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A B S T R A C T

This paper presents the axisymmetric thermal postbuckling analysis of functionally graded graphene platelets-
reinforced composite (FG-GPLRC) annular plates with various geometric imperfections within the framework of
first-order shear deformation theory and von Kármán geometric nonlinearity. An imperfection model composed
of trigonometric and hyperbolic functions is used to simulate possible imperfections with different shapes,
amplitudes and locations. The 3D Halpin–Tsai model is employed to estimate the effective modulus of graphene
nanocomposites. Nonlinear governing equations are derived by the variational principle and are then solved
by the generalized differential quadrature method combined with the modified Newton–Raphson iteration.
Parametric studies are conducted to highlight the influences of imperfection amplitude, localization degree,
location and half-wave number on the thermal postbuckling behaviour of FG-GPLRC annular plates. It is found
that the thermal postbuckling resistance is reduced due to the existence of geometric imperfections, and this
effect become more/less significant as the imperfection amplitude/half-wave number increases.
1. Introduction

Functionally graded (FG) graphene nanocomposites are character-
ized by the nonuniform dispersion of graphene nanofillers along certain
direction(s), and their material properties are designable and can be
tailored according to application requirements [1]. Due to the low
density, high strength and multifunctionality, such nanocomposites can
be incorporated as high-performance lightweight structural elements in
aerospace and automobile industries.

Since the pioneering works of Yang and his co-workers [2–4], ex-
tensive research efforts have been devoted to mechanical analysis of FG
graphene nanocomposite structures, such as buckling, bending and vi-
bration analyses of arches [5,6], beams [7–10], plates [11–14], as well
as shells [15–17]. For the plates under in-plane loading, Song et al. [18]
evaluated the buckling and postbuckling of biaxially compressed FG
graphene platelet (GPL)-reinforced composite (FG-GPLRC) plates and
suggested that adding a very small fraction of GPLs into polymer
can significantly improve the buckling and postbuckling load-carrying
capacity. Wu et al. [19] investigated the buckling and postbuckling of
FG-GPLRC plates undergoing a uniform temperature rise and found that
dispersing more GPLs near the outer layers leads to the highest thermal
buckling and postbuckling resistance. Nguyen et al. [20] extended this

∗ Corresponding authors.
E-mail addresses: helongwu@zjut.edu.cn (H. Wu), lilong@lnm.imech.ac.cn (L. Li).

work by considering diverse through-thickness and surface tempera-
ture variations. Shakouri and Mohseni [21] carried out the buckling
analysis of sandwich plates with FG-GPLRC face sheets based on the
Fourier series and Navier method. Shen et al. [22,23] using a two-step
perturbation approach examined the buckling and postbuckling of sim-
ply supported FG graphene-reinforced composite (FG-GRC) laminated
plates subjected to mechanical and thermal loadings. Based on the
isogeometric finite element formulation, Kiani [24] further analysed
the thermal buckling and postbuckling of FG-GRC plates with different
boundary conditions.

Annular plates are one of the essential structural elements that
are widely used in many engineering systems such as aircraft, vessels,
automobile and other vehicles. The study on mechanical behaviour
of FG graphene nanocomposite annular plates is of great importance
for their practical applications. Yang et al. [25] and Liu et al. [26]
studied the linear bending and free vibration, respectively, of FG-
GPLRC annular plates within the framework of three-dimensional (3D)
elasticity theory. Wu et al. [27] presented the nonlinear vibration
analysis of FG-GPLRC annular plates in thermal environments based on
the first-order shear deformation theory (FSDT). Malekzadeh et al. [28]
analysed the linear free vibration of FG-GPLRC eccentric annular plates
with piezoelectric layers, while Yang et al. [29] investigated the ax-
isymmetric vibration and thermal buckling of the same annular plates
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Abbreviations and notations

2D, 3D two-dimensional and three-dimensional
C, H clamped and hinged supports
FG functionally graded
FSDT first-order shear deformation theory
Gi, Li global and localized geometric imperfec-

tions
GDQ generalized differential quadrature
GPL graphene platelet
GPLRC graphene platelet-reinforced composite
X, U, O distribution patterns of GPLs
a, b, c parameters defining the localization de-

gree, location, and half-wave number of
geometric imperfections

𝑎GPL, 𝑏GPL, 𝑡GPL, 𝑑GPL length, width, thickness and average di-
ameter of GPLs

h thickness of the annular plate
𝑙𝑗(r) Lagrange interpolation polynomials
r, 𝜃, z cylindrical coordinate system
𝛼, 𝛼GPL, 𝛼m thermal expansion coefficient of GPLRC,

GPL and epoxy matrix
𝛾𝑟𝑧 shear strain component
𝜀𝑟𝑟, 𝜀𝜃𝜃 normal strain components in r and 𝜃

directions
𝜅 shear correction factor
𝜆T buckling temperature parameter
𝜈, 𝜈GPL, 𝜈m Poisson’s ratio of GPLRC, GPL and epoxy

matrix
𝜉𝑖 GPL shape factors
𝜌, 𝜌GPL, 𝜌m mass density of GPLRC, GPL and epoxy

matrix
𝜎𝑟𝑧 shear stress component
𝜎𝑟𝑟, 𝜎𝜃𝜃 normal stress components in r and 𝜃

directions
𝜓 transverse normal rotation about the 𝜃-axis
𝛱s strain energy of the annular plate
A mid-plane area of the annular plate
𝐴0 dimensionless imperfection amplitude
𝐴𝑖𝑗 , 𝐷𝑖𝑗 extensional and bending stiffness compo-

nents
𝐶 (𝑚)
𝑖𝑗 mth-order GDQ weighting coefficients
E, 𝐸GPL, 𝐸m elastic modulus of GPLRC, GPL and epoxy

matrix
𝐸𝑖𝑖 in-plane and out-of-plane elastic moduli of

unidirectional lamina
𝑀𝑟𝑟, 𝑀𝜃𝜃 moment resultants about 𝜃 and r axes
𝑀T

𝑟𝑟,𝑀
T
𝜃𝜃 thermally induced moments about 𝜃 and r

axes
N, 𝑁L number of GDQ grid points and GPLRC

layers

without eccentricity. Zheng et al. [30] examined the asymmetric sta-
bility of FG-GPLRC annular plates subjected to thermal loading. Yang
et al. evaluated the asymmetric thermal buckling and postbuckling of
rotating FG-GPLRC annular plates resting on an elastic foundation [31].

It should be mentioned that all these studies are restricted to the
perfectly flat annular plates only and the effects of initial geometric
imperfections are not taken into account. In practice, initial geometric
imperfections often occur during the fabrication or service process,
and may have important influences on the mechanical behaviours of
2

𝑁𝑟𝑟, 𝑁𝜃𝜃 in-plane force resultants in r and 𝜃 direc-
tions

𝑁T
𝑟𝑟, 𝑁

T
𝜃𝜃 thermally induced in-plane forces in r and

𝜃 directions
𝑄𝑖𝑗 elastic stiffness components
𝑅a, 𝑅b, outer and inner radii of the annular plate
𝛥T, 𝛥𝑇cr temperature rise and critical buckling tem-

perature rise
U, W radial and transverse displacement compo-

nents
𝑉GPL, 𝑉m volume fraction of GPL and epoxy matrix
𝑉 ∗
GPL total volume fraction of GPL
𝑊 ∗ geometric imperfection
𝑊GPL weight fraction of GPL
d unknown displacement vector
𝐊L, 𝐊T linear stiffness and geometric stiffness ma-

trices
𝐊NL1, 𝐊NL2 nonlinear stiffness matrices
R load vector resulting from temperature rise

structures [32–34]. On the other hand, previous studies on FG graphene
nanocomposites assumed that graphene nanofillers are either unidirec-
tionally aligned or randomly oriented in the plane (2D-random). This is,
however, not often the real case that graphene nanofillers are randomly
oriented and dispersed in three dimensions (3D-random) due to the
constrains of manufacture technology. As a result, the elastic modulus
of graphene nanocomposites is markedly overestimated with respect to
the experimental values [35].

