-HiDeNN frame-
work has great potential for ultra-large-scale computing
with high-fidelity solutions. This is essential to enable the
so-called high-resolution topology design, which has been
presented in our work. In addition, the C-HiDeNN and its
variants, like C-TD, can be beneficial to many other com-
putationally intensive problems like additive manufacturing
process modeling, microstructural grain growth simulations,
multi-scale analysis of materials, etc.

Acknowledgements S. Tang and L. Zhang would like to thank the sup-
port of theNational Natural Science Foundation of China (NSFC) under
contract Nos. 11832001, 11988102, and 12202451.

Fig. 20 1D numerical model for convergence study of C-IGA. IGA
results are plotted by solid line, and C-IGA results are represented by
dashed line. x-axis: mesh size h, y-axis: L2-norm error
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Fig. 21 DoFs vs Computational cost between FEM-TO and C-HiDeNN-TO for the cantilever beam design example. Higher resolution design
(from A to C) leads to finer structures and smoothness

Appendix A Brief review of HiDeNN-FEM

The idea of HiDeNN-FEM is to use Deep-learning Neural
Networks (DeNN) (We added the “e” instead of just using
DNNbecauseweprefer the acronymHiDeNN) to reconstruct
the FE shape function by constraining the weights and biases
with mesh coordinates, which reads

NI (x; x∗
I ,A) := FI (x;w(x∗

I ), b(x
∗
I ),A) (39)

where FI stands for the fully connected DeNN structures
with weights w, biases b, and the activation functionA.NI

denotes the FE shape function for the node at position x∗
I .

Assuming a domain Ω is discretized by n points, we can
write the HiDeNN-FEM approximation as

uh(x) =
n∑

I=1

NI (x; x∗
I ,A)uI (40)

where uI is the discretized nodal solution of the problem,
uh is the approximated solution function. Considering the
vector notationN = [N1, . . . ,Nn] and u = [u1, . . . , un]T ,
the equation (40) can be simplified as

uh(x) = N (
x; x∗,A)

u (41)

The detailed construction of such shape functions using
DeNN can be found in [38]. Figure 22 illustrates a detailed
architecture of the partially connected DeNN, as an example
of HiDeNN-FEM. It should be noticed that the FE shape
function is only one of the choices, the HiDeNN structure
allows one to easily switch from one to another by releasing
the constraints on the weights w and biases b.

Since the HiDeNN shape function serves the same role
as FE shape function, the derivatives and integration of the
shape function can be implemented in exactly the same
way as FEM. Finally, the solution of HiDeNN-FEM can be

obtained through an optimization problem in which both the
displacement field and the mesh coordinates are simultane-
ously optimized. The problem reads

uHiDeNN-FEM = argmin
uI ,x∗

I∈Ω\∂Ω

Π(uh(x)) (42)

where Ω denotes the entire domain, ∂Ω denotes the bound-
ary, Π denotes the potential (when it exists) or the residual
of the problem. Hence HiDeNN-FEM provides a new way
to adaptively modify the mesh and reduces to FEMwhen the
mesh is fixed. Moreover, it is shown that the HiDeNN-FEM
has a function approximation space and gives more accu-
rate results than FEM due to the flexibility of the HiDeNN
framework [39].

Below, we summarize the key features of the HiDeNN-
FEM method [38]:

• Partially connected DeNN with constrained weights and
biases

• A flexible framework for function approximation and
solving PDEs with automatic r-h-p adaptivity

• More accurate than traditional FEM
• Reduces to FEM when freezing the mesh coordinates

The developed novel Convolution HiDeNN method can
be seen as an enhancement for highly smooth solutions and
improved convergence rates without increasing the degrees
of freedom (DoFs).
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Fig. 22 HiDeNN-FEM shape functions [38]. Weights and biases are predefined as constants. ReLU (rectified linear unit) activation function is
used in the HiDeNN architecture

Fig. 23 Supporting nodes for a 1D convolution element with patch size
s = 1

Appendix B Derivation of radial basis inter-
polation function

Let us consider the following 1D case for illustration pur-
poses.

uC-FEM(ξ) =
∑

i∈Ae

Ni (ξ)
∑

j∈Ai
s

W
ξ i
a, j (ξ)u j (43)

Then we can define the following interpolation as part of the
approximation centering around the i-th node in the element
domain.

ui (ξ) =
∑

j∈Ai
s

W ξi
a, j (ξ)u j , (44)

where the supporting node set of W is Ai
s with a given patch

size s. Figure23 illustrates a 1D convolution element with
patch size s = 1 and the two-node shape functions for Ni .
Now the question is how to compute the W based on the
given supporting nodes.

