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A B S T R A C T   

The shift of resonant frequency due to the particle adsorption is the mass sensing mechanism of a micro/nano- 
resonator. The sensitivity and resolution are the two key performance indicators of a mass resonator. An effective 
method to significantly enhance the sensitivity of a mass resonator is presented. The method is realized by the 
design of the beam resonator thickness variation along the longitudinal direction. The analytical expression of 
the non-uniform resonator sensitivity and the optimization process on the thickness are given. The optimal 
shapes of the cantilevered and doubly clamped beam resonators are obtained by the optimization process. The 
sensitivities of the beam resonators in the optimal shapes are three orders of magnitude higher than those of the 
uniform ones. A systematic method of enhancing the sensitivity of a mass resonator through the shape optimi-
zation is thus provided. The influences of the axial load on the optimization results are also discussed.   

Introduction 

Micro/nano-resonators have been widely used in the particles 
sensing [1,2], materials detection [3,4] and environment sensing [5–7]. 
The mass resonators are the devices for the detection of the neutral, 
hazardous and biological matters [8–11]. The major advantages of a 
micro/nano-resonator are its ultra-high resonant frequency [12,13], 
throughput [14] and sensitivity [15]. Therefore, the mass resonators can 
be used to sense the extremely small particles, which reach atomic mass 
resolution [16]. 

By measuring the resonant frequencies before and after the particles 
adsorption, mass resonators can sense the particle mass with high effi-
ciency and accuracy [17,18]. The sensitivity, which is also called the 
responsivity of the resonator [19], is an essential indicator of a reso-
nator. The sensitivity is defined as the ratio of the resonant frequency 
shift to the attached mass [17]. The sensitivity expression for a uniform 
resonator is given as follows [19]: 
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here, m is the particle mass and xp is the locus of particle; Ωj and φj are 
the j-th resonant frequency and the corresponding mode shape of the 
resonator, respectively. The effective mass meff is defined as meff =

ρbh
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[20], where E is the Young’s modulus and l 

is the length of a beam resonator. As indicated in Eq. (1) an effective way 
to achieve a high sensitivity for a beam resonator is to increase the 
resonant frequency, such as scaling down the resonators and using the 
materials with a larger Young’s modulus and lower density [21]. 
However, scaling down the resonator will face the challenge of the nano- 
scaled fabrication on the nanostructures [22] and energy dissipation 
[23]. The high energy dissipation in nano-sized devices results in the low 
quality factor in the resonance measurements [24] and further affects 
the measuring resolution [25] and frequency noise [26] in the mass 
sensing. To mitigate this, the ultra-low temperature and pressure are 
recommended to reduce the dissipation and thus improve the quality 
factor [27]. Suspended microchannel resonator for weighing the bio-
logical samples like bacterial cells and adsorbed proteins, is developed in 
the vacuum environment with high sensitivity and quality factor [14]. 
The experiments show that a micro/nano-resonator will achieve a 
greater sensitivity when using a higher mode resonance to detect the 
attached particle [28,29]. The reason is that higher mode resonance can 
improve the resonant frequencies as shown in Eq. (1) and reduce the 
effective mass, without changing the physical dimensions of the 
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resonator [17]. Tensile stress on the resonator increases the resonant 
frequencies, which is effective to improve the sensitivity [30]. The 
tensile stress is also helpful to reduce the damping and improve the 
quality factor [19,31]. The resonator behaves like a string under the very 
large tension, which can be used for force sensing [32,33]. Because 
multiple particles increase the shift of resonant frequency, measuring 
multiple particles in mass sensing is a strategy to improve the sensitivity 
[34]. Using the mode localization in coupled micro-cantilevers can also 
improve the sensitivity on the added particle [35]. Furthermore, by 
adjusting the length and thickness of each layer, the sensitivity of the 
stepped cantilever resonator can be improved by almost twenty-fold 

[36]. 
Designing the shape is a practical method that improves the structure 

performance [37]. For the power harvesting, it is found that changing 
the width distribution of the beam can concentrate the strain in the 
section contributing most to the transduction, and thus improve the 
voltage output [38]. The vertical micro-pillars with the inverted tapered 
shape are designed and fabricated with the sensitivity of 33 Hz/fg (1 fg 
= 10-15 g) and the reproducibility of 0.1 fg [39]. By using the non- 
uniform beams array, the frequency bandwidth of the resonator is 
improved [40]. Adjusting the layers of the stepped beam can also be 
regarded as a shape design, which improves the sensitivity [36]. The 
shape optimization for the frequency related problem is an important 
part of the structure optimization [41]. By applying the shape optimi-
zation, the beam can achieve the maximum resonant frequencies in the 
bending and torsion modes [42]. And the algorithms for the shape 
optimization of the beam vibration problem are under development to 
improve the efficiency and robustness [43,44]. 