Motivated by the above issues, this paper investigates the axisym-
metric thermal postbuckling of FG-GPLRC annular plates with various
geometric imperfections. The elastic modulus of graphene nanocompos-
ites is evaluated by using the 3D Halpin–Tsai model that takes into
account the 3D-random orientation of GPLs in the matrix. Govern-
ing equations with geometric imperfection related terms are deduced
by the variational principle and discretized according to the gener-
alized differential quadrature (GDQ) method. The thermal postbuck-
ling equilibrium paths of geometrically imperfect FG-GPLRC annular
plates are determined by the modified Newton–Raphson iteration tech-
nique. Parametric studies are carried out to evaluate the effects of
GPL distribution pattern, concentration and dimension, imperfection
mode, amplitude, location and localization degree, plate geometry,
and boundary conditions on the thermal postbuckling behaviour of
geometrically imperfect FG-GPLRC annular plates. Thermal buckling
and postbuckling results of perfect annular plates are also presented
for a comparison study.

2. Theoretical formulation

2.1. FG-GPLRC annular plate

As shown in Fig. 1, an FG-GPLRC annular plate of thickness h, outer
radius 𝑅a and inner radius 𝑅b is defined in a cylindrical coordinate
system (r, 𝜃, z). The coordinate origin is located at the centre of the
plate mid-plane (𝑧 = 0), and the r, 𝜃 and z axes are along the radial,
circumferential and thickness directions, respectively.

The annular plate is made of multiple GPLRC layers of equal thick-
ness in which GPL nanofillers are randomly oriented and uniformly
dispersed, but the GPL volume fraction changes from layer to layer
according to the following patterns [9]:

Pattern X: 𝑉 (𝑘)
GPL = 2𝑉 ∗

GPL
|

|

2𝑘 −𝑁L − 1|
|

∕𝑁L, (1)
(𝑘) ∗
Pattern U: 𝑉GPL = 𝑉GPL, (2)
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Fig. 1. Configuration and coordinate system of an FG-GPLRC annular plate.

Pattern O: 𝑉 (𝑘)
GPL = 2𝑉 ∗

GPL
(

1 − |

|

2𝑘 −𝑁L − 1|
|

∕𝑁L
)

, (3)

where 𝑁L is the total number of layers, 𝑉 (𝑘)
GPL and 𝑉 ∗

GPL are the GPL
volume fraction in the 𝑘th layer and the whole plate, respectively. 𝑉 ∗

GPL
is related to the total GPL weight fraction 𝑊GPL by

𝑉 ∗
GPL =

𝑊GPL

𝑊GPL +
(

𝜌GPL∕𝜌m
) (

1 −𝑊GPL
) , (4)

in which 𝜌GPL and 𝜌m are mass densities of the GPL and matrix,
espectively.

.2. Effective material properties

In practice, graphene nanofillers are 3D-randomly oriented and dis-
ersed in the matrix due to the constrains of manufacture technology.
onsequently, the widely used 2D Halpin–Tsai model often overesti-
ates the elastic modulus of graphene nanocomposites when compared
ith experimental measurements. In order to consider the 3D-random
rientation of GPLs, the 3D Halpin–Tsai model is introduced to evaluate
he effective elastic modulus of GPLRCs [35]:

= 0.184𝐸11 + 0.306𝐸22 + 0.510𝐸33, (5)

here 𝐸11 and 𝐸22 are in-plane elastic moduli, and 𝐸33 the out-of-plane
lastic modulus of a unidirectional lamina and are determined by the
alpin–Tsai equation as [36]

𝑖𝑖 =
1 + 𝜉𝑖𝜂𝑖𝑉GPL
1 − 𝜂𝑖𝑉GPL

𝐸m, 𝜂𝑖 =
𝐸GPL − 𝐸m
𝐸GPL + 𝜉𝑖𝐸m

, (𝑖 = 1, 2, 3). (6)

n the above equation, 𝐸GPL and 𝐸m are elastic moduli of GPLs and
atrix, respectively. 𝜉𝑖 is the GPL shape factor, which are defined

s [37]

1 = 2𝑎GPL∕3𝑡GPL, 𝜉2 = 2𝑏GPL∕3𝑡GPL, 𝜉3 = 2. (7)

here 𝑎GPL, 𝑏GPL and 𝑡GPL denote the length, width and thickness of
rectangular GPL reinforcements. For nanocomposites reinforced with
circular GPLs (𝐸11 = 𝐸22 and 𝜉1 = 𝜉2), Eqs. (5) and (7) are separately
reduced to

𝐸 = 0.49𝐸11 + 0.51𝐸33, (8)

𝜉1 = 2𝑑GPL∕3𝑡GPL, 𝜉3 = 2. (9)

The other material properties of GPLRCs are calculated by the rule
of mixture as

𝛼 = 𝛼m𝑉m + 𝛼GPL𝑉GPL, (10)

𝜈 = 𝜈m𝑉m + 𝜈GPL𝑉GPL (11)

in which 𝛼, 𝜈 and V denote the thermal expansion coefficient, Poisson’s
ratio and volume fraction in order, with subscripts ‘‘GPL’’ and ‘‘m’’
representing GPL and matrix, respectively. 𝑉m and 𝑉GPL are related by
𝑉 + 𝑉 = 1.
m GPL

3

.3. Governing equations

Let us consider an FG-GPLRC annular plate that is stress-free at the
eference temperature 𝑇0 and then is subjected to a temperature rise
T. The axisymmetric problem is considered in present study, thus the
ircumferential displacement is neglected. Based on the FSDT and von
ármán geometric nonlinearity, the strain components are given as

𝑟𝑟 = 𝑈,𝑟+𝑧𝜓,𝑟+
1
2
(

𝑊,𝑟
)2+𝑊,𝑟𝑊

∗
,𝑟 , 𝜀𝜃𝜃 =

𝑈
𝑟
+𝑧

𝜓
𝑟
, 𝛾𝑟𝑧 = 𝑊,𝑟+𝜓,

(12)

where U and W are radial and transverse displacement components of
an arbitrary point in the mid-plane (𝑧 = 0), 𝜓 the transverse normal
rotation about the 𝜃-axis. A comma followed by subscripts denotes
the partial derivative with respect to the variable r. 𝑊 ∗ is the initial
geometric imperfection in the form of the product of trigonometric and
hyperbolic functions as

𝑊 ∗ = 𝐴0𝑅 sec
[

𝑎
(

𝑟 − 𝑅b
𝑅a − 𝑅b

− 𝑐
)]

cos
[

𝑏𝜋
(

𝑟 − 𝑅b
𝑅a − 𝑅b

− 𝑐
)]

(13)

in which 𝐴0 is the dimensionless imperfection amplitude, 𝑅 = ℎ∕2
√

3
the radius of gyration. Parameters a, b, and c define the localization
degree, location, and half-wave number of the geometric imperfection
in the radius direction. Some global (G) and localized (L) imperfections
with different parameter values, together with their cross-sectional
profiles, are shown in Table 1.

