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a b s t r a c t

Fe-based metallic glasses (MGs) are a class of promising soft magnetic materials that have received great 
attention in transformer industries. However, it is challenging to achieve a balance between saturation 
magnetization (Bs), glass-forming ability and plasticity due to their contradictory correlations in Fe-based 
MGs, which severely hinders the development of new Fe-based MGs with advanced performances. Inspired 
by the significant development in machine learning technology, we herein propose a multi-objective op-
timization strategy to search for Fe-based MGs with optimal combinations of critical casting size (Dmax), 
Bs, and plasticity. The objective functions are built in combination with neural network models for pre-
dicting Dmax and Bs, as well as empirical formula for plasticity. The effect of number of hidden layers is 
investigated and the dropout regularization method employed to improve the prediction performance. Our 
results show that the predictions of Bs and Dmax by using alloy composition as the sole input perform well, 
as evidenced by their r2 values of 0.963 and 0.874, respectively. Multi-objective optimization based on the 
genetic algorithm is executed to obtain the Pareto front and Pareto-optimal solutions. The Pareto-optimal 
alloys predicted for the Fe83C1BxSiyP16-x-y and FexCoyNi72-x-yB19.2Si4.8Nb4 systems are in good agreement 
with those reported in experiments. This work thus showcases potential applications for the design of high- 
performance Fe-MGs against conflicting objectives.

© 2023 Elsevier B.V. All rights reserved. 

1. Introduction

Metallic glasses (MGs) have generated great interest because of 
their unique and unconventional mechanical, physical and chemical 
properties such as profound elastic strain limit (∼2%), high me-
chanical strength (∼2 GPa), excellent corrosion resistance, and ex-
treme biocompatibility without cytotoxicity [1–4]. Among the MGs, 
Fe-based MGs possess high saturation magnetization (Bs) and low 
coercive force. This class of MGs has thus attracted more attention 
for industrialization and commercialization purposes, and has been 

widely applied as transformer cores to replace traditional Si-steel 
[5–8]. However, two remaining challenges in utilizing Fe-based soft 
magnetic MGs for industrial applications are their low glass-forming 
ability (GFA) and very poor plasticity (< 0.5%) at room temperature 
[4,9–11]. It is therefore imperative to develop Fe-based MGs with 
high Bs, robust GFA and superior plasticity.

However, it is difficult to strike a balance between Bs, GFA and 
plasticity due to their contradictory relationships in Fe-based MGs. 
Typically, the Bs increases with Fe content. The additions of suitable 
quantities of transition metals and metalloids can improve the GFA, 
while a reduced Fe content leads to a decrease in Bs [12,13]. More-
over, the electronic interactions between Fe and metalloids reduce 
the effective magneton number at the same time [13–16]. Note also 
that a relatively high content of metalloids will deteriorate the 
plasticity [17]. Therefore, it is important to find an optimum Fe- 
based MG composition to achieve an exceptional combination of 
high Bs with improved GFA and plasticity.
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While a heuristic microalloying strategy can result in the devel-
opment of MGs with desired properties, it is a time-consuming and 
costly iterative process [14,18–23]. The development and adoption of 
machine learning (ML) methods has accelerated the discovery of 
high-performance materials [24–26]. ML has the potential to accu-
rately predict materials properties at a low computational cost 
[27–38], even for multi-element alloys like MGs, which exhibit 
strong composition-dependent behavior. However, it is still a major 

challenge to simultaneously optimize multi-objective problems. One 
promising scheme is the metaheuristic method, including the ge-
netic algorithm (GA), ant colony optimization (ACO), particle swarm 
optimization (PSO), and simulated annealing methods. Metaheur-
istic method is able to find near-optimal solutions in complex 
optimization problems with large variables [39]. For example, 
García-Carrillo et al. combined artificial neural network (NN) and GA 
to simultaneously optimize against conflicting properties such as 

Fig. 1. Schematic illustration of the search strategy for high-performance Fe-based MGs. 