Assuming the nodal solution value for the 4 nodes in
Fig. 23 is [u1, u2, u3, u4], we illustrate the radial basis inter-
polation procedure for the part centering around i = 2. In
this case, the parametric coordinates for the support nodes

are {−3,−1, 1}. Then we can consider the radial basis inter-
polation ui=2(ξ) has the following form

ui (ξ) = �a(ξ)k + p(ξ)l, (45)

where �a is a defined kernel function, which can be the
reproducing kernel or cubic spline kernel [3, 4] with the
dilation parameter a, p(ξ) is the polynomial basis vector of
p-th order, k = [k1, k2, k3]T and l = [l1, l2, l3]T are the
coefficient vector that helps to enforce the reproducing con-
dition and Kronecker delta property. We give here a specific
example for �a and p(ξ) using a cubic spline kernel and a
second-order polynomial.

�a(ξ) = [�a(ξ − ξ1), �a(ξ − ξ2), �a(ξ − ξ3)]
where �a(ξ − ξI ) := �a(z) with z = |ξ−ξI |

a

=

⎧
⎪⎨

⎪⎩

2
3 − 4z2 + 4z3 ∀z ∈ [0, 1

2 ]
4
3 − 4z + 4z2 − 4

3 z
3 ∀z ∈ [ 12 , 1]

0 ∀z ∈ (1,+∞)

, (46)

and

p = [1, ξ, ξ2] (47)

Now we can compute k and l by enforcing the below condi-
tions.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui (ξ1) = u1
ui (ξ2) = u2
ui (ξ3) = u3
∑

k = 0

[ξ1, ξ2, ξ3] k = 0

[ξ21 , ξ22 , ξ23 ] k = 0

, (48)

Solving the above equations gives the solution to k and l,
which reads

{
k=Ku

l=Lu
, (49)
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with
⎧
⎪⎨

⎪⎩

u=[u1, u2, u3]T
L=(PTR0P)−1PTR−1

0

K=R−1
0 (I − PL)

, (50)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0=
⎛

⎜
⎝

�a(ξ1)

�a(ξ2)

�a(ξ3)

⎞

⎟
⎠=

⎛

⎜
⎝

�a(ξ1−ξ1) �a(ξ1−ξ2) �a(ξ1−ξ3)

�a(ξ2−ξ1) �a(ξ2−ξ2) �a(ξ2−ξ3)

�a(ξ3−ξ1) �a(ξ3−ξ2) �a(ξ3 − ξ3)

⎞

⎟
⎠

P=
⎛

⎜
⎝

p(ξ1)

p(ξ2)

p(ξ3)

⎞

⎟
⎠ =

⎛

⎜
⎝

1 ξ1 ξ21
1 ξ2 ξ22
1 ξ3 ξ23

⎞

⎟
⎠

,

(51)

Finally, the radial basis interpolation with the computed
coefficients reads

ui (ξ)=�a(ξ)k+p(ξ)l = �a(ξ)Ku + p(ξ)Lu

= (�a(ξ)K + p(ξ)L)u

= W ξi
a,1(ξ)u1 + W ξi

a,2(ξ)u2

+W ξi
a,3(ξ)u3

=
∑

j∈Ai
s

W ξi
a, j (ξ)u j , (52)

where W ξi
a, j is obtained by identifying the corresponding

coefficient of u j . By analogy, we can compute the other con-
volution patch functions W with the support Ai=3

s . Detailed
mathematical derivation and analysis of the radial basis inter-
polation can be found in [77].

