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Abstract: Gaining insight into the in situ receptor–ligand binding is pivotal for revealing the molecular
mechanisms underlying the physiological and pathological processes and will contribute to drug
discovery and biomedical application. An important issue involved is how the receptor–ligand
binding responds to mechanical stimuli. This review aims to provide an overview of the current
understanding of the effect of several representative mechanical factors, such as tension, shear stress,
stretch, compression, and substrate stiffness on receptor–ligand binding, wherein the biomedical
implications are focused. In addition, we highlight the importance of synergistic development of
experimental and computational methods for fully understanding the in situ receptor–ligand binding,
and further studies should focus on the coupling effects of these mechanical factors.

Keywords: receptor–ligand binding; tension; shear stress; stretch; compression; substrate stiffness;
biomechanics; mechanotransduction

1. Introduction

The specific binding of receptor and ligand anchored on two opposing surfaces
provides the molecular basis for the cell to sense, respond, and adapt to environmen-
tal cues [1], and is fundamentally important for various cellular processes such as immune
response [2,3] and cancer metastasis [4–6]. Here, the ligand can be a small molecule or
protein. Gaining insight into the two-dimensional receptor–ligand binding will contribute
to uncovering numerous physiological and pathological mechanisms [7,8], as well as
providing a guide for drug design [9–11].

In vivo, cells experience a diverse array of mechanical cues, such as tension, shear
stress, stretching, compression, and substrate stiffness [12–17]. It is widely recognized
that mechanical factors are essential regulators of various cellular processes, including
cell adhesion, migration, growth, and differentiation [18–23], and thus are implicated in
regulating relevant physiological and pathological activities [24–26]. The ever-developing
advancement in biomechanical tools and methods further enables us to study the response
of receptor–ligand binding to the mechanical stimuli at the molecular level [27–32], and
new insights into the role of mechanical factors in the in situ receptor–ligand interactions
are rapidly emerging [33,34]. For example, except for the ideal bonds that are insensitive
to mechanical stress, two modes of mechanical regulation of binding have been proposed.
Studies using the flow chamber clarified the “slip bond” [35,36], in which the lifetime of
the receptor–ligand bond decreases with force [37]. Subsequently, the “catch bond” was
observed with atomic force microscopy (AFM) and flow chamber experiments, showing
that the bond lifetime can be increased under moderate forces in specific receptor–ligand
bindings [38].

These results no doubt extend and deepen our understanding of receptor–ligand
binding. In this review, we summarize the advances in the effects of mechanical factors on
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receptor–ligand binding (Figure 1), focusing on five types of mechanical stimuli: (1) tension,
(2) shear stress, (3) stretch, (4) compression, and (5) substrate stiffness. Further, we highlight
the biomedical implications of these mechanisms and discuss possible future research
directions as well as potential new therapeutic approaches.
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2. Characterizing and Measuring Receptor–Ligand Binding

The kinetics of receptor–ligand binding is characterized by the parameters involving
kinetic rates and binding affinity. As for kinetic rates, the on-rate kon and off-rate koff
measure the velocity of bond formation and dissociation, respectively. The binding affinity
Ka = kon/koff quantifies the binding strength of receptors and ligands [28]. In addition, the
receptor–ligand bond lifetime τ is taken to be the inverse of the off-rate 1/koff. In contrast to
the three-dimensional receptor–ligand binding in solution, the in situ binding of anchored
receptor and ligand occurs in two dimensions [39–41], leading to the difference in the
dimension of binding affinity and on-rate.

Many early experimental studies aiming at measuring the receptor–ligand binding
kinetics are performed using surface plasmon resonance (SPR), which provides much en-
lightening information [42]. Other complementary techniques including bioluminescence
resonance energy transfer (BRET) [43] and fluorescence cross-correlation spectroscopy
(FCCS) [44] have also been developed to study the receptor–ligand interactions. How-
ever, these measurements cannot accurately reflect the in situ binding kinetics because
of the difference in the measuring environment [45,46]. The development of experimen-
tal methods and measuring techniques has greatly advanced our understanding of in
situ receptor–ligand binding [47,48]. For example, fluorescence resonance energy transfer
(FRET) has been widely used as a representative fluorescence-based protocol, by which
the receptor–ligand association and dissociation kinetics, as well as the binding affinity,
can be directly determined by monitoring the FRET signal and fluorescent intensities [49].
Using the FRET assay, Schütz et al. found a 4–12-fold and 100-fold increase in the kinetic
off-rate and affinity for the binding of T cell receptor (TCR) and peptide major histocompat-
ibility complex (pMHC), respectively, as compared with that measured in solution using
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SPR [50]. Meanwhile, mechanical-based methods have also been developed to investi-
gate the two-dimensional receptor–ligand binding [51–56]. For example, a micropipette
adhesion frequency assay is utilized to measure the binding kinetic parameters by fitting
the experimental data of cell–cell adhesion probability with the reaction kinetics equation,
wherein the breaking event of receptor and ligand is identified by monitoring the deforma-
tion of red blood cells [57–59]. Another representative mechanical-based method is the flow
chamber assay, which has the advantage of higher throughput and is suitable for studying
the response of receptor–ligand binding kinetics to the shear stress [60,61]. Existing results
indicate that the kinetic parameters measured by fluorescence-based and mechanical-based
methods can differ by several orders of magnitude [62–64]. This intriguing unsolved issue
motivates further investigations.