In this study, an analytical expression of the sensitivity is obtained 
for the mass resonator with a variable thickness. An algorithm is given 
for the resonant frequencies of the beam with an arbitrary thickness 
distribution. The sensitivity is validated by the finite element method 
(FEM) for the uniform and non-uniform beams. The cantilever and 
doubly clamped beams are the two most important types of beam for the 
resonators. The much larger sensitivities of the optimized beam shapes 
are achieved as compared with those of uniform ones. The effects of the 
minimum thickness and the axial stress in the optimization on the shapes 
and sensitivity are studied. This optimization method can be of signifi-
cant help to the improvement on the sensitivity of the beam resonator. 

Model development 

Figure 1 is a schematic diagram of a beam resonator with thickness 
variation along the longitudinal direction (x-axis). The beam length and 
width are denoted as l and b, respectively. Based on the Euler-Bernoulli 
beam theory, the governing equation of the beam with a particle 
attached is as follows [34]: 

∂2

∂x2

[

D(x)
∂2w(x, t)

∂x2

]

− T
∂2w(x, t)

∂x2 +C
∂w(x, t)

∂t
+
[
ρbh(x)

+ mδ
(
x − xp

) ] ∂2w(x, t)
∂t2

= 0, (2)  

where w is the transverse displacement of the beam neutral surface; t is 
time; h(x) is the variable thickness along the x-axis; E and ρ are the 
Young’s modulus and density of the beam, respectively; D(x) = Ebh3(x)/ 
12 is the bending stiffness of the beam; ρbh(x) is the beam mass per unit 
length varying with x; C is the viscous damping coefficient [45] and T is 
the axial load. The positive T is tension and the negative T is compres-
sion. Here δ(x-xp) is the Dirac function and the effect of an adsorbed is 

Fig. 1. Schematic diagram of a beam resonator with variable thickness.  
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Fig. 2. Flowchart of the optimization procedures on beam thickness.  
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modeled as a concentrated mass with the mass m and position xp. 
By using the derivations in Appendix A, the dimensionless sensitivity 

of the beam resonator with variable thickness is expressed as follows: 

Sj =
dωj

dm
= −

(

1 +
1

4Q2
j

)
ωjϕ2

j

(
ξp
)

2
∫ 1

0 h(ξ)ϕ2
j (ξ) dξ + mϕ2

j

(
ξp
), (3)  

where Qj is the quality factor of the j-th mode; ωj and ϕj(ξ) are the 
dimensionless resonant frequency and mode shape, respectively; h and 
m are the dimensionless thickness and attached mass, respectively. Here 
ξ is the dimensionless quantity with ξ = x/l. 

An implicit assumption in Eq. (3) is the small attached mass, which 
has no impact on the mode shape ϕj(ξ) of the resonator and thus ensure 
the accuracy of Eq. (A9). An adsorption increases the mass and as a 
result decreases the eigenfrequency. Therefore, the sensitivity in Eq. (3) 
is negative. Clearly, it is shown in Eq. (3) that the absolute value of 
sensitivity Sj decreases with the increase of the attached mass m. Based 
on the study [34], the damping effect decreases the absolute value of the 
sensitivity. Because the resonant frequency ωj decreases with the in-
crease of the damping coefficient. Besides, the damping does not affect 
the mode shapes of resonators. Thus, by letting m = 0 [46], neglecting 
the damping, i.e., C = 0 (or Q→∞) and taking the absolute value, the 
limit sensitivity Sl

j is expressed as follows: 

Sl
j =

ωjϕ2
j

(
ξp
)

2
∫ 1

0 h(ξ)ϕ2
j (ξ)dξ

. (4) 

The limit sensitivity Sl
j is the maximum absolute value of the sensi-

tivity Sj, reflecting the performance upper bound of the resonator. 
Equation (4) is the formula to compute the sensitivity of a beam reso-
nator. Once the resonant frequency and mode shape are obtained, the 

limit sensitivity Sl
j can be calculated without solving Eq. (2). As to the 

uniform resonator, the expression of sensitivity can be reduced to the 

dimensionless format of Eq. (1), which is Sj ≈ −
ωjϕ2

j (ξp)

2
∫ 1

0
ϕ2

j (ξ)dξ
(as h ≡ 1).. 

The next step is to find the optimal beam shape h(ξ) for the maximum 
sensitivity. This gives the optimization problem to minimize the nega-
tive sensitivity Sj, which is expressed as follows: 
⎧
⎪⎨

⎪⎩

minimize Sj, j = 1, 2, 3⋯,

a⩽h(ξ)⩽b,
∫ 1

0
h(ξ)dξ = H.