Fig. 2. Schematic illustration of the structure of NN. The gray neurons represent those randomly discarded with a certain probability at each training iteration. 
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thermal and electrical conductivities in polyethylene-carbon particle 
composites [40].

In the present work, we couple NN and GA to optimize against 
conflicting objectives (i.e., Bs, GFA, and plasticity) for achieving su-
perior Fe-based MGs. We first build the objective functions for three 
key properties of Fe-based MGs. Next, a systematic investigation is 
carried out on the number of hidden layers, dropout regularization 
method, as well as input feature. Finally, multi-objective optimiza-
tion based on GA is adopted. The proposed ML framework is vali-
dated considering Fe83C1BxSiyP16-x-y and FexCoyNi72-x-yB19.2Si4.8Nb4 

systems, with a view towards potential tailoring of properties for Fe- 
based MGs.

2. Methods

Our proposed strategy for achieving the desired high-perfor-
mance Fe-based MGs consists of 3 steps, as summarized in Fig. 1. The 
first step is to build objective functions that define the relationship 
between inputs and output variables. Due to the general lack of data 
on ν values for Fe-based MGs in the literature (less than 60), the 
empirical criteria for plasticity based on the “rule of mixture” and 
ν is utilized. The second step is to define the boundaries and con-
straints that the solution must satisfy in an optimization problem. 
The final step is to execute multi-objective optimization based on GA 
and obtain the Pareto front and Pareto-optimal solutions.

2.1. Objective functions

2.1.1. ML model for predicting critical casting size (Dmax) and Bs

The open source ML framework PYTORCH is utilized to build NN 
models. NN models implemented with nonlinear activation function 
can approximate any complex functions [41]. In this study, we em-
ploy the rectified linear unit (ReLU) as the nonlinear activation 
function, as defined by Eq. (1) [42]. In the process of gradient pro-
pagation, ReLU may set the outputs of some neurons to 0, leading to 
sparse activation and better gradient propagation [43].

=f x x( ) max(0, ) (1) 

where x is the input value for a neuron unit.
The structure of NN includes the input layer, output layer, and 

hidden layers, as illustrated in Fig. 2. Dropout regularization method 
is employed for reducing overfitting in NN, in which the neurons are 
randomly discarded with a certain probability at each iteration. From 
the perspective of ensemble learning, each training iteration based 
on different networks can reduce overfitting and improve the pre-
diction performance [44].

The coefficient of determination (r2) and root-mean-square error 
(RMSE) are employed to quantify the performance of NN. r2 de-
scribes how well the NN model predicts the actual values (yi), and 
RMSE represents the deviations between predicted and actual va-
lues. They are defined as [45]:

Fig. 3. The number of occurrence of elements presented in the three datasets of Dmax, Bs, and ν, depicted in terms of the intensity of color fills. For each element, the red fill in the 
top left segment indicates its presence in the dataset of ν, the blue fill in the top right segment indicates its presence in an alloy for which we have a Bs value, and the green fill in 
the bottom segment indicates its presence in the dataset of Dmax. The absence of an element in the dataset is depicted with a gray fill.

Y.-X. Zhang, S.-J. Xie, W. Guo et al. Journal of Alloys and Compounds 960 (2023) 170793

3



= =

=

r 1
(y ŷ )
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where ȳ is the average of yi, and ŷi is the predicted value. r2 = 1 
denotes a perfect match between predictions and actual data. A low 
RMSE value indicates that the predicted and actual values are close 
to each other, showing a better accuracy.

2.1.2. Empirical formula of ν for indicating plasticity
Previous studies have reported that MGs exhibit a brittle-to- 

ductile transition at a critical ν value of 0.31–0.32 [46–48]. ν is cal-
culated by Eq. (4):

= +K G K G
1
2

(3 2 )/(3 ) (4) 

where K and G are the bulk modulus and shear modulus, respec-
tively.