3. Tension

The receptor–ligand bonds often endure tensile forces in physiological environments.
The tensile force mainly arises from the drag acting on the receptor–ligand bond due to
the relative movement between the receptor and ligand molecule. This occurs in scenarios
such as adjacent cells tending to be separated in response to external force [65–68]. Based
on the response of receptor–ligand binding to tensile force, different types of bonds are
identified as mentioned before.

The first type is the ideal bond, which is insensitive to tensile force. Although the ideal
bonds have been proposed to play a role in enabling the receptor–ligand pair to withstand
tensile force, they have not yet been observed [69]. Since Bell proposed the “slip bond”
in 1978, it has been widely accepted that tensile force increases the detachment rates of
biological adhesive bonds [37]. For instance, by using an optical-trap-based electronic force
clamp, it was found that constant tensile stress could accelerate the dissociation of integrin
αIIbβ3-fibrinogen [70]. Consistent with the prediction of the classical slip bond model, the
average bond lifetimes exponentially decrease with increasing tensile force (Figure 2B) [70].
However, there is growing evidence that many adhesion receptors, such as selectins,
counter-intuitively act in “catch bond” behavior when subjected to tensile force [38,71].
Fan et al., employing micropipette and biomembrane force probe, found that tensile force
selectively prolonged the interaction lifetimes of stimulatory immunoreceptor NKG2D (nat-
ural killer group 2, member D) with certain ligands, the varying degrees of which depend
on the ligand conformational changes induced by the mechanical force. More specifically,
they found that tensile force induces the formation of additional hydrogen bonds at the
binding interface between NKG2D and its ligand MICA (MHC class I chain-related protein
A) and leads to rotational conformational changes in MICA. These findings suggest a
mechano-chemical coupling mechanism that enables NKG2D to activate different immune
cells in a discriminating manner for proper immune responses (Figure 2C) [72]. This catch
bond behavior has also been found in the integrin–RGD (Arg-Gly-Asp) interaction. In-
tegrin has three conformational states: bent-closed and extended-closed conformations
with low affinity, and extended-open conformation with high affinity [73]. The tensile force
applied to integrin suppresses its conformation fluctuations and stabilizes its active state,
leading to enhanced binding affinity and prolonged bond lifetime [74,75]. In addition,
Strohmeyer et al. observed a unique biphasic strengthening of binding between α5β1
integrin and fibronectin in the focal adhesion of fibroblasts in response to tensile force,
where integrin-mediated cell adhesion is steeply strengthened in less than 0.5 s in the
first phase, while the strengthening becomes less steep once the mechanical load exceeds
a certain threshold in the second phase [76]. Two-pathway models are also proposed,
wherein the receptor–ligand bond lifetime increases with tensile force as catch bond mode
until a maximum value of tensile force is reached, and then the catch bond transits into
classic slip bond when tensile force is further increased (that is, “catch-slip” bonds) [77,78].
For instance, Zhang et al. demonstrated a catch-slip bond transition at a force threshold
in the interaction between β3 integrin and Kindlin2 [79]. Furthermore, a catch-slip bond
transition of the interaction between leukocyte integrin macrophage-1 antigen (Mac-1) and
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platelet glycoprotein Ibα (GPIbα) was predicted through the dissociation probability, which
provides insights into the platelet-leukocyte interactions during hemostasis and inflamma-
tory responses under mechanical stress [80]. Interestingly, molecules of the same kind but
with different conformations may respond differently to tensile stress. For instance, Rakshit
et al. employed single molecule force measurements with AFM to investigate the effect of
tensile force on the binding of cadherins, key molecules for maintaining tissue integrity, in
two distinct conformations: X-dimer and strand-swap dimer. Results demonstrated that
X-dimers formed catch-slip bonds, while strand-swap dimers formed slip bonds, which
may attribute to the difference in the on-rate for the two dimers [69].