(5) 

The constraint condition of 
∫ 1

0 h(ξ)dξ = H restricts the volume of the 
resonator [47]: For a uniform beam, the only one possible situation is 
h(ξ) = H. The constraint of a⩽h(ξ)⩽b controls the maximum and mini-
mum thickness of the beam. These constraints provide the existence 
basis of the solution to the frequency related optimization problem [48]. 
As given in Eq. (4), the negative limit sensitivity, i.e., − Sl

j, is the mini-
mum with neglecting the added mass and damping effect, which is the 
target function in this optimization problem. By dividing the beam 
length into N segments, the problem is solved with the interior point 
algorithm for the constrained nonlinear optimization problem [49]. The 
solution for the resonant frequency ωj and mode shapes ϕj(ξ) is provided 
in Appendix B. The flowchart of the optimization procedures is pre-
sented in Fig. 2. 

Results and discussion 

Sensitivity validation 

In this study, the beam material is silicon with the Young’s modulus 

Fig. 3. Mass sensitivities, Sj, SFEM1
j and SFEM2

j of a uniform resonator from the present model with N = 20 and FEM, with different mode numbers: (a) j = 1; (b) j = 2; 
(c) j = 3. 

C. Wei and Y. Zhang                                                                                                                                                                                                                           



Results in Physics 49 (2023) 106483

4

of E = 169 GPa and mass density of ρ = 2330 kg/m3; the beam length is l 
= 500 μm, the width is b = 50 μm and the reference thickness is h0 = 10 
μm [34]. 

In order to verify the sensitivity calculation of the present model, the 
vibration of the uniform cantilever with h(ξ) = 1 and neglecting 
damping is studied, whose result is Sj as shown in Fig. 3. The two cases 
are also computed by FEM as the verification purpose, with the sensi-
tivity results denoted as Sj

FEM1 and Sj
FEM2, where j is the mode number. 

The two FEM sensitivity results are denoted as Sj
FEM1 and Sj

FEM2 in Fig. 3. 
Here Sj

FEM1 is calculated from Eq. (3), where the resonant frequencies ωj 
and mode shapes ϕj are computed from FEM model. Sj

FEM2 is obtained 
from the definition Sj

FEM2= (ωj,m -ωj,0)/m, where ωj,m and ωj,0 are the 
resonant frequencies with and without the attached mass. In this case 
the particle is assumed to attach on the free end, i.e., ξp = 1. With the 
increase of the attached mass m, the absolute values of the sensitivities 
decrease. As shown in Fig. 3, the FEM results SFEM2

j are close to Sj of the 
present model. However, the differences between the numerical results 
SFEM2

j and the present results Sj are becomes larger with the increase of 
the attached mass. When the attached mass is small, such asm = 10-4, the 
results of Sj approach to SFEM2

j , which validates the present model for 
predicting the sensitivity for the beams with a small particle attached. 
The main reasons for the difference are the approximation of using the 
Dirac function δ(ξ-ξp) to describe the particle attachment, and the 
assumption of that particle attachment will not change the mode shape 
of the beam vibration. 

For the tapered cantilever, whose thickness is defined as h(ξ) =

1.5 − ξ, the mass sensitivity results of Sj, SFEM1
j and SFEM2

j are shown in 
Fig. 4. In this case, the segment number N is set as 20. Shown in the 
figure, the differences between the three prediction results are smaller 
when the attached mass is less. The relative differences of Sj and SFEM2

j (j 

= 1, 2, 3) are only about 0.6%, 1.4% and 2.2%, respectively. The 
sensitivity results of the doubly clamped non-uniform beam are pre-
sented in Fig. 5, whose thickness is expressed as h(ξ) = 0.5 + |1 − 2ξ|. 
The relative differences of Sj and SFEM2

j (j = 1, 2, 3) are about 0.5%, 4.1% 
and 6.0%, respectively. Therefore, the present sensitivity prediction 
method of Eq. (3) is more effective and easier than FEM for the small 
particle situation. 

Sensitivity optimization of the beam resonators 

The largest sensitivities for the cantilevers are the situations when 
the attached particles are located at the free end, as reflected in Eq. (4). 
Based on this, the optimization results of the cantilevers are shown in 
Fig. 6(a) and (b). In this case, the constraint parameters for the opti-
mization are a = 0.02, b = 2 and H = 1. The segment number N = 20. 
The particles position of the j = 1 and 2 cases is ξp = 1, for the resonator 
can reach the maximum sensitivity when the displacement of the mode 
shape at the particle position is the largest. When mode numbers j are 
different, the optimized shapes are different with each other, whose 
limit sensitivities are: Sl

1=7.64 × 103 and Sl
2 = 2.85 × 104. The 

computation shows the specific shape of the resonators can enormously 
improve the frequency sensitivity on the attached mass. Compared with 
the uniform beam, whose sensitivity Sl

1 is only 7.0, the improvement is 
astonishingly 1090 times. 