Wang has proposed that the elastic constants of MGs can be 
calculated by the average of the moduli of each constituent element 
according to the “rule of mixture” [48]. Liu et al. have also proposed a 
method for precisely calculating the elastic constants based on the 
base elements of MG [49]. Unfortunately, they did not conclude the 
parameters used for Fe-based MGs. In the following, the “rule of 
mixture” proposed by Wang et al. is adopted to calculate the elastic 
constants of Fe-based MGs, which is defined by [48]:

=M
V x
V x

M
·
·

·i i

i i
i

(5) 

where xi, Vi and Mi denote the proportion, atomic volume, and 
modulus of the i-th constituent element, respectively. It should be 
mentioned that since the metalloid elements (i.e., B, C, P, and Si) only 
have bulk moduli, the Cauchy relation ( =K G5 /3) is adopted to 
determine their assume shear moduli [48].

2.2. Multi-objective optimization

The Genetic and Evolutionary Algorithm toolbox for Python with 
High Performance (GEATPY) is employed to build the multi-objective 
optimization model [50]. GA is an optimization method to search for 
the optimal solution by simulating the process of natural evolution 
[51]. The basic structure of a GA is as follows. In a certain population 
size, population individuals undergo crossover, recombination and 
mutation, and then produce new individuals. This process repeats in 
different generations. Each individual in the population is assigned a 
fitness value normally based on its objective function value. Individuals 
with higher fitness values are more likely to survive. After multiple 
evolutions, better solutions are obtained. In our work, the evolutionary 
algorithm using a reference point based on a nondominated sorting 
approach is employed to search the trade-offs among the conflicting 
objectives [51,52]. During optimization, the crossover probability and 
mutation probability are fixed at 0.9 and 0.1, respectively. The popu-
lation size is set to 100. In our work, Pareto-optimal solutions in multi- 
objective optimization among the conflicting objectives of GFA, Bs, and 
plasticity in Fe-based MGs represent the trade-off compositions.

2.3. Datasets

Our datasets are collected from the public handbook and litera-
ture [6,12,29,33,35,37,46,48,53–64]. Most of the data about GFA are 

Fig. 4. The distribution of (a-c) Dmax and (d-f) Bs datasets. The left, middle, and right panels indicate the full dataset, the training set, and the test set, respectively. 
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taken from Samavatian et al. ’s work [37], which was dated back to 
Ward et al.’s work and the Landolt-Bornstein Handbook [29,64]. 
The datasets of Bs and ν are mainly derived from the work of Lu 
et al. and Wang [33,48], respectively. Initially, the numbers of data 
of Dmax, Bs, and ν are 5689, 366, and 305, respectively. Fig. 3 shows 
the number of occurrence of each element in the corresponding 
dataset. In general, our database covers 55 different elements in 
the periodic table, including metallic and metalloid elements fre-
quently presented in MGs. Besides, the elements in the Dmax da-
taset are widely distributed, while those in the Bs and ν datasets 
are mainly enriched in Fe, B, C, Si and P, and Al, Ni, Cu and Zr, 
respectively.

At the next step, we rule out some unreasonable data based on 
two criteria. First, the samples with a proportion of Fe less than 0.3 
are deleted due to the fact that an increased Fe content can increase 
the Bs. Second, samples with <D 1 mmmax are also discarded, 
since they reflect poor GFA. The resulting data size for Dmax, Bs, and 

ν is 589, 360, and 21, respectively. Due to the limited dataset, we 
divide the training set and the test set at a ratio of 8:2. Fig. 4 shows 
the distribution of Dmax and Bs data. A skewed distribution with a 
typical long tail is observed for the Dmax data, while a normal dis-
tribution is observed for the Bs data.