Appendix C Illustration of a 1D convolution
element

For a better understanding of the convolution shape function
Ñk , we illustrate here a 1D convolution approximation with
Ni chosen to be linear and patch size s = 1, see again Fig. 23
for the supporting nodes of one convolution element.

uC-FEM(ξ) =
∑

i∈Ae

Ni (ξ)
∑

j∈Ai
s

W ξi
a, j (ξ)u j (53)

In this case, the FE shape function nodal support set Ae =
{2, 3}, and then Ai=2

s = {1, 2, 3}, Ai=3
s = {2, 3, 4}. The

equation (53) becomes

uC-FEM(ξ) =
∑

i∈Ae

Ni (ξ)
∑

j∈Ai
s

W ξi
a, j (ξ)u j

= N2(ξ)W ξ2
a,1(ξ)u1 + (N2(ξ)W ξ2

a,2(ξ)

+N3(ξ)W ξ3
a,2(ξ))u2

+(N2(ξ)W ξ2
a,3(ξ)

+N3(ξ)W ξ3
a,3(ξ))u3 + N3(ξ)W ξ3

a,4(ξ)u4

=
∑

k∈As

Ñk(ξ)uk, (54)

where As = ⋃
i∈Ae Ai

s = {1, 2, 3, 4}. Therefore, there are in
total 4 convolution shape functions for s = 1. If s = 2, we
can expect 6 shape functions, as shown in Fig. 5.

Appendix DModification of the natural coor-
dinates for irregular meshes

The modification of the natural (parametric) coordinates of
the patch nodes can be done according to the distance ratio
in the physical domain. As shown in Fig. 24, if the mesh is
irregular in the physical space, the corresponding patch nodes
in parametric space are adapted. The neighbouring nodes x1
and x4 are clearly far from the element in the physical space.
In order to reflect this distancing information in parametric
domain. The coordinates ξ1 and ξ4 are modified as below

ξ1 = ξ2−|ξ2−ξ3| |x1 − x2|
|x2 − x3| , ξ4 = ξ3+|ξ2−ξ3| |x3 − x4|

|x2 − x3| ,
(55)

that is

|ξ1 − ξ2|
|ξ2 − ξ3| = |x1 − x2|

|x2 − x3| ,
|ξ3 − ξ4|
|ξ2 − ξ3| = |x3 − x4|

|x2 − x3| , (56)

where the right-hand-side of the above equation is the phys-
ical distance ratio and left-hand-side is the one in parametric
space. By enforcing this condition, we are able to keep the
nonuniform distribution of the nodes in parametric space.
Here, the original physical element domain is [x2, x3] and the
corresponding parametric element domain [ξ2, ξ3] remains
the same as before, i.e., [−1, 1].

From our experience this modification is necessary and
can help achieve the optimal convergence rates when irreg-
ular meshes are used. Similar concept can be used in 2D/3D
irregular meshes.

Appendix E Error estimate of C-HiDeNN inter-
polation

Following the procedure in the previous work on the mesh-
free reproducing property [8, 27], we can derive the error
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Fig. 24 Modified parametric coordinates for a 1D convolution element
with patch size s = 1

estimate of C-HiDeNN interpolation, based on the reproduc-
ing property.

Theorem 1 Let us assume an exact solution u(x) ∈ C p+1

(Ω̄) ∩ H p+1(Ω), where Ω is a bounded open set in R
n.

Define an interpolation operator I

Iu(x) =
∑

I

ÑI (x)u(xI ), (57)

where the interpolation operator satisfies the reproducing
property

Ixm =
∑

I

ÑI (x)(xI )
m = xm,m = 0, 1, 2, . . . , p. (58)

In the refinement, the mesh is given and refined at the same
scale. The shape function ÑI (x) can be regarded as a scaled
reference shape function Ñ 0(ξ) in the parent domain with
ξ = (x−xI )/h. Suppose the boundary ∂Ω is smooth enough,
then the following interpolation estimate holds

‖u(x) − Iu‖H1(Ω) ≤ C1h
p‖u‖H p+1(Ω). (59)

where h is the mesh size and C1 is a constant independent of
h.

