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A B S T R A C T

The theory of dynamic three-point bending tests under high-loading rates is developed for the first time with
account for structural vibration. Analytical solutions for dynamic normal (flexural) and shear stresses are
derived. To study the dynamic effect, dynamic factors for both types of stresses are defined and investigated
by employing a dimensionless characteristic time and a strain rate. It is found that both dynamic factors
attenuate with respect to the characteristic time and, therefore, the quasi-static time thresholds and loading
conditions are obtained. In addition, the dominant failure mode is studied for potential application in brittle
materials in terms of normal-to-shear stress ratio, which is oscillatory in contrast to the quasi-static case. The
developed theory is verified with a split Hopkinson bar test together combined with digital image correlation
as well as finite-element simulations. The findings of this study can provide a guideline for test design, such as
selection of specimen geometry and loading rate. As the theory provides a modal decomposition of dynamic
normal and shear stresses, it can also be used in the field of structural health monitoring.
1. Introduction

Determination of the flexural properties of materials and structures
is essential for the design of thin-walled structures and assessment of re-
lated engineering structures subjected to transverse loads, and bending
tests are commonly used for this purpose [1–6], for instance three-point
bending. This type of tests can be employed to study the mechanical
properties of materials as well as their failure modes. For brittle mate-
rials, such as carbon-fiber-reinforced plastics (CFRPs), the failure can
be back fiber breakage (flexural failure) or interlaminar delamination
(shear failure) [7]; for ductile materials, such as polymers and metallic
alloys, bending failure can also be evaluated in terms of the flexural
yield strength and flexural ultimate strength [8]. All these analyses
require the accurate assessment of normal (flexural) and shear stresses
for the three-point-bending configuration under transverse loads.

In a quasi-static loading regime, this configuration has been well
studied and can be designed according to the purpose of the tests. For
instance, by adjusting a span-to-thickness ratio 2𝐿∕ℎ (where 𝐿 is the
alf span, as shown in Fig. 1), the three-point bending configuration can
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be used to study the shear properties using the relationship between the
maximum normal (flexural) and shear stresses 𝜎∕𝜏 = 4𝐿∕ℎ for quasi-
static loads [9]. This configuration was also widely employed to assess
the material properties of metallic materials [10], ceramics [11,12],
polymers [13], composite materials [14–16] as well as tests of engi-
neering structures for various sectors, such as civil engineering [17,18],
aviation [19,20] and structural health monitoring [21–23]. As a result,
for the quasi-static regime, several standardized testing methods were
developed based on the three-point bending configuration, such as
ASTM C393 [24], C1161 [25], C1609 [26], D790 [27], D2344 [28],
D7264 [29], E290 [30].

In the dynamic loading regime, three-point bending was also widely
used in experiments [31–36], performed with servo-hydraulic ma-
chines, as well as drop-weight and split Hopkinson bar (SHB) methods.
The applied forces were usually measured and processed to derive the
required mechanical parameters. A general finding was the oscillatory
character of applied forces reflecting the dynamic response of the
specimens. From the mechanical perspective, the dynamic response
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Nomenclature

𝐴 Area of cross-section of beam section
𝑏 Width of beam
𝐸 Young’s modulus
𝐹1 (𝑥), 𝐹2 (𝑥) Shifting functions for beam sections ① and

②

𝑓𝜎crit, 𝑓
𝜏
crit Acceptable dynamic factors for normal and

shear stresses
𝑓𝜎dyn, 𝑓

𝜏
dyn Dynamic factors for normal and shear

stresses
ℎ Thickness of beam
𝐼 Second moment of area of beam section
𝐿0 Half of beam length
𝐿 Half of span between two supports
𝑇𝑖 (𝑡), 𝑇̇𝑖 (𝑡) Modal displacement and velocity of 𝑖th

normal mode
𝑡 Time
𝑣 Loading rate
𝑉 (𝑥, 𝑡) Shear force
𝑤1 (𝑥, 𝑡), 𝑤2 (𝑥, 𝑡) Deflections of beam sections ① and ②

𝑤1fv (𝑥, 𝑡), 𝑤2fv (𝑥, 𝑡) Free-vibration components of beam sections
① and ②

𝑊1𝑖 (𝑥), 𝑊2𝑖 (𝑥) ith normal modes of beam sections ① and ②

𝛽𝑖 ith mode wavenumber
𝛾 Ratio of beam length outside support to half

span
𝜆𝑖 ith mode eigenvalue
𝜉 Characteristic time
𝜉crit Quasi-static time threshold
𝜌 Density
𝜎 Dynamic normal (flexural) stress
𝜎vib Normal stress component due to structural

vibration
𝜎sta Normal stress component due to quasi-static

motion
𝜏 Dynamic shear stress
𝜏vib Shear stress component due to structural

vibration
𝜏sta Shear stress component due to quasi-static

motion
𝜙1𝑖 (𝑥), 𝜙2𝑖 (𝑥) ith mode shapes of beam sections ① and ②

𝜓 (𝑥, 𝑡) Normal-to-shear stress ratio
𝜔𝑖 Angular frequency of 𝑖th vibration mode

Abbreviations

CFRPs Carbon-fiber-reinforced plastics
DIC Digital image correlation
FEM Finite-element method
SHB Split Hopkinson bar
SHM Structural health monitoring

is related to the applied velocity, and, under low-velocity impact,
the structural response is dominated by propagation of a flexural
wave (providing a global dynamic response) rather than a dilata-
tional one [37]. For specimens with finite lengths, propagation of
flexural waves induces the structural vibration, giving rise to the
oscillatory dynamic response of the specimen and, therefore, oscillatory
applied loads. If specimens have an infinite length or can be considered
2

long, the dominant mechanism is flexural-wave propagation without
structural vibration, and readers are referred to [38].

There remain questions concerning dynamic three-point bending of
finite-length specimens that have not yet been fully answered in the
literature, such as the effect of specimen geometry on the dynamic
response, the classification between quasi-static and dynamic loading
rates, and evolution of dynamic responses, to name a few. These can
be addressed with analytical investigation, and it is one of the main
focuses of this work. Note that for drop-weight three-point bending
tests, both the mass and initial velocity of the striker (or impact
energy) affect the dynamic response of the impacted specimen. For
a fundamental understanding of the intrinsic dynamic effect in the
specimens, only the impact velocity is considered, that is, high loading
rates, which could be achieved with SHB impact experiments.

In this work, the analytical theory of dynamic three-point bending
tests under high-loading rates is developed first in Section 2 to study
the dynamic effects and their evolution in association with configu-
ration geometry, by investigating the dynamic normal (flexural) and
shear stresses. The analytical solutions are then verified in Section 3
experimentally and numerically. For the experimental validation in
Section 3.1, digital image correlation (DIC) results from specimens
under SHB impact are used. Further verification against the finite-
element-method (FEM) simulations follows in Section 3.2. Conclusions
are given in Section 4. Note that although this study is focused on the
rectangular cross-sectioned beams, the developed analytical techniques
can be readily transferred to study other beams with various cross
sections and flexural rigidities, widely investigated in the field of thin-
walled structures, such as solid square cross-sectioned beams [39],
cylindrical tubes [40,41], rectangular tubes [42,43], sandwich beams
[44,45], channeled sectioned beams [46,47], smooth-shell lattice-filled
cross-sectioned beams [48], to name a few.

2. Theory

In this section, the theory of dynamic three-point bending is de-
veloped. The dynamic normal (flexural) and shear stresses under high
loading rates are derived analytically with consideration of structural
vibration by employing beam dynamics. The dynamic response behav-
ior is also investigated.