As to the doubly clamped beams, the system can achieve the largest 
sensitivity when the particle is located at the beam center for j = 1 and 3, 
which is ξp = 0.5. Usually, the symmetrical modes are considered in the 
vibration excitation and analysis of the doubly clamped resonators with 
the particle attached at middle center [50,51]. Therefore, the second 
mode is not considered for the doubly clamped resonators. With the 
optimization parameter of a = 0.02, b = 2, H = 1 and N = 40, the results 

Fig. 4. Mass sensitivities, Sj, SFEM1
j and SFEM2

j of a tapered resonator from the present model with N = 20 and FEM, with different mode numbers: (a) j = 1; (b) j = 2; 
(c) j = 3. 
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are shown in Fig. 7. The sensitivities are Sl
1 = 2.42 × 104 and Sl

3 = 7.47 
× 104, much larger than Sl

1 = 28.2 and Sl
3 = 119.5 of the uniform beam. 

The optimized shapes of the beam are curve-fitted in Appendix D. 
The mode shapes of the uniform and optimized cantilever and 

doubly clamped beams are shown in Fig. 8. As seen in Fig. 8(a) for the 
cantilever beam, there is hardly any displacement when ξ < 0.9 in the 
mode shape of the optimized beam. But an abrupt displacement increase 
is around the free end. This abrupt displacement increase is the key to 
the sensitivity improvement of an optimized cantilever beam. As seen in 
Eq. (4), the mode shapes of the optimized beams are to reduce the value 
of 
∫ 1

0 h(ξ)ϕj(ξ)ϕj(ξ)dξ. On the other hand, the kinetic energy of the vi-
bration is heavily concentrated around the free end. It is assumed that 
the maximum kinetic energy and maximum strain energy of the reso-
nator are both same before and after the particle attachment [19]. The 
particle locates at position with larger displacement will affects the 
resonant frequency more. This leads to the high sensitivity of this opti-
mized resonator. Thus the antinode, which is largest displacement of a 
mode, is the largest sensitivity location of the resonator. In addition, the 
inertias of the optimized beams are much lower than those of the uni-
form beams, which improves the resonant frequencies and the sensi-
tivities. Similarly, the “energy trapping” is found in the thicker 
electrodes [52], which can be used to adjust the sensors’ performance. 

For the vibration of the axially inhomogeneous beams, the jump 
phenomenon of the natural frequency happens with the axial gradient 
increase of the stiffness [53,54]. The reason is the propagating wave 
cannot be excited when the frequency is less than the critical frequency 

of the axially inhomogeneous beams and thus the harmonic vibration of 
the beam is impossible [53,54]. There may be more than one nodes in 
the first mode shape of the axially inhomogeneous beams [53,54]. This 
phenomenon may also happen for the beam with variable thickness. 
However, in this study, as an example of the cantilever, the stiffness is 
decreasing from the clamped end to the free end. In the closer looks of 
mode shapes, the node numbers are separately 0, 1 and 2 for the mode 
number j = 1, 2 and 3, which can be seen in Fig. 8(c) and (d). 

To verify the convergence of the optimization results, different 
segment numbers N and initial guesses are tested in the optimization 
process. Figure 9 shows the optimization results for cantilevers and the 
segment numbers are N = 20, 35 and 50, respectively. The beam shapes 
are close with different segment numbers N. With the increasing N, the 
optimized shapes are consistent. N = 20 is enough to obtain the optimal 
shapes of the resonators. Figure 10(a) shows the different initial guesses 
of the beam shapes in the shape optimization. Figure 10(b) displays the 
optimization results of these different initial guesses. The results are 
exactly the same. 

The sensitivity of resonator is dependent on the particle locations, 
which is seen from Eq. (4). The frequency keeps unchanged when the 
particle is located at the node of the mode shapes [55]. The optimized 
beam shape gives a larger sensitivity than the uniform one at ξp = 1. 
However, it is hard to control the particle position precisely in the 
measuring process [56]. Figure 11 shows the limit sensitivities Sl

j of the 
optimized and uniform beam shapes with different particle locations ξp. 
When the particle is close to the free end, the sensitivity of the optimized 
shape is much higher. For the cantilever results in Fig. 11(a), using the 

Fig. 5. Mass sensitivities, Sj, SFEM1
j and SFEM2

j of a doubly-clamped non-uniform resonator from the present model with N = 20 and FEM, with different mode 
numbers: (a) j = 1; (b) j = 2; (c) j = 3. 
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optimized shape needs the particle to locates at the range [0.7, 1], to 
achieve a better sensitivity than the uniform one. However, for the 
second mode in Fig. 11(b), only when ξp > 0.97 can the sensitivity of the 
optimized shape be better. For the doubly clamped beams, the particle 
location should be in [0.4, 0.6] for j = 1 and [0.45, 0.55] for j = 3, to get 

a greater sensitivity. This implies the higher modes (j > 2) are not 
suitable for the shape optimization, for the particle location range is too 
narrow to be controlled. For the first mode, using the shape optimization 
is an effective method to improve the sensitivity in measurement. 