The linear stress–strain relationships of the annular plate including
the thermal effect are expressed as
𝜎𝑟𝑟 = 𝑄11𝜀𝑟𝑟 +𝑄12𝜀𝜃𝜃 − 𝛼𝛥𝑇 , 𝜎𝜃𝜃 = 𝑄12𝜀𝑟𝑟 +𝑄22𝜀𝜃𝜃 − 𝛼𝛥𝑇 ,

𝜎𝑟𝑧 = 𝜅𝑄55𝛾𝑟𝑧,
(14)

where the shear correction factor 𝜅 = 𝜋2∕12; the elastic stiffness
components 𝑄𝑖𝑗 are defined as

𝑄11 = 𝑄22 =
𝐸

1 − 𝜈2
, 𝑄12 =

𝜈𝐸
1 − 𝜈2

, 𝑄55 =
𝐸

2 (1 + 𝜈)
. (15)

The strain energy 𝛱S of the annular plate is given by

𝛱S = 1
2 ∫𝐴 ∫

ℎ∕2

−ℎ∕2

(

𝜎𝑟𝑟𝜀𝑟𝑟 + 𝜎𝜃𝜃𝜀𝜃𝜃 + 𝜏𝑥𝑧𝛾2𝑥𝑧
)

d𝑧d𝐴, (16)

where A is the mid-plane area of the annular plate. By virtue of the
variational principle, governing equations of the FG-GPLRC annular
plate can be obtained as [27]

𝑁𝑟𝑟 + 𝑟𝑁𝑟𝑟,𝑟 −𝑁𝜃𝜃 = 0, (17)

𝑁𝑟𝑟

(

𝑊,𝑟 +𝑊 ∗
,𝑟

)

+ 𝑟𝑁𝑟𝑟,𝑟

(

𝑊,𝑟 +𝑊 ∗
,𝑟

)

+ 𝑟𝑁𝑟𝑟

(

𝑊,𝑟𝑟 +𝑊 ∗
,𝑟𝑟

)

+𝑄𝑟𝑧 + 𝑟𝑄𝑟𝑧,𝑟 = 0, (18)

𝑀𝑟𝑟 + 𝑟𝑀𝑟𝑟,𝑟 −𝑀𝜃𝜃 − 𝑟𝑄𝑟𝑧 = 0, (19)

in which the force (𝑁𝑟𝑟, 𝑁𝜃𝜃 , 𝑄𝑟𝑧) and moment (𝑀𝑟𝑟, 𝑀𝜃𝜃) resultants
are given as

𝑁𝑟𝑟 = 𝐴11𝑈𝑟𝑟 +
1
2
𝐴11

(

𝑊,𝑟
)2 + 𝐴11𝑊,𝑟𝑊

∗
,𝑟 + 𝐴12

𝑈
𝑟
−𝑁T

𝑟𝑟, (20)

𝑁𝜃𝜃 = 𝐴12𝑈𝑟𝑟 +
1
2
𝐴12

(

𝑊,𝑟
)2 + 𝐴12𝑊,𝑟𝑊

∗
,𝑟 + 𝐴22

𝑈
𝑟
−𝑁T

𝜃𝜃 , (21)

𝑟𝑧 = 𝜅𝐴55
(

𝑊,𝑟 + 𝜓
)

, (22)

𝑟𝑟 = 𝐷11𝜓,𝑟 +𝐷12
𝜓
𝑟
−𝑀T

𝑟𝑟, (23)

𝑀 = 𝐷 𝜓 +𝐷
𝜓

−𝑀T . (24)
𝜃𝜃 12 ,𝑟 22 𝑟 𝜃𝜃
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Table 1
Imperfection modes.

G1-mode
𝑎 = 0, 𝑏 = 1, 𝑐 = 0.5

G2-mode
𝑎 = 0, 𝑏 = 3, 𝑐 = 0.5

G3-mode
𝑎 = 0, 𝑏 = 5, 𝑐 = 0.5

G4-mode
𝑎 = 0, 𝑏 = 7, 𝑐 = 0.5

G5-mode
𝑎 = 0, 𝑏 = 9 𝑐 = 0.5

G6-mode
𝑎 = 0, 𝑏 = 11, 𝑐 = 0.5

G7-mode
𝑎 = 0, 𝑏 = 13, 𝑐 = 0.5

L1-mode
𝑎 = 10, 𝑏 = 1, 𝑐 = 0.5

L1-mode
𝑎 = 20, 𝑏 = 1, 𝑐 = 0.5

L1-mode
𝑎 = 30, 𝑏 = 1, 𝑐 = 0.5

L1-mode
𝑎 = 15, 𝑏 = 1, 𝑐 = 0.3

L1-mode
𝑎 = 15, 𝑏 = 1, 𝑐 = 0.5

L1-mode
𝑎 = 15, 𝑏 = 1, 𝑐 = 0.7

L2-mode
𝑎 = 15, 𝑏 = 3, 𝑐 = 0.5

L3-mode
𝑎 = 15, 𝑏 = 5, 𝑐 = 0.5

L4-mode
𝑎 = 15, 𝑏 = 7, 𝑐 = 0.5
s

(

𝐴

(
o

𝐴

In the above equations, the thermally induced forces (𝑁T
𝑟𝑟, 𝑁

T
𝜃𝜃) and

oments (𝑀T
𝑟𝑟, 𝑀

T
𝜃𝜃) are calculated by

T
𝑟𝑟 =

𝑁𝐿
∑

𝑘=1
∫

𝑧𝑘+1

𝑧𝑘

(

𝑄(𝑘)
11 +𝑄(𝑘)

12

)

𝛼(𝑘)𝛥𝑇 d𝑧,

T
𝜃𝜃 =

𝑁𝐿
∑

𝑘=1
∫

𝑧𝑘+1

𝑧𝑘

(

𝑄(𝑘)
12 +𝑄(𝑘)

22

)

𝛼(𝑘)𝛥𝑇 d𝑧,

(25)

T
𝑟𝑟 =

𝑁𝐿
∑

𝑘=1
∫

𝑧𝑘+1

𝑧𝑘
𝑧
(

𝑄(𝑘)
11 +𝑄(𝑘)

12

)

𝛼(𝑘)𝛥𝑇 d𝑧,

T
𝜃𝜃 =

𝑁𝐿
∑

𝑘=1
∫

𝑧𝑘+1

𝑧𝑘
𝑧
(

𝑄(𝑘)
12 +𝑄(𝑘)

22

)

𝛼(𝑘)𝛥𝑇 d𝑧,

(26)

here 𝑧𝑘 and 𝑧𝑘+1 are the coordinates of the upper and lower surfaces,

espectively, of the 𝑘th GPLRC layer in the thickness direction. The

4

tiffness elements 𝐴𝑖𝑗 and 𝐷𝑖𝑗 are defined as

𝐴𝑖𝑗 , 𝐷𝑖𝑗
)

= ∫

ℎ∕2

−ℎ∕2

(

1, 𝑧2
)

𝑄𝑖𝑗d𝑧

=
𝑁𝐿
∑

𝑘=1
∫

𝑧𝑘+1

𝑧𝑘

(

1, 𝑧2
)

𝑄(𝑘)
𝑖𝑗 d𝑧, (𝑖, 𝑗 = 1, 2) (27)

55 = ∫

ℎ∕2

−ℎ∕2
𝑄55d𝑧 =

𝑁𝐿
∑

𝑘=1
∫

𝑧𝑘+1

𝑧𝑘
𝑄(𝑘)

55 d𝑧. (28)

Substituting for the force and moment resultants from Eqs. (20)–
24), the governing equations (17)–(19) can be re-expressed in terms
f displacement components as

11
(

𝑟𝑈,𝑟𝑟 + 𝑈,𝑟
)

− 𝐴22
𝑈
𝑟
+ 1

2
(

𝐴11 − 𝐴12
) (

𝑊,𝑟
)2 +

(

𝐴11 − 𝐴12
)

𝑊,𝑟𝑊
∗
,𝑟

+𝐴11𝑟
(

𝑊,𝑟𝑟𝑊
∗
,𝑟 +𝑊,𝑟𝑊

∗
,𝑟𝑟 +𝑊,𝑟𝑊,𝑟𝑟

)

= 0
,

(29)
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Fig. 2. Support system of the annular plate.