Meanwhile, researchers have described a phenomenon that the history of force appli-
cation affects the strength of the receptor–ligand bond, which accumulates over repeated
cycles [81]. This phenomenon is termed “cyclic mechanical reinforcement”, which occurs in
bonds under the influence of cyclic tensile force. It has been demonstrated that cyclic tensile
forces can induce a switch in the binding of fibronectin and integrin α5β1 from a short-lived
state with a lifetime of 1 s to a long-lived state with a lifetime of 100 s. In comparison with
traditional catch bonds, cycle mechanical reinforcement significantly prolongs the bond
lifetime and can accumulate and persist after force removal [81]. To explain the mechanism
of the switch, a three-state model has been proposed, where the receptor–ligand binding
transmits among the short-lived, intermediate, and long-lived states, regulated by both
loading and unloading [82]. It is noteworthy that the history of force application should
also be carefully taken into account for cyclic mechanical reinforcement. Marshall et al.
reported that the kinetic off-rate may rely on both the entire history of force application and
the instantaneous value of force [83]. In addition, using a nanometer-scale mathematical
model, Allard et al. found that the time-varying tension on the receptor–ligand bond can
lead to sensitivity in bond lifetime [84].
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Figure 2. Effect of tensile force on receptor–ligand binding. (A) Bond lifetime decreases for slip
bonds but increases for catch bonds under tension. Reprinted with permission from Changede
and Sheetz [85]. (B) αIIbβ3-fibrinogen complexes display slip-bond behavior as tensile force in-
creases, as measured with an optical-trap-based electronic force clamp. Adapted with permission
from Litvinov et al. [70]. © 2011 Biophysical Society. Published by Elsevier Inc. (C) Bond lifetime
of NKG2D and its different ligands measured by biomembrane force probe assay. Particularly,
NKG2D-MICA binding exhibits catch-slip bond behavior with increasing tensile force. Adapted with
permission from Fan et al. [72]. © 2021 the authors published under the terms of the CC BY NC ND
4.0 license.

In summary, the receptor–ligand bonds can respond differently to tensile force (Table 1),
exhibiting “slip bond”, “catch bond”, or “catch-slip bond” behavior (Figure 2A), depending
strongly on the type and conformation of the binding molecules. The phenomenon of cyclic
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mechanical reinforcement further highlights the important role of cyclic tensile force in the
receptor–ligand binding.

Table 1. Relevant studies regarding the effect of tensile force on receptor–ligand binding.

Biomedical Implications Type Molecules Tensile Force Author [Reference]

Thrombosis Slip bond Integrin αIIbβ3 and fibrinogen ~5–50 pN Litvinov et al. [70]
Immune responses

Catch bond
NKG2D and different ligands 5, 10, and 15 pN Fan et al. [72]

Thrombosis Integrin α5β1 and fibronectin — Strohmeyer et al. [76]
Tissue formation and

wound healing Catch-slip bond
E-cadherin 0–50 pN; 0–70 pN Rakshit et al. [69]

Immune responses β3 integrin and Kindlin2 0, 20, 40, and 60 pN Zhang et al. [79]
Inflammatory response

and hemostasis Mac-1and GPIbα 0, 25, 50, and 75 pN Jiang et al. [80]

Cell motility Cyclic mechanical
reinforcement

Integrin α5β1 and fibronectin Peak force < 50 pN Kong et al. [81]
— Integrin α5β1 and fibronectin Peak force < 40 pN Li et al. [82]

4. Shear Stress

Receptor–ligand binding is involved in a variety of physiological and pathological
processes (Table 2) including, for example, thrombosis, cancer metastasis, and inflammation
through mediating cell adhesion, which often endures dynamic shear stress stimulation,
particularly in the vasculature [86].

Take for example thrombosis, which strongly depends on the erythrocyte-platelet,
endothelial cell-platelet, and endothelial cell-matrix adhesion mediated via the specific
receptor–ligand binding [87–89]. Existing results suggest that shear stress functions as
a double-edged sword for blood clotting. On the one hand, the shear stress facilitates
the breakage of receptor–ligand bonds. Using force spectroscopy assays, Passam et al.
demonstrated that fluid shear stress enhances the fibrinogen release from integrin on the
platelet surface by breaking disulfide bonds, which is detrimental to platelet adhesion
and blood clotting [90]. Similarly, Wacker et al. found that fluid shear stress decreases the
endothelial cell adhesion on the RGD peptides-functionalized hydrogel by regulating the
integrin–RGD interaction [91]. On the other hand, shear stress can enhance the receptor–
ligand binding by, for example, inducing the protein conformational change. It has been
revealed that the von Willebrand factor (VWF), necessary for the platelet aggregation at
the site of vascular injury, can adopt an elongated conformation at higher shear rates and
expose more binding sites, which contributes to the platelet adhesion and the platelet plug
formation (Figure 3A) [92–94]. In addition, the formation of disulfide bonds on VWF is
shown to be promoted in response to shear stress, thereby further enhancing the binding of
VWF to platelets [95].