3. Results and discussion

3.1. NN models for predicting Dmax and Bs

3.1.1. Determination of the structure of NN
In the NN, an increased number of hidden layers generally im-

proves the fitting ability for the training set. However, too many 
hidden layers may lead to overfitting, especially if the training set 
contains limited samples. In our work, the dropout regularization 
method is employed to prevent model overfitting. In order to de-
termine the best NN structure, we systematically study the influence 
of the number of hidden layers and dropout probability (p) on the 
prediction accuracy, as shown in Fig. 5.

Fig. 5(a-b) shows the effect of the number of hidden layers when 
predicting Dmax and Bs without dropout method. For predicting Dmax 

as shown in Fig. 5(a), the r2 value for the training set increases 
slightly and reaches the highest value of 0.998 at 5 hidden layers. In 
contrast, the r2 value for the test set increase at first and then de-
creases. The NN with 2 hidden layers exhibits the highest r2 value of 
0.753 for the test set. For predicting Bs as shown in Fig. 5(b), the 
trend of r2 is similar to that of Dmax. Besides, the model performs 
well on the test set, as evidenced by r2 >  0.93 regardless of the 

Fig. 5. The r2 value as a function of the number of hidden layers when predicting (a) Dmax and (b) Bs without dropout method. (c) The r2 value as a function of p when fixing the 
number of hidden layer at 1. (d) The r2 value as a function of the number of hidden layers when p values are fixed at 0.1 and 0.3 for Dmax and Bs, respectively.

Table 1 
The r2 values for predicting Dmax and Bs without and with the dropout method. 

Hidden 
layers

r2 values without 
dropout method

r2 values with 
dropout method

Change in r2

Dmax Bs Dmax Bs Dmax Bs

1 0.713 0.949 0.811 0.963 13.7% 1.5%
2 0.753 0.963 0.824 0.956 9.4% -0.7%
3 0.659 0.930 0.874 0.953 32.6% 2.3%
4 0.485 0.945 0.844 0.946 74.0% 0.1%
5 0.460 0.941 0.822 0.942 78.7% 0.1%

Y.-X. Zhang, S.-J. Xie, W. Guo et al. Journal of Alloys and Compounds 960 (2023) 170793

5



number of hidden layers. It is worth mentioning that a r2 value of 
0.949 is achieved for only one hidden layer.

In order to further improve the prediction performance to avoid 
overfitting, we next investigate the effect of p with the number of 
hidden layer fixed at 1, as shown in Fig. 5(c). The r2 values for Dmax and 
Bs reach the highest values when p values are set to be 0.3 and 0.1, 
respectively. After the determination of p values, we proceed to fix the 
number of hidden layers for predicting Dmax and Bs. Fig. 5(d) shows 
that as the number of hidden layers increases, the r2 value increases at 
first and decreases when predicting Dmax, attaining a maximum value 
of 0.874 at 2 hidden layers. When predicting Bs, the r2 value decreases 
with the number of hidden layers.

Table 1 summarizes the r2 values as a function of the number of 
hidden layers and p. It is clearly observed that the prediction per-
formance is greatly improved with the application of the dropout 
method, especially for predicting Dmax. For example, when the 
number of hidden layers is 5, the r2 value increases by 78.7% from 
0.460 to 0.822 after using the dropout method. Similarly, the NN for 
predicting Bs is also improved slightly after using the dropout 
method. Furthermore, it is observed that the NN for predicting Bs 

performs better than that for predicting Dmax. The r2 value for pre-
dicting Bs is up to 0.963, which is ∼10% higher than that of the NN for 
predicting Dmax. This is attributed to the imbalanced dataset in-
volved by the limited data in the regime of large Dmax. From this 
exercise, it is concluded that the dropout regularization method can 
improve the prediction accuracy. Fig. 6 shows the final structure of 
our NN model.