55
(

𝑊,𝑟 + 𝜓
)

+ 𝐴55𝑟
(

𝑊,𝑟𝑟 + 𝜓,𝑟
)

+
[

𝐴11𝑈,𝑟 +
1
2
𝐴11

(

𝑊,𝑟
)2 + 𝐴11𝑊,𝑟𝑊

∗
,𝑟 −𝑁

T
𝑟𝑟

] (

𝑊,𝑟 +𝑊 ∗
,𝑟

)

+
[

𝐴11𝑟𝑈,𝑟𝑟 + 𝐴11𝑟𝑊,𝑟𝑊,𝑟𝑟 + 𝐴11𝑟𝑊,𝑟𝑟𝑊
∗
,𝑟 + 𝐴11𝑟𝑊,𝑟𝑊

∗
,𝑟𝑟 + 𝐴12𝑈,𝑟

]

×
(

𝑊,𝑟 +𝑊 ∗
,𝑟

)

+
[

𝐴11𝑟𝑈,𝑟 +
1
2
𝐴11𝑟

(

𝑊,𝑟
)2 + 𝐴11𝑟𝑊,𝑟𝑊

∗
,𝑟 + 𝐴12𝑈 − 𝑟𝑁T

𝑟𝑟

]

(

𝑊,𝑟𝑟 +𝑊 ∗
,𝑟𝑟

)

= 0

, (30)

𝐷11𝑟𝜓,𝑟𝑟 +𝐷11𝜓,𝑟 −𝐷22
𝜓
𝑟
− 𝐴55𝑟

(

𝑊,𝑟 + 𝜓
)

= 0. (31)

e assume that the annular plate is either clamped (C) or hinged (H) at
he edges, as shown in Fig. 2. The corresponding boundary conditions
re as follows:

lamped: 𝑈 = 0, 𝑊 = 0, 𝜓 = 0; (32)

inged: 𝑈 = 0, 𝑊 = 0, 𝐷11𝜓,𝑟 +𝐷12
𝜓
𝑟

= 0. (33)

.4. Solution procedure

The GDQ, a robust and efficient numerical method with high ac-
uracy [38,39], is adopted here to solve the governing equations.
ccording to this method, the displacement components and their 𝑚th
erivatives with respect to r can be approximated as

{𝑈, 𝑊 , 𝜓}|𝑟=𝑟𝑖 =
𝑁
∑

𝑗=1
𝑙𝑗 (𝑟𝑖)

{

𝑈𝑗 , 𝑊𝑗 , 𝜓𝑗
}

,

𝜕𝑚

𝜕𝑟𝑚
{𝑈, 𝑊 , 𝜓}

|

|

|

|𝑟=𝑟𝑖
=

𝑁
∑

𝑗=1
𝐶 (𝑚)
𝑖𝑗

{

𝑈𝑗 , 𝑊𝑗 , 𝜓𝑗
}

,

(34)

in which 𝑙𝑗(r) are the Lagrange interpolation polynomials; {𝑈𝑗 , 𝑊𝑗 , 𝜓𝑗}
are the values of {U, W, 𝜓} at 𝑟 = 𝑟𝑗 ; 𝐶

𝑖𝑗
(𝑚) are the weighting coefficients

that can be determined by the recursive formulae [40]. N is the total
number of grid points in the x direction generated by a cosine pattern:

𝑟𝑖 = 𝑅b +
𝑅a − 𝑅b

[

1 − cos
𝜋(𝑖 − 1)

]

, 𝑖 = 1, 2,… , 𝑁. (35)

2 𝑁 − 1 i

5

Applying the GDQ approximation (34) to the governing equations
(29)–(31) leads to a set of nonlinear algebraic equations:

𝐴11

(

𝑟𝑖
𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝑈𝑗 +

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑈𝑗

)

− 𝐴22
𝑈𝑖
𝑟𝑖

+ 1
2
(

𝐴11 − 𝐴12
)

( 𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗

)2

+
(

𝐴11 − 𝐴12
)

𝑊 ∗
,𝑟
|

|

|𝑟=𝑟𝑖

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗

+𝐴11𝑟𝑖

(

𝑊 ∗
,𝑟
|

|

|𝑟=𝑟𝑖

𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝑊𝑗 + 𝑊 ∗

,𝑟𝑟
|

|

|𝑟=𝑟𝑖

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗

𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝑊𝑗

)

= 0

, (36)

55

( 𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗 + 𝜓𝑖

)

+ 𝐴55𝑟𝑖

( 𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝑊𝑗 +

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝜓𝑗

)

⎡

⎢

⎢

⎣

𝐴11

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑈𝑗 +

1
2
𝐴11

( 𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗

)2

+𝐴11 𝑊
∗
,𝑟
|

|

|𝑟=𝑟𝑖

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗 −𝑁T

𝑟𝑟

⎤

⎥

⎥

⎦

( 𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗 + 𝑊 ∗

,𝑟
|

|

|𝑟=𝑟𝑖

)

[

𝐴11𝑟𝑖
𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝑈𝑗 + 𝐴11𝑟𝑖

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗

𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝑊𝑗

+𝐴11𝑟𝑖 𝑊
∗
,𝑟
|

|

|𝑟=𝑟𝑖

𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝑊𝑗 + 𝐴11𝑟𝑖 𝑊

∗
,𝑟𝑟
|

|

|𝑟=𝑟𝑖

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗

+𝐴12

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑈𝑗

]( 𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗 + 𝑊 ∗

,𝑟
|

|

|𝑟=𝑟𝑖

)

⎡

⎢

⎢

⎣

𝐴11𝑟𝑖
𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑈𝑗 +

1
2
𝐴11𝑟𝑖

( 𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗

)2

+𝐴11𝑟𝑖 𝑊
∗
,𝑟
|

|

|𝑟=𝑟𝑖

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗 + 𝐴12𝑈𝑖 − 𝑟𝑖𝑁T

𝑟𝑟

⎤

⎥

⎥

⎦

( 𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝑊𝑗 + 𝑊 ∗

,𝑟𝑟
|

|

|𝑟=𝑟𝑖

)

0

,

(37)

11𝑟𝑖
𝑁
∑

𝑗=1
𝐶 (2)
𝑖𝑗 𝜓𝑗 +𝐷11

𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝜓𝑗 −𝐷22

𝜓𝑖
𝑟𝑖

− 𝐴55𝑟𝑖

( 𝑁
∑

𝑗=1
𝐶 (1)
𝑖𝑗 𝑊𝑗 + 𝜓𝑖

)

= 0.

(38)

he boundary conditions in Eqs. (32) and (33) can be handled in the
ame way as

lamped:
{

𝑈1 = 𝑊1 = 𝜓1 = 0 at 𝑟 = 𝑟1,
𝑈𝑁 = 𝑊𝑁 = 𝜓𝑁 = 0 at 𝑟 = 𝑟𝑁 ;

(39)

Hinged:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈1 = 𝑊1 = 0, 𝐷11

𝑁
∑

𝑗=1
𝐶 (1)
1𝑗 𝜓𝑗 +𝐷12

𝜓1
𝑟1

= 0 at 𝑟 = 𝑟1,

𝑈𝑁 = 𝑊𝑁 = 0, 𝐷11

𝑁
∑

𝑗=1
𝐶 (1)
𝑁𝑗𝜓𝑗 +𝐷12

𝜓𝑁
𝑟𝑁

= 0 at 𝑟 = 𝑟𝑁 .