In the process of hematogenous or lymphatic metastasis, the shear stress generated by
the bloodstream or lymph flow has also been proven to play an important role in affecting
the binding of receptors on tumor cell membranes with their ligands, which mediates
the adhesion of tumor cells to tissues such as blood vessels and lymph nodes [96–99]. It
has been shown that a certain range of shear stress is required for the adhesion of cancer
cells during metastasis. For example, Gomes et al. found that breast cancer cells adhere
most to vein endothelial cells under low shear stress compared with static conditions [100].
Spencer et al. observed an increase in the adhesion of breast cancer cells to collagens
and fibronectin at moderate shear stress levels compared with static conditions or other
shear levels [101]. Similar results are obtained for the β1 integrin-mediated binding of
cancer cells to laminin, an extracellular matrix (ECM) component within the lymph node
parenchyma, in response to shear stress induced by lymphodynamic flow [102]. Addition-
ally, hemodynamic shear stress can also regulate receptor–ligand binding and cancer cell
adhesion by affecting glycocalyx shedding and remodeling. As an exterior cell surface
layer, the glycocalyx is thicker than most adhesion receptors and thus prevents the specific
binding of receptors and ligands. Therefore, the glycocalyx is often considered a barrier
to cancer cell adhesion [103,104]. Experimental results suggest that shear stress stimu-
lus can alter the molecular composition and thickness of the glycocalyx, allowing more
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available receptors to bind with adhesion ligands on cancer cells [99,105–108]. Moreover,
the receptor–ligand binding shows a shearing direction-dependent manner, because the
shear stress-induced force acting on the receptor–ligand bond can regulate the, for example,
protein conformational change, depending on the applied force value and direction [101].

In the context of the inflammatory response, the tethering and rolling of leukocytes on
vascular surfaces are highly regulated by shear stress through the interactions of adhesion
proteins such as selectins with their ligands [109,110]. Selectin–ligand bonds have high
binding strength, which contributes to the initial tethering to the vessel wall. Meanwhile,
the fast on- and off-rates of the selectin–ligand bonds facilitate rolling when responding
to hydrodynamic drag. Early flow chamber experiments demonstrated that the off-rates
of L–selectin interactions with ligands such as P-selectin glycoprotein ligand-1 (PSGL-1)
increased with wall shear stress [35,111,112]. However, subsequent evidence suggests
that the off-rate of L-selectin ligand bindings decreases with increasing the applied force
acting on the receptor–ligand bond at low shear stress (that is, catch-bond behavior), but
increases with increasing applied force at high shear stress (that is, slip bond behavior)
(Figure 3B) [113]. Correspondingly, using techniques such as AFM, researchers have ob-
served a shear threshold effect, which indicates that cell rolling requires a certain level
of shearing [113–116]. The responses of on-rate and off-rate to the dynamic shearing are
thought to be responsible for the shear threshold phenomenon. A minimum shear is re-
quired to support rolling and to enhance the overall on-rate. When the shear rate reaches the
minimum threshold level, selectin receptor–ligand binding exhibits “catch bond” behavior,
and the binding is continually strengthened as the applied force increases. As the applied
force increases further, however, receptor–ligand binding is converted to “slip bond” behav-
ior, which means that higher shear stress accelerates bond dissociation [113,117,118]. The
shear threshold effect is believed to arise from a delicate balance between the adhesive force
of receptor–ligand binding and the dispersive hydrodynamic force. To further interpret the
phenomenon, researchers have analyzed the structure of the interacting molecules. Their
results showed that L-selectin can present an extended conformation with high affinity in
the presence of applied force, in comparison with a bent conformation with low affinity in
the absence of applied force, due to its flexible hinge region [119].

Overall, shear stress indeed plays a critical role in regulating receptor–ligand binding
and cell adhesion-related physiological and pathological functions. Whether the effect of
shear stress is positive or negative depends on several factors, such as the direction and
intensity of the shear stress, the type of proteins involved, and the specific cell types affected.
In addition, the shear stress should be controlled within a reasonable range because high
shear stress can reduce cell viability [120,121].
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Sarangapani et al. [113].
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Table 2. Relevant studies regarding the effect of shear stress on receptor–ligand binding.

Biomedical Implications Molecules Shear Stress Author [Reference]

Thrombosis

Integrin αIIbβ3 and intercellular
adhesion molecule-4 (ICAM-4)

Mainly occurs at shear rate below
300 s−1 Du et al. [87]

Integrin αIIbβ3 and fibrinogen 1000 s−1 and 3000 s−1 Passam et al. [90]
Integrin and RGD 20 dyn/cm2 Wacker et al. [91]
VWF and collagen 100–105 s−1 Schneider et al. [92]
VWF and collagen — Wei et al. [94]
VWF and GPIbα 50 and 100 dyn/cm2 Choi et al. [95]

Cancer metastasis

Collagens, vitronectin, and
fibronectin 0.5, 1, 2, and 3 dyn/cm2 Spencer and Baker [101]