The thickness ratio μ is defined as μ = a/H. As mentioned above, 

Fig. 6. Optimization results of the cantilevered beam for j = 1 and 2: (a) Optimized beam shape for j = 1; (b) Optimized beam shape for j = 2.  

Fig. 7. Optimization results of the doubly-clamped beam for j = 1 and 3: (a) Optimized beam shape for j = 1; (b) Optimized beam shape for j = 3.  
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a ≤ h ≤ b, a is the smallest beam thickness. The parameter μ determines 
the minimum thickness of the resonator, which is relevant with the 
actual fabrication ability of the micro/nano-resonators. To investigate 
this, the different μ values of μ = 0.02, 0.05, 0.1, 0.5 and 1 are inves-
tigated in the optimization. The optimization results of the cantilevered 
and doubly clamped beams are presented in Fig. 12 and Fig. 13, 
respectively. The relations between the optimized beam shapes with 
different μ can be viewed as follows: First, the beam shape with μ = 0.02 
is the basic shape of the optimization; Then, the thickness at some po-
sition, which is less than the constraint μ, is replaced with the lower 
bound μ; At last, the beam shape result is normalized with the constraint 
∫ 1

0 h(ξ)dξ = H. This process implies that the basic shapes of the results 
are similar. However, their sensitivity results are very different, as in 
Fig. 12(c) and Fig. 13(b). The parameter μ has a great influence on the 
sensitivity results, which exceeds the influence of the higher mode. 
Similarly, the smaller substructure can improve the power generation of 
the piezoelectric energy harvesters [57]. 

The axial tension on the string resonator will improve the resonant 
frequencies and the sensitivity [30]. However it would not improve the 
sensitivity for the non-uniform resonator by applying the axial tension. 
By applying the shape optimization on the cantilevers and doubly 
clamped beams with mode number j = 1, the optimal results of the beam 
shapes, mode shapes, limit sensitivity and resonant frequencies are 
displayed in Fig. 14 and Fig. 15. With the variation of the axial load, only 
small changes in the optimized optimal shapes are shown in Fig. 14 (a) 

and Fig. 15 (a). However, from Fig. 14 (c) and Fig. 15 (c), the limit 
sensitivities are decreasing with the increase of the axial load, which is 
opposite to the uniform resonators. The major reason is that the mode 
shapes are stretched by the axial load, which induces the decrease of the 
integration 

∫ 1
0 h(ξ)ϕj(ξ)ϕj(ξ)dξ, shown in Fig. 14 (b). Although the 

resonant frequencies are increasing, the sensitivities are reduced with 
the increase of the axial tension. For the resonant frequencies will keep 
decreasing and finally become zero with adding on the negative (com-
pressed) load, the sensitivity will become much lower with a large 
compression on the resonator. Thus, the conclusion is only suitable for 
the small and moderate load. 

Conclusion 

The shape optimization problem for the resonator with variable 
thickness is proposed and solved numerically to greatly improve the 
sensitivity. The sensitivity expression, which serves as the object func-
tion for optimization, is obtained by using the approximation method. 
As the optimization results, the beam shapes of maximum sensitivity are 
obtained for the cantilevered and doubly clamped beams, and the limit 
sensitivity of the resonators can be more than one thousand times higher 
than that of the uniform ones. Moreover, to use the shape optimization 
to improve the sensitivity demands for both the restricted particle 
attachment locations and low damping. Physically, to improve the 
sensitivity, it is expected for the resonator to concentrate the kinetic 

Fig. 8. Mode shapes of the optimized and uniform beams, (a) for cantilevered beam and (b) for doubly clamped beam. (c) and (d) are the closer looks of (a) and (b), 
respectively. 
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Fig. 9. Optimization results for the cantilevers with different segment numbers N, for (a) mode number j = 1 and (b) mode number j = 2.  