(40)

Keeping Eq. (25) in mind, the governing equations (36)–(38) and
the boundary conditions (39) and (40) can be rewritten in a matrix
form as
(

𝐊L − 𝛥𝑇𝐊T +𝐊𝑁𝐿1 +𝐊𝑁𝐿2
)

𝐝 = 𝐑, (41)

where d = {{𝑢𝑖}, {𝑤𝑖}, {𝜑𝑖}}T is the unknown displacement vector; 𝐊L,
𝐊T, 𝐊NL1, and 𝐊NL2 are 3N × 3N stiffness matrices. The elements in

L and 𝐊T are constants, while those in 𝐊NL1 and 𝐊NL2 are linear and
uadratic functions, respectively, of the displacement vector d. R is a
olumn vector resulting from the temperature rise 𝛥T and geometric
mperfection 𝑊 ∗.
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Table 2
Dimensionless postbuckling deflections 𝑊m/R of fully clamped imperfect X-GPLRC
annular plates with varying numbers of grid points (𝑊GPL = 1.0%, 𝑅b∕𝑅a = 0.2

a∕ℎ = 30, 𝐴0 = 0.1, Δ 𝑇 = 80 K).
N Imperfection mode

G1 G2 G3 G4 L1 L2 L3 L4

9 0.547 0.942 −1.471 1.825 0.711 0.767 0.826 0.785
21 0.545 0.807 −0.379 0.300 0.477 0.429 0.371 0.514
33 0.548 0.811 −0.379 0.280 0.465 0.399 0.278 0.184
45 0.550 0.814 −0.380 0.280 0.466 0.400 0.274 0.162
57 0.550 0.815 −0.379 0.280 0.467 0.400 0.275 0.161
69 0.550 0.814 −0.380 0.280 0.467 0.400 0.275 0.161

For the perfect annular plate, R and 𝑊 ∗ related terms vanish
and Eq. (41) reduces to a nonlinear eigenvalue problem, from which
the thermal postbuckling equilibrium path can be traced by a direct
iteration procedure. By neglecting the nonlinear matrices 𝐊NL1 and
𝐊NL2, the critical buckling temperature rise can be obtained through
a standard eigenvalue algorithm as well. For the imperfect annular
plate, R is nonzero and the bifurcation buckling does not exist. In this
case, the postbuckling load–deflection curve can be determined by the
modified Newton–Raphson procedure as detailed by Zou and Lam [41].

3. Numerical results and discussion

In what follows, the FG-GPLRC annular plates of thickness ℎ = 0.01
m and layer number 𝑁L = 10 are considered, and the annular plates are
a mixture of epoxy and GPLs with material properties: 𝐸m = 3.0 GPa,
𝜌m = 1200 kg/m3, 𝜈m = 0.34, 𝛼m = 6.0 × 10−5/K; 𝐸GPL = 1.01 TPa,
𝜌GPL = 1062.5 kg/m3, 𝜈GPL = 0.186, 𝛼GPL = 5.0 × 10−6/K, 𝑑GPL = 1𝜇m,
𝑡GPL = 1 nm. Numerical results of axisymmetric thermal postbuckling
are presented for both perfect and imperfect FG-GPLRC annular plates
to highlight the influences of various geometric imperfections. Unless
otherwise specified, the imperfection parameters for L1-mode are a =
15, b = 1, and c = 0.5. Thermal buckling results of perfect annular
plates are also provided as a subset problem.

3.1. Convergence and validation

Convergence and validation studies are first conducted to ensure the
accuracy of the present formulation and solution procedure. Table 2
tabulates the dimensionless postbuckling deflections of fully clamped
imperfect X-GPLRC annular plates with varying numbers of grid points
at the temperature rise 𝛥𝑇 = 80 K. 𝑊m/R denotes the maximum di-
mensionless deflection. It is found that the solutions become convergent
when the number of grid points is increased to 57. Hence, 𝑁 = 57 are
used in all the following examples.

Thermal buckling temperature parameters of simply supported
isotropic homogeneous annular plates are calculated and compared in
Table 3 with those of Wang et al. [42] and Sepahi et al. [43]. Three
different inner-to-outer radius ratios (𝑅b∕𝑅a = 0.2, 0.4, 0.6) and radius-
o-thickness ratios (𝑅a∕ℎ = 5, 10, 20) are considered in this example.

As can be seen, our results agree very well with those in the literature.
As there are no suitable results on thermal postbuckling of imperfect

annular plates for comparison, the present results are validated against
the finite element results obtained by using ABAQUS. To begin with,
the imperfect annular plate model is created in Solidworks and then is
imported into ABAQUS. Subsequently, the annular plate is divided into
ten layers with different material properties by the ‘‘create composite
layup’’ option and meshed with eight-node quadratic reduced integra-
tion shell (S8R) elements with controlled size. At last, the ‘‘Static, Risk’’
solver is adopted to obtain the thermal postbuckling equilibrium path.
Fig. 3 compares thermal postbuckling results obtained by the GDQ
method and ABAQUS for globally imperfect X-GPLRC annular plates.
Two boundary conditions, i.e., H-H and C-C, are taken into account.

The comparison study shows that the present results are in excellent n

6

Fig. 3. Comparison of thermal postbuckling equilibrium paths for imperfect X-GPLRC
annular plates.

agreement with those obtained by ABAQUS, and both H-H and C-C
imperfect annular plates possess axisymmetric thermal postbuckling
shapes.

3.2. Thermal buckling

This section investigates the influences of GPL parameters (distri-
bution pattern, weight fraction and dimension), plate geometry param-
eters (radius-to-thickness ratio and inner-to-outer radius ratio) on the
thermal buckling of perfect FG-GPLRC annular plates. As the axisym-
metric problem is considered in the present study, only the H-H annular
plate which exhibits an axisymmetric buckling shape is discussed in this
section.

Table 4 lists the thermal buckling results of perfect H-H X-GPLRC
annular plates with different geometry parameters. The results obtained
by ABAQUS are given as well to further demonstrate the accuracy of
the present solution procedure. Again, a close agreement is achieved.
Both the present results and those obtained by ABAQUS show that
the buckling temperature rise grows as the inner-to-outer radius ratio
𝑅b∕𝑅a increases, but the increase percentage is hardly affected by
the radius-to-thickness ratio 𝑅a/h. On the other hand, the buckling
temperature rise significantly decreases as the radius-to-thickness ratio
increases, and the decrease percentage remains almost constant for
different inner-to-outer radius ratios. For example, thermal buckling
temperature rise is decreased by around 84% when the radius-to-
thickness ratio is increased from 20 to 50 for all values of 𝑅b∕𝑅a. In
ummary, the thick plate with a shorter span possesses a higher stiffness
nd therefore has a greater thermal buckling resistance.

Figs. 4 and 5 illustrate the effects of GPL weight fraction 𝑊GPL
nd diameter-to-thickness ratio 𝑑GPL∕𝑡GPL on the thermal buckling of
-H FG-GPLRC annular plates with different GPL distribution pat-

erns. As can be seen, the buckling temperature rise of the X-GPLRC
nnular plate grows as either the GPL concentration or the diameter-
o-thickness ratio increases, while that of the O-GPLRC annular plate
xhibits a completely opposite changing trend. However, these effects
ecome less pronounced when the values of 𝑊GPL and 𝑑GPL∕𝑡GPL are
ufficiently large. In contrast, the buckling temperature rise of the U-
PLRC annular plate keeps nearly constant. This can be explained
y Eq. (25) that greater values of 𝑊GPL and 𝑑GPL∕𝑡GPL increase both
lastic stiffness 𝑄𝑖𝑗 and thermal buckling load (NT

𝑟𝑟, 𝑁
T
𝜃𝜃), but does not
ecessarily lead to a higher buckling temperature rise.
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w

Table 3
Comparison of thermal buckling temperature parameters 𝜆T = 12(1+𝜈)𝛼Δ𝑇cr (𝑅a∕ℎ)2 for simply supported isotropic homogeneous
annular plates.