Proof We have

u(x) − Iu = u(x) −
∑

I

ÑI (x)u(xI ) = u(x)

−
∑

I∈Λ(x)

ÑI (x)u(xI ), (60)

where Λ(x) = {I |x ∈ supp{ÑI } ∩ Ω} is an index set sup-
porting all the shape functions covering x .

Take Taylor expansion of u(xI ) at x :

u(xI ) = u(x) +
p∑

m=1

1

m! (xI − x)mDmu(x)

+ 1

(p+1)! (xI−x)p+1Dp+1u(x+θ(xI−x)),

(61)

where Dmu represents them-th order derivative of u(x), and
0 < θ < 1 depends on x and xI . Substituting (61) into (60)
yields

u(x) − Iu (62)

=u(x)−
∑

I∈Λ(x)

ÑI (x)u(xI )

=u(x)−
∑

I∈Λ(x)

ÑI (x)

(

u(x)+
p∑

m=1

1

m! (xI−x)mDmu(x)

+ 1

(p+1)! (xI−x)p+1Dp+1u(x + θ(xI − x))

)

= u(x) −
(

u(x)
∑

I∈Λ(x)

ÑI (x)

+ 1

m!D
mu(x)

p∑

m=1

∑

I∈Λ(x)

ÑI (x)(xI − x)m

+
∑

I∈Λ(x)

1

(p+1)! (xI−x)p+1Dp+1u(x+θ(xI−x))ÑI (x)

)

(63)

According to the reproducing property, we have

I(y−x)m =
∑

I

ÑI (x)(y−xI )
m=

∑

I∈Λ(x)

ÑI (x)(y−xI )
m

= (y − x)m,m = 1, 2, . . . , p, (64)

particularly, for y = x

∑

I∈Λ(x)

ÑI (x)(x − xI )
m = 0,m = 1, 2, . . . , p. (65)

So the deviation between u(x) and its approximation Iu is

u(x) − Iu
=−

∑

I∈Λ(x)

1

(p+1)! (xI−x)p+1Dp+1u(x+θ(xI−x))ÑI (x)

(66)

It deduces the following estimate

|u(x) − Iu| ≤ 1

(p + 1)!
∑

I∈Λ(x)

|xI − x |p+1|Dp+1

u(x + θ(xI − x))||ÑI (x)| (67)

Denote the support size of shape function ÑI (x) as rh, the
maximum value of |ÑI (x)| isM . Note that the absolute value
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of C-HiDeNN shape function is generally less than 1 (in the
element domain). The following estimate holds

|u(x)−Iu|≤ (rh)p+1

(p+1)! M
∑

I∈Λ(x)

|Dp+1u(x+θ(xI−x))|

(68)

We can conclude that ∃ C0,with 0 < C0 < ∞, such that

‖u(x)−Iu‖L2≤C0h
p+1‖u‖H p+1(Ω). (69)

Next, we consider the derivative of u(x)−Iu. Taking the
derivative of Iu yields

D1Iu =
∑

I

D1 ÑI (x)u(xI ). (70)

The derivative of u(x) − Iu is

D1u(x) − D1Iu (71)

= D1u(x) −
∑

I∈Λ(x)

D1 ÑI (x)u(xI )

= D1u(x) −
∑

I∈Λ(x)

D1 ÑI (x)

(

u(x) +
p∑

m=1

1

m! (xI − x)m

×Dmu(x)+ 1

(p+1)! (xI−x)p+1Dp+1u(x+θ(xI−x))

)

= u(x) −
(

u(x)
∑

I∈Λ(x)

D1 ÑI (x) + 1

m!D
mu(x)

×
p∑

m=1

∑

I∈Λ(x)

D1 ÑI (x)(xI − x)m

+
∑

I∈Λ(x)

1

(p + 1)! (xI − x)p+1Dp+1

×u(x + θ(xI − x))D1 ÑI (x)

)

(72)

Taking the derivative of (64) with respect to x yields

D1I(y − x)m =
∑

I∈Λ(x)