Fig. 10. (a) Different initial guesses on the beam thickness variation and (b) the optimization results of the different cases.  
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Fig. 11. The limit sensitivity of the optimized and uniform beam shapes with different particle locations. (a) for cantilevers and j = 1; (b) for cantilevers and j = 2; (c) 
for doubly clamped beams and j = 1; (d) for doubly clamped beams and j = 3. 
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Fig. 12. The optimization results of the cantilevered beam with different thickness ratio μ for j = 1 and j = 2, respectively: (a) The mode shapes of the optimized 
beams with j = 1; (b) The mode shapes of the optimized beams with j = 2. The critical sensitivity results of the optimal beam outline for the different thickness ratio μ. 
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Fig. 13. The optimization results of the doubly clamped beam with different thickness ratio μ for j = 1: (a) The mode shapes of the optimized beams; (b) The critical 
sensitivity results of the optimal beam outline for the different thickness ratio μ. 
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Fig. 14. The optimization results with the different axial load T of a cantilever: (a) The optimal beam shapes; (b) The first mode shapes; (c) The first limit sensi-
tivities; (d) The first resonant frequencies. 
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energy on the antinode, at meanwhile, the attached particle also needs 
to stay at the antinode. Furthermore, the small axial compression also 
contributes to the sensitivity improvements for the resonators in our 
analysis. 
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Appendix A. Expression derivation of the sensitivity 

The governing equation of the beam with a particle attached is as follows: 

∂2

∂x2

[

D(x)
∂2w(x, t)

∂x2

]

− T
∂2w(x, t)

∂x2 +C
∂w(x, t)

∂t
+
[
ρbh(x) + mδ

(
x − xp

) ] ∂2w(x, t)
∂t2 = 0, (A1) 

The boundary conditions of a cantilever beam are as follows: 

Fig. 15. The optimization results with the different axial load T of a doubly clamped beam: (a) The optimal beam shapes; (b) The first mode shapes; (c) The first limit 
sensitivities; (d) The first resonant frequencies. 

C. Wei and Y. Zhang                                                                                                                                                                                                                           



Results in Physics 49 (2023) 106483

14

w(0, t) = 0,
∂w(0, t)

∂x
= 0,

∂2w(l, t)
∂x2 = 0,

∂
∂x

[

D(l)
∂2w(l, t)

∂x2

]

− T
∂w(l, t)

∂x
= 0. (A2) 

The boundary conditions of a doubly clamped beam are as follows: 

w(0, t) = 0,
∂w(0, t)

∂x
= 0,w(l, t) = 0,

∂w(l, t)
∂x

= 0. (A3) 

By introducing the quantities of ξ = x/l, τ = t
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Eh2
0/12ρl4

√

and W = w/l, the governing equation of Eq. (A1) is now non-dimensionalized as follows: 

∂2

∂ξ2

[

D(ξ)
∂2W(ξ, τ)

∂ξ2

]

− T
∂2W(ξ, τ)

∂ξ2 +C
∂W(ξ, τ)

∂τ +
[
h(ξ) + mδ

(
ξ − ξp

) ] ∂2W(ξ, τ)
∂τ2 = 0, (A4)  

where the dimensionless quantities and functions are defined as the following: 

h(ξ) =
h(ξ)
h0

,D(ξ) = h3
(ξ),T =

12Tl2

Ebh3
0
,C = C

̅̅̅̅̅̅̅̅̅̅̅̅̅
12l4

Eρbh4
0

√

,m =
m

ρbh0l
, ξp =

xp

l
. (A5) 

Here h0 is a reference quantity to measure the thickness of the beam, which can be arbitrary. But it is recommended to define h0 = 1
l

∫ l
0 h(x)dx, 

which is the average thickness over the length. 
The dimensionless boundary conditions of a cantilever and a doubly clamped beams now become the following: 

W(0, τ) = 0,
∂W(0, τ)

∂ξ
= 0,

∂2W(1, τ)
∂ξ2 = 0,

∂
∂ξ

[

D(1)
∂2W(1, τ)

∂ξ2

]

− T
∂W(1, τ)

∂ξ
= 0. (A6)  

and 

W(0, τ) = 0,
∂W(0, τ)

∂ξ
= 0,W(1, τ) = 0,

∂W(1, τ)
∂ξ

= 0. (A7) 

For the j-th order resonance, the solution is assumed to be W(ξ, τ) = ϕj(ξ)e(
iωj − γj)τ, where ϕj(ξ) is the j-th mode shape, ωj is the dimensionless j-th 

eigenfrequency and γj is the dimensionless j-th decay rate of the system. By using approximation method [58], the following equation is obtained: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2
j − γ2

j =

∫ 1

0

{
∂2

∂ξ2

[

D(x)
∂2ϕj(ξ)

∂ξ2

]

− T
∂2ϕj(ξ)

∂ξ2 − γjCϕj(ξ)

}

ϕj(ξ)dξ

∫ 1

0

[
h(ξ) + mδ

(
ξ − ξp

) ]
ϕ2

j (ξ) dξ
,

γj =
C
2

∫ 1

0
ϕ2

j (ξ) dξ
∫ 1

0

[
h(ξ) + mδ

(
ξ − ξp

) ]
ϕ2

j (ξ) dξ
.