𝑅a/h
𝑅b∕𝑅a = 0.2 𝑅b∕𝑅a = 0.4 𝑅b∕𝑅a = 0.6

Present Ref. [42] Ref. [43] Present Ref. [42] Ref. [43] Present Ref. [42] Ref. [43]

20 18.543 18.542 18.547 28.634 28.633 28.642 60.164 60.187 60.199
10 17.712 17.724 17.725 26.893 26.915 26.921 53.144 53.246 53.252
5 15.030 15.070 15.070 21.636 21.706 21.709 36.235 36.433 36.437
Table 4
Thermal buckling temperature rise ΔT cr (K) of perfect H-H X-GPLRC annular plates

ith different geometry parameters (WGPL = 1.0%).

𝑅a/h Source 𝑅b∕𝑅a

0.1 0.2 0.3 0.4 0.5

20 GDQ 57.38 61.16 73.14 94.45 130.9
ABAQUS 56.97 60.86 72.80 93.91 129.9

30 GDQ 25.83 27.50 32.92 42.66 59.48
ABAQUS 25.73 27.45 32.88 42.59 59.33

40 GDQ 14.60 15.53 18.60 24.13 33.72
ABAQUS 14.56 15.51 18.58 24.08 33.63

50 GDQ 9.362 9.959 11.93 15.48 21.66
ABAQUS 9.352 9.950 11.92 15.47 21.62

Fig. 4. Effect of GPL weight fraction on thermal buckling of FG-GPLRC annular plates.

Fig. 5. Effect of GPL diameter-to-thickness ratio on thermal buckling of FG-GPLRC
annular plates.
7

Fig. 6. Effect of GPL distribution pattern on thermal postbuckling of FG-GPLRC annular
plates.

Fig. 7. Effect of GPL weight fraction on thermal postbuckling of FG-GPLRC annular
plates.

3.3. Thermal postbuckling

In this section, thermal postbuckling results, in the form of post-
buckling temperature rise 𝛥T (K) plotted versus the dimensionless
maximum deflection 𝑊m/R, are presented for imperfect FG-GPLRC
annular plates with various geometric imperfections. As the thermal
postbuckling shapes of imperfect annular plates are axisymmetric (see
Fig. 3), the axisymmetric results of their perfect counterparts are also
given as the reference to evaluate the influences of various imperfection
parameters on the thermal postbuckling.

Fig. 6 depicts the thermal postbuckling equilibrium paths of perfect
and imperfect FG-GPLRC annular plates with different GPL distribution
patterns. The global and localized imperfections (G1- and L1-modes)
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Fig. 8. Effect of half-wave number on thermal postbuckling of FG-GPLRC annular plates with (a) global and (b) localized imperfections.
re considered in this case. It shows that pattern X gives the highest
hermal postbuckling resistance, then the pattern U and O. The thermal
ostbuckling curves are weakened due to the existence of imperfec-
ions, with the influence of G1-mode being slightly obvious than that
f L1-mode.

Fig. 7 displays the effect of GPL weight fraction on the thermal
ostbuckling of X-GPLRC annular plates with a G1-mode imperfection.
he thermal postbuckling resistance of the X-GPLRC annular plate is
nhanced as the GPL concentration increases, but its sensitivity to
he imperfection is hardly affected. It is similar to the observation
n thermal buckling that the thermal postbuckling temperatures of O-
nd U-GPLRC annular plates are decreased and remain unchanged,
espectively, and thus are omitted here.

The influence of half-wave number on the thermal postbuckling of
-GPLRC annular plates is investigated in Figs. 8(a) and (b) where

he global and localized imperfections are considered, respectively.
verall, the thermal postbuckling curves of imperfect annular plates
et gradually closer to that of the perfect counterparts as the half-wave
umber grows. It is noteworthy that negative deflections occurs when
he half-wave number of global imperfections 𝑏 = 5, 9, 13, etc., which

implies that the globally imperfect annular plates are likely to deflect
towards the side with few half-waves (excluding 𝑏 = 1), as shown in
Table 1. Comparing the curves in Figs. 8(a) and (b) shows that the
thermal postbuckling curve is more sensitive to the global imperfections
than the localized ones.

Figs. 9 and 10 evaluate the effects of imperfection location and
localization degree on the thermal postbuckling of X-GPLRC plates con-
taining a L1-mode imperfection, respectively. As indicated in Table 1,
a smaller/larger value of c means that the imperfection amplitude is
closer to the inner/outer edge of the annular plate, while 𝑐 = 0.5 implies
he imperfection is symmetric about the midspan r = (𝑅a + 𝑅b)/2.
n addition, a greater value of a indicates a narrower imperfection
hape, and 𝑎 = 0 means the localized imperfection is reduced to
he global one. It is seen from Fig. 9 that the thermal postbuckling
urve is most lowered when the imperfection amplitude is located
t the midspan (𝑐 = 0.5), and negative deflection occurs when the
mperfection is close to the edges. Fig. 10 shows that the thermal
ostbuckling equilibrium path of the imperfect annular plate become
loser to that of the perfect counterpart as the localization degree
ncreases, which demonstrates that the thermal postbuckling behaviour
s less sensitive to the imperfection with a narrow shape.

Fig. 11 examines the effect of imperfection amplitude on the ther-
al postbuckling of X-GPLRC annular plates with G1- and L1-mode

mperfections. It shows that a larger imperfection amplitude leads to
lower thermal postbuckling resistance, but this influence seems to be

ess significant when the amplitude further grows.
8

Fig. 9. Effect of imperfection location on thermal postbuckling of FG-GPLRC annular
plates.

Fig. 10. Effect of imperfection localization degree on thermal postbuckling of
FG-GPLRC annular plates.
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Fig. 11. Effect of imperfection amplitude on thermal postbuckling of FG-GPLRC annular plates: (a) G1-mode; (b) L1-mode.
Fig. 12. Effect of boundary conditions on thermal postbuckling of FG-GPLRC annular
plates.

The effects of boundary conditions and geometry parameters on
the thermal postbuckling of X-GPLRC annular plates with a G1-mode
imperfection are studied in Figs. 12 and 13, respectively. It is found
that the fully clamped thick annular plate with a smaller inner-to-
outer radius ratio exhibits a higher thermal postbuckling strength.
Comparing the difference between the curves in both figures shows
that the imperfection sensitivity of thermal postbuckling is relatively
increased by using rigid end supports but is hardly affected by geometry
parameters.

It is observed in all figures that the thermal postbuckling curves of
imperfect annular plates become very close to those of their perfect
counterparts at a larger deflection, this is because with the deflection
increasing, the nonlinear stiffness associated with displacements turns
to be the main influential factor of thermal postbuckling.