D1 ÑI (x)(y − xI )
m

= −m(y − x)m−1,m = 1, 2, ..., p (73)

For y = x , we have

∑

I∈Λ(x)

D1 ÑI (x)(x − xI )
m = −δ1,m,m = 1, 2, ..., p (74)

This leads to

D1u(x) − D1Iu

= −
∑

I∈Λ(x)

1

(p + 1)! (xI − x)p+1Dp+1

×u(x + θ(xI − x))D1 ÑI (x) (75)

The reference shape function Ñ 0(ξ) is defined in the parent
domain with ξ = (x − xI )/h, independent of the element
size h. Thus

D1 ÑI (x) = 1

h
D1

ξ Ñ
0(ξ). (76)

The estimate for the derivative of u(x) − Iu becomes

|D1u(x) − D1Iu|

=
∣
∣
∣
∣
∣
∣

∑

I∈Λ(x)

1

(p + 1)!h (xI − x)p+1Dp+1

u(x + θ(xI − x))D1
ξ Ñ

0(ξ)

∣
∣
∣

≤ r p+1h p

(p + 1)!K
∑

I∈Λ(x)

|Dp+1u(x + θ(xI − x))|, (77)

where K is the maximum value of |D1
ξ Ñ

0(ξ)|. We can con-
clude that ∃ C1with 0 < C1 < ∞, such that

‖u(x) − Iu‖H1 ≤ C1h
p‖u‖H p+1(Ω). (78)

. ��
For a linear second-order elliptic boundary value problem,

we can use Céa’s inequality [27], therefore

‖uC-HiDeNN(x)−uExt(x)‖H1 ≤ c inf
vh∈V h

‖vh(x)−uExt(x)‖H1

≤ c‖IuExt−uExt(x)‖H1

≤ c × C1h
p‖uExt‖H p+1 , (79)

where V h represents the C-HiDeNN interpolation space.

Appendix F Illustration of C-PGD/TD solution
procedure

The C-PGD solution can be solved through the so-called
alternating fixed point algorithm as traditional PGD method
[40], or through aminimization problem [44]. Let us consider
a 3D Poisson problem as below

∇2u(x, y, z) + b(x, y, z) = 0 in Ω with ∇u.n = 0 on ∂Ω

(80)

where ∇ denotes the gradient operator, b is the body source
termwith the assumption that b(x, y, z) = bx (x)by(y)bz(z).
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The domainΩ is a regular domain, n is the normal vector on
the surface. The weak form of the problem can be obtained
by multiplying both sides of the above equation by the test
function δu, which reads
∫

Ω

(∇δu)T∇u dΩ −
∫

Ω

δu b dΩ = 0 (81)

Assuming the solution can be accurately approximated by M
modes andM−1modes are already computed, the following
decomposition for u and δu read

u(x, y, z) =
M−1∑

m=1

u(m)
x (x)u(m)

y (y)u(m)
z (z)

+u(M)
x (x)u(M)

y (y)u(M)
z (z) (82)

and

δu(x, y, z) = δu(M)
x u(M)

y u(M)
z + u(M)

x δu(M)
y u(M)

z

+u(M)
x u(M)

y δu(M)
z (83)

For notation simplification, we can omit the superscript M
in the above equations. Therefore,

u(x, y, z) =
M−1∑

m=1

u(m)
x (x)u(m)

y (y)u(m)
z (z)+ux (x)uy(y)uz(z)

(84)

and

δu(x, y, z) = δuxuyuz + uxδuyuz + uxuyδuz (85)

The convolution approximation is then applied to each of the
separated 1D functions ux (x), uy(y), uz(z), which reads

ux (x) = Ñ(x)ux , uy(y) = Ñ(y)uy, uz(z) = Ñ(z)uz
(86)

where Ñ is the convolution shape function vector formed by
the 1D convolution functions in a patch domain. ux , uy, uz
are the associated nodal solution vectors in three direc-
tions. Similarly, the same convolution approximation can be
applied to δux , δuy, δuz and u(m)

x , u(m)
y , u(m)

z .
The ux (x), uy(y), uz(z) can be computed by alternatively

fixing two of the functions. For example, we can assume
uy, uz are given by assumed values, then δuy = 0 and δuz =
0, δu(x, y, z) = δuxuyuz , the weak form (81) for solving ux
under the decomposition reads