β1 integrins and laminin 0.07 dyn/cm2 Fennewald et al. [102]
L-selectin and nucleolin 0.07 dyn/cm2 (~8 s−1) Goldson et al. [122]

Inflammatory response

L-selectin and carbohydrate
ligand 0.3–2 dyn/cm2 Alon et al. [35]

L-selectin and PSGL-1 0.5–2 dyn/cm2 Ramachandran et al. [111]
L-selectin and peripheral node

addressin (PNAd) 0.5–2 dyn/cm2 Smith et al. [112]

L-selectin and PSGL-1 0.15–1.5 dyn/cm2 Sarangapani et al. [113]
L-selectin and PSGL-1 0–300 s−1 Caputo et al. [114]
L-selectin and PNAd 0–10 dyn/cm2 Finger et al. [115]

L-selectin and PSGL-1 101–104 s−1 Yago et al. [116]
L-selectin and PNAd 0.4–4.0 dyn/cm2 Lawrence et al. [118]

5. Stretch

Mechanical stretch, resulting from, for example, the pulsatile nature of blood flow and
ECM perturbations, has long been recognized as a fundamental force stimulus affecting
cellular functions [123–125]. As a typical example, the mechanical stretch has been proven
to play a critical role in modulating cell reorientation, wherein cell bodies realign nearly
perpendicular to the stretching direction [126–131]. The development of methods and
technologies enables researchers to further study the molecular mechanism underlying
the effect of the mechanical stretch on cellular functions (Table 3). For example, to further
understand the stretch-regulated cell reorientation, many studies have focused on the
receptor–ligand binding for cells cultured on, for example, a cyclically stretched substrate,
mimicking the mechanical stretch. Qian et al. developed a mechanochemical modeling
framework to investigate the reorientation of spindle-shaped cells under cyclic stretch
by considering the dynamic evolutions of adhesive receptor–ligand bond clusters. They
demonstrated that the final alignment of cells under stretching is affected by the balance
between the growth and disruption of cell-substrate adhesion regulated by receptor–ligand
binding in a stretching frequency and amplitude-dependent manner [132]. Kong et al.
developed a focal adhesion model at the molecular level, which takes into account the
contribution of receptor–ligand binding. Their results indicated that mechanical stretch at a
frequency beyond a threshold value would cause the disruption of the receptor–ligand bond
cluster due to the short contact time between receptors and ligands, or the deformation
of the receptor–ligand bonds in the adhesion cluster induced by the stress fiber stiffening
(Figure 4A) [133]. Further, in view of the important role of the catch bond (for example,
integrin–ligand bond) in determining the strength of focal adhesion connecting the cell and
the substrate [134], Chen et al. have shown that the force within the catch bond undergoes
periodic oscillations during the cyclic stretch, and the amplitude of this force oscillation
increases with the stretching amplitude and frequency. According to their analysis, a larger
amplitude of force variation within the catch bonds reduces the bond lifetime, which in
turn destabilizes the focal adhesions. This would lead to the slide or relocation of focal
adhesions and then cause the associated stress fibers to contract and rotate to the most stable
configurations (Figure 4B) [135]. It is hypothesized that cells tend to orient themselves
in the direction where the maximum bond densities are achieved to realize the strongest
cell-substrate attachment [132].
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Table 3. Relevant studies regarding the effect of stretch on receptor–ligand binding.

Biomedical
Implications Molecules Stretching Frequency and

Magnitude Author [Reference]

Cell reorientation

Adhesive receptors
and ligands

10% stretch at 0.001, 0.05, 0.2,
and 1 Hz; 1%, 2%, 4%, and 10%

stretch at 1 Hz
Qian et al. [132]

Integrin 0.01, 0.1, 1, 2, and 10 Hz Kong et al. [133]
Integrin 1–9% stretch; 0.1–10 Hz Chen et al. [135]
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These results highlight the important role of mechanical stretch in receptor–ligand
binding and focal adhesion, which are shown to be responsible for stretch-regulated
cellular functions. Meanwhile, these findings should also be meaningful for improving our
knowledge of angiogenesis and other diseases associated with blood vessels and the heart,
because cyclic deformation is a common physiological condition in these systems [136].