4. Conclusion

This paper for the first time investigates the sensitivity of axisym-
metric thermal postbuckling of FG-GPLRC annular plates to various
geometric imperfections. A theoretical model is established within
the framework of FSDT and von Kármán geometric nonlinearity, and

an efficient numerical solution procedure is developed based on the

9

GDQ method and modified Newton–Raphson iteration technique. The
present formulations and solution procedure are verified by compar-
ing the present results with those in the literature and obtained by
ABAQUS. Tabular and graphical results are presented to examine the
influences of GPL distribution pattern, concentration and dimension,
imperfection mode, amplitude, location and localization degree, plate
geometry, as well as boundary conditions on the thermal postbuck-
ling behaviour of FG-GPLRC annular plates. The main findings are
concluded as follows:

(1) Whether the thermal buckling and postbuckling resistance of FG-
GPLRC annular plates is increased or decreased with the GPL
concentration and diameter-to-thickness ratio is dependent on
the GPL distribution pattern.

(2) The thermal postbuckling resistance of FG-GPLRC annular plates
is weakened due to the existence of geometric imperfections, and
is more reduced by the global imperfections than the localized
ones.

(3) The effect of geometric imperfections on the thermal postbuck-
ling becomes less significant as the half-wave number grows,
and the globally imperfect annular plate is inclined to deflect
towards the side with fewer half-waves.

(4) The thermal postbuckling path is most lowered when the local-
ized imperfection is symmetric about the midspan, and negative
deflections occur when the imperfection is located near the
annular plate edges.

(5) The thermal postbuckling resistance become less sensitive to
the imperfections with a narrower shape, but is considerably
reduced when the imperfection amplitude increases.

(6) The sensitivity of thermal postbuckling to geometric imper-
fections is moderately affected by boundary conditions, but is
hardly influenced by the annular plate geometry.

The theoretical model and solution procedure developed in this
paper are beneficial to accurate prediction of thermal postbuckling
of FG-GPLRC annular plates with geometric imperfections. Moreover,
the obtained results and main findings will serve to better understand
the thermal postbuckling behaviours of geometrically imperfect FG-
GPLRC annular plates and contribute to their practical design and
applications in structural engineering. On the other hand, only the
axisymmetric geometric imperfections are considered in the current
study, which restricts the present formulation and solution method to
the axisymmetric thermal buckling and postbuckling problems. With
this in mind, further researches can be carried out in the near future
by relaxing the axisymmetric assumption and considering more general
geometric imperfections with asymmetric shapes.
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Fig. 13. Effect of geometry parameters on thermal postbuckling of FG-GPLRC annular plates: (a) 𝑅b∕𝑅a; (b) 𝑅a/h.
CRediT authorship contribution statement

Helong Wu: Writing – original draft, Methodology, Funding acqui-
sition, Conceptualization. Ziqiang Zheng: Investigation, Formal analy-
sis. Jing Guo: Validation, Investigation. Long Li: Methodology, Con-
ceptualization. Yumei Bao: Writing – review & editing. Jie Yang:
Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the National Natural Science Founda-
tion of China (Grant Nos. 11902290, 51805481) and the Opening Fund
of State Key Laboratory of Nonlinear Mechanics.

References

[1] S. Zhao, Z. Zhao, Z. Yang, L. Ke, S. Kitipornchai, J. Yang, Functionally graded
graphene reinforced composite structures: A review, Eng. Struct. 210 (2020)
110339.

[2] J. Yang, H. Wu, S. Kitipornchai, Buckling and postbuckling of functionally graded
multilayer graphene platelet-reinforced composite beams, Compos. Struct. 161
(2017) 111–118.

[3] M. Song, S. Kitipornchai, J. Yang, Free and forced vibrations of function-
ally graded polymer composite plates reinforced with graphene nanoplatelets,
Compos. Struct. 159 (2017) 579–588.

[4] C. Feng, S. Kitipornchai, J. Yang, Nonlinear bending of polymer nanocomposite
beams reinforced with non-uniformly distributed graphene platelets (GPLs),
Composites B 110 (2017) 132–140.

[5] Z. Yang, Y. Huang, A. Liu, J. Fu, D. Wu, Nonlinear in-plane buckling of fixed
shallow functionally graded graphene reinforced composite arches subjected to
mechanical and thermal loading, Appl. Math. Model. 70 (2019) 315–327.

[6] Z. Yang, A. Liu, S.-K. Lai, B. Safaei, J. Lv, Y. Huang, J. Fu, Thermally induced
instability on asymmetric buckling analysis of pinned-fixed FG–GPLRC arches,
Eng. Struct. 250 (2022) 113243.

[7] S. Kitipornchai, D. Chen, J. Yang, Free vibration and elastic buckling of
functionally graded porous beams reinforced by graphene platelets, Mater. Des.

116 (2017) 656–665.

10
[8] H.-S. Shen, F. Lin, Y. Xiang, Nonlinear bending and thermal postbuckling of
functionally graded graphene-reinforced composite laminated beams resting on
elastic foundations, Eng. Struct. 140 (2017) 89–97.

[9] H. Wu, J. Yang, S. Kitipornchai, Dynamic instability of functionally graded
multilayer graphene nanocomposite beams in thermal environment, Compos.
Struct. 162 (2017) 244–254.

[10] Z. Zhang, Y. Li, H. Wu, H. Zhang, H. Wu, S. Jiang, G. Chai, Mechanical analysis
of functionally graded graphene oxide-reinforced composite beams based on the
first-order shear deformation theory, Mech. Adv. Mater. Struct. 27 (1) (2020)
3–11.

[11] R. Gholami, R. Ansari, Large deflection geometrically nonlinear analysis of
functionally graded multilayer graphene platelet-reinforced polymer composite
rectangular plates, Compos. Struct. 180 (2017) 760–771.

[12] H. Wu, J. Yang, S. Kitipornchai, Parametric instability of thermo-mechanically
loaded functionally graded graphene reinforced nanocomposite plates, Int. J.
Mech. Sci. 135 (2018) 431–440.

[13] K. Gao, W. Gao, D. Chen, J. Yang, Nonlinear free vibration of functionally
graded graphene platelets reinforced porous nanocomposite plates resting on
elastic foundation, Compos. Struct. 204 (2018) 831–846.

[14] B. Saiah, M. Bachene, M. Guemana, Y. Chiker, B. Attaf, On the free vibration
behavior of nanocomposite laminated plates contained piece-wise functionally
graded graphene-reinforced composite plies, Eng. Struct. 253 (2022) 113784.

[15] D. Liu, S. Kitipornchai, W. Chen, J. Yang, Three-dimensional buckling and free
vibration analyses of initially stressed functionally graded graphene reinforced
composite cylindrical shell, Compos. Struct. 189 (2018) 560–569.

[16] M. Sobhy, Magneto-electro-thermal bending of FG-graphene reinforced polymer
doubly-curved shallow shells with piezoelectromagnetic faces, Compos. Struct.
(2018).

[17] Z. Qin, S. Zhao, X. Pang, B. Safaei, F. Chu, A unified solution for vibration
analysis of laminated functionally graded shallow shells reinforced by graphene
with general boundary conditions, Int. J. Mech. Sci. 170 (2020) 105341.

[18] M.T. Song, J. Yang, S. Kitipornchai, W.D. Zhu, Buckling and postbuckling of biax-
ially compressed functionally graded multilayer graphene nanoplatelet-reinforced
polymer composite plates, Int. J. Mech. Sci. 131 (2017) 345–355.

[19] H. Wu, S. Kitipornchai, J. Yang, Thermal buckling and postbuckling of
functionally graded graphene nanocomposite plates, Mater. Des. 132 (2017)
430–441.

[20] V. Nguyen Van Do, C.-H. Lee, Isogeometric analysis for buckling and postbuck-
ling of graphene platelet reinforced composite plates in thermal environments,
Eng. Struct. 244 (2021) 112746.

[21] M. Shakouri, A. Mohseni, Buckling analysis of rectangular sandwich plates with
functionally graded graphene-reinforced face layers, J. Braz. Soc. Mech. Sci. 42
(10) (2020) 540.