The considered beam configuration (Fig. 1a) has a total length of
(

𝐿1 + 𝐿2
)

, a thickness of ℎ, and a span of 2𝐿, with the high-loading-rate
displacement acting at the midspan location. Note that in the quasi-
static testing configuration, 𝐿1 = 𝐿2 is not a requirement; only that
the external displacement or load is applied at the midspan, that is,
loading configuration is symmetric. This, however, is not the case in
the dynamic regime since the difference between 𝐿1 and 𝐿2 alters
the normal mode (or mode shape), causing asymmetric loading (an
example of this is given in Appendix A, see Fig. A.1). For symmetrical
loading, 𝐿1 = 𝐿2 and so, to facilitate the derivation, a dimensionless
length ratio 𝛾 =

(

𝐿0 − 𝐿
)

∕𝐿 is introduced, with 𝐿0 = 𝐿1 = 𝐿2. There-
fore, due to the problem’s symmetry, only one half of the three-point
bending configuration with two beam sections is modeled analytically,
as shown in Fig. 1b, together with the prescribed coordinate system and
applied displacement 𝑤0 (𝑡). The lengths of beam sections ① and ② are,
hen, 𝐿 and 𝛾𝐿, and their deflections are denoted 𝑤1 (𝑥, 𝑡) and 𝑤2 (𝑥, 𝑡),
espectively. Assuming the beam is thin (𝐿 ≫ ℎ and 𝛾𝐿 ≫ ℎ), Euler–
ernoulli classical beam theory applies. The applied displacement is
0 (𝑡) = 𝑣𝑡, representing a high-loading-rate scenario, with 𝑣 being the

onstant loading rate.
Theoretical investigation is arranged as follows: the deflections

f the half three-point bending configuration in Fig. 1b is derived
n Section 2.1, which are then used to derive the dynamic normal
flexural) and shear stresses in Section 2.2 and Section 2.3 with further
nvestigation of dynamic effects. In Section 2.4, the potential dynamic
ailure modes are studied for brittle materials.
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Fig. 1. (a) Schematic of three-point bending configuration; (b) analytical model with coordinate system.
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.1. Dynamic transverse response under high loading rate

.1.1. Deflection assumptions and boundary conditions
Due to the symmetric configuration, the boundary conditions for

eam section ① in Fig. 1b are 𝑤(1)
1 (0, 𝑡) = 0 and 𝑤1 (0, 𝑡) = 𝑣𝑡 at the

loading point, and 𝑤1 (𝐿, 𝑡) = 0 at the support point. The boundary
conditions for the beam section ② are 𝑤2 (𝐿, 𝑡) = 0 at the support and
𝐸𝐼𝑤(2)

2
(

𝐿0, 𝑡
)

= 0 and 𝐸𝐼𝑤(3)
2

(

𝐿0, 𝑡
)

= 0 at its free end. The equations
f motion for the two beam sections are

𝐼𝑤(4)
1 (𝑥, 𝑡) + 𝜌𝐴𝑤̈1 (𝑥, 𝑡) = 0, (1)

𝐼𝑤(4)
2 (𝑥, 𝑡) + 𝜌𝐴𝑤̈2 (𝑥, 𝑡) = 0, (2)

here 𝐼 = 𝑏ℎ3∕12 is the second moment of area and 𝐴 = 𝑏ℎ is the
ross-sectional area. Eqs. (1) and (2) are for plane-stress conditions; for
lane-strain conditions, E must be replaced with 𝐸∕

(

1 − 𝜈2
)

through-
ut this paper. Lagrange’s notation 𝑤(1) = 𝜕𝑤∕𝜕𝑥 is used to represent
artial differentiation with respect to the x coordinate, and the ‘over
ot’ notation 𝑤̇ = 𝜕𝑤∕𝜕𝑡 is used for the partial differentiation with
espect to time.

Under high loading rates, the dynamic response of the beam in-
ludes a free vibration and a quasi-static motion, and the total de-
lections 𝑤1 (𝑥, 𝑡) and 𝑤2 (𝑥, 𝑡) can be expressed as combinations of
he free-vibration component and extrapolation of the applied dis-
lacements as the quasi-static component by introducing the shifting
unctions, giving

1 (𝑥, 𝑡) = 𝑤1fv (𝑥, 𝑡) + 𝐹1 (𝑥) 𝑣𝑡 , (3)

2 (𝑥, 𝑡) = 𝑤2fv (𝑥, 𝑡) + 𝐹2 (𝑥) 𝑣𝑡 , (4)

here 𝑤1fv (𝑥, 𝑡) and 𝑤2fv (𝑥, 𝑡) are the free-vibration components of
eam sections ① and ②, respectively; 𝐹1 (𝑥) and 𝐹2 (𝑥) are the cor-

responding shifting functions used to distribute the applied displace-
ment along the beam lengths. Combining Eqs. (1) and (3) and ap-
plying the homogeneity condition, the governing equations for the
free-vibration component and the shifting function for the beam section
① are obtained as

𝐸𝐼𝑤(4)
1fv (𝑥, 𝑡) + 𝜌𝐴𝑤̈1fv (𝑥, 𝑡) = 0, (5)

1 (𝑥) = 0. (6)

Similarly, for the beam section ②, by combining Eqs. (2) and (4),
he respective governing equations are

𝐼𝑤(4)
2fv (𝑥, 𝑡) + 𝜌𝐴𝑤̈2fv (𝑥, 𝑡) = 0, (7)

2 (𝑥) = 0. (8)

The boundary conditions for the free-vibration components
1fv (𝑥, 𝑡) and 𝑤2fv (𝑥, 𝑡) and the shifting functions 𝐹1 (𝑥) and 𝐹2 (𝑥) are

iven in Appendix B along with the continuity conditions.

3

.1.2. Solution for shifting functions
By solving the governing equations Eqs. (6) and (8) with the bound-

ry conditions in Table B.1 and Table B.2, the shifting functions are
btained as

1 (𝑥) =
1

2𝐿3
𝑥3 − 3

2𝐿2
𝑥2 + 1, (9)

𝐹2 (𝑥) = − 3
2𝐿

𝑥 + 3
2
. (10)

It is worth noting that the shifting function 𝐹1 (𝑥), represents the dis-
placement extrapolation 𝑣𝑡𝐹1 (𝑥), and the velocity distribution 𝑣𝐹1 (𝑥) as
the quasi-static component, is independent of 𝛾, that is, the length of the
beam section ② does not affect the quasi-static response. Therefore, in a
quasi-static three-point bending test, the lengths outside the supports,
or ‘‘overhang’’, are not of concern, but, as demonstrated later in this
work, this is not the case for dynamic regime.

2.1.3. Solution for free-vibration components
The general solutions for Eqs. (5) and (7), with the method of

separation of variables, are

𝑤1fv (𝑥, 𝑡) =
∞
∑

𝑖=1
𝑊1𝑖 (𝑥) 𝑇𝑖 (𝑡) , (11)

2fv (𝑥, 𝑡) =
∞
∑

𝑖=1
𝑊2𝑖 (𝑥) 𝑇𝑖 (𝑡) , (12)

here 𝑊1𝑖 (𝑥) and 𝑊2𝑖 (𝑥) are the 𝑖th normal modes of beam sections
and ②, respectively; and 𝑇𝑖 (𝑡) is the 𝑖th modal displacement. Com-

ining Eqs. (5) and (11), Eqs. (7) and (12), and introducing natural
requency 𝜔𝑖, two ordinary governing equations for normal modes and
ne equation for a modal displacement are derived:
(4)
1𝑖 (𝑥) − 𝛽4𝑖𝑊1𝑖 (𝑥) = 0, (13)

(4)
2𝑖 (𝑥) − 𝛽4𝑖𝑊2𝑖 (𝑥) = 0, (14)

̈𝑖 (𝑡) + 𝜔2
𝑖 𝑇𝑖 (𝑡) = 0, (15)

here 𝛽𝑖 is the wavenumber with 𝛽4𝑖 = 𝜔2
𝑖 𝜌𝐴∕ (𝐸𝐼).

The solution for the normal mode 𝑊1𝑖 (𝑥) of beam section ① can
e obtained by solving Eq. (13) together with the boundary conditions
iven in Table B.1 as

1𝑖 (𝑥) = 𝐶𝑖1𝜙1𝑖 (𝑥) , (16)

here 𝐶𝑖1 is the coefficient to be determined and 𝜙1𝑖 (𝑥) is the mode
hape,

1𝑖 (𝑥) = cosh
(

𝛽𝑖𝑥
)

− cos
(

𝛽𝑖𝑥
)

−

[

cosh
(

𝜆𝑖
)

− cos
(

𝜆𝑖
)]

[

sinh
(

𝜆𝑖
)

− sin
(

𝜆𝑖
)]

[

sinh
(

𝛽𝑖𝑥
)

− sin
(

𝛽𝑖𝑥
)]

, (17)

with 𝜆𝑖 = 𝛽𝑖𝐿 being the eigenvalue, which can be obtained by solving
the frequency equation in Eq. (20).
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The solution for normal mode 𝑊2𝑖 (𝑥) of beam section ② can be
btained by solving Eq. (7) together with the boundary conditions
iven in Table B.2 and continuity conditions in Table B.3 as

2𝑖 (𝑥) = 𝐶𝑖1𝜙2𝑖 (𝑥) , (18)

here the mode shape 𝜙2𝑖 (𝑥) is

2𝑖 (𝑥)=
[cos(𝜆𝑖) cosh(𝜆𝑖)−1]
[sinh(𝜆𝑖)−sin(𝜆𝑖)]

[sinh(𝛾𝜆𝑖)+sin(𝛾𝜆𝑖)]
[cos(𝛾𝜆𝑖) cosh(𝛾𝜆𝑖)+1]

{

cosh
[

𝛽𝑖
(

𝑥 − 𝐿0
)]

+ cos
[

𝛽𝑖
(

𝑥 − 𝐿0
)]}

+ [cos(𝜆𝑖) cosh(𝜆𝑖)−1]
[sinh(𝜆𝑖)−sin(𝜆𝑖)]

[cosh(𝛾𝜆𝑖)+cos(𝛾𝜆𝑖)]
[cos(𝛾𝜆𝑖) cosh(𝛾𝜆𝑖)+1]

{

sinh
[

𝛽𝑖
(

𝑥 − 𝐿0
)]

+ sin
[

𝛽𝑖
(

𝑥 − 𝐿0
)]}

.