∫

Ω

(∇(δuxuyuz))
T∇

(
M−1∑

m=1

u(m)
x u(m)

y u(m)
z +uxuyuz

)

dΩ

−
∫

Ω

δuxuyuz b dΩ = 0

(87)

with

∇(δuxuyuz) =
[
∂δux
∂x

uyuz, δux
∂uy

∂ y
uz, δuxuy

∂uz
∂z

]T

=
[
B̃xδux Ñ yuy Ñ zuz, Ñ xδux B̃yuy Ñ zuz,

Ñ xδux Ñ yuy B̃zuz
]T

(88)

and

∇(u(m)
x u(m)

y u(m)
z ) =

[
∂u(m)

x

∂x
u(m)
y u(m)

z , u(m)
x

∂u(m)
y

∂ y
u(m)
z ,

u(m)
x u(m)

y
∂u(m)

z

∂z

]T

=
[
B̃xu(m)

x Ñ yu(m)
y Ñ zu(m)

z

Ñ xu(m)
x B̃yu(m)

y Ñ zu(m)
z ,

Ñ xu(m)
x Ñ yu(m)

y B̃zu(m)
z

]T
(89)

where B̃x = ∂ Ñ x/∂x , B̃y = ∂ Ñ y/∂ y, B̃z = ∂ Ñ z/∂z
Therefore, the Eq. (87) becomes

M−1∑

m=1

∫

Ω
δuTx B̃

T
x B̃xu

(m)
x uTy Ñ

T
y Ñ yu

(m)
y uTz Ñ

T
z Ñzu

(m)
z dΩ

+
M−1∑

m=1

∫

Ω
δuTx Ñ

T
x Ñxu

(m)
x uTy B̃

T
y B̃yu

(m)
y uTz Ñ

T
z Ñzu

(m)
z dΩ

+
M−1∑

m=1

∫

Ω
δuTx Ñ

T
x Ñxu

(m)
x uTy Ñ

T
y Ñ yu

(m)
y uTz B̃

T
z B̃zu

(m)
z dΩ

+
∫

Ω
δuTx B̃

T
x B̃xuxuTy Ñ

T
y Ñ yuyuTz Ñ

T
z Ñzuz dΩ

+
∫

Ω
δuTx Ñ

T
x ÑxuxuTy B̃

T
y B̃yuyuTz Ñ

T
z Ñzuz dΩ

+
∫

Ω
δuTx Ñ

T
x ÑxuxuTy Ñ

T
y Ñ yuyuTz B̃

T
z B̃zuz dΩ

−
∫

Ω
δuTx Ñ

T
x bxu

T
y Ñ

T
y byu

T
z Ñ

T
z bz dΩ

= 0 (90)

The final discretized form for solving ux is

M−1∑

m=1

K̃ xxu(m)
x uTy M̃ yyu(m)

y uTz M̃zzu(m)
z

+
M−1∑

m=1

M̃xxu(m)
x uTy K̃ yyu(m)

y uTz M̃zzu(m)
z

+
M−1∑

m=1

M̃xxu(m)
x uTy M̃ yyu(m)

y uTz K̃ zzu(m)
z
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+K̃ xxuxuTy M̃ yyuyuTz M̃zzuz