6. Compression

Compression is an essential factor in the mechanical microenvironment of cells and
can be generated by cell–cell collision or external force (for example, applied pressure on
the skin) [137–139]. Intuitively, compression tends to decrease inter-membrane separation.
For a simplified adhesion system with only membrane-anchored receptors and ligands,
the receptor–ligand binding affinity is found to be significantly reduced in the presence
of compression [140], partially due to the changed separation of receptor–ligand binding
sites. In addition to the specific binders, the cells are also covered with the glycocalyx layer.
The thickness of the glycocalyx layer ranges from tens to hundreds of nanometers and is
generally larger than the length of the receptor–ligand bond, thus imposing a detrimental
effect on the specific binding of receptors and ligands and leading to decreased binding
affinity [62]. Introducing compression will compress the glycocalyx and contribute to the ex-
posure of the binding site of receptor and ligand, thereby facilitating their binding [141,142].
Using the thermal fluctuation assay, Snook and Guilford observed an increased on-rate
of the binding of E-selectin with sugar on PSGL-1 called sialyl Lewisa under compressive
forces and provided single molecular evidence that compressive load affects not only
the off-rate but also the on-rate of the receptor–ligand binding [143]. Subsequently, they
utilized a magnetic bond puller to demonstrate the compressive load-dependent rate of
bond formation between E-selectin and the sugar on PSGL-1. They also found that these
two molecules could form a catch-slip bond. Similar to their previous study, the on-rates
increased with increasing compressive force. Although the average magnitudes of the
on-rates were approximately 2-fold lower than those determined with the thermal fluctua-
tion assay, their dependence on the compressive force is comparable (Figure 5A) [144]. In
addition, Ju et al. conducted a study utilizing a biomembrane force probe and found that
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compressive force promotes the affinity maturation of integrin αIIbβ3 on discoid diabetic
platelets and increases integrin–fibrinogen association rate (Figure 5B) [145]. To explain
this effect of compressive force on the integrin–fibrinogen binding, they proposed that,
on the one hand, the induced tension in the membrane due to compressive force may
trigger the opening of Ca2+ channels and lead to integrin activation; on the other hand, the
external compressive force may cause the remodeling of the platelet cytoskeleton, leading
to integrin activation [145]. The findings mentioned above provide insight into the role
of compressive force in receptor–ligand binding (Table 4), and further studies on how the
compressive force affects receptor–ligand binding are needed.
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Figure 5. Effect of compressive force on receptor–ligand binding. (A) Adhesion probability and
effective on-rate of the interaction between E-selectin and sialyl Lewisa as a function of compressive
force. Reprinted with permission from Snook and Guilford [144]. Copyright © 2012, Biomedical
Engineering Society (B) Effective binding affinity of integrin αIIbβ3 and fibrinogen in diabetic platelets
from non-diabetic (non-DM) and diabetic (DM) mice in response to compressive forces. * p < 0.5;
** p < 0.01; *** p < 0.001. Adapted with permission from Ju et al. [145].

Table 4. Relevant studies regarding the effect of compressive force on receptor–ligand binding.

Biomedical Implications Type Molecules Compressive Force Author [Reference]

— Slip bond — 0–20 × 10−4 pN/nm2 Xu et al. [140]
Inflammatory response

Catch bond
E-selectin and sialyl Lewisa 6–46 pN Snook and Guilford [143]

Thrombotic response
related to diabetes Integrin αIIbβ3 and fibrinogen 5–40 pN Ju et al. [145]

Inflammatory response Catch-slip bond E-selectin and sialyl Lewisa 6, 12, 18, 30, 39 pN Snook and Guilford [144]
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7. Substrate Stiffness

In addition to the aforementioned types of forces, the mechanical properties of the
substrate are also important mechanical factors that affect receptor–ligand binding (Table 5).
It has been confirmed that tissue stiffness can change with aging [146] or pathological
conditions [147,148], which in turn leads to cellular response. Typically, cells establish
more stable adhesion on stiffer substrates [149–155] and can exhibit positive or negative
durotaxis behavior [156,157]. As the molecular basis of cell adhesion and migration, the
two-dimensional receptor–ligand binding has also been proven to be regulated by the
substrate stiffness in both physiological and pathological processes, such as inflammatory
and immune response, stem cell differentiation, and cancer.

In recent years, there has been growing evidence that substrate stiffness affects
receptor–ligand bindings during inflammatory processes. As mentioned above, leuko-
cyte rolling along the endothelium is primarily mediated by P-, E-, and L-selectins and
their complementary ligands [158]. MacKay and Hammer measured the rolling veloc-
ity and capturing efficiency of monocytic cells perfused over E-selectin-functionalized
or P-selectin-functionalized hydrogels with different stiffness. Their results showed that
the attachment through E-selectin was enhanced on stiffer gels, while cell attachment to
P-selectin-coated gels was independent of substrate stiffness [159]. Consistent with this
experimental observation, Moshaei et al. examined how substrate stiffness modulates cell
adhesion and kinetics and discovered that the trajectory of rolling cells on E-selectin-coated
substrates was sensitive to the substrate stiffness while that on P-selectin-coated substrates
was insensitive [160]. This difference may be attributed to the higher energetic affinity of
P-selectin to the leukocyte ligands [159–161]. Further, Wu et al. carried out a micropipette
adhesion frequency assay and found that stiffening the carrier lowered the binding affinity
of P-selectin and PSGL-1 by reducing the forward rate, while the opposite is true for soften-
ing the carrier [162]. These findings are important for understanding the mechanisms of
leukocytes rolling on and tethering to endothelial cells in physiological and pathological
processes. In addition, modeling results indicate that the cell migration velocity differs
for multiple types of integrins with different binding kinetics in response to the substrate
stiffness, suggesting that the existence of different integrins with varied binding kinetics
functions as an adaptation mechanism for substrate stiffness [163].