(19)

Applying the continuity conditions to the normal modes gives the
frequency equation as
[

cos
(

𝜆𝑖
)

cosh
(

𝜆𝑖
)

− 1
] [

cos
(

𝛾𝜆𝑖
)

sinh
(

𝛾𝜆𝑖
)

− cosh
(

𝛾𝜆𝑖
)

sin
(

𝛾𝜆𝑖
)]

+
[

cos
(

𝛾𝜆𝑖
)

cosh
(

𝛾𝜆𝑖
)

+ 1
] [

cos
(

𝜆𝑖
)

sinh
(

𝜆𝑖
)

− cosh
(

𝜆𝑖
)

sin
(

𝜆𝑖
)]

= 0.

(20)

The eigenvalues in Eq. (20) are a function of the beam length
atio 𝛾, which depends on the specimen configuration. The eigenvalues
f the first five vibration modes for beam length ratios in the range
0, 1) are shown in Fig. 2a. Also, the relationship between the eigen-
alues and the natural frequencies is 𝜔𝑖 =

(

𝜆2𝑖 ∕𝐿
2)

√

𝐸𝐼∕ (𝜌𝐴), and,
herefore, the value of 𝛾 also influences the natural frequencies. This
an be seen in Fig. 2b, where a relative frequency difference 𝛥𝜔𝑖 =
[

𝜔𝑖 (𝛾) − 𝜔𝑖 (𝛾 = 0)
]

∕𝜔𝑖 (𝛾 = 0) is introduced based on a baseline of 𝛾 =
0. It is seen that the effect of the beam length ratio 𝛾 on the natural
frequencies is significant and the design of specimen configuration must
take this into account. It should be also noted that ASTM 7264 [29]
recommends 𝛾 = 0.2, and, in this case, the eigenvalues 𝜆𝑖 for the first
five vibration modes are 3.83757, 6.39890, 8.22396, 10.80461 and
13.77274, respectively.

Now, 𝐶𝑖1 is the only coefficient left undetermined for the normal
modes 𝑊1𝑖 (𝑥) in Eq. (16) and 𝑊2𝑖 (𝑥) in Eq. (18). It can be obtained by
employing the orthogonality condition in Eq. (C.5), which is derived in
Appendix C, resulting in

𝐶2
𝑖1 =

𝐸𝐼
𝜌𝐴

1
{

∫ 𝐿0
[

𝜙1𝑖 (𝑥)
]2 𝑑𝑥 + ∫ 𝐿0

𝐿
[

𝜙2𝑖 (𝑥)
]2 𝑑𝑥

} . (21)

The general form for the solution of modal displacement is

𝑇𝑖 (𝑡) = 𝑇𝑖 (0) cos
(

𝜔𝑖𝑡
)

+
𝑇̇𝑖 (0) sin

(

𝜔𝑖𝑡
)

, (22)

𝜔𝑖

4

here 𝑇𝑖 (0) and 𝑇̇𝑖 (0) are the initial modal displacement and velocity,
espectively, derived in Appendix D as

𝑖 (0) =
𝜌𝐴
𝐸𝐼

[

∫

𝐿

0
𝑊1𝑖 (𝑥)𝑤1fv (𝑥, 0) 𝑑𝑥 + ∫

𝐿0

𝐿
𝑊2𝑖 (𝑥)𝑤2fv (𝑥, 0) 𝑑𝑥

]

,

(23)

̇ 𝑖 (0) =
𝜌𝐴
𝐸𝐼

[

∫

𝐿

0
𝑊1𝑖 (𝑥) 𝑤̇1fv (𝑥, 0) 𝑑𝑥 + ∫

𝐿0

𝐿
𝑊2𝑖 (𝑥) 𝑤̇2fv (𝑥, 0) 𝑑𝑥

]

.

(24)

Note that 𝑤1fv (0, 𝑡) and 𝑤2fv (0, 𝑡) can be obtained by setting 𝑡 = 0 in
qs. (3) and (4), giving 𝑤1fv (0, 𝑡) = 0 and 𝑤2fv (0, 𝑡) = 0; and similarly,
̇ 1fv (0, 𝑡) = −𝑣𝐹1 (𝑥) and 𝑤̇2fv (0, 𝑡) = −𝑣𝐹2 (𝑥). And then from Eq. (23),
he initial modal displacement 𝑇𝑖 (0) = 0; and, from Eq. (24), the initial
odal velocity, derived in Appendix E, is

̇ 𝑖 (0) = 𝑣 1
𝜔2
𝑖

𝑊 (3)
1𝑖 (0) . (25)

Therefore, by combining results in Sections 2.1.2 and 2.1.3, the total
deflection for beam section ① is

𝑤1 (𝑥, 𝑡) = −2𝑣𝐿2
√

𝜌𝐴
𝐸𝐼

∞
∑

𝑖=1

𝐻𝑖

𝜆3𝑖
𝜙𝑖 (𝑥) sin

(

𝜔𝑖𝑡
)

+
( 1
2𝐿3

𝑥3 − 3
2𝐿2

𝑥2 + 1
)

𝑣𝑡 ,

(26)

here

𝑖 =

[

cosh
(

𝜆𝑖
)

− cos
(

𝜆𝑖
)]

[

sinh
(

𝜆𝑖
)

− sin
(

𝜆𝑖
)]

𝐿
{

∫ 𝐿0
[

𝜙1𝑖 (𝑥)
]2 𝑑𝑥 + ∫ 𝐿0

𝐿
[

𝜙2𝑖 (𝑥)
]2 𝑑𝑥

} . (27)

Note that only the deflection of beam section ① is considered since
damage and failure can initiate in this region.

2.2. Dynamic normal stress

The normal (flexural) stress across the beam section, according to
beam mechanics, is 𝜎 (𝑥, 𝑧, 𝑡) = −𝑀 (𝑥, 𝑡) 𝑧∕𝐼 with 𝑀 (𝑥, 𝑡) being the
nternal bending moment. By using the deflection of beam section ①

n Eq. (26), the total dynamic normal (flexural) stress is obtained as

(𝑥, 𝑧, 𝑡) = 4
√

3𝑣
√

𝜌𝐸 𝑧
∞
∑

X𝑖 (𝑥, 𝛾) sin
(

𝜔𝑖𝑡
)

+
(

1 − 1 𝑥
) 𝑧 3𝐸ℎ𝑣𝑡

2
, (28)
ℎ 𝑖=1 𝐿 ℎ 𝐿
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Fig. 3. Contribution of first four vibration modes to dynamic normal stress for 0 ≤ 𝛾 ≤ 0.5: (a) first mode, (b) second mode, (c) third and (d) fourth mode.
𝛾

c
𝜉

where

X𝑖 (𝑥, 𝛾) =
𝐻𝑖
𝜆𝑖

{[

cosh
(

𝜆𝑖
𝐿
𝑥
)

+ cos
(

𝜆𝑖
𝐿
𝑥
)]

−

[

cosh
(

𝜆𝑖
)

− cos
(

𝜆𝑖
)]

[

sinh
(

𝜆𝑖
)

− sin
(

𝜆𝑖
)]

[

sinh
(

𝜆𝑖
𝐿
𝑥
)

+ sin
(

𝜆𝑖
𝐿
𝑥
)]

}

. (29)

The normal (flexural) stress in Eq. (28) consists of two components –
elated to the structural vibration and the quasi-static motion – denoted
vib and 𝜎sta, respectively. The latter is a function of coordinates (𝑥, 𝑧),
nd it reaches its maximum value at the loading point (𝑥 = 0), vanishing
t the support (𝑥 = 𝐿). The flexural-stress component due to structural
ibration (or vibration-induced normal stress) 𝜎vib is a function of coor-
inate x and the beam length ratio 𝛾 via X𝑖 (𝑥, 𝛾), which is investigated
n Section 2.2.1.

.2.1. Contribution of 𝑖th vibration mode to dynamic flexural stress
Eq. (28) shows that the contribution to the vibration-induced nor-

al stress component 𝜎vib from the 𝑖th vibration mode is proportional to
𝑖 (𝑥, 𝛾) that depends on the ratio 𝛾 of the beam length outside

(

𝐿0 − 𝐿
)

support to the half span 𝐿 (i.e. 𝛾 =
(

𝐿0 − 𝐿
)

∕𝐿). The distributions of
values of X𝑖 (𝑥, 𝛾) for the first four vibration modes along the span for
0 ≤ 𝛾 ≤ 0.5 are plotted in Fig. 3 together with their magnitudes.