(A8) 

In conjunction with the Dirac delta function property, Eq. (A8) leads to the following results: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωj =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∫ 1

0

{
∂2

∂ξ2

[

D(x)
∂2ϕj(ξ)

∂ξ2

]

− T
∂2ϕj(ξ)

∂ξ2 − γjCϕj(ξ)

}

ϕj(ξ) dξ

∫ 1

0
h(ξ)ϕ2

j (ξ) dξ + mϕ2
j

(
ξp
)

+ γ2
j

√
√
√
√
√
√
√
√

,

γj =
C
2

∫ 1

0
ϕ2

j (ξ) dξ
∫ 1

0
h(ξ)ϕ2

j (ξ) dξ + mϕ2
j

(
ξp
)
.

(A9) 

The dimensionless sensitivity Sj is defined as the ratio of the dimensionless resonant frequency shift to the dimensionless attached mass m [17,19]. 
The sensitivity reflects the resonator capability to detect the ultra-small particles, which is 

Sj =
dωj

dm
= −

(

ωj +
γ2

j

ωj

)
ϕ2

j

(
ξp
)

2
∫ 1

0 h(ξ)ϕ2
j (ξ) dξ + mϕ2

j

(
ξp
). (A10) 

Alternatively, Eq. (A10) can be rewritten as follows: 

Sj =
dωj

dm
= −

(

1 +
1

4Q2
j

)
ωjϕ2

j

(
ξp
)

2
∫ 1

0 h(ξ)ϕ2
j (ξ) dξ + mϕ2

j

(
ξp
), (A11) 

where Qj is the quality factor of the j-th mode. 
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Appendix B. Numerical solution for the beam vibration with variable thickness 

Now we introduce a numerical method to solve the vibration of a beam in variable thickness, whose governing equation is given as follows: 

∂2

∂ξ2

[

D(ξ)
∂2W(ξ, τ)

∂ξ2

]

− T
∂2W(ξ, τ)

∂ξ2 + h(ξ)
∂2W(ξ, τ)

∂τ2 = 0. (B1) 

The operator of Eq. (B1) is proved to be self-adjoint in Appendix C, which gives the real eigenvalue of the system [59]. 
The steady-state solution of the dimensionless transverse displacement is assumed to be W(ξ, τ) = Y(ξ)⋅eiωτ, in which Y(ξ) is the spatial 

displacement part of the solution and eiωτ is the temporal one. When the beam is at the j-th resonance, Y(ξ) = cjϕj(ξ). By substituting W(ξ, τ) = Y(ξ)⋅eiωτ 

into Eq. (B1), the ordinary differential equation is obtained: 

d2

dξ2

[

D(ξ)
d2Y(ξ)

dξ2

]

− T
d2Y(ξ)

dξ2 = ω2h(ξ)Y(ξ). (B2) 

By defining the state vector θ(ξ) =
[
Y(ξ), d

dξ Y(ξ), D(ξ) d2

dξ2 Y(ξ), d
dξ

[
D(ξ) d2

dξ2 Y(ξ)
] ]T

, Eq. (B2) becomes a set of the first order ordinary differential 

equations, expressed as 

d
dξ

θ = A(ξ)⋅θ, (B3)  

where the coefficient matrix A is 

A(ξ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 0
1

D(ξ)
0

0 0 0 1

ω2h(ξ) 0
T

D(ξ)
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B4)  

where ω is the eigenfrequency of the system to be determined. Equation (B3) is a set of the variable coefficient equations. To solve this, the beam is 
divided into N segments along x-axis. The dimensionless length of each segment is d = ξi − ξi− 1 = 1/N, where ξi = i/N, for i = 0, 1, 2, …, N. 
Approximately, in each segment, the beam is treated as a uniform one. At the k-th segment, the thickness of beam is hk = h

( 2k− 1
2N
)
. Equation (B3) 

becomes the following equations: 

d
dξ

θ = Ak⋅θ, (ξk− 1⩽ξ⩽ξk, k = 1, 2, 3 ⋯N) (B4)  

where Ak = A
( 2k− 1

2N
)
. Based on the ordinary differential equation theory [60], the solution for Eq. (B4) is θ(ξ) = eAk⋅(ξ− ξk− 1)θ(ξk− 1), with ξk− 1⩽ξ⩽ξk, k =

1, 2, 3, …N. Let ξ = ξk and then the solution becomes 

θ(ξk) = eAk ⋅dθ(ξk− 1). (B5) 

For the continuity of the state vector θ(ξ) along ξ, combining all the solutions of Eq. (B5) with k = 1, 2, … N gives the transfer relationship of the 
state vector between the two sides of beam [61]: 

θ(1) =
∏N

i=1
eAN+1− i ⋅dθ(0). (B6) 