3.1.2. Determination of the input features
The input features are the “material genes” linked with the target 

material properties. Some previous studies directly used alloy com-
positions as inputs [35], while others constructed the input features 
based on the basic properties of elements [28,29,33,58]. To study the 
effect of different input features on the prediction performance, we 
consider three kinds of input features including the alloy composi-
tions (COMP), the elemental properties (ELEM), and the combination 
of alloy compositions and elemental properties (COMP+ELEM).

There are 22 kinds of elemental properties used in this work, as 
listed in Table 2. Except for the atomic size difference ( D), mixing 
entropy ( S), and volume (V ), the other elemental properties can be 
determined using the weighted average formula. For the four high-
lighted features, they can be calculated as [29,58,65,66]:

= x
r
r

1D i
i

2

(6) 

=V x r
4
3i i

3
(7) 

= ( )S R x x V x Vln /g i i i i i (8) 

=Z x Zi i (9) 

where xi, Vi, and ri represent the proportion, atomic volume, and 
atomic radius of i-th element, respectively. Rg and r denote the gas 
constant value and the average atomic radius, respectively. Z in-
dicates those elemental properties except for D, S and V .

Fig. 7 shows the predicted Dmax and Bs against measured Dmax and 
Bs based on the three different input features, in which the diagonal 
line represents perfect prediction. It is clearly seen that the points on 
Fig. 7(d-f) are closer to the diagonal line than those on Fig. 7(a-c), 
indicating that the Bs prediction performs much better than Dmax 

prediction. Although some outliers in the regime of large Dmax are 
observed due to the limited data on large Dmax in the literature, our 
approach still demonstrates an improved predictive capability com-
pared with previous studies [28,35,67,68], as discussed in detail below.

Table 3 lists the r2 and RMSE values of the Dmax and Bs predictions 
from three different input features. It is easily observed that the pre-
dictions obtained by using COMP as the sole input feature for Dmax and Bs 

have the best accuracy, as evidenced by the largest r2 and the smallest 
RMSE values. In contrast, the use of ELEM as the sole input feature 
performs the worst. This may be because the calculation formulas re-
lated to ELEM are based on the homogeneous materials that are uniform 
without irregularities, but MGs display the structural inhomogeneity. 
Therefore, the use of COMP to predict the Dmax and Bs of MGs would be 
more accurate. For predicting Bs, our r2 value of 0.963 is higher than the 
values in the work of Lu et al. and Li et al. [33,69]. In addition, the r2 value 
of 0.874 for predicting Dmax is much larger than those reported in most 
previous studies, for example, 0.61 in the work of Deng et al. [67], and 
0.71 in the work of Mastropietro et al. [35]. In term of RMSE, our value is 
25.8% lower than the value of 1.2063 mm in the work of Xiong et al. [68].

3.2. Multi-objective optimization of Fe-based MGs

After the discussions of the NN model including the number of 
hidden layers, the usage of dropout method, and the sets of the input 
features, we proceed to perform the multi-objective optimization of 
Fe-based MGs. In our work, there are 55 decision variables in the 
multi-objective optimization model. The constraint condition is the 
total content of constituent elements of alloys, while the boundary 
condition is controlled by the content of each constituent element. To 
assess the predictive capability of our multi-objective optimization 
model, both Fe83C1BxSiyP16-x-y and FexCoyNi72-x-yB19.2Si4.8Nb4 systems 
are chosen, because Fe-Si-B system has been reported to have con-
trollable and attractive magnetic properties [6].

Fig. 6. The adopted NN structure for predicting Dmax and Bs. n denotes the number of 
features.

Table 2 
The basic elemental properties employed in our work. 