As seen in Fig. 3, the contribution of each vibration is oscillatory
with regard to both the coordinate 𝑥 and the beam length ratio 𝛾, with
a rather complex trend. Since in ASTM 7264 [29] it is recommended
that 𝛾 = 0.2, X𝑖 (𝑥, 0.2) as the cross-section of Fig. 3 is presented in Fig. 4
together with its absolute values.

It is clear that X𝑖 (𝑥, 0.2) oscillates around zero. For the 𝑖th vibration
mode there are i roots for X𝑖 (𝑥, 0.2) = 0, for which the mode does not
contribute to the vibration-induced normal stress component 𝜎vib. This
can be used by researchers in the field of structural health monitoring
(SHM) for acquiring stress signals free of a certain vibration frequency.
In addition, at the loading point (𝑥 = 0), with the maximum normal
stress, the first vibration mode makes the greatest contribution with

X1 (0, 0.2) = 0.4863, but the dominant vibration mode alters along the w

5

span (coordinate x). Based on the absolute value of X𝑖 (𝑥, 0.2), the beam
section can be divided into three regions according to the dominant
vibration mode (Fig. 4b): (1) Region I with 0 ≤ 𝑥 ≤ 0.205𝐿; (2) Region
II with 0.205𝐿 ≤ 𝑥 ≤ 0.355𝐿; (3) Region III with 0.355𝐿 ≤ 𝑥 ≤ 𝐿.
The first vibration mode dominates in Regions I and III, while other
vibration modes dominate in Region II.

2.2.2. Normal-stress dynamic factor and strain rate
To study the dynamic effect, a normal-stress dynamic factor

𝑓𝜎dyn (𝑥, 𝛾, 𝑡) is defined as the ratio between the normal stress compo-
nents due to vibration and quasi-static motion, that is,

𝑓𝜎dyn (𝑥, 𝛾, 𝑡)=
𝜎vib
𝜎sta

=
4
√

3𝑣
√

𝜌𝐸 𝑧
ℎ
∑∞
𝑖=1 X𝑖(𝑥,𝛾) sin(𝜔𝑖𝑡)

(

1− 1
𝐿 𝑥

)

𝑧
ℎ

3𝐸ℎ𝑣𝑡
𝐿2

= 2
3
𝐿2

𝑡

√

𝜌𝐴
𝐸𝐼

1
(

1− 1
𝐿 𝑥

)

∑∞
𝑖=1 X𝑖 (𝑥, 𝛾) sin

(

𝜆2𝑖
𝐿2

√

𝐸𝐼
𝜌𝐴 𝑡

)

.
(30)

Note that this dynamic factor is independent of coordinate 𝑧 but a
function of coordinate 𝑥 and time 𝑡. Its properties can be further studied
by defining a characteristic time,

𝜉 = 1
𝐿2

√

𝐸𝐼
𝜌𝐴

𝑡 , (31)

that is an intrinsic property of the investigated configuration. By substi-
tuting Eq. (31) into Eq. (30), the dynamic factor for normal stress can
be expressed by the characteristic time as

𝑓𝜎dyn (𝑥, 𝛾, 𝜉) =
2
3
1
𝜉

1
(1 − 𝑥∕𝐿)

∞
∑

𝑖=1
X𝑖 (𝑥, 𝛾) sin

(

𝜆2𝑖 𝜉
)

. (32)

The evolution of this dynamic factor with the characteristic time for
= 0.2 is presented in Fig. 5 for the first ten vibration modes.

The factor oscillates around zero, decreasing with respect to the
haracteristic time, and its absolute magnitude drops below 0.1 after
= 3.25. In a real-life experiments, the characteristic time is associated
ith the failure of the material, and by relating the characteristic time
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Fig. 5. Evolution of normal-stress dynamic factor with characteristic time for 𝛾 = 0.2
or first ten vibration modes.

ack to the testing time for failure via Eq. (31), the respective dynamic
actor can be determined as an indicator of dynamic effect.

Another parameter usually employed to study the dynamic effect is
he strain rate, which can be derived by Eq. (28), giving

𝜀̇𝑥𝑥 (𝑥, 𝑧, 𝑡)=
𝑑𝜀𝑥𝑥(𝑥,𝑧,𝑡)

𝑑𝑡 = 1
𝐸
𝑑𝜎(𝑥,𝑧,𝑡)

𝑑𝑡

= 4
√

3𝑣
√

𝜌
𝐸
𝑧
ℎ
∑∞
𝑖=1 𝜔𝑖X𝑖 (𝑥, 𝛾) cos

(

𝜔𝑖𝑡
)

+
(

1 − 1
𝐿𝑥

)

𝑧
ℎ
3ℎ𝑣
𝐿2 .

(33)

The strain rate is also comprised of two components: the vibration-
nduced strain rate and the quasi-static-motion strain rate. In the for-
er, the higher vibration modes make higher contributions thanks

o the multiplier of the natural frequency 𝜔𝑖. The quasi-static-motion
train rate is only a function of coordinates (𝑥, 𝑧), and once the location
s fixed, this motion gives a fixed strain-rate contribution, proportional
o the loading rate 𝑣. An example can be seen for the coordinates
0,−ℎ∕2) the bottom side under the loading point of the beam, with
he maximum normal (tensile) stress, where the strain rate is

𝜀̇𝑥𝑥
(

0,−ℎ
2
, 𝑡
)

= −2
√

3𝑣
√

𝜌
𝐸

∞
∑

𝑖=1
𝜔𝑖X𝑖 (0, 𝛾) cos

(

𝜔𝑖𝑡
)

− 3ℎ𝑣
2𝐿2

. (34)

By incorporating the characteristic time 𝜉 defined in Eq. (31), this
strain rate is

𝜀̇𝑥𝑥
(

0,−ℎ
2
, 𝜉
)

= −𝑣 ℎ
𝐿2

[ ∞
∑

𝑖=1
𝜆2𝑖X𝑖 (0, 𝛾) cos

(

𝜆2𝑖 𝜉
)

+ 3
2

]

. (35)

The evolution of the total strain rate for characteristic time 0 ≤ 𝜉 ≤ 5
and 𝛾 = 0.2 is shown in Fig. 6a for the first vibration mode and in
6

Fig. 6b for the first ten vibration in comparison with the quasi-static
strain rate. The total strain rate oscillates with higher vibration modes
contributing more to the total strain rate. Hence, the oscillatory nature
of the strain rate for dynamic three-point configuration makes it not
suitable as a quantitative measure of the dynamic effect.

2.2.3. Quasi-static time threshold and loading condition
The three-point bending configuration under high loading rate un-

dergoes structural vibration and gives rise to a significant dynamic
effect as the previous section shows. This raises an important question
about the value of loading rate associated with the evolution of dy-
namic factor, above which the case can be considered dynamic, and
below which quasi-static.

The analysis in Section 2.2.2 demonstrates that the dynamic factor
for normal stress 𝑓𝜎dyn (𝑥, 0.2, 𝜉) attenuates with respect to the charac-
teristic time 𝜉, becoming negligibly small after a certain characteristic
time 𝜉. This indicates that there exist both a time threshold 𝜉crit, above
which the dynamic effect can be safely ignored, and a corresponding
quasi-static loading rate. Considering the maximum normal stress at
(0,−ℎ∕2), the time evolution of the dynamic factor for normal stress by
ubstituting 𝑥 = 0 into Eq. (32) is

𝜎
dyn (0, 0.2, 𝜉) =

2
3
1
𝜉

∞
∑

𝑖=1
X𝑖 (0, 0.2) sin

(

𝜆2𝑖 𝜉
)

. (36)

To determine the time threshold 𝜉crit beyond which the dynamic
actor ||

|

𝑓𝜎dyn (0, 0.2, 𝜉)
|

|

|

is within an acceptable value of 𝑓𝜎crit, the envelope
the red dashed line in Fig. 7a) of 𝑓𝜎dyn (0, 0.2, 𝜉) can be employed.
hen, the relation between the acceptable value of dynamic factor
𝜎
crit and the corresponding time threshold 𝜉crit can be plotted with its
uantitative regression in Fig. 7b.

It is seen that the acceptable dynamic factor varies log-linearly with
he time threshold 𝜉crit (Fig. 7b). For 𝜉 > 𝜉crit = 81.41, the acceptable
alue of dynamic factor is less than 0.01 meaning that the dynamic
ffect accounts for less than 1% of the normal stress.