The role of substrate stiffness in receptor–ligand bindings during stem cell differenti-
ation has also been revealed. Experimental results showed that the binding of integrins
to their ligands (for example, peptide, collagen, fibronectin) is enhanced and mesenchy-
mal stem cells have higher cell attachment on the relatively stiffer substrates potentially
due to the induced change in adhesion bonds state (tensioned or relaxed) and integrin
conformational stability, contributing to a better understanding of their differentiation in a
substrate-dependent manner [164,165]. A similar stiffness response has also been observed
for the integrin-regulated adhesion of cervical cancer cells on the substrate (Figure 6) [166].
In addition to integrin bonds, stiffness-dependent behavior is also observed for the inter-
action of vinculin and its ligands. Nagasato et al. found that rigid substrates promoted
vinculin binding to vinexin α, leading to a vinculin conformational change to its activated
form with reduced head-to-tail association, and redistribution to lipid rafts, as well as the
stable localization of vinculin at focal adhesions [167]. These findings provide insights into
the regulation of stem cell differentiation by substrate stiffness [167].

There are many other studies performed to investigate the effect of substrate stiffness
on receptor–ligand binding [168,169]. Their results further provide insight into the under-
lying mechanism involving, for example, cytoskeleton and binding cooperativity [168,169].
In practice, the substrate stiffness may serve as a potential regulatory target for regulating
receptor–ligand binding and cellular functions. Therefore, further in-depth investigations
are needed to offer a basis and reference for the application.
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Table 5. Relevant studies regarding the effect of substrate stiffness on receptor–ligand binding.

Biomedical Implications Molecules Substrate Stiffness Author [Reference]

Inflammatory response

E-selectin, P-selectin 1, 5, 10, 24, and 84 kPa MacKay and Hammer [159]
E-selectin, P-selectin 1, 10, and 100 kPa Moshaei et al. [160]

P-selectin and PSGL-1 Stiffness and microtopology of
three carriers Wu et al. [162]

Integrin 1–20 kPa Feng et al. [163]

Stem cell differentiation

Integrin α5β1 and
peptide ligand ~2 and ~25 kPa Gandavarapu et al. [164]

β1 integrin 9, 25, and 48 kPa Gershlak and Black [165]
Vinculin and vinexin α 2.6 and 34 kPa Nagasato et al. [167]

Cancer Integrin and collagen 6, 19, 90 kPa, and glass Zhuang et al. [166]

8. Conclusions and Future Prospectives

Understanding the mechanosensing and mechanotransduction processes implicated
in various physiological and pathological processes and how they affect cell viability,
protein expression, and function are of paramount relevance. Elucidating the responses
of receptor–ligand bindings to the mechanical microenvironments will contribute to the
pharmaceutical and biomedical fields. It has been revealed that various mechanical factors,
such as tension, shear stress, stretch, compression, and substrate stiffness play a crucial
role in mediating receptor–ligand binding. Here, we review the contribution of these
mechanical factors to receptor–ligand binding and discuss the mechanisms underlying
the cellular behavior mediated by these interactions, with particular emphasis on their
biomedical implications. These findings not only enrich our understanding of various
physiological and pathological processes from the molecular level, but provide potential
clues for the development of practical therapies for relevant diseases. For instance, as VWF
plays a prominent role in the shear-rate-dependent platelet adhesion in thrombus, agents
targeting VWF interaction with the vessel wall or platelets could potentially help to prevent
coronary artery disease [170–172].

In this review, we mainly focus on experimental investigations of mechanical-regulated
receptor–ligand binding. In addition to experimental studies, theoretical and numerical
modeling has become an attractive means and provided important enlightening informa-
tion on receptor–ligand binding [173–185]. For example, Hu et al. performed theoretical
and simulation studies to identify the receptor–ligand binding cooperativity resulting from
thermal membrane fluctuation. This finding provides a basis and direction for further
investigation [173]. Subsequently, this binding cooperativity is experimentally confirmed
by Steinkühler et al. [184]. Additionally, to uncover the mechanism regarding the effect of
lipid raft on the receptor–ligand binding, modeling studies based on Monte Carlo simula-
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tions of a mesoscopic model have been developed [175–183,185]. Their results, consistent
with experimental observation, uncover and validate the cooperative effect of lipid raft
and the entropic force induced by membrane fluctuation on the receptor–ligand bind-
ing, and provide important information and insight for understanding the role of raft
microdomain in cell communication. Results from numerical modeling can also provide
detailed information regarding atomic structures and dynamics and contribute to pharma-
ceutical development [174]. Integrating the experimental and computational methods will
undoubtedly further lead to more fruitful achievements and enrich our understanding.