The matrix exponential can be obtained by the Padé approximation [62,63]. The boundary conditions of Eqs. (A6) and (A7) can be rewritten in the 
following matrix form: 

B0θ(0) + B1θ(1) = 0, (B7)  

where B0 and B1 are given as follows: 
For a cantilevered beam, 

B0 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦,B1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 − T 0 1

⎤

⎥
⎥
⎦. (B8) 

For a doubly clamped beam, 

B0 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦,B1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦. (B9) 

The matrix B0 and B1 represent the boundary conditions expressed by Eqs. (A6) and (A7). Substituting Eq. (B6) into Eq. (B7) gives the following 
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equations: 
(

B0 + B1

∏N

i=1
eAN+1− i ⋅d

)

θ(0) = 0. (B10) 

The eigenfrequency ω in Eq. (B10) is obtained by setting the following matrix determinant zero in order to have the nontrivial solution of θ(0): 

det

(

B0 + B1

∏N

i=1
eAN+1− i ⋅d

)

= 0, (B11) 

where det() is the determinant of the matrix. The mode shape of beam vibration can be obtained numerically by repeating θ(ξk) =
∏k

i=1eAk+1− i θ(0)
with increasing k from 1 to N. 

Appendix C. Proof of the self-adjointness 

The vibration of the variable thickness beam can be described by the governing equation: 

BY(ξ) =
d2

dξ2

[

D(ξ)
d2Y(ξ)

dξ2

]

− T
d2Y(ξ)

dξ2 = λh(ξ)Y(ξ). (C1)  

where B and λ are the differential operator and eigenvalue, respectively. The boundary conditions are concluded as follows: 

Free end : D
d2Y
dξ2 = 0,

d
dξ

[

D
d2Y
dξ2

]

− T
dY
dξ

= 0; (C2)  

Clamped end : Y = 0,
d
dξ

Y = 0. (C3)  

The inner product of BYi and Yj is expressed as 

〈
BYi, Yj

〉
=

∫ 1

0

{
d2

dξ2

[

D(ξ)
d2Yi(ξ)

dξ2

]

− T
d2Yi(ξ)

dξ2

}

Yj(ξ)dξ. (C4) 

The difference of 〈BYi,Yj〉 and 〈BYj,Yi〉 is as follows: 

〈
BYi, Yj

〉
−
〈
BYj,Yi

〉
=

{
d
dξ

[

D
d2Yi

dξ2

]

Yj −
d
dξ

[

D
d2Yj

dξ2

]

Yi

} ⃒
⃒
⃒
⃒

1

0
− T
[

dYi

dξ
Yj −

dYj

dξ
Yi

] ⃒
⃒
⃒
⃒

1

0
−

{[

D
d2Yi

dξ2

]
dYj

dξ
−

[

D
d2Yj

dξ2

]
dYi

dξ

} ⃒
⃒
⃒
⃒

1

0
(C5)  

By substituting the boundary conditions of Eqs. (C2) or (C3) into Eq. (C5) becomes: 
〈
BYi, Yj

〉
−
〈
BYj,Yi

〉
= 0 (C6)  

Thus, the operator of Eq. (C1) is self-adjoint. 

Appendix D. Curve-fitting of the optimized shapes 

The optimal shapes of the optimized cantilevers are curve-fitted as the following polynomial functions for the first (j = 1) and second (j = 2) modes: 

⎧
⎨

⎩

h(ξ) = 2 − 0.138ξ − 8.366ξ2 + 15.348ξ3 − 15.265ξ4 + 6.440ξ5, (j = 1),

h(ξ) =

{
1.914 − 1.060ξ − 55.048ξ2 + 412.565ξ3 − 1606.311ξ4 + 1956.275ξ5, ξ⩽0.25

− 7.685 + 69.201ξ − 225.695ξ2 + 387.464ξ3 − 338.655ξ4 + 115.417ξ5, ξ⩾0.25
(j = 2).

(D1) 

The optimal shapes of the optimized doubly clamped beams are curve-fitted as follows: 

⎧
⎪⎪⎨

⎪⎪⎩

h(ξ) = 1.979 + 1.515ξ − 38.419ξ2 + 73.808ξ3 − 36.904ξ4, (j = 1),

h(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

1.796 − 1.628ξ + 271.487ξ2 + 13152ξ3 − 155648ξ4 − 591710ξ5, ξ < 0.113

4.557 − 1.002E3ξ − 9.096E3ξ2 − 3.525E3ξ3 + 6.532E3ξ4 − 5.724E3ξ5 + 1.908E3ξ6, 0.113⩽ξ⩽0.887

− 4.489E5 + 2.375E6ξ − 5.022E6ξ2 + 5.308E6ξ3 − 2.803E6ξ4 − 5.917E5ξ5, ξ > 0.113

(j = 3).
(D2)  
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