Now consider the quasi-static loading condition, that is, normal
ailure happens quasi-statically below a certain maximum loading
ate. Assuming the material’s normal (flexural) strength 𝜎crit is rate-
ndependent, combining Eqs. (28) and (30), the failure criterion is then

(

0,−ℎ
2
, 𝑡
)

= −
[

1 + 𝑓𝜎dyn (0, 0.2, 𝑡)
] 3𝐸ℎ𝑣𝑡

2𝐿2
= 𝜎crit . (37)

By incorporating the definition of characteristic time 𝜉 in Eq. (31)
and the concept of an acceptable value of the dynamic factor 𝑓𝜎crit with
the associated time threshold 𝜉 , the following loading-rate condition
crit
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Fig. 6. Total strain rate with first (a) and first ten vibration (b) modes.
Fig. 7. (a) Dynamic factor for normal stress and its envelope; (b) relation between acceptable normal-stress dynamic factor and characteristic time threshold.
based on Eq. (37) must be satisfied:

|𝑣| ≤
√

3
9

1

𝜉crit

(

1 + 𝑓𝜎crit

)

𝜎crit
√

𝐸𝜌
. (38)

Employing the result in Fig. 7b for the relation between the accept-
ble value of dynamic factor 𝑓𝜎crit and the time threshold 𝜉crit, for the

acceptable dynamic factor less than 1% with 𝜉crit = 81.41, the loading
rate must be

|𝑣| ≤ 0.00234
𝜎crit
√

𝐸𝜌
. (39)

The derivation of Eqs. (38) and (39) together with Fig. 7 defines a
oundary below which a test may be considered as quasi-static and can
e used as a guideline for test design. For example, considering a typical
FRP with a longitudinal modulus of 120 GPa, a density of 1250 kg m−3

nd a flexural strength of 1.2 GPa, the maximum loading rate for the
uasi-static condition with the acceptable dynamic factor of 0.01 is
.23 m s−1. This result is very useful to researchers in experimental
ield since it provides the upper boundary for the loading rate without
significant dynamic effect, while the material’s response due to the

ate effect can be isolated and studied.

.3. Dynamic shear stress

The shear stress across the beam section is 𝜏 (𝑥, 𝑧, 𝑡) = 𝑉 (𝑥, 𝑡)
(

ℎ2∕4 − 𝑧2
)

∕ (2𝐼), with 𝑉 (𝑥, 𝑡) being the shear force. By combining the
deflection in Eq. (26), the distribution of total dynamic shear stress is

𝜏 (𝑥, 𝑧, 𝑡) =

[

−2
√

3 ℎ 𝑣
√

𝜌𝐸
∞
∑

𝛬𝑖 (𝑥, 𝛾) sin
(

𝜔𝑖𝑡
)

+ 3𝐸ℎ2𝑣𝑡
3

]

(

1 − 𝑧2
2

)

, (40)

𝐿 𝑖=1 2𝐿 4 ℎ

7

where

𝛬𝑖 (𝑥, 𝛾) = 𝐻𝑖
{[

sinh
(

𝛽𝑖𝑥
)

− sin
(

𝛽𝑖𝑥
)]

−

[

cosh
(

𝜆𝑖
)

− cos
(

𝜆𝑖
)]

[

sinh
(

𝜆𝑖
)

− sin
(

𝜆𝑖
)]

[

cosh
(

𝛽𝑖𝑥
)

+ cos
(

𝛽𝑖𝑥
)]

}

. (41)

Like the dynamic flexural stress in Eq. (28), the shear stress also
consists of two components: the first term in Eq. (40) is due to the
structural vibration (or vibration-induced shear stress) and denoted 𝜏vib
to facilitate the subsequent discussion; the second term is due to the
applied quasi-static motion and denoted 𝜏sta. Obviously, the quasi-static
component 𝜏sta does not oscillate; it increases linearly with respect to
time t and has a constant value for a given coordinate 𝑧. In contrast,
𝜏vib oscillates with time and is also a function of coordinate 𝑥 and the
beam length ratio 𝛾 via 𝛬𝑖 (𝑥, 𝛾). As shown below, the superposition of
𝜏vib and 𝜏sta as a result of combined quasi-static motion and vibration
from the dynamic effect can be significant for failure initiation.

2.3.1. Contribution of 𝑖th vibration mode to dynamic shear stress
Eqs. (40) and (41) demonstrate that the contribution to the shear

stress component 𝜏vib from the 𝑖th structural vibration mode is propor-
tional to 𝛬𝑖 (𝑥, 𝛾). The values and magnitudes of 𝛬𝑖 (𝑥, 𝛾) for the first
four vibration modes along the half span of the three-point bending
specimen were solved and are plotted in Fig. 8.

The contribution to the dynamic shear stress from each vibration
mode varies as a function of the location and the beam length ratio
𝛾. The 𝛬𝑖 (𝑥, 0.2) cross-section of Fig. 8 is presented in Fig. 9, which
represents the beam length ratio of 𝛾 = 0.2 that is recommended by
ASTM D7264 [29].
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Fig. 8. Contribution of first four vibration modes to dynamic shear stress for 0 ≤ 𝛾 ≤ 0.5: (a) first mode, (b) second mode, (c) third mode and (d) fourth mode.

Fig. 9. Contribution of 𝑖th vibration mode to dynamic shear stress for 𝛾 = 0.2 (a) and its magnitude (b) for various 𝑥.

8
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Fig. 10. Evolution of shear-stress dynamic factor with characteristic time for first ten
ibration modes.

The contribution of each vibration mode varies with respect to the
ocation (𝑥 coordinate) (Fig. 9). The half span of the beam can be

approximately divided into two regions: Region I with 0 ≤ 𝑥 ≤ 0.38𝐿
here the first vibration mode dominates and Region II where other
ibration modes are significant. Also, for the 𝑖th vibration mode, there
re roots of 𝛬𝑖 (𝑥, 0.2) = 0; at these points this mode does not contribute
o the shear stress.

.3.2. Shear-stress dynamic factor
To study the dynamic effect, a shear-stress dynamic factor

𝜏
dyn (𝑥, 𝛾, 𝑡) is defined as the ratio between the shear stress components
ue to vibration and quasi-static motion:

𝜏
dyn (𝑥, 𝛾, 𝑡)=

𝜏vib
𝜏sta

=

[

−2
√

3 ℎ𝐿 𝑣
√

𝜌𝐸
∑∞
𝑖=1 𝛬𝑖(𝑥,𝛾) sin(𝜔𝑖𝑡)

]

(

1
4−

𝑧2

ℎ2

)

3𝐸ℎ2𝑣𝑡
2𝐿3

(

1
4−

𝑧2
ℎ2

)

= − 2
3
𝐿2

𝑡

√

𝜌𝐴
𝐸𝐼

∑∞
𝑖=1 𝛬𝑖 (𝑥, 𝛾) sin

(

𝜆2𝑖
𝐿2

√

𝐸𝐼
𝜌𝐴 𝑡

)

.

(42)

To investigate the evolution of this dynamic factor with respect to
time, the dimensionless characteristic time in Eq. (31) is combined with
the above shear stress dynamic factor, and the dynamic factor becomes

𝑓 𝜏dyn (𝑥, 𝛾, 𝜉) = −2
3
1
𝜉

∞
∑

𝑖=1
𝛬𝑖 (𝑥, 𝛾) sin

(

𝜆2𝑖 𝜉
)

. (43)

The evolution of this shear-stress dynamic factor 𝑓 𝜏dyn (𝑥, 𝛾, 𝜉) for
= 0.2 and various 𝑥 coordinates with respect to the characteristic

ime 𝜉 is given in Fig. 10.
Considering the combined contribution of first ten vibration modes

Fig. 10), the shear-stress dynamic factor also attenuates with char-
9

acteristic time but not as quickly as the normal-stress one shown in
Fig. 5.

2.3.3. Quasi-static time threshold and loading condition
Like the quasi-static time threshold for dynamic normal stress in

Section 2.2.3, the quasi-static time threshold for dynamic shear stress
can be obtained by examining the envelope (Fig. 11a) of the dynamic
factor for shear stress at the (0, 0) coordinate, considering the maximum
modal contribution at 𝑥 = 0 (Fig. 9). Following a similar approach, the
relation between the acceptable value of dynamic factor 𝑓 𝜏crit and the
corresponding time threshold 𝜉crit was obtained (Fig. 11b).

The acceptable dynamic factor 𝑓 𝜏crit also varies log-linearly with
respect to the time threshold 𝜉crit. For 𝜉 > 𝜉crit = 902.72, the acceptable
alue of dynamic factor is less than 0.01 meaning that the dynamic
ffect accounts for less than 1% of the total shear stress. Recalling
he respective result for the time threshold for normal stress, that was
1.41, it is clear that the dynamic factor for shear stress attenuates
ore slowly than that for normal stress.