[22] H.-S. Shen, Y. Xiang, F. Lin, D. Hui, Buckling and postbuckling of functionally
graded graphene-reinforced composite laminated plates in thermal environments,
Composites B 119 (2017) 67–78.

[23] H.-S. Shen, Y. Xiang, F. Lin, Thermal buckling and postbuckling of function-
ally graded graphene-reinforced composite laminated plates resting on elastic
foundations, Thin-Walled Struct. 118 (2017) 229–237.

[24] Y. Kiani, NURBS-based isogeometric thermal postbuckling analysis of temper-
ature dependent graphene reinforced composite laminated plates, Thin-Walled
Struct. 125 (2018) 211–219.

http://refhub.elsevier.com/S0263-8231(23)00072-1/sb1
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb1
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb1
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb1
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb1
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb2
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb2
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb2
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb2
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb2
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb3
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb3
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb3
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb3
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb3
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb4
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb4
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb4
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb4
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb4
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb5
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb5
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb5
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb5
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb5
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb6
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb6
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb6
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb6
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb6
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb7
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb7
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb7
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb7
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb7
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb8
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb8
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb8
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb8
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb8
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb9
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb9
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb9
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb9
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb9
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb10
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb10
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb10
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb10
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb10
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb10
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb10
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb11
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb11
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb11
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb11
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb11
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb12
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb12
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb12
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb12
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb12
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb13
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb13
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb13
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb13
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb13
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb14
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb14
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb14
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb14
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb14
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb15
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb15
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb15
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb15
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb15
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb16
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb16
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb16
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb16
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb16
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb17
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb17
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb17
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb17
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb17
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb18
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb18
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb18
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb18
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb18
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb19
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb19
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb19
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb19
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb19
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb20
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb20
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb20
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb20
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb20
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb21
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb21
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb21
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb21
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb21
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb22
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb22
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb22
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb22
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb22
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb23
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb23
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb23
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb23
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb23
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb24
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb24
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb24
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb24
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb24


H. Wu, Z. Zheng, J. Guo et al. Thin-Walled Structures 185 (2023) 110594
[25] B. Yang, S. Kitipornchai, Y.-F. Yang, J. Yang, 3D thermo-mechanical bending
solution of functionally graded graphene reinforced circular and annular plates,
Appl. Math. Model. 49 (2017) 69–86.

[26] D. Liu, Z. Li, S. Kitipornchai, J. Yang, Three-dimensional free vibration
and bending analyses of functionally graded graphene nanoplatelets-reinforced
nanocomposite annular plates, Compos. Struct. 229 (2019) 111453.

[27] H. Wu, J. Zhu, S. Kitipornchai, Q. Wang, L.-L. Ke, J. Yang, Large amplitude
vibration of functionally graded graphene nanocomposite annular plates in
thermal environments, Compos. Struct. 239 (2020) 112047.

[28] P. Malekzadeh, A. Setoodeh, M. Shojaee, Vibration of FG–GPLs eccentric an-
nular plates embedded in piezoelectric layers using a transformed differential
quadrature method, Comput. Method Appl. M 340 (2018) 451–479.

[29] Y. Yang, B. Chen, W. Lin, Y. Li, Y. Dong, Vibration and symmetric thermal
buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers
rested on foundation, Aerosp. Sci. Technol. 110 (2021) 106495.

[30] J. Zheng, C. Zhang, A. Khan, T.A. Sebaey, N. Farouk, On the asymmetric thermal
stability of FGM annular plates reinforced with graphene nanoplatelets, Eng.
Comput. (2021).

[31] Y. Yang, Q. Luo, J.-a. Li, Y. Dong, B. Chen, Y. Li, Symmetric and asymmetric
thermo-induced buckling and postbuckling of rotating GPLRC annular plates
rested on elastic foundation, Eng. Struct. 259 (2022) 114110.

[32] Z.-M. Li, P. Qiao, Buckling and postbuckling behavior of shear deformable
anisotropic laminated beams with initial geometric imperfections subjected to
axial compression, Eng. Struct. 85 (2015) 277–292.

[33] H.L. Wu, J. Yang, S. Kitipornchai, Nonlinear vibration of functionally graded
carbon nanotube-reinforced composite beams with geometric imperfections,
Composites B 90 (2016) 86–96.
11
[34] H. Wu, S. Kitipornchai, J. Yang, Free vibration of thermo-electro-mechanically
postbuckled FG–CNTRC beams with geometric imperfections, Steel Compos Struct
29 (3) (2018) 319–332.

[35] H. Wu, Y. Li, L. Li, S. Kitipornchai, L. Wang, J. Yang, Free vibration analysis
of functionally graded graphene nanocomposite beams partially in contact with
fluid, Compos. Struct. 291 (2022) 115609.

[36] J. Halpin, J. Kardos, The Halpin–Tsai equations: A review, Polym. Eng. Sci. 16
(5) (1976) 344–352.

[37] M.A. Van Es, Polymer-Clay Nanocomposites: The Importance of Particle
Dimensions, Delft University of Technology, 2001.

[38] C. Shu, Generalized Differential-Integral Quadrature and Application to the
Simulation of Incompressible Viscous Flows Including Parallel Computation,
University of Glasgow, United Kingdom, 1991.

[39] C. Shu, B.E. Richards, Application of generalized differential quadrature to solve
two-dimensional incompressible Navier–Stokes equations, Int. J. Numer. Methods
Fluids 15 (7) (1992) 791–798.

[40] C. Shu, Y. Chew, Application of multi-domain GDQ method to analysis of
waveguides with rectangular boundaries, Prog. Electromagn. Res. 21 (1999)
1–19.

[41] G. Zou, S. Lam, Post-buckling analysis of imperfect laminates using finite strips
based on a higher-order plate theory, Int. J. Numer. Methods Eng. 56 (15) (2003)
2265–2278.

[42] C.M. Wang, Y. Xiang, S. Kitipornchai, K.M. Liew, Buckling solutions for Mindlin
plates of various shapes, Eng. Struct. 16 (2) (1994) 119–127.

[43] O. Sepahi, M.R. Forouzan, P. Malekzadeh, Thermal buckling and postbuck-
ling analysis of functionally graded annular plates with temperature-dependent
material properties, Mater. Des. 32 (7) (2011) 4030–4041.

http://refhub.elsevier.com/S0263-8231(23)00072-1/sb25
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb25
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb25
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb25
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb25
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb26
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb26
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb26
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb26
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb26
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb27
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb27
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb27
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb27
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb27
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb28
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb28
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb28
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb28
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb28
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb29
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb29
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb29
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb29
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb29
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb30
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb30
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb30
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb30
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb30
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb31
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb31
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb31
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb31
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb31
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb32
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb32
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb32
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb32
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb32
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb33
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb33
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb33
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb33
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb33
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb34
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb34
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb34
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb34
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb34
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb35
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb35
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb35
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb35
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb35
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb36
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb36
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb36
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb37
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb37
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb37
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb38
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb38
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb38
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb38
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb38
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb39
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb39
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb39
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb39
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb39
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb40
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb40
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb40
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb40
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb40
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb41
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb41
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb41
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb41
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb41
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb42
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb42
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb42
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb43
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb43
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb43
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb43
http://refhub.elsevier.com/S0263-8231(23)00072-1/sb43

	Axisymmetric thermal postbuckling of functionally graded graphene nanocomposite annular plates with various geometric imperfections 
	Introduction
	Theoretical formulation
	FG-GPLRC annular plate
	Effective material properties
	Governing equations
	Solution procedure

	Numerical results and discussion
	Convergence and validation
	Thermal buckling
	Thermal postbuckling

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