The elemental properties

Atomic mass Atomic number Atomic radius
Atomic size difference Boiling point Covalent radius
Density Electrical conductivity Electron affinity
Electronegativity First ionization energy Group
Heat of fusion Heat of vapourization Ionic radius
Melting point Mixing entropy Period
Specific Heat Thermal Conductivity Valence
Volume

Y.-X. Zhang, S.-J. Xie, W. Guo et al. Journal of Alloys and Compounds 960 (2023) 170793

6



3.2.1. Fe83C1BxSiyP16-x-y MGs
For Fe83C1BxSiyP16-x-y system, the constraint condition is that the 

total contents of B, Si, and P elements are 16%. The boundary con-
ditions for each element are as follows:

0 B 16%
0 Si 16%
0 P 16% (10) 

In multi-objective optimization, the Pareto front is the set of all 
Pareto-optimal solutions. The concept allows to restrict attention to 
the set of optimal choices, and to make tradeoffs within this set, 

Fig. 7. Predicted (a-c) Dmax and (d-f) Bs against measured Dmax and Bs from the different input features including COMP, ELEM, and COMP+ELEM. The diagonal line represents 
perfect prediction.

Table 3 
r2 and RMSE values of the Dmax and Bs predictions from three different input features. 

Input features Dmax Bs

r2 RMSE (mm) r2 RMSE (T)

COMP 0.874 0.895 0.963 0.059
ELEM 0.795 1.140 0.923 0.084
COMP+ELEM 0.817 1.077 0.950 0.068
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rather than considering the full range of every parameter. The Pareto 
front of Fe83C1BxSiyP16-x-y system is plotted in Fig. 8(a). Obviously, it 
is difficult to simultaneously achieve the optimal values for all ob-
jectives. The Pareto-optimal solutions for ν, Dmax, and Bs, are sepa-
rately plotted in Fig. 8(b-d). It can be seen that the optimal 
composition for Bs is close to that for Dmax. Generally speaking, the 
GFA and Bs in Fe-based MGs are in conflict with each other. Bs is 
positively correlated with the Fe content, while the reduced Fe 
content after the addition of other elements is beneficial for GFA 
improvement. In our work, the optimal compositions for Bs and Dmax 

are very close, which may be due to the fixed Fe content during 
evolution. Referring to the optimal composition for Dmax as shown in 
Fig. 8(c), the content of B element is much higher than those of Si 
and P elements. Previous studies have reported that the B element is 
difficult to spread and can inhibit grain growth, which plays a key 
role in the formation of amorphous phase [70]. In addition, Wang 
et al. found that an appropriate addition of P element helps to im-
prove the GFA of Fe-B-Si-P system, whereas it deteriorates the GFA 
and soft magnetic properties once the P element content becomes 
excessive [22]. For the optimal composition for Bs as shown in 
Fig. 8(d), the content of P element is low. Since the average magnetic 
moment is proportional to the average magnetic valence, the me-
talloids deteriorate saturation magnetization in the order of P  >  Si >  B 
[13]. This finding is consistent with the results of Williams et al. [71].

Our multi-objective optimization results are consistent with the 
experimental results of Wang et al. [72]. Wang et al. proposed the 
crystallization temperature onset (Tx1) to reflect the GFA. Our Pareto- 
optimal results are in good agreement with the distribution of Tx1, as 
shown in Fig. 8(c). It can be observed that the regime of large Dmax 

locates at the alloy compositions with more B elements but fewer P 
and Si elements. It should be noted that the Dmax values may be 
overestimated in our work, as the training set is deficient of samples 
that cannot be cast into MGs. However, this may not change the 
choice of the Pareto-optimal alloys. For Bs prediction, the Pareto- 
optimal results are close to the experimental results except for the 
upper corner of Fig. 8(d). However, the Pareto-optimal alloys located 
in this area have relatively lower GFA as indicated in Fig. 8(c).