Turning to the quasi-static loading condition, assuming the mate-
ial’s ultimate shear strength 𝜏crit is rate-independent, and incorpo-

rating the concept of the time threshold and the definition of the
characteristic time, while following a similar approach for determining
the maximum loading rate for flexural stress in Section 2.2.3, the
maximum quasi-static loading rate for shear stress must satisfy:

|𝑣| ≤
4
√

3
9

1

𝜉crit

(

1 + 𝑓 𝜏crit

)

𝐿
ℎ
𝜏crit
√

𝐸𝜌
. (44)

By employing the results for the acceptable dynamic factor 𝑓 𝜏crit and
the time threshold 𝜉crit in Fig. 11b, for instance, 𝜉crit = 902.72 and
𝑓 𝜏crit = 0.01, the quasi-static loading rate is

|𝑣| ≤ 0.000844𝐿
ℎ
𝜏crit
√

𝐸𝜌
. (45)

2.4. Failure mode

The beam under a high loading rate is subjected to dynamic flexural
and shear stresses that were derived and studied in Sections 2.2 and
2.3, respectively. Particularly for brittle materials under bending, the
dominant failure mode, either flexural or shear, can be studied by
defining a ratio between the maximum normal (flexural) stress (𝑥 = 0)
and shear stress (𝑥 → 0). The normal-to-shear stress ratio in terms of
he characteristic time in Eq. (21) is

(𝛾, 𝜉) = lim
𝑥→0

𝜎 (𝑥, 𝛾, 𝜉)
𝜏 (𝑥, 𝛾, 𝜉)

= 4𝐿
ℎ

⎡

⎢

⎢

⎢

⎢

⎢

3𝜉 + 2
∞
∑

𝑖=1
X𝑖 (0, 𝛾) sin

(

𝜆2𝑖 𝜉
)

3𝜉 − 2
∞
∑

𝛬𝑖 (0, 𝛾) sin
(

𝜆2𝑖 𝜉
)

⎤

⎥

⎥

⎥

⎥

⎥

. (46)
⎣ 𝑖=1 ⎦
Fig. 11. (a) Dynamic factor for shear stress and its envelope; (b) relation between acceptable shear-stress dynamic factor and characteristic time threshold.
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Fig. 12. Flexural-to-shear stress ratio for first vibration mode for 𝛾 = 0.2 for various characteristic times: (a) 𝜉 ≤ 10; (b) 10 ≤ 𝜉 ≤ 100.
Fig. 13. Flexural-to-shear stress ratio for first ten vibration modes for 𝛾 = 0.2 for different characteristic times: (a) 𝜉 ≤ 20; (b) 20 ≤ 𝜉 ≤ 100.
It is clear from Eq. (46) that the stress ratio oscillates with respect
to characteristic time 𝜉, and, if the dynamic effect is ignored, the ratio
becomes the quasi-static solution 𝜓 (𝛾, 𝜉) = 4𝐿∕ℎ (note that 2𝐿∕ℎ is the
aspect ratio of the specimen). When the dynamic effect is significant,
however, the ratio is also dependent on the beam length ratio 𝛾.

To understand the evolution of the normal-to-shear stress ratio,
the response due to the first vibration mode only is plotted against
the characteristic time in Fig. 12 for 𝛾 = 0.2. Evidently, the ratio is
oscillatory and can be very large for 𝜉 < 2, indicating that under
very high loading rates, both flexural and shear failures are possible,
regardless of the specimen’s aspect ratio (ℎ∕𝐿). This means that, under
dynamic loads, shear failure is possible for a long-beam configuration,
and flexural failure for a short-beam configuration. By 𝜉 = 20, however,
the amplitude of oscillation reduces significantly, and is in the range
0.95 < ℎ∕ (4𝐿)𝜓 (0.2, 𝜉) < 1.05, depending principally on the specimen’s
aspect ratio.

Now consider the normal-to-shear stress ratio for the first ten vi-
bration modes (Fig. 13). The ratio oscillates more strongly with the
addition of more vibration modes, and to reach the same range of
0.95 < ℎ∕ (4𝐿)𝜓 (0.2, 𝜉) < 1.05, the characteristic time must be larger
than 60.

2.5. Consideration of number of vibration modes

The application of the developed theory requires evaluation of
the number of vibration modes. An examination can be conducted
employing a modal effective mass, which provides a means to assess
the significance of a mode shape and an indication of the ease to excite
the vibration mode. For the beam system considered in Fig. 1b, the ith
10
modal effective mass is

𝑚eff
𝑖 =

[

∫ 𝐿0 𝜌𝐴𝑊1𝑖 (𝑥) 𝑑𝑥 + ∫ 𝐿0
𝐿 𝜌𝐴𝑊2𝑖 (𝑥) 𝑑𝑥

]2

∫ 𝐿0 𝜌𝐴
[

𝑊1𝑖 (𝑥)
]2 𝑑𝑥 + ∫ 𝐿0

𝐿
[

𝑊2𝑖 (𝑥)
]2 𝑑𝑥

= 𝜌𝐴

[

∫ 𝐿0 𝜙1𝑖 (𝑥) 𝑑𝑥 + ∫ 𝐿0
𝐿 𝜙2𝑖 (𝑥) 𝑑𝑥

]2

{

∫ 𝐿0
[

𝜙1𝑖 (𝑥)
]2 𝑑𝑥 + ∫ 𝐿0

𝐿
[

𝜙2𝑖 (𝑥)
]2 𝑑𝑥

} . (47)

Combining the mode shapes in Eqs. (17) and (19), the dimensionless
ith modal effective mass 𝑚eff

𝑖 ∕
(

𝜌𝐴𝐿0
)

and accumulative modal effec-
tive mass ∑𝑁

𝑖=1 𝑚
eff
𝑖 ∕

(

𝜌𝐴𝐿0
)

are plotted in Fig. 14, (𝜌𝐴𝐿0 is the total
mass of the beam system in Fig. 1b).

Apparently, the dimensionless ith modal effective mass 𝑚eff
𝑖 ∕

(

𝜌𝐴𝐿0
)

is a function of the beam length ratio 𝛾 and when 𝛾 ≤ 0.5 (Fig. 14a), the
first and second vibration modes are the most significant that can be
excited. A convergence study can be conducted with the accumulative
modal effective mass ∑𝑁

𝑖=1 𝑚
eff
𝑖 ∕

(

𝜌𝐴𝐿0
)

shown in Fig. 14b. With 𝑁 =
10, approximate 90% of the total mass is accounted for by these first
ten vibration modes. Particularly, for 𝛾 = 0.2, the dimensionless modal
effective mass for the first five vibration modes are 0.406, 0.188, 0.037,
0.157 and 0.0002, respectively (Fig. 14a), making nearly 80% of the
total mass (Fig. 14b).

Another upper constraint on the number of vibration mode being
considered is due to the inherent limitations of the Euler–Bernoulli
beam theory. In this theory, the phase speed of the ith vibration mode
flexural wave is 𝐶p

𝑖 = 𝜔𝑖∕𝛽𝑖 =
(

𝜆𝑖∕𝐿
)√

𝐸𝐼∕ (𝜌𝐴), which can become
infinitely large with the increasing eigenvalue 𝜆𝑖. Generally, without
generating a shock wave, the phase speed 𝐶p should be smaller than
𝑖
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Fig. 14. (a) ith modal effective mass; (b) accumulative modal effective mass.
Fig. 15. (a) Schematic of split Hopkinson bar experimental setup; (b) specimen with speckles. Typical DIC data for normal (c) and shear (d) strains at 0.175 ms.
s

the dilatational wave speed
√

𝐸∕𝜌, providing the upper limit for the
number of vibration modes with eigenvalues 𝜆𝑖 ≤ 2

√

3 (𝐿∕ℎ).

3. Experimental and numerical verifications

3.1. Experimental verification

Experimental verification of the developed theory was conducted on
Ti6Al4V specimens using split Hopkinson bar (SHB) impact test. The
geometry of the Ti6Al4V specimen was: 2𝐿0 = 200 mm, 2𝐿 = 165 mm,
(giving a length ratio 𝛾 of approximately 0.21), thickness ℎ = 5.44 mm
and width 𝑏 = 20 mm. Three specimens were tested under the SHB
impact. The Young’s modulus of Ti6Al4V is 113.8 GPa and the Poisson
ratio is 0.342 according to the manufacturer’s datasheet.
11
The specimen during the impact was filmed with a high-speed
camera with a resolution of 512 × 304 pixels at a frame rate of 80 000
fps. Then, the filmed images were post-processed, employing a digital
image correlation (DIC) method to derive the normal and shear strains
to verify the theoretical development in Section 2. The schematic of
the experimental setup is shown in Fig. 15a with the specimen resting
on two supports, while the specimen with speckles is in Fig. 15b. The
typical DIC results for normal and shear strains are in Fig. 14c and d,
respectively.