+M̃xxuxuTy K̃ yyuyuTz M̃zzuz

+M̃xxuxuTy M̃ yyuyuTz K̃ zzuz

− Q̃xu
T
y Q̃yu

T
z Q̃z

= 0 (91)

where K̃ xx = ∫
Ωx

B̃
T
x B̃x dx , K̃ yy = ∫

Ωy
B̃
T
y B̃y dy,

K̃ zz = ∫
Ωz

B̃
T
z B̃z dz, M̃xx = ∫

Ωx
Ñ

T
x Ñ x dx , M̃ yy =

∫
Ωy

Ñ
T
y Ñ y dy, M̃zz = ∫

Ωz
Ñ

T
z Ñ z dz, with Ω = Ωx ×

Ωy × Ωz .
Rearranging the above equation leads to the following lin-

ear system of equations

K̃ ux = Q̃ (92)

with

K̃ = K̃ xxuTy M̃ yyuyuTz M̃zzuz + M̃xxuTy K̃ yyuyuTz M̃zzuz

+M̃xxuTy M̃ yyuyuTz K̃ zzuz

Q̃ = Q̃xu
T
y Q̃yu

T
z Q̃z−

M−1∑

m=1

K̃ xxu(m)
x uTy M̃ yyu(m)

y uTz M̃zzu(m)
z

−
M−1∑

m=1

M̃xxu(m)
x uTy K̃ yyu(m)

y uTz M̃zzu(m)
z

−
M−1∑

m=1

M̃xxu(m)
x uTy M̃ yyu(m)

y uTz K̃ zzu(m)
z

(93)

By solving the above equation, an estimate of ux and there-
fore ux can be obtained. Similarly, we can solve for uy and
uz . This alternative fixed point procedure should be repeated
until the convergence the product of uxuyuz . This is the solu-
tion for one C-PGD mode and can be used for computing
incrementally all the modes by varying M from 1 to a given
number. The total number of modes can be determined by
the convergence criterion: ‖∑M−1

m=1 u(m)
x (x)u(m)

y (y)u(m)
z (z)−

u(M)
x (x)u(M)

y (y)u(M)
z (z)‖ is small enough.

By adopting the TD definition in [39], the C-TD can use
the same solution procedure to give a rough estimate number
of modes and then optimize all the current modes together.
The advantages in doing so is to reduce the necessary number
of modes. In our work, we are interested in the final conver-
gent accuracy of C-PGD/TD with comparison to traditional
FEM and PGD/TD. The number of modes is ignored. Hence,
we do not distinguish the C-PGD and C-TD in this paper as
they both can give a better accuracy than traditional methods
with the proposed convolution approximation.

Appendix G Error bound analysis of different
methods

Assuming a convex potential energy Π exits for a problem,
the numerical solution to the problem can be obtained by
solving the following minimization problem

uh = argmin
uh∗∈V h

Π(uh∗(x)) (94)

where V h denotes a given approximation space. Now, con-
sider two approximation spaces V h

1 , V
h
2 with V h

1 ⊂ V h
2 .

Their corresponding solutions by solving the above problem
are respectively uh1 and uh2. It is easy to know that the opti-
mized potential energy has following relationship

Π(uExt) ≤ Π(uh2) ≤ Π(uh1) (95)

where uExt is the exact solution. By the convexity of the
problem, we have

‖uh2 − uExt)‖E ≤ ‖uh1 − uExt)‖E (96)

By analogy, denoting the approximation spaces of TD with
infinite modes, C-TD with infinite modes, FEM, C-FEM,
C-HiDeNN, DeNN respectively by V TD, V C-TD, V FEM,
VC-FEM, V C-FEM, V C-HiDeNN, VDeNN, with the following
relationship

V TD ⊂ V FEM ⊂ VC-TD ⊂ VC-FEM ⊂ V C-HiDeNN ⊂ VDeNN

(97)

The optimized potential energy follows

Π(uExt) ≤ Π(uDeNN)

≤ Π(uC-HiDeNN)

≤ Π(uC-FEM) ≤ Π(uC-TD)

≤ Π(uFEM) ≤ Π(uTD) (98)

Therefore, we have

‖uDeNN − uExt‖E ≤ ‖uC-HiDeNN − uExt‖E
≤ ‖uC-FEM − uExt‖E
≤ ‖uC-PGD/TD − uExt‖E
≤ ‖uFEM − uExt‖E
≤ ‖uPGD/TD − uExt‖E (99)

Here, sincewe are only interested in the approximation space
of TD/PGD, we do not distinguish the two methods in this
analysis.
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