Last but not least, cells are exposed to microenvironments in vivo with multiple
mechanical stimuli [186]. To fully understand how the receptor–ligand binding responds
to these multiple mechanical stimuli, it is necessary to conduct studies that examine the
coupling effects of two or more types of mechanical factors. Overall, our work will help
researchers gain an overview of the area along with a deeper understanding of the receptor–
ligand binding and provide some useful guidance for further research.
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177. Li, L.; Hu, J.; Różycki, B.; Wang, X.; Wu, H.; Song, F. Influence of lipid rafts on pattern formation during T-cell adhesion. New J.
Phys. 2021, 23, 043052. [CrossRef]

178. Li, L.; Hu, J.; Shi, X.; Shao, Y.; Song, F. Lipid rafts enhance the binding constant of membrane-anchored receptors and ligands. Soft
Matter 2017, 13, 4294–4304. [CrossRef]

179. Li, L.; Hu, J.; Wu, H.; Song, F. Cis-interaction of ligands on a supported lipid bilayer affects their binding to cell adhesion receptors.
Sci. China Phys. Mech. Astron. 2021, 64, 108712. [CrossRef]

https://doi.org/10.1016/j.bbrc.2016.12.107
https://www.ncbi.nlm.nih.gov/pubmed/28025149
https://doi.org/10.1016/j.bpj.2010.12.3744
https://www.ncbi.nlm.nih.gov/pubmed/21354386
https://doi.org/10.1088/0953-8984/22/19/194117
https://doi.org/10.3390/cells11223543
https://doi.org/10.1016/j.devcel.2021.04.002
https://doi.org/10.1111/imm.12318
https://doi.org/10.1039/C5IB00199D
https://doi.org/10.1016/j.jbiomech.2019.05.004
https://doi.org/10.1016/S0002-9440(10)62314-0
https://www.ncbi.nlm.nih.gov/pubmed/15743805
https://doi.org/10.1074/jbc.M609219200
https://www.ncbi.nlm.nih.gov/pubmed/17267403
https://doi.org/10.1007/s10237-018-1047-2
https://www.ncbi.nlm.nih.gov/pubmed/29968162
https://doi.org/10.1039/C3BM60149H
https://www.ncbi.nlm.nih.gov/pubmed/24660057
https://doi.org/10.1016/j.yexcr.2014.09.007
https://www.ncbi.nlm.nih.gov/pubmed/25220424
https://doi.org/10.1016/j.abb.2022.109281
https://doi.org/10.1080/09168451.2017.1289074
https://doi.org/10.1021/la702401b
https://doi.org/10.1371/journal.pone.0012342
https://doi.org/10.1161/01.ATV.19.4.877
https://doi.org/10.3389/fcvm.2022.1038030
https://www.ncbi.nlm.nih.gov/pubmed/36531725
https://doi.org/10.1111/bph.13178
https://www.ncbi.nlm.nih.gov/pubmed/25917571
https://doi.org/10.1073/pnas.1305766110
https://www.ncbi.nlm.nih.gov/pubmed/24006364
https://doi.org/10.1002/jcb.26257
https://www.ncbi.nlm.nih.gov/pubmed/28681927
https://doi.org/10.3389/fmolb.2022.1019477
https://www.ncbi.nlm.nih.gov/pubmed/36203878
https://doi.org/10.1021/acs.nanolett.9b04596
https://doi.org/10.1088/1367-2630/abeacb
https://doi.org/10.1039/C7SM00572E
https://doi.org/10.1007/s11433-021-1752-0


Int. J. Mol. Sci. 2023, 24, 9062 19 of 19

180. Li, L.; Hu, J.; Xu, G.; Song, F. Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the
distribution of ligands. Phys. Rev. E 2018, 97, 012405. [CrossRef]

181. Li, L.; Ji, J.; Song, F.; Hu, J. Intercellular receptor-ligand binding: Effect of protein-membrane interaction. J. Mol. Biol. 2023,
435, 167787. [CrossRef] [PubMed]

182. Li, L.; Wang, X.; Wu, H.; Shao, Y.; Wu, H.; Song, F. Interplay between receptor-ligand binding and lipid domain formation
depends on the mobility of ligands in cell-substrate adhesion. Front. Mol. Biosci. 2021, 8, 655662. [CrossRef] [PubMed]

183. Li, L.; Xu, G.K.; Song, F. Impact of lipid rafts on the T-cell-receptor and peptide-major-histocompatibility-complex interactions
under different measurement conditions. Phys. Rev. E 2017, 95, 012403. [CrossRef] [PubMed]
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