For the analytical results, the normal strain 𝜀𝑥𝑥 (𝑥, 𝑧, 𝑡) and shear
train 𝜀𝑥𝑧 (𝑥, 𝑧, 𝑡), according to Eqs. (28) and (40), are calculated using

𝜀𝑥𝑥 (𝑥, 𝑧, 𝑡) =

[

4
√

3𝑣
√

𝐸
∞
∑

X𝑖 (𝑥, 𝛾) sin
(

𝜔𝑖𝑡
)

+
(

1 − 1 𝑥
) 3ℎ𝑣𝑡

2

]

𝑧 , (48)

𝜌 𝑖=1 𝐿 𝐿 ℎ
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w
s

Fig. 16. (a) Incident and shifted reflected strain signals; (b) calculated applied displacement.
Fig. 17. Comparison of normal-strain results from developed theory and DIC results for first (a), first two (b), first three (c) and first four (d) vibration modes for point (0,
−1.98 mm).
𝜀𝑥𝑧 (𝑥, 𝑧, 𝑡) =

[

−4
√

3 ℎ
𝐿
𝑣 (1 + 𝜈)

√

𝜌
𝐸

∞
∑

𝑖=1
𝛬𝑖 (𝑥, 𝛾) sin

(

𝜔𝑖𝑡
)

+ (1 + 𝜈) 3ℎ
2𝑣𝑡
𝐿3

]

×
(

1
4
− 𝑧2

ℎ2

)

, (49)

The loading rate 𝑣 is obtained by the applied displacement 𝑤0 (𝑡),
hich was derived by processing the incident and shifted reflected

train signals employing Eq. (50), where 𝜀i (𝑡) and 𝜀r (𝑡) are the incident
and shifted reflected strain signals and 𝐶0 is the longitudinal wave
speed of the incident bar [49].

𝑤0 (𝑡) = −𝐶0
[

𝜀r (𝑡) − 𝜀i (𝑡)
]

𝑑𝑡 . (50)
∫

12
The strain signals are presented in Fig. 16a, while the calculated
applied displacement is in Fig. 16b with the fitted displacement, giving
a loading rate of 8.61 m s−1.

The normal strain verification was conducted for point of
(0, −1.98 mm), the analytical solution with increasing vibration mode
number up to 4 are compared with the DIC results (with standard
deviation as error bars) together with the quasi-static component in
Fig. 17.

It is seen that the normal strain obtained with the DIC method is
oscillatory (Fig. 17), and the analytical results capture this oscillatory
nature; by adding more modes up to the third vibration modes, the
analytical solution becomes increasingly closer to the DIC results, but
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Fig. 18. Comparison of shear strain results from developed theory and DIC results for first (a), first two (b), first three (c), first four (d), first five (e) and first ten (f) vibration
modes for point (10 mm, 0).
s

not after the fourth vibration mode. This is due to the phenomenon
known as loss-of-contact [50] that after the initial impact the specimen
bounces off the supports for a brief period, giving an immediate load
relief, and some of higher vibration modes might not be properly
excited and represented. This can also be referred to the findings in
Section 2.5 that the first four vibration modes make up nearly 80% of
the total mass of the beam system in Fig. 1b, and the analytical result
with these vibration modes is already comparable to the DIC results. In
addition, this loss-of-contact also alters the boundary conditions, and,
according to Fig. 2b, the frequencies of higher vibration modes are
more susceptible to boundary-condition change, and the prediction of
their frequencies might not be as accurate.

Turning to the comparison of shear strain between the analytical
and DIC results, the point (10 mm, 0) was chosen, and comparisons
with various vibration modes are given in Fig. 18. For the mean value of
DIC shear strain results, the analytical solution is in a good agreement
with the first three vibration modes. But the standard deviation of the
shear strain results is larger than that for the normal strain (Fig. 17),
showing a considerable contribution from the higher vibration modes;
 f

13
as seen in Fig. 18f, when first ten vibration modes are considered,
the deviation of the DIC results is in accordance with variation of the
oscillating analytical results.

3.2. Numerical verification

Experimental verification shows a good agreement between the
results of the analytical analysis and the DIC data, but for this high
dynamic event, the latter are limited by the capability of the high-
speed camera. A further numerical verification is conducted with finite-
element-method (FEM) simulations. A 2D FEM model was built in
Abaqus/Explicit using four-node plane-stress elements (CPS4R) with
a uniform element size of 0.1 mm after a mesh convergence study.
Note that in the FEM model the constitutive model for the material
is elastic, with linear bulk viscosity set to zero, in accordance with
the analytical theory developed in Section 2 without consideration of
the damping effect. The dynamic normal stress 𝜎 (0,−ℎ∕2, 𝑡) at lower
urface of x = 0 was extracted and compared to the analytical solutions
or various vibration modes (Fig. 19).
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Fig. 19. Evolution of dynamic flexural stress obtained with developed theory and FEM for increasing numbers of vibration modes at (0,−ℎ∕2): first (a), first two (b), first three
(c), first four (d), first five (e) and first ten (f) vibration modes.
As shown in Fig. 19, the dynamic normal stress determined with
the developed theory is in good agreement with FEM results, espe-
cially for lower vibration modes similar to the finding of experimental
verification; with adding more vibration modes the magnitudes of
normal stress predicted by the developed theory becomes increas-
ingly close to the FEM results. This agreement can be further ex-
amined by comparing the results of Fast Fourier Transform (FFT),
which provides a quantitative assessment of the agreement as shown in
Fig. 20.

As demonstrated by Fig. 20, the analytical results are more accurate
for the first three vibration modes. In the FEM results, the amplitudes of
the fourth and fifth vibration modes are barely visible due to the phe-
nomenon of loss-of-contact, confirming the finding of the experimental
verification in Section 3.1.
14
The comparisons for shear stress at (10 mm, 0) are given in Fig. 21,
considering both the phase and amplitude of each vibration mode.
Moreover, the analytical solution becomes increasingly close to the
FEM results with adding more vibration modes. It is worth noting
that the maximum value of the shear-stress component due to quasi-
static motion 𝜏sta is 15.49 MPa at 0.0008 s, but the maximum value of
the shear stress component due to structural vibration 𝜏vib can be as
high as 80.53 MPa, giving a total dynamic shear stress of 89.97 MPa.
This demonstrates that at high loading rate, shear failure can happen
considerably earlier than the displacement reaches the critical value
for the quasi-static shear failure. A quantitative assessment of the
agreement between the analytical and FEM results was also conducted
with the FFT method, and the detailed comparison is in Fig. 22, with
findings similar to those for the normal stress.
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Fig. 20. Comparison of FFT results for developed theory and FEM.

b

15
4. Conclusion

The theory of dynamic three-point bending under high-loading rates
was developed, providing analytical solutions for assessment of the dy-
namic normal (flexural) and shear stresses, which was then verified by
experiments and numerical simulations. Generally, under high loading
rates, the dynamic effect, which is quantified and studied in terms
of dynamic factors and a dimensionless characteristic time, can be
significant. It was found that the dynamic effect attenuated very quickly
with characteristic time 𝜉, employed to determine the quasi-static time
thresholds: for normal stress, 𝜉 > 𝜉crit = 81.41, and for shear stress,
𝜉 > 𝜉crit = 902.72, the dynamic effect can be considered insignificant. In
ddition, the quasi-static loading conditions were investigated for both
ormal and shear stresses, and the critical loading rates were obtained,
elow which the dynamic effect is insignificant (less than 1%).

The dominant failure mode in dynamic bending was also studied for
rittle materials. It was found that at 𝜉 < 10, the normal-to-shear stress
Fig. 21. Evolution of dynamic shear stress obtained with developed theory and FEM for increasing numbers of vibration modes at (10 mm, 0): first (a), first two (b), first three
c), first four (d), first five (e) and first ten (f) vibration modes.
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Fig. 22. Comparison of FFT results for developed theory and FEM.

ratio oscillates, but beyond this time, the dominant failure mode was
determined by the specimen’s geometry alone, depending on its ratio
4𝐿∕ℎ.