3.2.2. The FexCoyNi72-x-yB19.2Si4.8Nb4 alloy system
For FexCoyNi72-x-yB19.2Si4.8Nb4 system, the constraint condition is 

that the total contents of Fe, Co, and Ni elements are 72%. The 
boundary conditions for each element are as follows:

0 Fe 72%
0 Co 72%
0 Ni 72% (11) 

Fig. 9(a) shows the Pareto front for FexCoyNi72-x-yB19.2Si4.8Nb4 

system. In view of the orthographic projections of Pareto front on 

Fig. 8. (a) The Pareto front of Fe83C1BxSiyP16-x-y system. The blue points indicate the target value corresponding to the optimal solution. The orange, green, and pink points 
represent the projection of the target value onto the three coordinate planes. (b-d) The Pareto-optimal solutions of each objective function for the Fe83C1BxSiyP16-x-y system. The 
grayscale points are the measured values from experiments.
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each coordinate plane, it is observed that the two objectives of Dmax 

and Bs can reach the optimal values simultaneously. This can be 
attributed to the fact that the contents of elements related to GFA 
(i.e., B, Si, and Nb) remain unchanged during optimization. The op-
timal compositions of Dmax and Bs shown in Fig. 9(c-d) are almost the 
same, located on the regions with high content of Fe and low con-
tents of Co and Ni. Due to the lower magnetic moment of Ni and the 
paramagnetism associated with γ-FeNi, the addition of Ni can reduce 
the Bs [73]. It should be pointed out that our optimization results of 
Dmax are consistent with the work of Inoue et al. [74]. For the optimal 
compositions of plasticity shown in Fig. 9(b), the Ni content in-
creases with ν and is much higher than those of Fe and Co elements. 
Previous studies have reported that a moderate amount of Ni can 
improve the plasticity of Fe-based MGs [18]. The substitution of Ni 
can retain the γ-FeNi short-order atomic arrangement, which is one 
of the origins of good plasticity in Fe-Ni-based MGs [13,75].

Before concluding, it is instructive to discuss the generality of our 
approach. Although the multi-objective optimization approach 
proposed in this study has shown great potential in finding new Fe- 
based MGs, it still has some limitations to be clarified. First of all, the 
available dataset for Fe-based MGs is insufficient, especially the ν 
values. More data will certainly increase the accuracy of our ML 
model. Besides, the NN model for predicting GFA may overestimate 
the Dmax values, because the dataset does not take into account 

samples that cannot be cast into MGs. In addition, the criterion of 
for plasticity in MGs lacks versatility [38]. Finally, the shear moduli 
of metalloid elements are assumed, which may affect the accuracy 
of .

4. Conclusions

The search for high-performance Fe-based MGs is very important 
for their commercial applications. Although the rapid progresses in 
ML approach to predict the individual property of MGs, it is still 
challenging for multi-objective optimization. In this study, we have 
presented a hybrid ML framework based on NN which models the 
objective functions, in combination with GA to enable the optimi-
zation of conflicting material properties. The influences of the 
number of hidden layers, dropout method, and input features on the 
NN prediction accuracy are systematically investigated. Our results 
reveal that the dropout method can improve the model perfor-
mance, and more hidden layers are required to predict Dmax due to 
the skewed data distribution. Moreover, the use of alloy composition 
as sole input can achieve better prediction performance, compared 
with the input of the elemental properties or the combination of 
alloy composition and elemental properties. Dmax and Bs are well 
predicted with high r2 values of 0.874 and 0.963, respectively. We 
finally validate this ML framework on the Fe83C1BxSiyP16-x-y and 

Fig. 9. (a) The Pareto front of FexCoyNi72-x-yB19.2Si4.8Nb4 system. The blue points indicate the target value corresponding to the optimal solution. The orange, green, and pink points 
represent the projection of the target value onto the three coordinate planes. (b-d) The Pareto-optimal solution of each objective function for the FexCoyNi72-x-yB19.2Si4.8Nb4 

system. The grayscale points are the measured values from experiments.
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FexCoyNi72-x-yB19.2Si4.8Nb4 systems, with predictions achieving a 
good agreement with the experimental results. This paper thus 
provides insights on the optimization of multi-objective problems 
towards the design of Fe-based MGs for advanced multifunctional 
applications.
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