The developed theory was verified experimentally with DIC strain
results for a dynamic three-bending test of Ti6Al4V under the split
Hopkinson bar impact. It was demonstrated that although the specimen
experienced some loss of contact, the analytical solutions with lower
vibration modes still provided the accurate results. Further numerical
verification confirmed this and also showed that for both normal and
shear stresses, with addition of more vibration modes, the analytical
results became increasingly closer to the FEM results in terms of the
overall magnitude, although the frequencies of higher vibration modes
were less accurate.
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Appendix A. Mode shape comparison for symmetric and asymmet-
ric configurations

See Fig. A.1
16
Fig. A.1. Comparison of mode shapes for symmetric and asymmetric configurations.

ppendix B. Boundary conditions and continuity conditions

Employing the deflection assumptions in Eqs. (3) and (4) and forc-
ng the homogeneous conditions together with the boundary conditions
or total deflections of beam sections ① and ②, the boundary conditions
or 𝑤1fv (𝑥, 𝑡) and 𝐹1 (𝑥) can be determined and they are given in
able B.1, while the boundary conditions for 𝑤2fv (𝑥, 𝑡) and 𝐹2 (𝑥) are

n Table B.2, and continuity conditions are in Table B.3.

ppendix C. Derivation of orthogonality condition

The orthogonality condition can be derived as follows: multiplying
q. (13) by 𝑊1𝑗 (𝑥), integrating twice by parts over the length of beam
ection ① from 0 to 𝐿, applying the boundary conditions in Table B.1
o have

2
𝑖
𝜌𝐴
𝐸𝐼 ∫

𝐿

0
𝑊1𝑖 (𝑥)𝑊1𝑗 (𝑥) 𝑑𝑥

= −𝑊 (1)
1𝑗 (𝐿)𝑊 (2)

1𝑖 (𝐿) + ∫

𝐿

0
𝑊 (2)

1𝑖 (𝑥)𝑊 (2)
1𝑗 (𝑥) 𝑑𝑥 . (C.1)

Similarly, for beam section ②, multiplying Eq. (14) by 𝑊2𝑗 (𝑥),
ntegrating twice by parts over the beam section length from 𝐿 to 𝐿0,

applying the boundary conditions in Table B.2 to obtain

𝜔2
𝑖
𝜌𝐴
𝐸𝐼 ∫

𝐿0

𝐿
𝑊2𝑖 (𝑥)𝑊2𝑗 (𝑥) 𝑑𝑥

= 𝑊 (1)
2𝑗 (𝐿)𝑊 (2)

2𝑖 (𝐿) + ∫

𝐿0

𝐿
𝑊 (2)

2𝑖 (𝑥)𝑊 (2)
2𝑗 (𝑥) 𝑑𝑥 . (C.2)

Adding Eqs. (C.1) and (C.2) and subtracting the result with 𝑖 and 𝑗
xchanged to have

𝜔2
𝑖 − 𝜔

2
𝑗

) 𝜌𝐴
𝐸𝐼

[

∫

𝐿

0
𝑊1𝑖 (𝑥)𝑊1𝑗 (𝑥) 𝑑𝑥 + ∫

𝐿0

𝐿
𝑊2𝑖 (𝑥)𝑊2𝑗 (𝑥) 𝑑𝑥

]

= 0.

(C.3)

Since the natural frequency is unique, that is, 𝜔𝑖 ≠ 𝜔𝑗 for 𝑖 ≠ 𝑗, and,
therefore,

𝜌𝐴
𝐸𝐼

[

∫

𝐿

0
𝑊1𝑖 (𝑥)𝑊1𝑗 (𝑥) 𝑑𝑥 + ∫

𝐿0

𝐿
𝑊2𝑖 (𝑥)𝑊2𝑗 (𝑥) 𝑑𝑥

]

= 0. (C.4)

Including the case of 𝑖 = 𝑗, the orthogonality condition is found to
e

𝜌𝐴
[ 𝐿

𝑊1𝑖 (𝑥)𝑊1𝑗 (𝑥) 𝑑𝑥 +
𝐿0
𝑊2𝑖 (𝑥)𝑊2𝑗 (𝑥) 𝑑𝑥

]

= 𝛿𝑖𝑗 . (C.5)

𝐸𝐼 ∫0 ∫𝐿
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𝑇
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Table B.1
Boundary conditions for beam section 1⃝.

Boundary Total deflection
𝑤1 (𝑥, 𝑡)

Free-vibration
component
𝑤1fv (𝑥, 𝑡)

Normal mode
𝑊1𝑖 (𝑥)

Shifting function
𝐹1 (𝑥)

𝑥 = 0
𝑤 (0, 𝑡) = 𝑣𝑡 𝑤fv (0, 𝑡) = 0 𝑊1𝑖 (0) = 0 𝐹 (0) = 1

𝑤(1) (0, 𝑡) = 0 𝑤(1)
fv (0, 𝑡) = 0 𝑊 (1)

1𝑖 (0) = 0 𝐹 (1) (0) = 0

𝑥 = 𝐿 𝑤 (𝐿, 𝑡) = 0 𝑤fv (𝐿, 𝑡) = 0 𝑊1𝑖 (𝐿) = 0 𝐹 (𝐿) = 0
Table B.2
Boundary conditions for beam section 2⃝.

Boundary Total deflection
𝑤2 (𝑥, 𝑡)

Free-vibration component
𝑤2fv (𝑥, 𝑡)

Normal mode
𝑊2𝑖 (𝑥)

Shifting function
𝐹2 (𝑥)

𝑥 = 𝐿 𝑤2 (𝐿, 𝑡) = 0 𝑤2fv (𝐿, 𝑡) = 0 𝑊2𝑖 (𝐿) = 0 𝐹2 (𝐿) = 0

𝑥 = 𝐿0
𝐸𝐼𝑤(2)

2

(

𝐿0 , 𝑡
)

= 0 𝐸𝐼𝑤(2)
2fv

(

𝐿0 , 𝑡
)

= 0 𝑊 (2)
2𝑖

(

𝐿0
)

= 0 𝐸𝐼𝐹 (2)
2

(

𝐿0
)

= 0

𝐸𝐼𝑤(3)
2

(

𝐿0 , 𝑡
)

= 0 𝐸𝐼𝑤(3)
2fv

(

𝐿0 , 𝑡
)

= 0 𝑊 (3)
2𝑖

(

𝐿0
)

= 0 𝐸𝐼𝐹 (3)
2

(

𝐿0
)

= 0
Table B.3
Continuity conditions.

Total deflection Free-vibration component Shifting function

Deflection 𝑤1 (𝐿, 𝑡) = 𝑤2 (𝐿, 𝑡) 𝑤1fv (𝐿, 𝑡) = 𝑤2fv (𝐿, 𝑡) 𝐹1 (𝐿) = 𝐹2 (𝐿)
Slope 𝑤(1)

1 (𝐿, 𝑡) = 𝑤(1)
2 (𝐿, 𝑡) 𝑤(1)

1fv (𝐿, 𝑡) = 𝑤(1)
2fv (𝐿, 𝑡) 𝐹 (1)

1 (𝐿) = 𝐹 (1)
2 (𝐿)

Bending moment 𝑤(2)
1 (𝐿, 𝑡) = 𝑤(2)

2 (𝐿, 𝑡) 𝑤(2)
1fv (𝐿, 𝑡) = 𝑤(2)

2fv (𝐿, 𝑡) 𝐹 (2)
1 (𝐿) = 𝐹 (2)

2 (𝐿)
Appendix D. Derivation of initial modal displacement and velocity

The initial displacement of beam sections ① and ②, according to
qs. (11) and (12), are

1fv (𝑥, 0) =
∞
∑

𝑖=1
𝑊1𝑖 (𝑥) 𝑇𝑖 (0) , (D.1)

𝑤2fv (𝑥, 0) =
∞
∑

𝑖=1
𝑊2𝑖 (𝑥) 𝑇𝑖 (0) . (D.2)

Multiplying Eq. (D.1) by 𝜌𝐴𝑊1𝑗 (𝑥) ∕ (𝐸𝐼) and multiplying Eq. (D.2)
by 𝜌𝐴𝑊2𝑗 (𝑥) ∕ (𝐸𝐼), adding their products and applying the orthogo-
nality condition in Eq. (C.5) to have

𝑇𝑖 (0) =
𝜌𝐴
𝐸𝐼

[

∫

𝐿

0
𝑊1𝑖 (𝑥)𝑤1fv (𝑥, 0) 𝑑𝑥 + ∫

𝐿0

𝐿
𝑊2𝑖 (𝑥)𝑤2fv (𝑥, 0) 𝑑𝑥

]

.

(D.3)

Similarly, the initial modal velocity is

̇ 𝑖 (0) =
𝜌𝐴
𝐸𝐼

[

∫

𝐿

0
𝑊1𝑖 (𝑥) 𝑤̇1fv (𝑥, 0) 𝑑𝑥 + ∫

𝐿0

𝐿
𝑊2𝑖 (𝑥) 𝑤̇2fv (𝑥, 0) 𝑑𝑥

]

.

(D.4)

ppendix E. Simplification of initial modal velocity

Substituting 𝑤̇1fv (0, 𝑡) = −𝑣𝐹1 (𝑥), 𝑤̇2fv (0, 𝑡) = −𝑣𝐹2 (𝑥), 𝑊1𝑖 (𝑥) =
𝑊 (4)

1𝑖 (𝑥) ∕𝛽4𝑖 (Eq. (13)) and 𝑊2𝑖 (𝑥) = 𝑊 (4)
2𝑖 (𝑥) ∕𝛽4𝑖 (Eq. (14)) into

Eq. (24), and, then, integrating by parts four times together with the
boundary conditions in Table B.1 and Table B.2 and the continuity
conditions in Table B.3, the initial modal velocity is simplified to

𝑇̇𝑖 (0) = 𝑣 1
𝜔2
𝑖

𝑊 (3)
1𝑖 (0) . (E.1)
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